FastIron and Turbolron 24X

Configuration Guide

Supporting FSX 05.1.00 for FESX, FWSX, and FSX; FGS 04.3.03 for FGS, FLS and FWS; FGS 05.0.02 for FGS-STK and FLS-STK; FCX 06.0.00 for FCX; and TIX 04.2.00 for TIX
Contents

About This Document

- Introduction ... xlii
- Device nomenclature xlii
- Audience .. li
- What new in this document li
- Summary of features in FGS R04.3.03 li
 - New hardware in FGS R04.3.03 li
 - Software enhancement in FGS 04.3.03 li
- Summary of features in FCX R06.0.00 lii
 - New hardware in FCX R06.0.00 lii
 - Software enhancements in FCX R06.0.00 lii
- Summary of enhancements in TIX R04.2.00 lii
- Summary of enhancements in FSX R05.1.00 liv
 - Layer 3 enhancements in FSX R05.1.00 liv
 - Layer 2 enhancement in FSX R05.1.00 lvi
 - System-Level enhancement in FSX R05.1.00 lvi
 - Management enhancement in FSX R05.1.00 lvi
 - Security enhancement in FSX R05.1.00 lvi
- Summary of enhancements in FGS R05.0.02 lvi
 - Software enhancements in FGS R05.0.02 lvi
- Summary of enhancements in 04.1.00 lvii
 - Hardware introduced in 04.1.00 lviii
 - Software Enhancements in 04.1.00 lviii
- Document conventions lviii
 - Text formatting lix
 - Command syntax conventions lix
 - Notes, cautions, and danger notices lix
- Notice to the reader lx
- Related publications lx
- Getting technical help or reporting errors lx
 - Web access .. lix
 - E-mail access lix
 - Telephone access lix

Chapter 1 Feature Highlights

- Introduction to features 1
- Note regarding IPv6 feature support 1
Supported features ... 2
 Supported management features 2
 Supported security features 3
 Supported system-level features 5
 Supported Layer 2 features 8
 Supported base Layer 3 features on FastIron devices 11
 Supported Edge Premium (EPREM) features on
 FastIron devices .. 12
 Supported full Layer 3 features on FastIron devices 13
 Supported Layer 3 features on Tubolron devices 14
 Supported IPv6 management features 15
 Unsupported features ... 16

Chapter 2 Getting Familiar with Management Applications

Using the management port 17
 How the management port works 17
 CLI Commands for use with the management port 17

Logging on through the CLI 19
 On-line help .. 19
 Command completion .. 20
 Scroll control ... 20
 Line editing commands .. 20

Using stack-unit, slot number, and port number
with CLI commands .. 21
 CLI nomenclature on FSX, FSX 800, and FSX 1600 devices 21
 CLI nomenclature on TIX, FESX, and FWSX devices 21
 CLI nomenclature on FGS and FLS devices 22
 CLI nomenclature on FGS-STK, FLS-STK, and FCX devices 22
 CLI nomenclature on the FWS 22

Searching and filtering output from CLI commands 26
 Using special characters in regular expressions 28
 Creating an alias for a CLI command 29

Logging on through the Web Management Interface 30
 Navigating the Web Management Interface 31

Logging on through IronView Network Manager 34
Chapter 3 Configuring Basic Software Features

Configuring basic system parameters .. 35
Entering system administration information 36
Configuring Simple Network Management Protocol (SNMP) parameters ... 36
Displaying virtual routing interface statistics 40
Disabling Syslog messages and traps for CLI access 40
Configuring an interface as the source for all Telnet packets 41
Cancelling an outbound Telnet session .. 42
Configuring an interface as the source for all TFTP packets 43
Configuring an interface as the source for all Syslog packets ... 43
Configuring an interface as the source for all SNTP packets ... 44
Specifying a Simple Network Time Protocol (SNTP) server ... 44
Setting the system clock .. 46
Limiting broadcast, multicast, and unknown unicast traffic ... 48
Configuring CLI banners .. 53
Configuring basic port parameters .. 56
Assigning a port name ... 56
Modifying port speed and duplex mode 56
Auto speed detect ... 58
Enabling auto-negotiation maximum port speed advertisement and down-shift ... 58
Modifying port duplex mode .. 61
Configuring MDI/MDIX ... 62
Disabling or re-enabling a port .. 63
Disabling or re-enabling flow control .. 64
Auto-negotiation and advertisement of flow control 64
Configuring PHY FIFO Rx and Tx depth 66
Configuring the Interpacket Gap (IPG) 67
Enabling and disabling support for 100BaseTX 69
Enabling and disabling support for 100BaseFX 70
Changing the Gbps fiber negotiation mode 72
Modifying port priority (QoS) .. 72
Dynamic configuration of Voice over IP (VoIP) phones 72
Configuring port flap dampening ... 74
Configuring a local MAC address for Layer 2 management traffic ... 77
Port loop detection ... 78

Chapter 4 Operations, Administration, and Maintenance

Overview ... 83
Determining the software versions installed and running on a device ... 83
Determining the flash image version running on the device 83
Determining the boot image version running on the device 85
Determining the image versions installed in flash memory ... 86
Flash image verification ... 86
Image file types ... 88
Upgrading software .. 88
 Note regarding upgrading from FGS 02.4.00 89
 to the new release ... 89
 Migrating to the new release (FESX and FSX devices only) 89
 Upgrading the boot code .. 90
 Upgrading the flash code ... 90
 Boot code synchronization feature 91

Important notes about downgrading from FSX 04.1.00 92

Using SNMP to upgrade software ... 92

Changing the block size for TFTP file transfers 93

Rebooting .. 94

Displaying the boot preference .. 94

Loading and saving configuration files 95
 Replacing the startup configuration with the running configuration 96
 Replacing the running configuration with the startup configuration 96
 Logging changes to the startup-config file ... 96
 Copying a configuration file to or from a TFTP server 96
 Dynamic configuration loading .. 97
 Maximum file sizes for startup-config file and running-config 99

Loading and saving configuration files with IPv6 100
 Copying a file to an IPv6 TFTP server 100
 Copying a file from an IPv6 TFTP server 101
 Using the IPv6 ncopy command .. 102
 Uploading files from an IPv6 TFTP server 103
 Using SNMP to save and load configuration information 104
 Erasing image and configuration files 105

Scheduling a system reload .. 105
 Reloading at a specific time ... 105
 Reloading after a specific amount of time 106
 Displaying the amount of time remaining before a scheduled reload 106
 Canceling a scheduled reload .. 106

Diagnostic error codes and remedies for TFTP transfers 106

Chapter 5 Brocade Stackable Devices

Brocade IronStack overview .. 109
 IronStack technology features .. 109
 Brocade stackable models ... 110
 Brocade IronStack terminology 111
Building an IronStack ... 113
Brocade IronStack topologies 113
Software requirements ... 116
IronStack construction methods 116
Scenario 1 - Configuring a three-member IronStack
in a ring topology using secure-setup 117
Scenario 2 - Configuring a three-member IronStack
in a ring topology using the automatic setup process 121
Scenario 3 - Configuring a three-member IronStack
in a ring topology using the manual configuration process . 124
Configuring an FCX IronStack 125
Configuring FCX stacking ports 125
Verifying an IronStack configuration 136
IronStack management ... 138
Managing your Brocade IronStack 139
Removing MAC address entries 143
CLI command syntax .. 144
IronStack CLI commands .. 145
Upgrading software ... 146
Managing IronStack partitioning 152
MIB support for the IronStack 152
Persistent MAC address ... 153
Unconfiguring an IronStack 154
Displaying IronStack information 156
Adding, removing, or replacing units in an IronStack ... 172
Renumbering stack units ... 174
Syslog, SNMP, and traps 176
Troubleshooting an IronStack 177
Troubleshooting an unsuccessful stack build 177
Troubleshooting a stacking upgrade 179
Troubleshooting image copy issues 180
Stack mismatches .. 180
Advanced feature mismatch 181
Image mismatch .. 181
Configuration mismatch .. 182
Memory allocation failure 182
Recovering from a mismatch 182
Troubleshooting secure-setup 184
Troubleshooting unit replacement issues 184
More about IronStack technology 185
Configuration, startup configuration files and
stacking flash .. 185
Flexible stacking ports .. 186
IronStack topologies ... 186
Port down and aging ... 186
Device roles and elections 186
Configuring the management port for an IPv6 automatic address configuration. 213

Configuring basic IPv6 connectivity on a Layer 3 switch. .. 214
 Enabling IPv6 routing. ... 214
 Configuring IPv6 on each router interface ... 214
 Configuring IPv4 and IPv6 protocol stacks. ... 217

IPv6 management (IPv6 host support) ... 218
 IPv6 access control lists .. 219
 Restricting SNMP access to an IPv6 node ... 219
 Specifying an IPv6 SNMP trap receiver .. 219
 SNMP V3 over IPv6 .. 219
 SNTP over IPv6 .. 219
 Secure Shell, SCP, and IPv6 ... 220
 IPv6 Telnet ... 220
 IPv6 Web management using HTTP and HTTPS ... 220
 Restricting Web management access .. 221
 Configuring name-to-IPv6 address resolution using IPv6 DNS resolver 221
 Defining an IPv6 DNS entry ... 222
 Using the IPv6 copy command ... 222
 Using the IPv6 ncopy command .. 224
 IPv6 ping ... 226
 Configuring an IPv6 Syslog server ... 227
 Viewing IPv6 SNMP server addresses ... 227
 Disabling router advertisement and solicitation messages ... 228
 IPv6 debug .. 228
 Disabling IPv6 on a Layer 2 switch .. 229

Configuring a static IPv6 route ... 229

IPv6 over IPv4 tunnels ... 231
 Configuration notes .. 231
 Configuring a manual IPv6 tunnel ... 232
 Clearing IPv6 tunnel statistics .. 233
 Displaying IPv6 tunnel information ... 233

ECMP load sharing for IPv6 .. 235
 Disabling or re-enabling ECMP load sharing for IPv6 ... 236
 Changing the maximum load sharing paths for IPv6 .. 236
 Enabling support for network-based ECMP load sharing for IPv6 237
 Displaying ECMP load-sharing information for IPv6 .. 237

Configuring IPv6 ICMP features ... 237
 Configuring ICMP rate limiting ... 237
 Enabling IPv6 ICMP redirect messages ... 238
Configuring IPv6 neighbor discovery ... 238
Configuration notes ... 239
Neighbor solicitation and advertisement messages 239
Router advertisement and solicitation messages 240
Neighbor redirect messages ... 240
Setting neighbor solicitation parameters for
duplicate address detection .. 241
Setting IPv6 router advertisement parameters 242
Controlling prefixes advertised in IPv6 router
advertisement messages .. 243
Setting flags in IPv6 router advertisement messages 244
Enabling and disabling IPv6 router advertisements 244
Configuring reachable time for remote IPv6 nodes 245
Changing the IPv6 MTU ... 245
Configuring static neighbor entries ... 246
Limiting the number of hops an IPv6 packet can traverse 246
Clearing global IPv6 information .. 247
Clearing the IPv6 cache .. 247
Clearing IPv6 neighbor information ... 247
Clearing IPv6 routes from the IPv6 route table 248
Clearing IPv6 traffic statistics .. 248
Displaying global IPv6 information ... 248
Displaying IPv6 cache information .. 249
Displaying IPv6 interface information 250
Displaying IPv6 neighbor information 251
Displaying the IPv6 route table ... 253
Displaying local IPv6 routers .. 254
Displaying IPv6 TCP information .. 255
Displaying IPv6 traffic statistics .. 259

Chapter 9 Configuring Spanning Tree Protocol (STP) Related Features

STP overview ... 263
Configuring standard STP parameters 263
STP parameters and defaults .. 263
Enabling or disabling the Spanning Tree Protocol (STP) 265
Changing STP bridge and port parameters 266
STP protection enhancement ... 268
Displaying STP information .. 270
Configuring STP related features .. 279
Fast port span ... 279
802.1W Rapid Spanning Tree (RSTP) 281
802.1W Draft 3 ... 319
Single Spanning Tree (SSTP) ... 323
STP per VLAN group .. 325
PVST/PVST+ compatibility .. 329
Overview of PVST and PVST+ 330
VLAN tags and dual mode .. 331
Configuring PVST+ support 332
Displaying PVST+ support information 332
Configuration examples .. 333

PVRST compatibility .. 336

BPDU guard ... 336
 Enabling BPDU protection by port 337
 Re-enabling ports disabled by BPDU guard 337
 Displaying the BPDU guard status 338
 Example console messages 339

Root guard .. 340
 Enabling STP root guard 340
 Displaying the STP root guard 341
 Displaying the root guard by VLAN 341

Error disable recovery .. 341
 Enabling error disable recovery 342
 Setting the recovery interval 342
 Displaying the error disable recovery state by interface.................. 342
 Displaying the recovery state for all conditions 343
 Displaying the recovery state by port number and cause ... 343
 Errdisable Syslog messages 343

802.1s Multiple Spanning Tree Protocol 344
 Multiple spanning-tree regions 344
 Configuration notes .. 346
 Configuring MSTP mode and scope 346
 Reduced occurrences of MSTP reconvergence 347
 Configuring additional MSTP parameters 349

Chapter 10 Configuring Basic Layer 2 Features

About port regions .. 361

Enabling or disabling the Spanning Tree Protocol (STP) 362
 Modifying STP bridge and port parameters 362

Management MAC address for stackable devices 363

MAC learning rate control 363

Changing the MAC age time and disabling MAC address learning 363
 Disabling the automatic learning of MAC addresses ... 364
 Displaying the MAC address table 365

Configuring static MAC entries 365
 Multi-port static MAC address 366

Configuring VLAN-based static MAC entries 368

Clearing MAC address entries 369
Flow-based MAC address learning 369
Feature overview ... 369
The benefits of flow-based learning 370
How flow-based learning works 370
Configuration considerations 371
Configuring flow-based MAC address learning 371
Displaying information about flow-based MACs 372
Clearing flow-based MAC address entries 373

Enabling port-based VLANs 373
Assigning IEEE 802.1Q tagging to a port 374

Defining MAC address filters 374
Configuration notes and limitations 375
Command syntax ... 375
Enabling logging of management traffic permitted by MAC filters 377
MAC filter override for 802.1X-enabled ports 378

Locking a port to restrict addresses 379
Configuration notes .. 379
Command syntax ... 380

Displaying and modifying system parameter default settings 380
Configuration considerations 380
Displaying system parameter default values 380
Modifying system parameter default values 385

Dynamic buffer allocation for QoS priorities for
FastIron X Series devices 386
Default queue depth limits for FastIron X Series devices 387
Configuring the total transmit queue depth limit for
FastIron X Series devices 387
Configuring the transmit queue depth limit for a given
traffic class on FastIron X Series devices 387
Removing buffer allocation limits on FastIron X Series devices 388
Generic buffer profiles for FastIron X Series devices 388

Dynamic buffer allocation for FGS, FLS, FWS, and
FCX stackable and standalone devices 389
Configuring dynamic buffer allocation for FGS, FLS, FWS, and FCX
stackable and standalone devices 390
Removing buffer allocation limits on FGS, FLS, FWS, and
FCX stackable and standalone devices 392
Generic buffer profiles for FGS, FLS, FWS, and FCX stackable
and standalone devices 392
Egress buffer thresholds for QoS priorities
Egress buffer thresholds for QoS priorities can be configured to ensure that traffic is properly managed across different classes of service. These thresholds determine how much data can be buffered before packets are dropped or transmitted. The default settings for egress buffer thresholds may be disabled or re-enabled, depending on the network's requirements. Setting the egress buffer threshold for all QoS priorities on a port or group of ports allows for fine-grained control over data flow, ensuring that critical traffic is given priority over less critical traffic.

Cut-Through Switching Support on TurboIron 24X series switches
Cut-Through Switching Support on TurboIron 24X series switches enables devices to switch packets directly between input and output ports without the need for buffering. This can significantly reduce latency in high-speed networks. The default settings for cut-through switching can be modified to optimize performance and reliability.

Default settings for egress buffer thresholds
By default, the egress buffer thresholds for different QoS priorities are set to a certain level to ensure that traffic is managed effectively. These default settings can be adjusted to accommodate specific network conditions or requirements.

Disabling and re-enabling the default settings for egress buffer thresholds
Disabling the default settings for egress buffer thresholds allows for more granular control over the buffering process, which can be beneficial in scenarios where specific traffic conditions are known and can be managed more efficiently.

Setting the egress buffer threshold for all QoS priorities on a port or group of ports
Setting the egress buffer threshold for all QoS priorities on a port or group of ports enables a uniform approach to managing traffic across different classes, ensuring that all QoS priorities are treated equally.

Setting the egress buffer threshold for a specific QoS priority on a port or group of ports
Setting the egress buffer threshold for a specific QoS priority on a port or group of ports allows for targeted optimization of traffic management for that particular class.

Remote Fault Notification (RFN) on 1G fiber connections
Remote Fault Notification (RFN) on 1G fiber connections allows devices to detect and report faults remotely, improving network reliability and reducing the time required to diagnose and repair issues.

Enabling and disabling remote fault notification
Enabling and disabling remote fault notification can be useful in managing network configurations, ensuring that fault detection is aligned with network requirements.

Link Fault Signaling (LFS) for 10G
Link Fault Signaling (LFS) for 10G provides an additional layer of fault detection, enhancing network resilience and reliability.

Jumbo frame support
Jumbo frame support allows for the transmission of larger data packets, which can reduce the overhead associated with packet headers and improve network efficiency.

Chapter 11 Configuring Metro Features

Topology groups
Topology groups are used to organize network devices into logical groups, allowing for more manageable and scalable configurations. Master VLAN and member VLANs, control ports and free ports, and configuration considerations are important aspects of managing topology groups.

Metro Ring Protocol (MRP)
Metro Ring Protocol (MRP) is a protocol used to create and manage metro rings in network deployments. Configuration notes, MRP rings without shared interfaces (MRP Phase 1), MRP rings with shared interfaces (MRP Phase 2), ring initialization, how ring breaks are detected and healed, and alarm RHP are critical aspects of implementing MRP.

Master VLANs and customer VLANs
Master VLANs and customer VLANs are integral to the configuration of MRP, ensuring that network services are properly segmented and managed.

Configuring MRP
Configuring MRP involves setting up the protocol on network devices to enable ring formation and operation. Using MRP diagnostics and displaying MRP information are essential for troubleshooting and monitoring MRP configurations.

Virtual Switch Redundancy Protocol (VSRP)
Virtual Switch Redundancy Protocol (VSRP) is a protocol used to provide redundant switching capabilities in network infrastructures. Configuration notes, layer 2 and layer 3 redundancy, master election and failover, VSRP-aware security features, VSRP parameters, configuring basic VSRP parameters, configuring optional VSRP parameters, displaying VSRP information, VSRP fast start, and VSRP and MRP signaling are key components in implementing VSRP.
Chapter 12: Configuring Uni-Directional Link Detection (UDLD) and Protected Link Groups

UDLD overview .. 455
 Configuration considerations 456
 Enabling UDLD .. 456
 Changing the Keepalive interval 456
 Changing the Keepalive retries 457
 UDLD for tagged ports .. 457
 Displaying UDLD information 458
 Clearing UDLD statistics .. 460

Protected link groups .. 460
 About active ports .. 461
 Using UDLD with protected link groups 461
 Configuration notes .. 461
 Creating a protected link group and assigning an active port .. 462
 Viewing information about protected link groups 463

Chapter 13: Configuring Virtual LANs (VLANs)

VLAN overview .. 465
 Types of VLANs .. 465
 Default VLAN .. 470
 802.1Q tagging .. 471
 Spanning Tree Protocol (STP) 474
 Virtual routing interfaces ... 475
 VLAN and virtual routing interface groups 476
 Dynamic, static, and excluded port membership 477
 Super aggregated VLANs .. 479
 Trunk group ports and VLAN membership 479
 Summary of VLAN configuration rules 480

Routing between VLANs .. 481
 Virtual routing interfaces (Layer 3 Switches only) 481
 Routing between VLANs using virtual routing interfaces
 (Layer 3 Switches only) ... 481
 Dynamic port assignment (Layer 2 Switches and
 Layer 3 Switches) .. 482
 Assigning a different VLAN ID to the default VLAN 482
 Assigning different VLAN IDs to reserved VLANs
 4091 and 4092 ... 483
 Assigning trunk group ports 484
 Configuring port-based VLANs 484
 Modifying a port-based VLAN 488
 Enable spanning tree on a VLAN 489

Configuring IP subnet, IPX network and
 protocol-based VLANs .. 490
 Configuration example .. 490

Configuring IP subnet, IPX network, and protocol-based
 VLANs within port-based VLANs 492
Configuring an IPv6 protocol VLAN ... 496
Routing between VLANs using virtual routing
interfaces (Layer 3 Switches only) .. 497
Configuring protocol VLANs with dynamic ports 503
 Aging of dynamic ports ... 503
 Configuration guidelines ... 504
 Configuring an IP, IPX, or AppleTalk Protocol
 VLAN with Dynamic Ports .. 505
 Configuring an IP subnet VLAN with dynamic ports 505
 Configuring an IPX network VLAN with dynamic ports 506
Configuring uplink ports within a port-based VLAN 506
 Configuration considerations ... 507
 Configuration syntax .. 507
Configuring the same IP subnet address on
multiple port-based VLANs .. 508
Configuring VLAN groups and virtual routing interface groups ... 511
 Configuring a VLAN group .. 511
 Configuring a virtual routing interface group 513
 Displaying the VLAN group and virtual routing
 interface group information ... 514
 Allocating memory for more VLANs or virtual
 routing interfaces .. 514
Configuring super aggregated VLANs 515
 Configuration note ... 518
 Configuring aggregated VLANs 518
 Verifying the configuration ... 520
 Complete CLI examples .. 520
Configuring 802.1Q-in-Q tagging ... 523
 Configuration rules ... 524
 Enabling 802.1Q-in-Q tagging 524
 Example configuration .. 525
 Configuring 802.1Q-in-Q tag profiles 526
 Example ... 527
 Configuring Q-in-Q tagging for stack devices 527
Configuring private VLANs ... 528
 Configuration notes ... 530
 Configuration notes and limitations for Turbolron devices ... 531
 Command syntax .. 532
 Enabling broadcast or unknown unicast traffic
to the private VLAN ... 534
 CLI example for Figure 90 .. 534
 Enabling broadcast, unregistered multicast or unknown unicast
 traffic to the private VLAN on Turbolron device 535
Dual-mode VLAN ports ... 535
Chapter 14 Configuring Trunk Groups and Dynamic Link Aggregation

Trunk group overview ... 545
 Trunk group connectivity to a server 546
 Trunk group rules ... 547
 Trunk group configuration examples 549
 Flexible trunk group membership 551
 Trunk group load sharing 553

Configuring a trunk group 556
 CLI syntax ... 557
 Example 1: Configuring the trunk groups shown
 in Figure 93 ... 557
 Example 2: Configuring a trunk group that spans
 two Gbps Ethernet modules in a chassis device 558
 Example 3: Configuring a multi-slot trunk group
 with one port per module 558
 Example 4: Configuring a trunk group of 10 Gbps
 Ethernet ports ... 559
 Configuring trunk groups for FastIron stackable devices ... 559
 Additional trunking options 561

Displaying trunk group configuration information 565

Dynamic link aggregation 567
 IronStack LACP trunk group configuration example 568
 Examples of valid LACP trunk groups 568
 Configuration notes and limitations 569
 Adaptation to trunk disappearance 572
 Flexible trunk eligibility 572
 Enabling dynamic link aggregation 573
 How changing the VLAN membership of a port
 affects trunk groups and dynamic keys 575
 Additional trunking options for LACP trunk ports 576
 Link aggregation parameters 576

Displaying and determining the status of aggregate links ... 581
 Events that affect the status of ports in an aggregate link 582
 Displaying link aggregation and port status information ... 582
 Displaying LACP status information 584

Clearing the negotiated aggregate links table 585

Configuring single link LACP 585
 Configuration notes 585
 CLI syntax .. 585
Chapter 15 Configuring GARP VLAN Registration Protocol (GVRP)

GVRP overview .. 587
Application examples ... 587
 Dynamic core and fixed edge 588
 Dynamic core and dynamic edge 589
 Fixed core and dynamic edge 589
 Fixed core and fixed edge 589
VLAN names .. 590
Configuration notes ... 590
Configuring GVRP .. 591
 Changing the GVRP base VLAN ID 591
 Increasing the maximum configurable value
 of the Leaveall timer 592
 Enabling GVRP ... 592
 Disabling VLAN advertising 593
 Disabling VLAN learning 593
 Changing the GVRP timers 593
Converting a VLAN created by GVRP into a
 statically-configured VLAN 595
Displaying GVRP information 596
 Displaying GVRP configuration information 596
 Displaying GVRP VLAN information 598
 Displaying GVRP statistics 600
 Displaying CPU utilization statistics 601
 Displaying GVRP diagnostic information 603
Clearing GVRP statistics .. 603
CLI examples ... 603
 Dynamic core and fixed edge 604
 Dynamic core and dynamic edge 605
 Fixed core and dynamic edge 605
 Fixed core and fixed edge 606

Chapter 16 Configuring MAC-based VLANs

Overview .. 607
Static and dynamic hosts 607
MAC-based VLAN feature structure 607
Dynamic MAC-based VLAN 608
Configuring MAC-based VLANs ...609
 Using MAC-based VLANs and 802.1X security
 on the same port ...609
 Configuring generic and Brocade vendor-specific
 attributes on the RADIUS server610
 Aging for MAC-based VLAN ...611
 Disabling aging for MAC-based VLAN sessions612
 Configuring the maximum MAC addresses per port613
 Configuring a MAC-based VLAN for a static host ..613
 Configuring MAC-based VLAN for a dynamic host614
 Configuring dynamic MAC-based VLAN614

Configuration notes ..615
 Configuration example ..616
 Configuring MAC-based VLANs using SNMP617
 Displaying the MAC-VLAN table617
 Displaying the MAC-VLAN table for a specific MAC address ..618
 Displaying allowed MAC addresses619
 Displaying denied MAC addresses620
 Displaying detailed MAC-VLAN data621
 Displaying MAC-VLAN information for a specific interface ..623
 Clearing MAC-VLAN information for a specific interface ..624
 Displaying MAC addresses in a MAC-based VLAN624
 Displaying MAC-based VLAN logging625

Sample application ..625

Chapter 17 Configuring Rule-Based IP Access Control Lists (ACLs)

ACL overview ...629
 Types of IP ACLs ...629
 ACL IDs and entries ..629
 Numbered and named ACLs ..631
 Default ACL action ..631

 How hardware-based ACLs work ..631
 How fragmented packets are processed631
 Hardware aging of Layer 4 CAM entries632

 Configuration considerations ...632
 Configuring standard numbered ACLs633
 Standard numbered ACL syntax633
 Configuration example for standard numbered ACLs635
 Configuring standard named ACLs635
 Standard named ACL syntax635
 Configuration example for standard named ACLs637
 Configuring extended numbered ACLs638
 Extended numbered ACL syntax638
 Configuration examples for extended numbered ACLs642
 Configuring extended named ACLs644
 Extended named ACL syntax644
 Configuration example for extended named ACLs648

 Preserving user input for ACL TCP/UDP port numbers648
Chapter 18 Configuring IPv6 Access Control Lists (ACLs)

ACL overview ... 679
Configuration notes 680
Configuring an IPv6 ACL .. 681
 Example configurations ... 681
 Default and implicit IPv6 ACL action 682
 ACL syntax .. 683
Applying an IPv6 ACL to an interface 688
Adding a comment to an IPv6 ACL entry 689
Deleting a comment from an IPv6 ACL entry 689
Enabling ACL logging ... 690
Displaying IPv6 ACLs .. 690

Chapter 19 Configuring Power Over Ethernet

Power Over Ethernet overview 693
 Terms used in this section .. 693
 Methods for delivering POE and POE+ 693
 Autodiscovery ... 695
 Power class ... 695
 Power specifications .. 696
 Cabling requirements .. 696
 Supported powered devices 696
 POE and CPU utilization .. 698
Enabling or disabling Power over Ethernet 698
Disabling support for POE legacy power consuming devices . 698
Enabling the detection of POE power requirements advertised through CDP .. 699
 Configuration considerations 699
 Command syntax ... 699
Setting the maximum power level for a POE power consuming device ... 699
 Configuration notes ... 700
 Command syntax ... 700
Setting the power class for a POE power consuming device ... 700
 Configuration notes ... 701
 Command syntax ... 701
Setting the in-line power priority for a POE port 702
 Command syntax ... 702
Resetting POE parameters 703
Displaying power over Ethernet information 703
 Displaying POE operational status 703
 Displaying detailed information about POE power supplies ... 706

Chapter 20 Configuring Base Layer 3 and Enabling Routing Protocols

TCAM entries in FWS devices 711
Adding a static IP route .. 711
Adding a static ARP entry ... 712
Modifying and displaying layer 3 system parameter limits 713
 Configuration notes ... 713
 FGS with base layer 3 ... 713
 FastIron IPv4 models .. 714
 FastIron IPv6 models .. 716
 Displaying layer 3 system parameter limits 716
Configuring RIP ... 717
 Enabling RIP ... 717
 Enabling redistribution of IP static routes into RIP 718
 Enabling redistribution ... 719
 Enabling learning of default routes 719
 Changing the route loop prevention method 720
Other layer 3 protocols ... 720
 Enabling or disabling routing protocols 720
 Enabling or disabling layer 2 switching 721
 Configuration notes ... 721
 Command syntax ... 721
Chapter 21 Configuring Port Mirroring and Monitoring
Mirroring support by platform 723
Configuring port mirroring and monitoring 723
 Configuration notes ... 724
 Monitoring a port .. 725
 Monitoring an individual trunk port 726
Configuring mirroring on an IronStack. 727
 Configuration notes ... 727
ACL-based inbound mirroring 728
 Creating an ACL-based inbound mirror clause for FGS, FGS-STK, FLS, FLS-STK, and FWS devices 728
 Creating an ACL-based inbound mirror clause for TurboIron X Series devices 729
 Creating an ACL-based inbound mirror clause for FastIron X Series devices ... 729
MAC filter-based mirroring ... 733
 Configuring MAC filter-based mirroring on FGS, FLS, FWS, FGS-STK, and FLS-STK devices 733
 Configuring MAC filter-based mirroring on TurboIron X Series devices ... 734
VLAN-based mirroring ... 735
 Configuration notes ... 736
Chapter 22 Configuring Quality of Service
Classification ... 737
 Processing of classified traffic 737
QoS for Brocade stackable devices ... 740
Stacking QoS profile restrictions ... 740
QoS behavior for trusting layer 2 (802.1p) in an IronStack 741
QoS behavior for trusting layer 3 (DSCP) in an IronStack 741
QoS behavior on port priority and VLAN priority
in an IronStack .. 741
QoS behavior for 802.1p marking in an IronStack 741
QoS queues ... 741
Assigning QoS priorities to traffic .. 742
Buffer allocation/threshold for QoS queues 743
Marking .. 743
Configuring DSCP-based QoS .. 743
Application notes .. 744
Using ACLs to honor DSCP-based QoS 744
Configuring the QoS mappings .. 745
Default DSCP –> Internal forwarding priority mappings 745
Changing the DSCP –> internal forwarding priority mappings .. 746
Changing the internal forwarding priority –> hardware forwarding queue mappings 747
Scheduling ... 747
QoS Queuing methods .. 747
Selecting the QoS queuing method 749
Configuring the QoS queues .. 749
Viewing QoS settings .. 752
Viewing DSCP-based QoS settings 752

Chapter 23 Configuring Rate Limiting and Rate Shaping on the FastIron X Series, FCX Series, and TurboIron Series

Rate limiting overview ... 755
Rate limiting in hardware .. 755
How Fixed Rate Limiting works .. 756
Configuration notes ... 756
Configuring a port-based rate limiting policy 757
Configuring an ACL-based rate limiting policy 757
Displaying the fixed rate limiting configuration 757
Rate shaping overview ... 758
Configuration notes ... 758
Configuring outbound rate shaping for a port 759
Configuring outbound rate shaping for a specific priority 759
Configuring outbound rate shaping for a trunk port 760
Displaying rate shaping configurations 761
Chapter 24 Configuring Rate Limiting on FGS, FGS-STK, FLS, FLS-STK, and FWS Devices

Overview ... 763
 Rate limiting in hardware 763
 How fixed rate limiting works 763
Configuring fixed rate limiting on inbound ports 764
 Minimum and maximum rates 764
 Configuration notes .. 765
 Configuration syntax .. 765
Configuring fixed rate limiting on outbound ports 765
 Minimum and maximum rates 766
 Configuration notes .. 766
 Port-based rate limiting .. 766
 Port- and priority-based rate limiting 767
Configuring an ACL-based rate limiting policy 767
Displaying the fixed rate limiting configuration 768
 Inbound ports .. 768
 Outbound ports .. 768

Chapter 25 Configuring Traffic Policies

About traffic policies .. 771
Configuration notes and feature limitations 771
Maximum number of traffic policies supported on a device ... 772
 Setting the maximum number of traffic policies
 supported on a Layer 3 device 773
ACL-based rate limiting using traffic policies 773
 Support for fixed rate limiting and adaptive rate limiting 774
Configuring ACL-based fixed rate limiting 774
Configuring ACL-based adaptive rate limiting 775
Specifying the action to be taken for packets that are
 over the limit .. 777
ACL and rate limit counting .. 778
 Enabling ACL statistics 778
 Enabling ACL statistics with rate limiting traffic policies 779
Viewing ACL and rate limit counters 780
Clearing ACL and rate limit counters 781
Viewing traffic policies ... 781
Chapter 26
Configuring IP Multicast Traffic Reduction for FastIron Devices

IGMP snooping for FGS and FGS-STK, FLS and FLS-STK, FWS, and FCX devices .. 783
IGMP snooping overview .. 783
PIM SM traffic snooping overview 787
Configuring IGMP snooping 789
Displaying IGMP snooping information 796
Clear IGMP snooping commands 802

Chapter 27
Configuring IP Multicast Traffic Reduction for FastIron X Series and Turbolron Series Switches

IGMP snooping overview .. 803
MAC-based implementation on FastIron X Series devices ... 804
IGMP V1, V2, and V3 snooping support 804
Queriers and non-queriers 805
IGMP snooping enhancements in software release 04.1.00 .. 805
Configuration notes and feature limitations for
Fastiron X Series devices 806
Configuration notes and feature limitations for Turbolron X Series devices .. 807
PIM SM traffic snooping overview .. 808
PIM SM snooping support .. 808
Application examples ... 809
Configuration notes and limitations 810
Configuring IGMP snooping .. 811
Enabling IGMP snooping globally on the device 813
Configuring the IGMP mode 813
Configuring the IGMP version 814
Disabling IGMP snooping on a VLAN 815
Disabling transmission and receipt of IGMP packets on a port .. 815
Modifying the age interval for group membership entries ... 816
Modifying the query interval (active IGMP snooping mode only) .. 816
Modifying the maximum response time 816
Configuring report control 817
Modifying the wait time before stopping traffic when receiving a leave message .. 817
Modifying the multicast cache age time 817
Enabling or disabling error and warning messages 818
Configuring static router ports 818
Turning off static group proxy 818
IGMP V3 membership tracking and fast leave 818
Fast leave for IGMP V2 .. 819
Fast convergence .. 819
Chapter 28 Configuring IP Multicast Protocols

Overview of IP multicasting 833
IPv4 multicast group addresses 833
Mapping of IPv4 Multicast group addresses to Ethernet MAC addresses 834
Supported Layer 3 multicast routing protocols 834
Multicast terms ... 834
Changing global IP multicast parameters 835
Changing dynamic memory allocation for IP multicast groups 835
Changing IGMP V1 and V2 parameters 837
Adding an interface to a multicast group 838
IP multicast boundaries 839
Configuration considerations 839
Configuring multicast boundaries 839
Displaying multicast boundaries 839

Configuring PIM SM snooping 820
Enabling or disabling PIM SM snooping 820
Enabling PIM SM snooping on a VLAN 821
Disabling PIM SM snooping on a VLAN 821
IGMP snooping show commands 821
Displaying the IGMP snooping configuration 821
Displaying IGMP snooping errors 822
Displaying IGMP group information 823
Displaying IGMP snooping mcach e information 824
Displaying usage of hardware resource by multicast groups 825
Displaying software resource usage for VLANs 826
Displaying the status of IGMP snooping traffic 827
PIM SM snooping show commands 828
Displaying PIM SM snooping information 828
Displaying PIM SM snooping information on a Layer 2 switch 828
Displaying PIM SM snooping information for a specific group or source group pair 830
Clear commands for IGMP snooping 830
Clearing the IGMP mcach e 831
Clearing the mcach e on a specific VLAN 831
Clearing traffic on a specific VLAN 831
Clearing IGMP counters on VLANs 831
PIM Dense ... 840
 Initiating PIM multicasts on a network 841
 Pruning a multicast tree 841
 Grafts to a multicast tree 843
 PIM DM versions ... 843
 Configuring PIM DM ... 844
 Failover time in a multi-path topology 848
 Modifying the TTL ... 848

PIM Sparse .. 849
 PIM Sparse switch types 850
 RP paths and SPT paths 851
 Configuring PIM Sparse 851
 Anycast RP ... 856
 Displaying PIM Sparse configuration information
 and statistics .. 863

PIM Passive .. 875

Multicast Source Discovery Protocol (MSDP) 876
 Peer Reverse Path Forwarding (RPF) flooding 878
 Source active caching 878
 Configuring MSDP .. 879
 Designating an interface IP address as
 the RP IP address ... 880
 Filtering MSDP source-group pairs 880
 MSDP mesh groups ... 883
 Displaying MSDP information 890
 Clearing MSDP information 894

Passive multicast route insertion 895

DVMRP overview .. 896
 Initiating DVMRP multicasts on a network 896
 Pruning a multicast tree 897
 Grafts to a multicast tree 898
 Configuring DVMRP ... 898
 Enabling DVMRP on the Layer 3 Switch and interface .. 898
 Modifying DVMRP global parameters 899
 Modifying DVMRP interface parameters 901
 Displaying information about an upstream neighbor device 902

Configuring an IP tunnel 903

Using ACLs to control multicast features 904
 Using ACLs to limit static RP groups 904
 Using ACLs to limit PIM RP candidate advertisement . 906

Disabling CPU processing for select multicast groups .. 907
 CLI command syntax 907
 Viewing disabled multicast addresses 908

Configuring a static multicast route 908

Tracing a multicast route 910

Displaying the multicast configuration for
another multicast router 911
IGMP V3 ... 912
 Default IGMP version ... 913
 Compatibility with IGMP V1 and V2 913
 Globally enabling the IGMP version 914
 Enabling the IGMP version per interface setting 914
 Enabling the IGMP version on a physical port within a virtual routing interface 914
 Enabling membership tracking and fast leave 915
 Setting the query interval 916
 Setting the group membership time 916
 Setting the maximum response time 916
 IGMP V3 and source specific multicast protocols 916
 Displaying IGMP V3 information on Layer 3 Switches 917
 Clearing IGMP statistics 921
IGMP Proxy .. 921
 Configuration notes .. 921
 Configuring IGMP Proxy .. 922
 Displaying IGMP Proxy traffic 922
IP multicast protocols and IGMP snooping on the same device .. 922
 Configuration example .. 923
CLI commands .. 924

Chapter 29 Configuring LLDP and LLDP-MED

Terms used in this chapter 927
LLDP overview .. 928
 Benefits of LLDP ... 929
LLDP-MED overview ... 930
 Benefits of LLDP-MED .. 930
 LLDP-MED class .. 931
General operating principles 931
 Operating modes .. 931
 LLDP packets .. 932
 TLV support .. 933
MIB support ... 936
Syslog messages ... 936
Configuring LLDP .. 936
 Configuration notes and considerations 937
 Enabling and disabling LLDP 937
 Enabling support for tagged LLDP packets 937
 Changing a port LLDP operating mode 938
 Specifying the maximum number of LLDP neighbors 940
 Enabling LLDP SNMP notifications and syslog messages 941
 Changing the minimum time between LLDP transmissions .. 942
 Changing the interval between regular LLDP transmissions 943
 Changing the holdtime multiplier for transmit TTL 943
 Changing the minimum time between port reinitializations .. 943
 LLDP TLVs advertised by the Brocade device 944
Configuring LLDP-MED ... 953
Enabling LLDP-MED ... 953
Enabling SNMP notifications and syslog messages
for LLDP-MED topology changes 954
Changing the fast start repeat count 954
Defining a location id ... 955
Defining an LLDP-MED network policy 961
LLDP-MED attributes advertised by the Brocade device 963
Extended power-via-MDI information 964
Displaying LLDP statistics and configuration settings 966
LLDP configuration summary 966
LLDP statistics .. 967
LLDP neighbors ... 969
LLDP neighbors detail .. 970
LLDP configuration details 971
Resetting LLDP statistics 973
Clearing cached LLDP neighbor information 973

Chapter 30 Configuring IP

Basic configuration ... 975
Overview ... 975
IP interfaces ... 976
IP packet flow through a Layer 3 Switch 977
IP route exchange protocols 981
IP multicast protocols 982
IP interface redundancy protocols 982
Access Control Lists and IP access policies 982
Basic IP parameters and defaults – Layer 3 Switches 983
When parameter changes take effect 983
IP global parameters – Layer 3 Switches 985
IP interface parameters – Layer 3 Switches 989
Basic IP parameters and defaults – Layer 2 Switches 990
IP global parameters – Layer 2 Switches 991
Interface IP parameters – Layer 2 Switches 992
Chapter 31 Configuring Multicast Listening Discovery (MLD) Snooping on FGS, FGS-STK, FLS, FLS-STK, FWS, and FCX devices

Overview .. 1107
 Platform support .. 1108
 Configuration notes 1109
 Configuring queriers and non-queriers 1110
 VLAN specific configuration 1110
 Using MLDv1 with MLDv2 1110

Configuring MLD snooping 1111
 Configuring the hardware and software resource limits . 1111
 Disabling transmission and receipt of MLD packets on a port ... 1112
 Configuring the global MLD mode 1112
 Modifying the age interval 1112
 Modifying the query interval (Active MLD snooping mode only) .. 1113
 Configuring the global MLD version 1113
 Configuring report control 1113
 Modifying the wait time before stopping traffic when receiving a leave message 1114
 Modifying the multicast cache (mcache) aging time . 1114
 Disabling error and warning messages 1114
 Configuring the MLD mode for a VLAN 1114
 Disabling MLD snooping for the VLAN 1115
 Configuring the MLD version for the VLAN 1115
 Configuring the MLD version for individual ports 1115
 Configuring static groups to the entire VLAN or to individual ports 1115
 Configuring static router ports 1116
 Turning off static group proxy 1116
 Enabling MLDv2 membership tracking and fast leave for the VLAN 1116
 Configuring fast leave for MLDv1 1117
 Enabling fast convergence 1117
 Displaying MLD snooping information 1118
 Clear MLD snooping commands 1122

Chapter 32 Configuring Multicast Listening Discovery (MLD) Snooping on the FastIron X Series

Overview .. 1125
 How MLD snooping uses MAC addresses to forward multicast packets 1126
 Configuration notes and feature limitations 1127
 Queriers and non-queriers 1128
 VLAN specific configuration 1128
 Using MLDv1 with MLDv2 1129
Chapter 33 Configuring RIP

RIP overview .. 1143
ICMP host unreachable message for undeliverable ARPs . 1143
RIP parameters and defaults 1144
RIP global parameters 1144
RIP interface parameters 1145
Configuring RIP parameters 1145
Enabling RIP .. 1145
Configuring metric parameters 1146
Changing the administrative distance 1147
Configuring redistribution 1147
Configuring route learning and advertising parameters . 1150
Changing the route loop prevention method 1151
Suppressing RIP route advertisement on a VRRP or VRRPE backup interface ... 1152
Configuring RIP route filters 1152
Displaying RIP filters .. 1153
Displaying CPU utilization statistics 1154
<table>
<thead>
<tr>
<th>Chapter 34</th>
<th>Configuring RIPng</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIPng overview</td>
<td>.1157</td>
</tr>
<tr>
<td>Summary of configuration tasks</td>
<td>.1157</td>
</tr>
<tr>
<td>Enabling RIPng</td>
<td>.1157</td>
</tr>
<tr>
<td>Configuring RIPng timers</td>
<td>.1158</td>
</tr>
<tr>
<td>Configuring route learning and advertising parameters</td>
<td>.1159</td>
</tr>
<tr>
<td>Configuring default route learning and advertising</td>
<td>.1159</td>
</tr>
<tr>
<td>Advertising IPv6 address summaries</td>
<td>.1160</td>
</tr>
<tr>
<td>Changing the metric of routes learned and advertised on an interface</td>
<td>.1160</td>
</tr>
<tr>
<td>Redistributing routes into RIPng</td>
<td>.1161</td>
</tr>
<tr>
<td>Controlling distribution of routes through RIPng</td>
<td>.1161</td>
</tr>
<tr>
<td>Configuring poison reverse parameters</td>
<td>.1162</td>
</tr>
<tr>
<td>Clearing RIPng routes from the IPv6 route table</td>
<td>.1163</td>
</tr>
<tr>
<td>Displaying RIPng information</td>
<td>.1163</td>
</tr>
<tr>
<td>Displaying RIPng configuration</td>
<td>.1163</td>
</tr>
<tr>
<td>Displaying RIPng routing table</td>
<td>.1164</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 35</th>
<th>Configuring OSPF Version 2 (IPv4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of OSPF</td>
<td>.1167</td>
</tr>
<tr>
<td>OSPF point-to-point Links</td>
<td>.1168</td>
</tr>
<tr>
<td>Designated routers in multi-access networks</td>
<td>.1169</td>
</tr>
<tr>
<td>Designated router election in multi-access networks</td>
<td>.1169</td>
</tr>
<tr>
<td>OSPF RFC 1583 and 2178 compliance</td>
<td>.1170</td>
</tr>
<tr>
<td>Reduction of equivalent AS External LSAs</td>
<td>.1171</td>
</tr>
<tr>
<td>Support for OSPF RFC 2328 Appendix E</td>
<td>.1173</td>
</tr>
<tr>
<td>Dynamic OSPF activation and configuration</td>
<td>.1174</td>
</tr>
<tr>
<td>Dynamic OSPF memory</td>
<td>.1175</td>
</tr>
</tbody>
</table>
Chapter 36 Configuring OSPF Version 3 (IPv6)

Overview ... 1223
Differences between OSPF V2 and OSPF V3 1223
Link state advertisement types for OSPF V3. 1224
Configuring OSPF V3 1224
 Enabling OSPF V3 1224
 Assigning OSPF V3 areas 1225
 Assigning interfaces to an area 1226
 Configuring virtual links 1227
 Changing the reference bandwidth for the cost on
 OSPF V3 interfaces 1229
 Redistributing routes into OSPF V3 1230
 Filtering OSPF V3 routes 1234
 Configuring default route origination 1237
 Modifying shortest path first timers 1238
 Modifying administrative distance 1238
 Configuring the OSPF V3 LSA pacing interval 1239
 Modifying exit overflow interval 1240
 Modifying external link state database limit 1240
 Modifying OSPF V3 interface defaults 1241
 Disabling or re-enabling event logging 1241
Displaying OSPF V3 Information 1242
 Displaying OSPF V3 area information 1242
 Displaying OSPF V3 database information 1243
 Displaying OSPF V3 interface information 1248
 Displaying OSPF V3 memory usage 1251
 Displaying OSPF V3 neighbor information 1252
 Displaying routes redistributed into OSPF V3 1254
 Displaying OSPF V3 route information 1255
 Displaying OSPF V3 SPF information 1257
 Displaying IPv6 OSPF virtual link information 1259
 Displaying OSPF V3 virtual neighbor information 1260
Chapter 37 Configuring VRRP and VRRPE

Overview ... 1261
 Overview of VRRP .. 1261
 Overview of VRRPE 1266
 Configuration note 1268

Comparison of VRRP and VRRPE 1269
 VRRP ... 1269
 VRRPE .. 1269
 Architectural differences 1269

VRRP and VRRPE parameters 1270

Configuring basic VRRP parameters 1273
 Configuring the Owner 1273
 Configuring a Backup 1273
 Configuration rules for VRRP 1273

Configuring basic VRRPE parameters 1273
 Configuration rules for VRRPE 1274

Note regarding disabling VRRP or VRRPE 1274

Configuring additional VRRP and VRRPE parameters 1274

Forcing a Master router to abdicate to a standby router 1281

Displaying VRRP and VRRPE information 1282
 Displaying summary information 1282
 Displaying detailed information 1284
 Displaying statistics 1289
 Clearing VRRP or VRRPE statistics 1290
 Displaying CPU utilization statistics 1290

Configuration examples 1292
 VRRP example 1292
 VRRPE example 1293

Chapter 38 Configuring BGP4

Overview of BGP4 .. 1295
 Relationship between the BGP4 route table and
 the IP route table 1296
 How BGP4 selects a path for a route 1297
 BGP4 message types 1298

Basic configuration and activation for BGP4 1300
 Note regarding disabling BGP4 1301

BGP4 parameters 1301
 When parameter changes take effect 1302

Memory considerations 1304
 Memory configuration options obsoleted by
dynamic memory 1304
Basic configuration tasks ... 1305
 Enabling BGP4 on the router 1305
 Changing the router ID ... 1305
 Setting the local AS number 1306
 Adding a loopback interface 1306
 Adding BGP4 neighbors 1307
 Adding a BGP4 peer group 1313

Optional configuration tasks 1317
 Changing the Keep Alive Time and Hold Time 1317
 Changing the BGP4 next-hop update timer 1318
 Enabling fast external fallover 1318
 Changing the maximum number of paths for BGP4 load sharing .. 1319
 Customizing BGP4 load sharing 1320
 Specifying a list of networks to advertise 1321
 Changing the default local preference 1322
 Using the IP default route as a valid next hop for a BGP4 route .. 1323
 Advertising the default route 1323
 Changing the default MED (Metric) used for route redistribution 1323
 Enabling next-hop recursion 1324
 Changing administrative distances 1327
 Requiring the first AS to be the neighbor AS 1328
 Disabling or re-enabling comparison of the AS-Path length .. 1328
 Enabling or disabling comparison of the router IDs .. 1329
 Configuring the Layer 3 Switch to always compare Multi-Exit Discriminators (MEDs) 1329
 Treating missing MEDs as the worst MEDs 1330
 Configuring route reflection parameters 1330
 Configuration notes .. 1334
 Aggregating routes advertised to BGP4 neighbors 1337

BGP null0 routing .. 1338
 Configuration steps ... 1338
 Configuration examples 1339
 Show commands ... 1340

Modifying redistribution parameters 1342
 Redistributing connected routes 1342
 Redistributing RIP routes 1343
 Redistributing OSPF external routes 1343
 Redistributing static routes 1344
 Disabling or re-enabling re-advertisement of all learned BGP4 routes to all BGP4 neighbors 1344
 Redistributing IBGP routes into RIP and OSPF 1344
Filtering .. 1345
 Filtering specific IP addresses 1345
 Filtering AS-paths 1346
 Filtering communities 1349
 Defining IP prefix lists 1352
 Defining neighbor distribute lists 1353
 Defining route maps 1353
 Using a table map to set the rag value 1361
 Configuring cooperative BGP4 route filtering 1362

Configuring route flap dampening 1365
 Globally configuring route flap dampening 1366
 Using a route map to configure route flap dampening for specific routes 1367
 Using a route map to configure route flap dampening for a specific neighbor 1367
 Removing route dampening from a route 1368
 Removing route dampening from a neighbor routes suppressed due to aggregation 1369
 Displaying and clearing route flap dampening statistics . 1370

Generating traps for BGP 1371

Displaying BGP4 information 1372
 Displaying summary BGP4 information 1372
 Displaying the active BGP4 configuration 1374
 Displaying CPU utilization statistics 1375
 Displaying summary neighbor information 1376
 Displaying BGP4 neighbor information 1378
 Displaying peer group information 1389
 Displaying summary route information 1390
 Displaying the BGP4 route table 1391
 Displaying BGP4 route-attribute entries 1397
 Displaying the routes BGP4 has placed in the IP route table ... 1398
 Displaying route flap dampening statistics 1399
 Displaying the active route map configuration 1400

Updating route information and resetting a neighbor session 1401
 Using soft reconfiguration 1401
 Dynamically requesting a route refresh from a BGP4 neighbor ... 1404
 Closing or resetting a neighbor session 1407
 Clearing and resetting BGP4 routes in the IP route table .. 1407

Clearing traffic counters 1408
Clearing route flap dampening statistics 1408
Removing route flap dampening 1408
Clearing diagnostic buffers 1409

Chapter 39 Securing Access to Management Functions

Securing access methods 1411
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricting remote access to management functions</td>
<td>1413</td>
</tr>
<tr>
<td>Using ACLs to restrict remote access</td>
<td>1414</td>
</tr>
<tr>
<td>Defining the console idle time</td>
<td>1416</td>
</tr>
<tr>
<td>Restricting remote access to the device to specific IP addresses</td>
<td>1417</td>
</tr>
<tr>
<td>Restricting access to the device based on IP or MAC address</td>
<td>1418</td>
</tr>
<tr>
<td>Specifying the maximum number of login attempts for Telnet access</td>
<td>1420</td>
</tr>
<tr>
<td>Restricting remote access to the device to specific VLAN IDs</td>
<td>1420</td>
</tr>
<tr>
<td>Designated VLAN for Telnet management sessions</td>
<td>1421</td>
</tr>
<tr>
<td>Device management security</td>
<td>1422</td>
</tr>
<tr>
<td>Disabling specific access methods</td>
<td>1424</td>
</tr>
<tr>
<td>Setting passwords</td>
<td>1425</td>
</tr>
<tr>
<td>Setting a Telnet password</td>
<td>1426</td>
</tr>
<tr>
<td>Setting passwords for management privilege levels</td>
<td>1426</td>
</tr>
<tr>
<td>Recovering from a lost password</td>
<td>1429</td>
</tr>
<tr>
<td>Displaying the SNMP community string</td>
<td>1429</td>
</tr>
<tr>
<td>Disabling password encryption</td>
<td>1429</td>
</tr>
<tr>
<td>Specifying a minimum password length</td>
<td>1430</td>
</tr>
<tr>
<td>Setting up local user accounts</td>
<td>1430</td>
</tr>
<tr>
<td>Enhancements to username and password</td>
<td>1431</td>
</tr>
<tr>
<td>Configuring a local user account</td>
<td>1436</td>
</tr>
<tr>
<td>Create password option</td>
<td>1438</td>
</tr>
<tr>
<td>Changing a local user password</td>
<td>1438</td>
</tr>
<tr>
<td>Configuring SSL security for the Web Management Interface</td>
<td>1439</td>
</tr>
<tr>
<td>Enabling the SSL server on the Brocade device</td>
<td>1439</td>
</tr>
<tr>
<td>Changing the SSL server certificate key size</td>
<td>1440</td>
</tr>
<tr>
<td>Support for SSL digital certificates larger than 2048 bits</td>
<td>1440</td>
</tr>
<tr>
<td>Importing digital certificates and RSA private key files</td>
<td>1440</td>
</tr>
<tr>
<td>Generating an SSL certificate</td>
<td>1441</td>
</tr>
<tr>
<td>Configuring TACACS/TACACS+ security</td>
<td>1441</td>
</tr>
<tr>
<td>How TACACS+ differs from TACACS</td>
<td>1442</td>
</tr>
<tr>
<td>TACACS/TACACS+ authentication, authorization, and accounting</td>
<td>1442</td>
</tr>
<tr>
<td>TACACS authentication</td>
<td>1444</td>
</tr>
<tr>
<td>TACACS/TACACS+ configuration considerations</td>
<td>1447</td>
</tr>
<tr>
<td>Enabling TACACS</td>
<td>1448</td>
</tr>
<tr>
<td>Identifying the TACACS/TACACS+ servers</td>
<td>1448</td>
</tr>
<tr>
<td>Specifying different servers for individual AAA functions</td>
<td>1449</td>
</tr>
<tr>
<td>Setting optional TACACS/TACACS+ parameters</td>
<td>1450</td>
</tr>
<tr>
<td>Configuring authentication-method lists for TACACS/TACACS+</td>
<td>1451</td>
</tr>
<tr>
<td>Configuring TACACS+ authorization</td>
<td>1453</td>
</tr>
<tr>
<td>Configuring TACACS+ accounting</td>
<td>1456</td>
</tr>
<tr>
<td>Configuring an interface as the source for all TACACS/TACACS+ packets</td>
<td>1458</td>
</tr>
<tr>
<td>Displaying TACACS/TACACS+ statistics and configuration information</td>
<td>1459</td>
</tr>
</tbody>
</table>
Chapter 40 Configuring SSH1 and SCP

- Configuring SSH1 ... 1483
 - Setting the host name and domain name 1484
 - Generating a host I key pair 1484
 - Configuring RSA challenge-response authentication ... 1486
 - Setting optional parameters 1488
- Terminating an SSH session 1491
- Displaying SSH connection information 1491
- Sample SSH configuration 1492
- Using secure copy with SSH1 1494

Chapter 41 Configuring SSH2 and SCP

- SSH version 2 support .. 1495
 - Tested SSH2 clients ... 1495
 - Supported features .. 1496
 - Unsupported features 1496
 - AES encryption for SSH2 1496
- Configuring SSH2 ... 1497
 - Recreating SSH keys ... 1498
 - Generating a host key pair 1498
 - Configuring DSA challenge-response authentication 1499
Setting optional parameters .. 1501
Setting the number of SSH authentication retries 1502
Deactivating user authentication 1502
Enabling empty password logins 1502
Setting the SSH port number .. 1503
Setting the SSH login timeout value 1503
Designating an interface as the source for all SSH packets (Layer 3 code only) ... 1503
Configuring the maximum idle time for SSH sessions 1504
Filtering SSH access using ACLs 1504
Terminating an active SSH connection 1504
Displaying SSH connection information 1505
Using Secure copy with SSH2 1506
Enabling and disabling SCP ... 1506
Example file transfers using SCP 1506

Chapter 42 Configuring 802.1X Port Security

IETF RFC support .. 1509
How 802.1X port security works 1509
Device roles in an 802.1X configuration 1509
Communication between the devices 1510
Controlled and uncontrolled ports 1511
Message exchange during authentication 1512
Authenticating multiple hosts connected to the same port 1515
802.1X port security and sFlow 1518
802.1X accounting .. 1518
Configuring 802.1X port security 1519
Configuring an authentication method list for 802.1X 1520
Setting RADIUS parameters .. 1520
Configuring dynamic VLAN assignment for 802.1X ports ... 1523
Dynamically applying IP ACLs and MAC filters to 802.1X ports ... 1527
Enabling 802.1X port security .. 1530
Setting the port control ... 1531
Configuring periodic re-authentication 1532
Re-authenticating a port manually 1532
Setting the quiet period .. 1533
Specifying the wait interval and number of EAP-request/identity frame retransmissions from the Brocade device 1533
Specifying the wait interval and number of EAP-request/identity frame retransmissions from the RADIUS server ... 1534
Specifying a timeout for retransmission of messages to the authentication server .. 1535
Initializing 802.1X on a port ... 1535
Allowing access to multiple hosts 1535
Defining MAC filters for EAP frames 1537
Configuring VLAN access for non-EAP-capable clients 1538
Configuring 802.1X accounting 1539
802.1X Accounting attributes for RADIUS 1540
Enabling 802.1X accounting 1540
Displaying 802.1X information 1540
Displaying 802.1X configuration information 1540
Displaying 802.1X statistics 1543
Clearing 802.1X statistics 1544
Displaying dynamically assigned VLAN information 1544
Displaying information about dynamically applied
MAC filters and IP ACLs 1545
Displaying 802.1X multiple-host authentication
information .. 1548
Sample 802.1X configurations 1551
Point-to-point configuration 1552
Hub configuration .. 1553
802.1X Authentication with dynamic VLAN assignment ... 1554
Using multi-device port authentication and 802.1X
security on the same port 1555
Configuring Brocade-specific attributes on the
RADIUS server ... 1556
Example configurations 1557

Chapter 43 Using the MAC Port Security Feature

Overview .. 1561
Local and global resources 1561
Configuration notes and feature limitations 1562
Configuring the MAC port security feature 1562
Enabling the MAC port security feature 1562
Setting the maximum number of secure MAC addresses
for an interface ... 1563
Setting the port security age timer 1563
Specifying secure MAC addresses 1563
Autosaving secure MAC addresses to the
startup-config file 1564
Specifying the action taken when a security
violation occurs ... 1564
Clearing port security statistics 1566
Clearing restricted MAC addresses 1566
Clearing violation statistics 1566
Displaying port security information 1566
Displaying port security settings 1566
Displaying the secure MAC addresses 1567
Displaying port security statistics 1568
Displaying restricted MAC addresses on a port 1568
Chapter 44 Configuring Multi-Device Port Authentication

How multi-device port authentication works
RADIUS authentication
Authentication-failure actions
Supported RADIUS attributes
Support for dynamic VLAN assignment
Support for dynamic ACLs
Support for authenticating multiple MAC addresses on an interface
Support for dynamic ARP inspection with dynamic ACLs
Support for DHCP snooping with dynamic ACLs
Support for source guard protection
Using multi-device port authentication and 802.1X security on the same port
Configuring Brocade-specific attributes on the RADIUS server
Configuring multi-device port authentication
Enabling multi-device port authentication
Specifying the format of the MAC addresses sent to the RADIUS server
Specifying the authentication-failure action
Generating traps for multi-device port authentication
Defining MAC address filters
Configuring dynamic VLAN assignment
Dynamically applying IP ACLs to authenticated MAC addresses
Enabling denial of service attack protection
Enabling source guard protection
Clearing authenticated MAC addresses
Disabling aging for authenticated MAC addresses
Changing the hardware aging period for blocked MAC addresses
Specifying the aging time for blocked MAC addresses
Specifying the RADIUS timeout action
Multi-device port authentication password override
Limiting the number of authenticated MAC addresses
Displaying multi-device port authentication information
Displaying authenticated MAC address information
Displaying multi-device port authentication configuration information
Displaying multi-device port authentication information for a specific MAC address or port
Displaying the authenticated MAC addresses
Displaying the non-authenticated MAC addresses
Displaying multi-device port authentication information for a port
Displaying multi-device port authentication settings and authenticated MAC addresses
Displaying the MAC authentication table for FCX devices.
Example configurations .. 1600
Multi-device port authentication with dynamic VLAN assignment. 1600
Examples of multi-device port authentication and 802.1X authentication configuration on the same port. 1602

Chapter 45 Configuring Web Authentication

Overview .. 1607
Configuration considerations 1608
Configuration tasks ... 1609
Enabling and disabling web authentication 1611
Configuring the web authentication mode 1611
Using local user databases 1611
Using passcodes ... 1615
Using automatic authentication 1619
Configuring web authentication options 1620
Enabling RADIUS accounting for web authentication 1620
Changing the login mode (HTTPS or HTTP) 1621
Specifying trusted ports 1621
Specifying hosts that are permanently authenticated 1621
Configuring the re-authentication period 1622
Defining the web authentication cycle 1622
Limiting the number of web authentication attempts 1622
Clearing authenticated hosts from the web authentication table 1623
Setting and clearing the block duration for web authentication attempts 1623
Manually blocking and unblocking a specific host 1623
Limiting the number of authenticated hosts 1624
Filtering DNS queries 1624
Forcing re-authentication when ports are down 1624
Forcing re-authentication after an inactive period 1625
Defining the web authorization redirect address 1625
Deleting a web authentication VLAN 1626
Web authentication pages 1626
Displaying web authentication information 1633
Displaying the web authentication configuration 1633
Displaying a list of authenticated hosts 1635
Displaying a list of hosts attempting to authenticate 1636
Displaying a list of blocked hosts 1636
Displaying a list of local user databases 1637
Displaying a list of users in a local user database 1637
Displaying passcodes 1638
Chapter 46 Protecting Against Denial of Service Attacks

Protecting against Smurf attacks 1639
 Avoiding being an intermediary in a Smurf attack 1639
 Avoiding being a victim in a Smurf attack 1640
 Protection against ICMP attacks in TurboIron devices 1640

Protecting against TCP SYN attacks 1641
 Protection against TCP-SYN attacks in TurboIron devices 1642
 TCP security enhancement 1643
 Displaying statistics about packets dropped because of DoS attacks 1644
 Displaying statistics about packets dropped because of DoS attacks in TurboIron device 1645

Chapter 47 Inspecting and Tracking DHCP Packets

Dynamic ARP inspection ... 1647
 ARP poisoning .. 1647
 How DAI works ... 1647
 Configuration notes and feature limitations 1649
 Configuring DAI .. 1649
 Displaying ARP inspection status and ports 1650
 Displaying the ARP table 1651

DHCP snooping .. 1651
 How DHCP snooping works 1652
 System reboot and the binding database 1653
 Configuration notes and feature limitations 1653
 Configuring DHCP snooping 1653
 Clearing the DHCP binding database 1654
 Displaying DHCP snooping status and ports 1655
 Displaying the DHCP snooping binding database 1655
 Displaying DHCP binding entry and status 1655
 DHCP snooping configuration example 1655

DHCP relay agent information (DHCP Option 82) 1656
 Configuration notes 1657
 DHCP Option 82 sub-options 1657
 Configuring DHCP option 82 1658
 Viewing information about DHCP option 82 processing . 1660

IP source guard .. 1662
 Configuration notes and feature limitations 1663
 Enabling IP source guard on a port 1664
 Defining static IP source bindings 1664
 Enabling IP source guard per-port-per-VLAN 1664
 Enabling IP source guard on a VE 1665
 Displaying learned IP addresses 1665

Chapter 48 Securing SNMP Access

SNMP overview .. 1667
Establishing SNMP community strings 1667
Encryption of SNMP community strings 1668
Adding an SNMP community string 1668
Displaying the SNMP community strings 1670
Using the user-based security model. 1670
Configuring your NMS .. 1671
Configuring SNMP version 3 on Brocade devices 1671
Defining the engine id ... 1671
Defining an SNMP group .. 1672
Defining an SNMP user account 1673
Defining SNMP views .. 1675
SNMP version 3 traps .. 1676
Defining an SNMP group and specifying which view is notified of traps .. 1676
Defining the UDP port for SNMP v3 traps 1677
Trap MIB changes ... 1678
Specifying an IPv6 host as an SNMP trap receiver 1679
SNMP v3 over IPv6 .. 1679
Specifying an IPv6 host as an SNMP trap receiver 1679
Viewing IPv6 SNMP server addresses 1679
Displaying SNMP Information ... 1680
Displaying the Engine ID .. 1680
Displaying SNMP groups ... 1680
Displaying user information .. 1681
Interpreting varbinds in report packets 1681
SNMP v3 Configuration examples 1682
Simple SNMP v3 configuration 1682
More detailed SNMP v3 configuration 1682

Chapter 49 Enabling the Foundry Discovery Protocol (FDP) and Reading Cisco Discovery Protocol (CDP) Packets

Using FDP .. 1683
Configuring FDP ... 1683
Displaying FDP information .. 1684
Clearing FDP and CDP information 1687

Reading CDP packets .. 1688
Enabling interception of CDP packets globally 1688
Enabling interception of CDP packets on an interface 1688
Displaying CDP information .. 1688
Clearing CDP information .. 1690

Appendix 50 Using Syslog

Overview ... 1693
Displaying Syslog messages ... 1694
Enabling real-time display of Syslog messages 1694
Enabling real-time display for a Telnet or SSH session ... 1694
Show log on all terminals ... 1695
Appendix A
Network Monitoring
Basic management .. 1731
Viewing system information 1731
Viewing configuration information 1732
Viewing port statistics 1733
Viewing STP statistics 1735
Clearing statistics ... 1735
Traffic counters for outbound traffic 1736
RMON support ... 1739
Maximum number of entries allowed in the
RMON control table .. 1739
Statistics (RMON group 1) 1740
History (RMON group 2) 1742
Alarm (RMON group 3) 1742
Event (RMON group 9) 1743
sFlow ... 1743
Support for sFlow version 5 1744
sFlow support for IPv6 packets 1744
Configuration considerations 1745
Configuring and enabling sFlow 1746
Configuring sFlow version 5 features 1753
Displaying sFlow information 1756
Configuring a utilization list for an uplink port 1759
Command syntax ... 1760
Displaying utilization percentages for an uplink 1760

Appendix B
Software Specifications
IEEE compliance .. 1763
RFC support ... 1764
Internet drafts ... 1771
Appendix C NIAP-CCEVS Certification

NIAP-CCEVS certified Brocade equipment and Ironware releases1773
Web-Management access to NIAP-CCEVS certified Brocade equipment 1774
Local user password changes ..1774
About This Document

Introduction

This guide describes the following product families from Brocade:

- FastIron X Series devices:
 - FastIron Edge Switch X-Series (FESX) Layer 2/Layer 3 switch
 - FastIron Edge Switch X-Series Expanded (FESXE) Layer 2/Layer 3 switch
 - FastIron Workgroup Switch X Series (FWSX) Layer 2 switch
 - FastIron SuperX Switch (FSX) Layer 2/Layer 3 switch
 - FastIron SX 800, 1600, and 1600-ANR Layer 2/Layer 3 switch
- Turbolon X Series (TIX) Layer 2 switch
- FastIron CX Series Stackable Switches

This guide includes procedures for configuring the software. The software procedures show how to perform tasks using the CLI. This guide also describes how to monitor Brocade products using statistics and summary screens.

This guide applies to the FastIron and Turbolon X Series models listed in Table 1.

Device nomenclature

Table 1 lists the terms (product names) contained in this guide and the specific set of devices to which each term refers.

<table>
<thead>
<tr>
<th>This name</th>
<th>Refers to these devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastIron Edge Switch X-Series Expanded (FESXE)</td>
<td>FESX624E-PREM6, FESX624HFE-PREM6, FESX648E-PREM6</td>
</tr>
</tbody>
</table>
TABLE 1 FastIron X, FastIron CX, and TurboIron family of switches (Continued)

<table>
<thead>
<tr>
<th>This name</th>
<th>Refers to these devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastIron SuperX Management Modules</td>
<td>FastIron SuperX Management modules with:</td>
</tr>
<tr>
<td></td>
<td>• 400MHz / 256MB</td>
</tr>
<tr>
<td></td>
<td>• 466MHz / 512MB</td>
</tr>
<tr>
<td>NOTE:</td>
<td>For a complete list of the FSX Management modules and their part numbers, see the Foundry FastIron X Series Chassis Hardware Installation Guide.</td>
</tr>
<tr>
<td>FastIron SX Management Modules</td>
<td>FastIron SX 800/1600 Management modules with:</td>
</tr>
<tr>
<td></td>
<td>• 667MHz / 512MB</td>
</tr>
<tr>
<td>NOTE:</td>
<td>For a complete list of the SX 800/1600 Management modules and their part numbers, see the Foundry FastIron X Series Chassis Hardware Installation Guide.</td>
</tr>
<tr>
<td>FastIron Workgroup Switch X Series (FWSX)</td>
<td>FWSX424 and FWSX448</td>
</tr>
<tr>
<td>FastIron, LS, and WS Devices</td>
<td></td>
</tr>
<tr>
<td>FastIron LS (FLS)</td>
<td>FLS624, FLS648, FLS624-EPREM, FLS648-EPREM</td>
</tr>
<tr>
<td>FastIron LS-STK</td>
<td>FLS624-STK, FLS648-STK</td>
</tr>
<tr>
<td>FastIron CX Devices</td>
<td></td>
</tr>
<tr>
<td>TurboIron Devices</td>
<td></td>
</tr>
<tr>
<td>TurboIron X Series (TIX)</td>
<td>TurboIron 24X</td>
</tr>
</tbody>
</table>

Audience

This document is designed for system administrators with a working knowledge of Layer 2 and Layer 3 switching and routing.

If you are using a Brocade Layer 3 Switch, you should be familiar with the following protocols if applicable to your network – IP, RIP, OSPF, BGP, ISIS, IGMP, PIM, DVMRP, and VRRP.
What new in this document

The following changes have been made since this document was last released:

- Information that was added:
 - For the FESX, FESXE, FSX, FSX 800, FSX 1600, FSX 1600-ANR, and FWSX:
 - FSX 05.1.00
 - For the FastIron GS and LS products:
 - 04.3.03
 - For the FastIron GS-STK and LS-STK products:
 - 05.0.02
 - For the FastIron WS products:
 - 04.3.03
 - For the FastIron CX products:
 - 06.0.00
 - For the TurboIron X Series products:
 - 04.2.00

Features that are not documented in this guide are not supported.

For further information about new features and documentation updates for this release, refer to the Knowledge Portal at kp.foundrynet.com.

Summary of features in FGS R04.3.03

New hardware in FGS R04.3.03

The RPS12 External Redundant Power Supply is introduced in R04.3.03. The power supply can supply backup power to one of four connected FWS POE switches in the event of an AC loss or failure of an internal power supply. The system supplies the failed switch with up to 120 W for primary 12 VDC power, and up to 780 W of -54 VDC PoE power (for PoE devices connected to the failed switch). See the Brocade FastIron WS Hardware Installation Guide for details on the RPS12.

Software enhancement in FGS 04.3.03

FGS, FLS, and FWS devices can be configured to operate as DHCP server beginning with R04.3.03. A DHCP server allocates IP addresses for specified periods of time (known as leases) and manages the IP address pools and the binding (leased addresses) database. For details, see “DHCP Server” on page 1037.
Summary of features in FCX R06.0.00

New hardware in FCX R06.0.00

FastIron CX stackable switches provide high 10/100/1000 port density and Gigabit Ethernet uplinks in a compact form factor. FCX R06.0.00 introduces the following FastIron CX models:

- **FCX624S**: Twenty 10/100/1000 Mbps ports plus four combo 100/1000 Mbps (SFP) Ethernet Fiber ports. The switch has two management interfaces, a serial port (Console) on the front panel and an RJ45 port (Outband Management Interface) on the rear panel. Two rear-panel power supply receptacles allow for up to two power supply units. Two dedicated 16GbE CX4 ports on the rear panel allow stacking for up to eight units. The front panel also has a module slot for an optional two-port 10GbE XFP module.

- **FCX648S**: Forty four 10/100/1000 Mbps ports plus four combo 100/1000 Mbps (SFP) Ethernet Fiber ports. The switch has two management interfaces, a serial port (Console) on the front panel and an RJ45 port (Outband Management Interface) on the rear panel. Two rear-panel power supply receptacles allow for up to two power supply units. Two dedicated 16GbE CX4 ports on the rear panel allow stacking for up to eight units. The front panel also has a module slot for an optional two-port 10GbE XFP module.

- **FCX624S-ADV**: The FCX624S model with Premium software features factory-loaded.

- **FCX648S-ADV**: The FCX648S model with Premium software features factory-loaded.

- **FCX624S-HPOE**: Twenty 10/100/1000 Mbps POE ports plus four combo 100/1000 Mbps (SFP) Ethernet Fiber ports. The switch has two management interfaces, a serial port (Console) on the front panel and an RJ45 port (Outband Management Interface) on the rear panel. Two rear-panel power supply receptacles allow for up to two power supply units. Two dedicated 16GbE CX4 ports on the rear panel allow stacking for up to eight units. The front panel also has a module slot for an optional two-port 10GbE XFP module.

- **FCX648S-HPOE**: Forty four 10/100/1000 Mbps POE ports plus four combo 100/1000 Mbps (SFP) Ethernet Fiber ports. The switch has two management interfaces, a serial port (Console) on the front panel and an RJ45 port (Outband Management Interface) on the rear panel. Two rear-panel power supply receptacles allow for up to two power supply units. Two dedicated 16GbE CX4 ports on the rear panel allow stacking for up to eight units. The front panel also has a module slot for an optional two-port 10GbE XFP module.

- **FCX624S-HPOE-ADV**: The FCX624S-HPOE model with Premium software factory-loaded.

- **FCX648S-HPOE-ADV**: The FCX648S-HPOE model with Premium software factory-loaded.

Software enhancements in FCX R06.0.00

FastIron CX switches support many of the Layer 2, Base Layer 3, Full Layer 3 and Premium features supported by the FESX switches. For specific details on supported features, refer to the Chapter 1, "Feature Highlights".

Summary of enhancements in TIX R04.2.00

The following tables present a summary of the enhancements in TIX R04.2.00
TABLE 2 Enhancements in TIX R04.2.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAV</td>
<td>This enhancement improves SAV interoperability between Brocade devices and other vendors’ devices that support the 802.1Q tag-types.</td>
<td>“Support for 802.1Q-in-Q tagging” on page 473</td>
</tr>
<tr>
<td>Q-in-Q</td>
<td>802.1Q-in-Q tagging provides finer granularity for configuring 802.1Q tagging and enables you to configure 802.1Q tag-types on a group of ports.</td>
<td>“Configuring 802.1Q-in-Q tagging” on page 523</td>
</tr>
<tr>
<td>MRP 1 and MRP 2</td>
<td>Brocade proprietary protocol that prevents Layer 2 loops and provides fast reconvergence in Layer 2 ring topologies.</td>
<td>“Metro Ring Protocol (MRP)” on page 405</td>
</tr>
<tr>
<td>VSRP</td>
<td>Brocade proprietary protocol that provides redundancy and sub-second failover in Layer 2 and Layer 3 mesh topologies.</td>
<td>“Virtual Switch Redundancy Protocol (VSRP)” on page 428</td>
</tr>
<tr>
<td>Hardware-based private VLAN</td>
<td>A private VLAN is a standard Layer 2 port-based VLANs, which provides additional control over flooding packets on a VLAN. Private VLANs on the TurboIron device forwards unknown-unicast, unregistered multicast, and broadcast in hardware.</td>
<td>“Configuring private VLANs” on page 528</td>
</tr>
<tr>
<td>Topology and VLAN groups</td>
<td>VLAN group supports creating multiple port-based VLANs with identical port members.</td>
<td>“Configuring VLAN groups and virtual routing interface groups” on page 511</td>
</tr>
<tr>
<td>Hardware-based DoS attack prevention</td>
<td>Supports DoS attack monitoring and detection performed in the hardware.</td>
<td>“Protection against ICMP attacks in TurboIron devices” on page 1640</td>
</tr>
<tr>
<td>Mac authentication</td>
<td>Supports configuring MAC authentication and 802.1X authentication on the same port.</td>
<td>“Configuring Multi-Device Port Authentication” on page 1571</td>
</tr>
<tr>
<td>Dot1x security</td>
<td>Supports IEEE 802.1X standard for authenticating devices attached to LAN ports.</td>
<td>“Configuring 802.1X Port Security” on page 1509</td>
</tr>
<tr>
<td>Port MAC security</td>
<td>Supports forwarding only packets that match secure addresses.</td>
<td>“Using the MAC Port Security Feature” on page 1561</td>
</tr>
<tr>
<td>Dynamic Vlan assignment</td>
<td>This feature supports placing a port in one or more VLANs based on the MAC address learned on that interface.</td>
<td>“Support for dynamic VLAN assignment” on page 1573</td>
</tr>
<tr>
<td>Mac filter enhancements</td>
<td>Supports filtering packets based on the etype optional keyword.</td>
<td>“Defining MAC address filters” on page 374</td>
</tr>
<tr>
<td>Virtual Ethernet interface</td>
<td>TurboIron device can locally route IP, IPX, and Appletalk between VLANs defined within a single route.</td>
<td>“Routing between VLANs” on page 481</td>
</tr>
<tr>
<td>VRRP and VRRPE</td>
<td>This release supports the standard router redundancy protocol described in RFC 233.</td>
<td>“Configuring VRRP and VRRPE” on page 1261</td>
</tr>
<tr>
<td>Proxy ARP</td>
<td>Proxy ARP allows the TurboIron device to answer ARP requests from devices on one network on behalf of devices in another network.</td>
<td>“Enabling proxy ARP” on page 1008</td>
</tr>
<tr>
<td>IP Load Sharing</td>
<td>This release supports one route to many next hop relationships. It supports 2K ECMP table.</td>
<td>“Configuring IP load sharing” on page 1025</td>
</tr>
<tr>
<td>RIP V1, V2</td>
<td>Dynamic protocol described in RFC 1058 and RFC 2453.</td>
<td>“Configuring RIP” on page 1143</td>
</tr>
<tr>
<td>OSPF V2</td>
<td>Dynamic routing protocol described in RFC 2328.</td>
<td>“Configuring OSPF Version 2 (IPv4)” on page 1167</td>
</tr>
</tbody>
</table>
Summary of enhancements in FSX R05.1.00

The following tables present a summary of the enhancements in FSX R05.1.00.

Layer 3 enhancements in FSX R05.1.00

TABLE 3 Layer 3 enhancements in FSX R05.1.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP V1, V2, V3</td>
<td>This release introduces the support of IGMP version 3 on Layer 3 Switches</td>
<td>“IGMP V3” on page 912</td>
</tr>
<tr>
<td>PIM-SM</td>
<td>Supports features described in RFC 2362.</td>
<td>“PIM Sparse” on page 849</td>
</tr>
<tr>
<td>PIM-DM</td>
<td>Supports features described in RFC 1075.</td>
<td>“PIM Dense” on page 840</td>
</tr>
<tr>
<td>MSDP</td>
<td>You must configure a fully meshed topology between MSDP peers. This is mandated for this release because of lack of any EGP that provides a peer RPF check for SA messages.</td>
<td>“Multicast Source Discovery Protocol (MSDP)” on page 876</td>
</tr>
<tr>
<td>Anycast RP</td>
<td>Anycast RP is a method of providing intra-domain redundancy and load-balancing between multiple Rendezvous Points (RP) in a Protocol Independent Multicast Sparse mode (PIM-SM) network.</td>
<td>“Anycast RP” on page 856</td>
</tr>
<tr>
<td>ACL for RP candidate</td>
<td>Limits the multicast groups that are covered by a static (RP). It control the multicast groups for which candidate RPs send advertisement messages to bootstrap routers.</td>
<td>“Using ACLs to limit static RP groups” on page 904 “Using ACLs to limit PIM RP candidate advertisement” on page 906</td>
</tr>
<tr>
<td>Auto-negotiation of 1G/10G</td>
<td>In this release, if the speed is set to Auto for a 1G port, the port auto-negotiates the flow control with the neighboring port.</td>
<td>“Modifying port speed and duplex mode” on page 56</td>
</tr>
<tr>
<td>I Pv6 Host Support</td>
<td>This release supports IPv6 host management.</td>
<td>“IPv6 management (IPv6 host support)” on page 218</td>
</tr>
<tr>
<td>L3 SNMP and MIB support</td>
<td>This release supports AES encryption. The SNMP group to which the user account is mapped should be configured before creating the user accounts; otherwise, the group will be created without any views.</td>
<td>“Defining an SNMP user account” on page 1673</td>
</tr>
</tbody>
</table>

TABLE 3 Layer 3 enhancements in FSX R05.1.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-Point GRE IP Tunnels</td>
<td>This release supports the tunneling of packets over an IP network using the Generic Router Encapsulation (GRE) mechanism as described in RFC 2784.</td>
<td>“IPv4 point-to-point GRE tunnels” on page 1067</td>
</tr>
<tr>
<td>GRE keepalive</td>
<td>GRE keepalive enables GRE to maintain or place a tunnel in an UP or DOWN state based upon the periodic sending of keepalive packets and the monitoring of responses to the packets.</td>
<td>“Configuring GRE link keepalive” on page 1076</td>
</tr>
</tbody>
</table>
TABLE 3 Layer 3 enhancements in FSX R05.1.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path MTU Discovery for GRE tunnels</td>
<td>The following RFCs are supported for handling large packets over a GRE tunnel: RFC 1191, Path MTU Discovery RFC 4459, MTU and Fragmentation Issues with In-the-Network Tunneling</td>
<td>“Path MTU discovery (RFC 1191) support” on page 1002</td>
</tr>
<tr>
<td>Support for up to 64 GRE tunnels</td>
<td>You can configure a FastIron IPv6 device to support up to 64 GRE tunnels. By default, 16 tunnels are supported.</td>
<td>“Changing the maximum number of entries the static ARP table can hold” on page 1010</td>
</tr>
<tr>
<td>IPv4 multicast routing with GRE</td>
<td>PIM-DM and PIM-SM multicast protocols and multicast data traffic are supported over GRE tunnels. When a multicast protocol is enabled on both ends of a GRE tunnel, multicast packets can be sent from one tunnel endpoint to another.</td>
<td>“Support for IPv4 multicast routing over GRE tunnels” on page 1070</td>
</tr>
<tr>
<td>ACL support with GRE</td>
<td>Traffic coming from a GRE tunnel can be filtered and classified by an ACL, both before and after the tunnel is terminated.</td>
<td>“ACL, QoS, and PBR support for traffic through a GRE tunnel” on page 1070</td>
</tr>
<tr>
<td>PBR support with GRE</td>
<td>Traffic coming from a GRE tunnel can be redirected by PBR, both before and after the tunnel is terminated.</td>
<td>“ACL, QoS, and PBR support for traffic through a GRE tunnel” on page 1070</td>
</tr>
<tr>
<td>MSDP</td>
<td>Multicast Source Discovery Protocol (MSDP) is used by Protocol Independent Multicast (PIM) Sparse routers to exchange source information across PIM Sparse domains. Routers running MSDP can discover PIM Sparse sources that are in other PIM Sparse domains.</td>
<td>“Passive multicast route insertion” on page 895</td>
</tr>
<tr>
<td>Anycast RP</td>
<td>Anycast RP is a method of providing intra-domain redundancy and load-balancing between multiple Rendezvous Points (RP) in a Protocol Independent Multicast Sparse mode (PIM-SM) network. It is accomplished by configuring all RPs within a domain with the same anycast RP address which is typically a loopback IP address.</td>
<td>“Anycast RP” on page 856</td>
</tr>
<tr>
<td>PIM passive (multicast stub routing)</td>
<td>PIM Passive reduces and minimizes unnecessary PIM Hello and other PIM control messages.</td>
<td>“PIM Passive” on page 875</td>
</tr>
<tr>
<td>MAC filters on tagged ports in Layer 3 software images</td>
<td>MAC filters are now supported on tagged ports in the base layer 3 and full Layer 3 images.</td>
<td>“Defining MAC address filters” on page 374</td>
</tr>
<tr>
<td>Support for forwarding IP packets with bad header checksum in hardware</td>
<td>In releases prior to FSX 05.1.00, certain packets could be treated as a bad checksum, even if the checksum is correct. In this case, the packets would be dropped in hardware. Starting in release FSX 05.1.00, packets can be trapped at the CPU and if the checksum is correct, the packets are forwarded.</td>
<td>“Disabling IP checksum check” on page 1104</td>
</tr>
</tbody>
</table>
Layer 2 enhancement in FSX R05.1.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow-based MAC address learning</td>
<td>With flow-based MAC address learning, the FastIron switch programs MAC addresses selectively on packet processors, rather than globally, on all packet processors. This method enables efficient management of the hardware MAC table, and enables support for up to 32K MAC addresses.</td>
<td>Flow-based MAC address learning on page 369</td>
</tr>
</tbody>
</table>

System-Level enhancement in FSX R05.1.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 support for LLDP</td>
<td>This release adds support for advertisement of IPv6 management addresses. Prior releases support advertisement of IPv4 management addresses only (or a MAC address, if no IPv4 address is configured).</td>
<td>LLDP-MED attributes advertised by the Brocade device on page 963</td>
</tr>
</tbody>
</table>

Management enhancement in FSX R05.1.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow version 5</td>
<td>sFlow version 5 modifies and enhances the format of the data sent to the sFlow collector. sFlow version 5 introduces several new sFlow features and also defines a new datagram syntax used by the sFlow agent to report flow samples and interface counters to the sFlow collector.</td>
<td>Support for sFlow version 5 on page 1744</td>
</tr>
</tbody>
</table>

Security enhancement in FSX R05.1.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS port type for RADIUS</td>
<td>The RADIUS attribute NAS-Port-Type (61) (RFC 2865) is now supported for 802.1x and multi-device port authentication requests.</td>
<td>Supported RADIUS attributes on page 1572</td>
</tr>
</tbody>
</table>

Summary of enhancements in FGS R05.0.02

FGS R05.0.02 is designed for the devices listed below. You cannot use this software on other FastIron devices:
• FastIron GS and FastIron LS switches that have been upgraded to operate as stacking devices
• FastIron GS-STK and FastIron LS-STK stackable devices
This release includes Layer 2 and Base Layer 3 images.

Software enhancements in FGS R05.0.02

The software features available in FGS R05.0.02 that are available on your device depend on the type of software image the device is running. You can run Layer 2 or Base Layer 3 software images. The Edge Layer 3 software image is not available for these platforms.

The following table presents a summary of the features supported in FGS R05.0.02. For more information about supported features for FGS R05.0.02, see Chapter 1, “Feature Highlights”.

<table>
<thead>
<tr>
<th>Feature Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Features</td>
<td></td>
</tr>
<tr>
<td>NAS-Port-Type RADIUS attribute</td>
<td>This release adds support for the NAS-Port-Type attribute for RADIUS servers authenticating 802.1X clients. "Supported RADIUS attributes" on page 1572</td>
</tr>
<tr>
<td>IP Source Guard</td>
<td>The Brocade implementation of IP Source Guard supports configuration on a port, on specific VLAN memberships on a port (Layer 2 devices only), and on specific ports on a virtual interface (VE) (Layer 3 devices only). "IP source guard" on page 1662</td>
</tr>
<tr>
<td>Management Features</td>
<td></td>
</tr>
<tr>
<td>AES encryption for SNMPv3</td>
<td>AES is the 128-bit encryption standard adopted by the U.S. government. This standard is a symmetric cipher algorithm chosen by the National Institute of Standards and Technology (NIST) as the replacement for DES. "Defining an SNMP group" on page 1672</td>
</tr>
</tbody>
</table>

Summary of enhancements in 04.1.00

Software release 04.1.00 is designed for FGS-STK and FLS-STK devices, and FGS and FLS devices that have been upgraded to support stacking. This release also introduces support for standalone Edge Premium models of FGS and FLS devices with Edge Layer 3 (EPREM) features, and for standard and Edge Premium FWS POE models. Non-POE Edge Premium FWS models were introduced in FGS R04.3.00.

For more information about how to upgrade FGS or FLS devices, see the Brocade FastIron GS and GS-STK Switch Hardware Installation Guide, the Brocade FastIron LS and LS-STK Switch Hardware Installation Guide, or the installation instructions that ship with the upgrade kits.

NOTE
Memory DIMMs and EEPROMs are not interchangeable between FGS and FLS devices. See the upgrade instructions that shipped with your upgrade kit for more information.
The following sections list the feature enhancements for 04.1.00. The features that are available on your device depend on the type of software image the device is running. You can run Layer 2 or Base Layer 3 software images. The Edge Layer 3 software image is not available for these platforms.

Hardware introduced in 04.1.00

This release introduces support for standalone Edge Premium models of FGS and FLS devices with Edge Layer 3 (EPREM) features. This release also introduces support for standard and Edge Premium FWS POE models. Non-POE Edge Premium FWS models were introduced in FGS R04.3.00.

Table 9 lists the new hardware models introduced in 04.1.00.

TABLE 9
New hardware in 04.1.00

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10G-XFP-1310-MMF Optic Support</td>
<td>This release introduces support for a 10G-XFP-1310-MMF pluggable XFP transceiver (LC), 1310 nm serial with EDC for use on multimode fiber (FDDI-grade), up to 200 meters MM fiber, compatible with 10GBASE-LRM optics</td>
</tr>
</tbody>
</table>

Software Enhancements in 04.1.00

Table 10 lists the feature enhancements supported in 04.1.00. For detailed descriptions, see For more information about supported features for FGS R04.3.02, see Chapter 1, “Feature Highlights”..

TABLE 10
Software enhancements in FGS R04.3.02

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>See details in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAS-Port-Type RADIUS attribute</td>
<td>This release adds support for the NAS-Port-Type attribute for RADIUS servers authenticating 802.1X clients.</td>
<td>“Supported RADIUS attributes” on page 1572</td>
</tr>
<tr>
<td>IP Source Guard</td>
<td>The Brocade implementation of IP Source Guard supports configuration on a port, on specific VLAN memberships on a port (Layer 2 devices only), and on specific ports on a virtual interface (VE) (Layer 3 devices only).</td>
<td>“IP source guard” on page 1662</td>
</tr>
<tr>
<td>Management Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AES encryption for SNMPv3</td>
<td>AES is the 128-bit encryption standard adopted by the U.S. government. This standard is a symmetric cipher algorithm chosen by the National Institute of Standards and Technology (NIST) as the replacement for DES.</td>
<td>“Defining an SNMP group” on page 1672</td>
</tr>
</tbody>
</table>

Document conventions

This section describes text formatting conventions and important notice formats used in this document.
Text formatting

The narrative-text formatting conventions that are used are as follows:

bold text
- Identifies command names
- Identifies the names of user-manipulated GUI elements
- Identifies keywords
- Identifies text to enter at the GUI or CLI

italic text
- Provides emphasis
- Identifies variables
- Identifies document titles

code text
- Identifies CLI output

For readability, command names in the narrative portions of this guide are presented in bold: for example, `show version`.

Command syntax conventions

Command syntax in this manual follows these conventions:

command and parameters
- Commands and parameters are printed in bold.

[]
- Optional parameter.

variable
- Variables are printed in italics enclosed in angled brackets `< >`.

...
- Repeat the previous element, for example “member[:;member...]”

|
- Choose from one of the parameters.

Notes, cautions, and danger notices

The following notices and statements are used in this manual. They are listed below in order of increasing severity of potential hazards.

NOTE
- A note provides a tip, guidance or advice, emphasizes important information, or provides a reference to related information.
Notice to the reader

This document may contain references to the trademarks of the following corporations. These trademarks are the properties of their respective companies and corporations.

Related publications

The following Brocade documents supplement the information in this guide:

- Foundry FastIron X Series Chassis Hardware Installation Guide
- Foundry FastIron Stackable Hardware Installation Guide
- Foundry FastIron GS Compact Layer 2 Switch Hardware Installation Guide
- Foundry FastIron LS Hardware Installation Guide
- Brocade FastIron WS Switch Hardware Installation Guide
- Brocade FastIron CX Hardware Installation Guide
- TurboIron X Series Hardware Installation Guide
- IronWare MIB Reference

NOTE

For the latest edition of these documents, which contain the most up-to-date information, see Product Manuals at kp.foundrynet.com.

Getting technical help or reporting errors

Brocade is committed to ensuring that your investment in our products remains cost-effective. If you need assistance, or find errors in the manuals, contact Brocade using one of the following options:
Web access

Go to myBrocade.com, click the Product Documentation tab, then click on the link to the Knowledge Portal (KP) to obtain more information about a product, or to report documentation errors. To report documentation errors, click on Cases > Create a New Ticket in the KP. Make sure you specify the document title in the ticket description.

E-mail access

Send an e-mail to IPsupport@brocade.com

Telephone access

United States and Canada: 800-752-8061
International: +800-ATFIBREE (+800 28 34 27 33)

Refer to the Services & Support page on www.brocade.com for additional toll-free numbers that may be available within your country.

Areas unable to access 800 numbers: +1-408-333-6061
Chapter 1

Feature Highlights

Introduction to features

The features that are available on a device depend on the type of software image the device is running. You can run one of the following types of software images on these devices:

- Layer 2 is supported on all models
- Base Layer 3 is supported on the FESX, FSX, FSX 800, FSX 1600, FGS, FLS, FWS standard, and FGS-STK and FLS-STK models
- Edge Layer 3 is supported on FGS, FLS, and FWS EPREM models
- Full Layer 3 is supported on FESX, FESX6FSX, FSX 800, FCX, and FSX 1600 premium models only
- Layer 3 features supported on Turbolron devices only.

Table 11 lists the software that is loaded into the primary and secondary flash areas at the factory. All of the flash images are included on the CD-ROM that ships with each device.

<table>
<thead>
<tr>
<th>Model</th>
<th>Software Images</th>
<th>Primary flash</th>
<th>Secondary flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>All FESX, FSX, FSX 800, and FSX 1600 standard models</td>
<td></td>
<td>Layer 2</td>
<td>Base Layer 3</td>
</tr>
<tr>
<td>All FESX, FSX, FSX 800, and FSX 1600 premium (PREM) models</td>
<td></td>
<td>Full Layer 3</td>
<td>Layer 2</td>
</tr>
<tr>
<td>All FWSX models</td>
<td></td>
<td>Layer 2</td>
<td>N/A</td>
</tr>
<tr>
<td>All Turbolron X Series models</td>
<td></td>
<td>Layer 2</td>
<td>Layer 2</td>
</tr>
<tr>
<td>All FGS and FGS-STK models</td>
<td></td>
<td>Layer 2</td>
<td>Base Layer 3</td>
</tr>
<tr>
<td>All FLS and FLS-STK models</td>
<td></td>
<td>Layer 2</td>
<td>Base Layer 3</td>
</tr>
<tr>
<td>All FGS, FLS and FWS EPREM models</td>
<td></td>
<td>Edge Layer 3</td>
<td>Layer 2</td>
</tr>
<tr>
<td>All FWS standard models</td>
<td></td>
<td>Layer 2</td>
<td>Base Layer 3</td>
</tr>
<tr>
<td>All FastIron CX standard models</td>
<td></td>
<td>Layer 2</td>
<td>Layer 3</td>
</tr>
<tr>
<td>All FastIron CX ADV models</td>
<td></td>
<td>Layer 2</td>
<td>Layer 3</td>
</tr>
</tbody>
</table>

Note regarding IPv6 feature support

The following IPv6 Layer 3 features are supported only with the IPv6 Layer 3 PROM and the full Layer 3 image:

- IPv6 unicast routing (multicast routing is not supported)
1 Supported features

- OSPF V3
- RIPvng
- IPv6 ICMP redirect messages
- IPv6 route redistribution
- IPv6 static routes
- IPv6 over IPv4 tunnels in hardware
- IPv6 Layer 3 forwarding

Supported features

The tables in this section list the feature highlights in the FastIron and TurboIron software.

Supported management features

Table 12 lists the supported management features. These features are supported in the Layer 2, Base Layer 3, Edge Layer 3 (EPREM), and full Layer 3 software images.

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>PESX</th>
<th>FGS</th>
<th>FGS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1X accounting</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AAA support for console commands</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Access Control Lists (ACLs) for controlling management access</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Alias Command</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Combined DSCP and internal marking in one ACL rule</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Configuring an interface as the source for all TFTP, Syslog, and SNTP packets</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DHCP Client-Based Auto-Configuration</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Disabling TFTP Access</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IronView Network Manager (optional standalone and HP OpenView GUI)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P-Bridge and Q-Bridge MIBs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote monitoring (RMON)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Retaining Syslog messages after a soft reboot</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

FastIron and TurboIron 24X Configuration Guide
53-1001719-01
Supported features

Table 13 lists the supported security features. These features are supported in the Layer 2, Base Layer 3, Edge Layer 3, and full Layer 3 software images.

Table 13 Supported security features

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1X port security</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1X authentication RADIUS timeout action</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1X dynamic assignment for ACL, MAC filter, and VLAN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Supported features

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Control Lists (ACLs) for filtering transit traffic:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Support for inbound ACLs only. These devices do not support outbound ACLs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address locking (for MAC addresses)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>AES Encryption for SNMP v3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AES Encryption for SSH v2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Authentication, Authorization and Accounting (AAA):</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• RADIUS, TACACS/TACACS+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denial of Service (DoS) protection:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• TCP SYN Attacks and ICMP Attacks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHCP Snooping</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic ARP Inspection</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>EAP Pass-through Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>IP Source Guard</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Local passwords</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAC filter override of 802.1X</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAC filtering:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Filtering on source and destination MAC addresses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to disable MAC Learning</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow-based MAC learning</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MAC port security</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-device port authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-device port authentication with dynamic ACLs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-device port authentication with dynamic VLAN assignment</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-device port authentication password override</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-device port authentication RADIUS timeout action</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Secure Copy (SCP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Secure Shell (SSH) v2 Server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Packet filtering on TCP Flags</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TABLE 13 Supported security features (Continued)

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Relay Agent information (DHCP Option 82) for DHCP snooping</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Web Authentication</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Supported system-level features

Table 14 lists the supported system-level features. These features are supported in the Layer 2, Base Layer 3, Edge Layer 3, and full Layer 3 software images.

TABLE 14 Supported system-level features

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/100/1000 port speed</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1 Gbps and 10 Gbps configurable port speed on fiber ports</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>16,000 MAC addresses per switch (FastIron devices)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>32,000 MAC addresses per switch</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ACL-Based Mirroring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ACL-Based Rate Limiting:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• FESX, FSX, SX, and TIX devices support ACL-based fixed and adaptive rate limiting on inbound ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FGS, FLS, FWS, FGS-STK, FLS-STK and FCX devices support ACL-based fixed rate limiting on inbound ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACL filtering based on VLAN membership or VE port membership</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ACL logging of denied packets:</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>• ACL logging is supported for denied packets, which are sent to the CPU for logging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ACL logging is not supported for permitted packets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Packets that are denied by ACL filters are logged in the Syslog based on a sample time-period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACL statistics</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ACLs to filter ARP packets</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Supported features

TABLE 14
Supported system-level features
(Continued)

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric flow control:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>• Responds to flow control packets, but does not generate them</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto MDI/MDIX</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Auto-negotiation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Automatic removal of Dynamic VLAN for 802.1X ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Automatic removal of Dynamic VLAN for MAC authenticated ports</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Broadcast, multicast, and unknown-unicast rate limiting</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Boot and reload after 5 minutes at or above shutdown temperature</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cut-through switching</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DiffServ support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Digital Optical Monitoring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Displaying interface names in Syslog</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Displaying TCP/UDP port numbers in Syslog messages</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DSCP Mapping for values 1 through 8</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic buffer allocation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Egress buffer thresholds</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Supported features

Fixed rate limiting:
- FESX, FSX, SX, and TIX devices support:
 - Port-based rate limiting on inbound ports
 - Not supported on 10 GbE ports on FESX, FSX, and SX devices. Supported on GbE and 10 GbE ports on TurboIron X Series devices.
 - Fixed rate limiting is not supported on tagged ports in the full Layer 3 router image
- FGS, FLS, FWS, FGS-STK, FLS-STK and FCX devices support:
 - Port-based fixed rate limiting on inbound ports
 - Port-based and port- and priority-based rate limiting on outbound ports
 - The above are supported on Gbps and 10 Gbps Ethernet ports.

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800</th>
<th>FSX 1600</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundry Discovery Protocol (FDP) / Cisco Discovery Protocol (CDP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Generic buffer profile</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>High Availability:</td>
<td>FSX 800 and FSX 1600 only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Layer 2 hitless switchover</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Layer 2 hitless Operating System (OS) upgrade</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For details, refer to the Foundry FastIron X Series Chassis Hardware Installation Guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLDP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LLDP-MED</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MAC filter-based mirroring</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-port static MAC address</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple Syslog server logging:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>- Up to six Syslog servers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Negative temperature setting</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Outbound rate limiting</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Outbound rate shaping</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Path MTU Discovery support</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Port flap dampening</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Supported features

TABLE 14
Supported system-level features (Continued)

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800 FSX 1600 FWSX</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port mirroring and monitoring:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Mirroring of both inbound and outbound traffic on individual ports is supported.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power over Ethernet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes (FGS only)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Priority mapping using ACLs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Protected link groups:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>• Supported on GbE ports only. Not supported on 10-GbE ports.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifying a Simple Network Time Protocol (SNTP) Server</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Specifying the minimum number of ports in a trunk group</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Static MAC entries with option to set traffic priority</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Cable Testing (VCT) technology:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>• Uses Time Domain Reflectometry (TDR) technology to detect and report cable statistics such as: local and remote link pair, cable length, and link status.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supported Layer 2 features

Layer 2 software images include all of the management, security, and system-level features listed in the previous tables, plus the features listed in Table 15.
Supported Layer 2 features

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1D Spanning Tree Support:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Enhanced IronSpan support includes Fast Port Span and Single-instance Span</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FastIron Layer 2 devices (switches) support up to 254 spanning tree instances for VLANs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FastIron Layer 3 devices (routers) support up to 254 spanning tree instances for VLANs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TurboIron devices support up to 510 spanning tree instances for VLANs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.1p Quality of Service (QoS):</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Strict Priority (SP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Weighted Round Robin (WRR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Combined SP and WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 8 priority queues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.1s Multiple Spanning Tree</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1W Rapid Spanning Tree (RSTP):</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• 802.1W RSTP support allows for sub-second convergence (both final standard and draft 3 supported)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.3ad link aggregation (dynamic trunk groups):</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Brocade ports enabled for link aggregation follow the same rules as ports configured for trunk groups. Refer to "Trunk group rules" on page 547.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACL-based rate limiting QoS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>BPDU Guard</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic Host Configuration Protocol (DHCP) Assist</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IGMP v1/v2 Snooping Global</td>
<td>Yes (*,G)</td>
<td>Yes (S,G)</td>
<td>Yes (S,G)</td>
<td>Yes (S,G)</td>
<td>Yes (*,G and S,G)</td>
<td>Yes</td>
</tr>
<tr>
<td>IGMP v3 Snooping Global</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IGMP v1/v2/v3 Snooping per VLAN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IGMP v2/v3 Fast Leave (membership tracking)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpacket Gap (IPG) adjustment</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Supported features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumbo frames:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1 Gbps and 10 Gbps Ethernet ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Up to 9216 bytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The maximum configurable frame size for jumbo frames in a Fastiron IronStack is 10,232.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumbo frames 10/100 support:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Up to 10240 bytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACP:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• LACP trunk group ports follow the same configuration rules as for statically configured trunk group ports.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Support for single link LACP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link Fault Signaling (LFS) for 10 Gbps Ethernet ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC-Based VLANs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dynamic MAC-Based VLAN Activation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metro Ring Protocol 1 (MRP 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbolon devices support Alarm RHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended MRP ring IDs from 1 – 1023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLD Snooping V1/V2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MLD V1/V2 snooping (global and local)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MLD fast leave for V1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MLD tracking and fast leave for V2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Static MLD and IGMP groups with support for proxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicast static group traffic filtering (for snooping scenarios)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIM-SM V2 Snooping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVST/PVST+ compatibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVRST+ compatibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Fault Notification (RFN) for Gbps Ethernet ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root Guard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super Aggregated VLANs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 15
Supported Layer 2 features (Continued)

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX 800</th>
<th>FSX 1600</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk groups:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Trunk threshold for static trunk groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Flexible trunk group membership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Option to include L2 in trunk hash calculation (FGS, FLS, FWS only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topology groups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Uni-directional Link Detection (UDLD) (Link keepalive)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Uplink Ports Within a Port-Based VLAN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VLAN Support:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 802.1Q with tagging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Dual-mode VLANS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• GVRP Port-based VLANS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Protocol VLANS (AppleTalk, IPv4, dynamic IPv6, and IPX)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Layer 3 Subnet VLANS (Appletalk, IP subnet network, and IPX)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• VLAN groups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Private VLANS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VLAN Q-in-Q Tagging (tag-type 8100 over 8100 encapsulation)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VLAN-based mirroring</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VoIP Autoconfiguration and CDP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Virtual Switch Redundancy Protocol (VSRP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSRP-Aware security features</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSRP and MRP signaling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSRP Fast Start</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VSRP timer scaling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Supported base Layer 3 features on FastIron devices

Base Layer 3 software images include all of the management, security, system, and Layer 2 features listed in the previous tables, plus the features listed in **Table 16**.

NOTE

FCX devices will not contain a base Layer 3 image. The features in this table will be supported on the full Layer 3 image for these devices.
Supported Edge Premium (EPREM) features on FastIron devices

Edge Premium Layer 3 software images include all of the management, security, system, Layer 2 and base Layer 3 features listed in the previous tables, plus the features shown in Table 17.

NOTE
EPREM Layer 3 images are supported on FGS, FLS, and FWS edge premium (EPREM) models.

Supported base Layer 3 features on FastIron devices

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX FSX FSW 800 FSX 1600</th>
<th>FGS, FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>FCX-S (full Layer 3 image)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Relay</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ECMP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv4 point-to-point GRE IP tunnels, including but not limited to:</td>
<td>IPv6 devices only</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>• GRE keepalive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Path MTU discovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• up to 64 GRE tunnels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IPv4 multicast routing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ACL support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PBR support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIP V1 and V2 (advertising only):</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Static RIP support only. The Brocade device with Base Layer 3 does not learn RIP routes from other Layer 3 devices. However, the device does advertise directly connected routes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing for directly connected IP subnets</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Static IP routing:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Up to 4000 IP route entries for FESX, FSX, FWSX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Up to 1000 hardware entries for FGS, FWS and FLS - shared with ACLs and MAC features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Interaces:</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>• Up to 255 virtual interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRRP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VRRP timer scaling</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Supported features

Full Layer 3 software images include all of the management, security, system, Layer 2, base Layer 3 and edge Layer 3 features listed in the previous tables, plus the features listed in Table 18.

NOTE
Full Layer 3 features are supported on FastIron X Series premium devices only.

TABLE 17 Supported EPREM features on FastIron devices

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FGS, FLS, FWS EPREM</th>
<th>FGS-STK FLS-STK</th>
<th>FWS EPREM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF V2 (IPv4)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Full RIP V1 and V2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Route-only support (Global configuration level only)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Route redistribution</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1000 routes in hardware maximum</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VRRP</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TABLE 18 Supported full Layer 3 features on FastIron devices

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX</th>
<th>FSX</th>
<th>FSX 800</th>
<th>FSX 1600</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum active host routes</td>
<td>Yes</td>
<td>Yes (6,000)</td>
<td>Yes (16,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anycast RP</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP4</td>
<td>Yes</td>
<td>Yes (ADV models)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGMP V1, V2, and V3 (for multicast routing scenarios)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP multicast routing protocols (DVMRP, PIM-SM, PIM-DM):</td>
<td>Yes</td>
<td>Yes (DVMRP not supported)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fastiron Edge X and SX Series devices support up to 1024 PIM groups and 1024 DVMRP groups by default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FCX devices support up to 4,000 PIM groups (DVMRP is not supported)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TurboIron X Series devices support PIM-SM and PIM-DM (DVMRP is not supported)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICMP Redirect messages</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGMPv3 fast leave (for routing)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Layer 3 forwarding. This feature is enabled by the IPv6 PROM (IPv6 full layer 3 image.)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 over IPv4 tunnels in hardware. This feature is enabled by the IPv6 PROM (IPv6 full layer 3 image.)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Redistribution. This feature is enabled by the IPv6 PROM (IPv6 full layer 3 image.)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 Static Routes. This feature is enabled by the IPv6 PROM (IPv6 full layer 3 image.)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supported Layer 3 features on TurboIron devices

- ECMP
- RIP V1 and V2 (advertising only): Static RIP support only. The TurboIron does not learn RIP routes from other Layer 3 devices. However, the device does advertise directly connected routes.
- Routing for directly connected IP subnets
- Static IP routing:
- Virtual Interfaces: Up to 255 virtual interfaces
- VRRP
- OSPF V2 (IPv4)
- Route-only support (Global configuration level only)
- VRRP
- Anycast RP
- IGMP V1, V2, and V3 (for multicast routing scenarios)
- IP multicast routing protocols (DVMRP, PIM-SM, PIM-DM): TurboIron X Series devices support PIM-SM and PIM-DM (DVMRP is not supported)
- ICMP Redirect messages
- Multicast Source Discovery Protocol (MSDP)
- Route-only support:
 - Disabling Layer 2 Switching at the CLI Interface level as well as the Global CONFIG level.
 - This feature is not supported on virtual interfaces
- VRRP-E
- DHCP relay
- IP helper

Supported IPv6 management features

Table 19 shows the IPv6 management features that are supported for Brocade devices that can be configured as IPv6 hosts in an IPv6 network, and in devices that support IPv6 routing.

TABLE 19 Supported IPv6 management features

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX, FSX, FSX 800, FSX 1600, FWSX</th>
<th>FGS, FLS</th>
<th>FGS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link-Local IPv6 Address</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv6 Access List</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IPv6 copy</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv6 ncopy</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv6 debug</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv6 ping</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv6 traceroute</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DNS server name resolution</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HTTP/HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Logging (Syslog)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SCP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SSH</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SNMP v1, v2, v3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SNTP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Syslog</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TACACS/TACACS+</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Telnet</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Unsupported features

Table 20 lists the features that are not supported on the FastIron X Series, Turbolron X Series, FGS, FWS, FLS, FGS-STK, FLS-STK, and FCX devices. If required, these features are available on other Brocade devices.

<table>
<thead>
<tr>
<th>Table 20 Unsupported Features</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unsupported features</th>
</tr>
</thead>
<tbody>
<tr>
<td>System-level features not supported:</td>
</tr>
<tr>
<td>ACL logging of permitted packets.</td>
</tr>
<tr>
<td>Broadcast and multicast MAC filters</td>
</tr>
<tr>
<td>Outbound ACLs</td>
</tr>
<tr>
<td>Layer 2 features not supported:</td>
</tr>
<tr>
<td>SuperSpan</td>
</tr>
<tr>
<td>VLAN-based priority</td>
</tr>
<tr>
<td>Layer 3 features not supported:</td>
</tr>
<tr>
<td>AppleTalk</td>
</tr>
<tr>
<td>Base Layer 3 features and full Layer 3 features are not supported on the FWSX or Turbolron X Series</td>
</tr>
<tr>
<td>BGP4+</td>
</tr>
<tr>
<td>Foundry Standby Router Protocol (FSRP)</td>
</tr>
<tr>
<td>IPv6 Multicast Routing</td>
</tr>
<tr>
<td>IPX</td>
</tr>
<tr>
<td>IS-IS</td>
</tr>
<tr>
<td>Multiprotocol Border Gateway Protocol (MBGP)</td>
</tr>
<tr>
<td>Multiprotocol Label Switching (MPLS)</td>
</tr>
<tr>
<td>Network Address Translation (NAT)</td>
</tr>
</tbody>
</table>

Table 19 Supported IPv6 management features

<table>
<thead>
<tr>
<th>Category, description, and configuration notes</th>
<th>FESX, FSX, FSX 800, FSX 1600, FWSX</th>
<th>FGS, FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Traps</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Using the management port

The management port is an out-of-band port that customers can use to manage their devices without interfering with the in-band ports. The management port is widely used to download images and configurations, for Telnet sessions, and for Web management.

The MAC address for the management port is derived from the base MAC address of the unit, plus the number of ports in the base module. For example, on a 48-port FCX standalone device, the base MAC address is 0000.1234.2200. The management port MAC address for this device would be 0000.1234.2200 plus 0x30, or 0000.1234.2230. The 0x30 in this case equals the 48 ports on the base module.

How the management port works

The following rules apply to management ports:

- Any packets that are specifically addressed to the management port MAC address or the broadcast MAC address are forwarded accordingly. All other packets are filtered out.
- No packet received on a management port is sent to any in-band ports, and no packets received on in-band ports are sent to a management port.
- A management port is not part of any VLAN
- Protocols are not supported on the management port.
- Creating a management VLAN disables the management port on the device.
- All features that can be configured from the global configuration mode can also be configured from the interface level of the management port. Features that are configured through the management port take effect globally, not on the management port itself (on switches only).

For switches, any in-band port may be used for management purposes. A Router sends Layer 3 packets using the MAC address of the port as the source MAC address.

For stacking devices, (for example, an FCX stack) each stack unit has one out-of-band management port. Only the management port on the Active Controller will actively send and receive packets. If a new Active Controller is elected, the new Active Controller management port will become the active management port. In this situation, the MAC address of the old Active Controller and the MAC address of the new controller will be different.

CLI Commands for use with the management port

The following CLI commands can be used with a management port.

To display the current configuration, use the `show running-config interface management` command.

Syntax: show running-config interface management `num`
Using the management port

FCX624S Router(config-if-mgmt)#ip addr 10.44.9.64/24
FCX624S Router(config)#show running-config interface management 1
interface management 1
 ip address 10.44.9/64 255.255.255.0

To display the current configuration, use the show interfaces management command.

Syntax: show interfaces management num

FCX624S Switch(config)#show interfaces management 1
GigEthemetmgmt1 is up, line protocol is up
Hardware is GigEthemet, address is 0000.9876.544a (bia 0000.9876.544a)
Configured speed auto, actual 10bit, configured duplex fdx, actual fdx
Configured mdi mode AUTO, actual none
BPRU guard is disabled, ROOT protect is disabled
Link Error Dampening is Disabled
STP configured to OFF, priority is level0, mac-learning is enabled
Flow Control is config disabled, oper enabled
Mirror disabled, Monitor disabled
Not member of any active trunks
Not member of any configured trunks
No port name
IPG MII 0 bits-time, IPG GMII 0 bits-time
IP MTU 1500 bytes
300 second input rate: 83728 bits/sec, 130 packets/sec, 0.01% utilization
300 second output rate: 24 bits/sec, 0 packets/sec, 0.00% utilization
39926 packets input, 3210077 bytes, 0 no buffer
Received 4353 broadcasts, 32503 multicasts, 370 unicsats
0 input errors, 0 CRC, 0 frame, 0 ignored
0 runts, 0 giants
22 packets output, 1540 bytres, 0 underruns
Transmitted 0 broadcasts, 6 multicasts, 16 unicasts
0 output errors, 0 collisions

To display the management interface information in brief form, enter the show interfaces brief management command.

Syntax: show interfaces brief management num

Port Link State Dupl Speed Trunk Tag Pvid Pri MAC Name
mgmt1 Up None Full 100M None No 1 0 000d.5200.0118

To display management port statistics, enter the show statistics management command.

Syntax: show statistics management num

FastIron(config)# show statistics management 1
Port Link State Dupl Speed Trunk Tag Pvid Pri MAC Name
mgmt1 Up None Full 100M None No 1 0 000d.5200.0118

Port mgmt1 Counters:
 InOctets3210941OutOctets1540
 InPkts399390OutPkts22
 InBroadcastPkts43550OutbroadcastPkts0
 InMulticastPkts35214OutMulticastPkts6
 InUnicastPkts370OutUnicastPkts16
 InBadPkts0
 InFragments0
 InDiscards0OutErrors0
 CRC 0Collisions0
 InErrors0LateCollisions0
 InGiantPkts0
InShortPkts0
InJabber0
InFlowCtrlPkts0OutFlowCtrlPkts0
InBitsPerSec83728OutBitsPerSec24
InPktsPerSec130OutPktsPerSec0
InUtilization0.01%OutUtilization0.00%

To display the management interface statistics in brief form, enter the **show statistics brief management** command.

Syntax: `show statistics brief management num`

FCX624S Switch(config)#show statistics brief management 1
PortIn PacketsOut PacketsTrunkIn ErrorsOut Errors
mgmt1399452200
Total399452200

Logging on through the CLI

Once an IP address is assigned to a Brocade device running Layer 2 software or to an interface on a Brocade device running Layer 3 software, you can access the CLI either through the direct serial connection to the device or through a local or remote Telnet session.

You can initiate a local Telnet or SNMP connection by attaching a cable to a port and specifying the assigned management station IP address.

The commands in the CLI are organized into the following levels:

- **User EXEC** – Lets you display information and perform basic tasks such as pings and traceroutes.
- **Privileged EXEC** – Lets you use the same commands as those at the User EXEC level plus configuration commands that do not require saving the changes to the system-config file.
- **CONFIG** – Lets you make configuration changes to the device. To save the changes across reboots, you need to save them to the system-config file. The CONFIG level contains sub-levels for individual ports, for VLANs, for routing protocols, and other configuration areas.

NOTE

By default, any user who can open a serial or Telnet connection to the Brocade device can access all these CLI levels. To secure access, you can configure Enable passwords or local user accounts, or you can configure the device to use a RADIUS or TACACS/TACACS+ server for authentication. Refer to **Chapter 39, “Securing Access to Management Functions”**.

On-line help

To display a list of available commands or command options, enter “?” or press Tab. If you have not entered part of a command at the command prompt, all the commands supported at the current CLI level are listed. If you enter part of a command, then enter “?” or press Tab, the CLI lists the options you can enter at this point in the command string.

If you enter an invalid command followed by ?., a message appears indicating the command was unrecognized. An example is given below.
Logging on through the CLI

```
FastIron(config)#rooter ip
Unrecognized command
```

Command completion

The CLI supports command completion, so you do not need to enter the entire name of a command or option. As long as you enter enough characters of the command or option name to avoid ambiguity with other commands or options, the CLI understands what you are typing.

Scroll control

By default, the CLI uses a page mode to paginate displays that are longer than the number of rows in your terminal emulation window. For example, if you display a list of all the commands at the global CONFIG level but your terminal emulation window does not have enough rows to display them all at once, the page mode stops the display and lists your choices for continuing the display. An example is given below.

```
aaa
all-client
appletalk
arp
boot
some lines omitted for brevity...

ipx
lock-address
logging
mac
--More--, next page: Space, next line:
Return key, quit: Control-c
```

The software provides the following scrolling options:

- Press the **Space bar** to display the next page (one screen at a time).
- Press the **Return** or **Enter** key to display the next line (one line at a time).
- Press **Ctrl+C** or **Ctrl+Q** to cancel the display.

Line editing commands

The CLI supports the following line editing commands. To enter a line-editing command, use the CTRL+key combination for the command by pressing and holding the CTRL key, then pressing the letter associated with the command.

TABLE 21 CLI line editing commands

<table>
<thead>
<tr>
<th>Ctrl+Key combination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+A</td>
<td>Moves to the first character on the command line.</td>
</tr>
<tr>
<td>Ctrl+B</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td>Ctrl+C</td>
<td>Escapes and terminates command prompts and ongoing tasks (such as lengthy displays), and displays a fresh command prompt.</td>
</tr>
<tr>
<td>Ctrl+D</td>
<td>Deletes the character at the cursor.</td>
</tr>
<tr>
<td>Ctrl+E</td>
<td>Moves to the end of the current command line.</td>
</tr>
</tbody>
</table>
Using stack-unit, slot number, and port number with CLI commands

Many CLI commands require users to enter port numbers as part of the command syntax, and many show command outputs display port numbers. The port numbers are entered and displayed in one of the following formats:

- port number only
- slot number and port number
- stack-unit, slot number, and port number

The following sections show which format is supported on which devices. The ports are labelled on the front panels of the devices.

CLI nomenclature on FSX, FSX 800, and FSX 1600 devices

Chassis-based models use port numbering that consists of a slot number and a port number. When you enter CLI commands on these devices, you must specify both the slot number and the port number. The slot numbers used in the FSX CLI examples apply only to Chassis devices.

Here is an example. The following commands change the CLI from the global CONFIG level to the configuration level for the first port on the device:

- FSX commands
  ```
  FastIron(config)#interface e 1/1
  FastIron(config-if-1/1)#
  ```

CLI nomenclature on TIX, FESX, and FWSX devices

The TIX, FESX, and FWSX devices use port numbers only. When you enter CLI commands that require port numbers as part of the syntax, just specify the port number.

Here are some examples. The following commands change the CLI from the global CONFIG level to the configuration level for the first port on the device:

TABLE 21
CLI line editing commands (Continued)

<table>
<thead>
<tr>
<th>Ctrl+Key combination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+F</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td>Ctrl+K</td>
<td>Deletes all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+L; Ctrl+R</td>
<td>Repeats the current command line on a new line.</td>
</tr>
<tr>
<td>Ctrl+N</td>
<td>Enters the next command line in the history buffer.</td>
</tr>
<tr>
<td>Ctrl+P</td>
<td>Enters the previous command line in the history buffer.</td>
</tr>
<tr>
<td>Ctrl+U; Ctrl+X</td>
<td>Deletes all characters from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+W</td>
<td>Deletes the last word you typed.</td>
</tr>
<tr>
<td>Ctrl+Z</td>
<td>Moves from any CONFIG level of the CLI to the Privileged EXEC level; at the Privileged EXEC level, moves to the User EXEC level.</td>
</tr>
</tbody>
</table>
• FESX and FWSX commands
 FastIron(config)#interface e1
 FastIron(config-if-e1000-1)#

• TIX commands
 TurboIron 24X(config)#interface e1
 TurboIron 24X(config-if-e1000-1)#

CLI nomenclature on FGS and FLS devices

The CLI uses stack number and chassis-based port numbering (stacknum/slot/port). However, stacking is not supported for the FastIron GS and FastIron LS devices. For an explanation of CLI nomenclature for stackable devices, see the next section.

CLI nomenclature on FGS-STK, FLS-STK, and FCX devices

The stacking CLI uses stack unit IDs and chassis-based port numbering (<stack-unit>/<slot>/<port>). Refer to Chapter 5, “Brocade Stackable Devices” for more information about FGS-STK, FLS-STK and FCX devices and their command structure.

CLI nomenclature on the FWS

The FWS uses stack-unit/slot/port nomenclature. Stacking is not currently supported on the FWS, although the CLI supports the full stacking nomenclature.

Slot and port number labeling on FGS and FLS devices

When you enter CLI commands that include the port number as part of the syntax, you must specify the stack number (0 in current releases), the slot number, and the port number.

The slot and port numbers are labelled on the front of the FGS624XGP, FGS624XGP-POE, and other FGS and FLS models that are shipped in accordance with the new port numbering scheme. For older models, an upgrade label kit is available.

FGS624P and FGS624P-POE

Figure 1 shows port numbers on the FGS624P and FGS624P-POE models as they appeared prior to release 02.5.00.

FIGURE 1 FGS624P and FGS624P-POE port numbers (prior to release 02.5.00)
Using stack-unit, slot number, and port number with CLI commands

Figure 2 shows slot and port numbers on the FGS624P and FGS624P-POE models as they appear after release 02.5.00.

FIGURE 2 FGS624P and FGS624P-POE slot and port numbers (release 02.5.00 and later)

![Diagram of FGS624P and FGS624P-POE slot and port numbers](image)

Table 22 shows a comparison of the old and new port numbers.

<table>
<thead>
<tr>
<th>Port type</th>
<th>Port numbers in pre-release 02.5.00</th>
<th>Port numbers starting in release 02.5.00 (stack/slot/port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GbE Copper and Fiber</td>
<td>1 – 24</td>
<td>0/1/1 – 0/1/24</td>
</tr>
<tr>
<td>10-GbE</td>
<td>25</td>
<td>0/2/1</td>
</tr>
<tr>
<td>10-GbE</td>
<td>26</td>
<td>0/2/2</td>
</tr>
</tbody>
</table>

FGS648P and FGS648P-POE

Figure 3 shows the *pre-release* 02.5.00 port numbers on the FGS648P and FGS648P-POE.

FIGURE 3 FGS648P and FGS648P-POE port numbers (pre-release 02.5.00)

1 GbE Fiber Ports (1F - 4F) 2 GbE Copper Ports (1 - 48) 3 Optional 2-port 10-GbE Module (port 49 and 50)

Figure 4 shows the new slot and port numbers in release 02.5.00 on the FGS648P and FGS648P-POE.

FIGURE 4 FGS648P and FGS648P-POE slot and port numbers (release 02.5.00 and later)
Using stack-unit, slot number, and port number with CLI commands

1. Slot 1 (ports 1/1 - 1/4)
2. Slot 1 (ports 1/1 - 1/48)
3. Slot 2 (ports 2/1 and 2/2)

Table 23 shows a comparison of the old and new port numbers.

TABLE 23 Port numbers on the FGS648P and FGS648P-POE

<table>
<thead>
<tr>
<th>Port type</th>
<th>Port numbers in pre-release 02.5.00</th>
<th>Port numbers starting in release 02.5.00 (stack/slot/port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GbE Copper and Fiber</td>
<td>1 – 48</td>
<td>0/1/1 – 0/1/48</td>
</tr>
<tr>
<td>10 GbpsE</td>
<td>49</td>
<td>0/2/1</td>
</tr>
<tr>
<td>10-GbpsE</td>
<td>50</td>
<td>0/2/2</td>
</tr>
</tbody>
</table>

FGS624XGP and FGS624XGP-POE

Figure 5 shows the slot and port numbers on the FGS624XGP and FGS624XGP-POE.

FIGURE 5 FGS624XGP and FGS624XGP-POE slot and port numbers

1. Slot 1 (ports 1/1 - 1/4)
2. Slot 1 (ports 1/1 - 1/48)
3. Slot 2 (ports 2/1 and 2/2)

Table 24 shows the port numbers.

TABLE 24 Port numbers on the FGS624XGP and FGS624XGP-POE-POE

<table>
<thead>
<tr>
<th>Port type</th>
<th>Port numbers (stack/slot/port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GbE Copper and Fiber</td>
<td>0/1/1 – 0/1/48</td>
</tr>
<tr>
<td>2-port 10-GbpsE (left-most port)</td>
<td>0/2/1</td>
</tr>
<tr>
<td>2-port 10-GbpsE (right-most port)</td>
<td>0/2/2</td>
</tr>
<tr>
<td>1-port 10-GbpsE</td>
<td>0/3/1</td>
</tr>
</tbody>
</table>
Using FGS and FLS port nomenclature

For FGS and FLS devices running software release 02.5.00 and later, when you enter a CLI command that includes the port number as part of the syntax, you must use the stack-unit/slot/port number format. For example, the following commands change the CLI from the global CONFIG level to the configuration level for the first port on the device:

- **FGS commands prior to release 02.5.00**

 FGS624(config)#interface e 1
 FGS624(config-if-e1000-1)#

- **FGS commands starting in release 02.5.00**

 FGS624(config)#interface e 0/1/1
 FGS624(config-if-e1000-0/1/1)#

NOTE
The stack-unit number is always 0 as long as the device is operating in standalone mode.

- **FGS-STK and FLS-STK commands starting in release 05.0.00**

 FGS624(config)#interface e 2/1/1
 FGS624(config-if-e1000-2/1/1)#

Syntax: ethernet stack-unit/slotnum/portnum
The <stack-unit> parameter is required on FGS devices running software release 02.5.00 or later. This number for these devices is currently always 0 when they are operating in standalone mode. These devices must be upgraded to support stacking.

The <slotnum> parameter is required on chassis devices and on FastIron GS devices running software release 02.5.00 or later.

The <portnum> parameter is a valid port number.

Using the FWS, FGS-STK, FLS-STK, and FCX port nomenclature

For FWS devices, and FGS-STK and FLS-STK devices, and FGS and FLS devices that have been upgraded to run the stacking features available with release 05.0.00, <stack-unit> is the ID number of the device within the stack and can be any number from 1 through 8. The <stack-unit> parameter is also required on all FastIron CX devices running software release 06.0.00 and later.

When you enter a CLI command that includes the port number as part of the syntax, you must use the stack-unit/slot/port number format. For example, the following commands change the CLI from the global CONFIG level to the configuration level for the first port on the device:

FWS624(config)#interface e 1/1/1
FWS624(config-if-e1000-1/1/1)#

Syntax: ethernet stack-unit/slotnum/portnum
The stack-unit and slotnum parameters are required on FWS, FGS and FLS devices, and FGS-STK, FLS-STK, and FCX stackable devices.

The portnum parameter is a valid port number.
Searching and filtering output from CLI commands

You can filter CLI output from `show` commands and at the --More-- prompt. You can search for individual characters, strings, or construct complex regular expressions to filter the output.

Searching and filtering output from Show commands

You can filter output from `show` commands to display lines containing a specified string, lines that do not contain a specified string, or output starting with a line containing a specified string. The search string is a regular expression consisting of a single character or string of characters. You can use special characters to construct complex regular expressions. Refer to "Using special characters in regular expressions" on page 28 for information on special characters used with regular expressions.

Using include to display lines containing a specified string

The `include` modifier filters the output of the `show interface` command for port 3/11 so it displays only lines containing the word “Internet”. This command can be used to display the IP address of the interface.

```
FastIron#show interface e 3/11 | include Internet
    Internet address is 192.168.1.11/24, MTU 1518 bytes, encapsulation ethernet
```

Syntax: `show-command | include regular-expression`

NOTE

The vertical bar (|) is part of the command.

The regular expression specified as the search string is case sensitive. In the example above, a search string of "Internet" would match the line containing the IP address, but a search string of "internet" would not.

Using exclude to display lines that do not contain a specified string

The `exclude` modifier filters the output of the `show who` command so it displays only lines that do not contain the word “closed”. This command can be used to display open connections to the Brocade device.

```
FastIron#show who | exclude closed
    Console connections:
        established
          you are connecting to this session
          2 seconds in idle
    Telnet connections (inbound):
        1 established, client ip address 192.168.9.37
          27 seconds in idle
    Telnet connection (outbound):
    SSH connections:
```

Syntax: `show-command | exclude regular-expression`

Using begin to display lines starting with a specified string

The `begin` modifier filters the output of the `show who` command so it displays output starting with the first line that contains the word “SSH”. This command can be used to display information about SSH connections to the Brocade device.
Using stack-unit, slot number, and port number with CLI commands

FastIron#show who | begin SSH
SSH connections:
 1 established, client ip address 192.168.9.210
 7 seconds in idle
 2 closed
 3 closed
 4 closed
 5 closed

Syntax: show-command | begin regular-expression

Searching and filtering output at the --More-- prompt

The --More-- prompt displays when output extends beyond a single page. From this prompt, you can press the Space bar to display the next page, the Return or Enter key to display the next line, or Ctrl+C or Q to cancel the display. In addition, you can search and filter output from this prompt.

At the --More-- prompt, you can press the forward slash key (/) and then enter a search string. The Brocade device displays output starting from the first line that contains the search string, similar to the begin modifier for show commands. An example is given below.

--More--, next page: Space, next line: Return key, quit: Control-c
/telnet

The results of the search are displayed.

searching...
telnet Telnet by name or IP address
temperature temperature sensor commands
terminal display syslog
traceroute TraceRoute to IP node
undebug Disable debugging functions (see also 'debug')
undelete Undelete flash card files
whois WHOIS lookup
write Write running configuration to flash or terminal

To display lines containing only a specified search string (similar to the include modifier for show commands) press the plus sign key (+) at the --More-- prompt and then enter the search string.

--More--, next page: Space, next line: Return key, quit: Control-c
+telnet

The filtered results are displayed.

filtering...
telnet Telnet by name or IP address

To display lines that do not contain a specified search string (similar to the exclude modifier for show commands) press the minus sign key (-) at the --More-- prompt and then enter the search string.

--More--, next page: Space, next line: Return key, quit: Control-c
-telnet

The filtered results are displayed.
As with the modifiers for filtering output from `show` commands, the search string is a regular expression consisting of a single character or string of characters. You can use special characters to construct complex regular expressions. See the next section for information on special characters used with regular expressions.

Using special characters in regular expressions

You use a regular expression to specify a single character or multiple characters as a search string. In addition, you can include special characters that influence the way the software matches the output against the search string. These special characters are listed in the following table.

TABLE 25 Special characters for regular expressions

<table>
<thead>
<tr>
<th>Character</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>The period matches on any single character, including a blank space. For example, the following regular expression matches “aaZ”, “abZ”, “acZ”, and so on, but not just “az”: a.Z</td>
</tr>
<tr>
<td>*</td>
<td>The asterisk matches on zero or more sequential instances of a pattern. For example, the following regular expression matches output that contains the string “abc”, followed by zero or more Xs: abcX*</td>
</tr>
<tr>
<td>+</td>
<td>The plus sign matches on one or more sequential instances of a pattern. For example, the following regular expression matches output that contains ”de”, followed by a sequence of “g”s, such as “deg”, “degg”, “deggg”, and so on: deg+</td>
</tr>
<tr>
<td>?</td>
<td>The question mark matches on zero occurrences or one occurrence of a pattern. For example, the following regular expression matches output that contains “deg” or “deg”:\n\nde?g</td>
</tr>
<tr>
<td>^</td>
<td>A caret (when not used within brackets) matches on the beginning of an input string. For example, the following regular expression matches output that begins with “deg”: ^deg</td>
</tr>
<tr>
<td>$</td>
<td>A dollar sign matches on the end of an input string. For example, the following regular expression matches output that ends with “deg”: deg$</td>
</tr>
</tbody>
</table>
If you want to filter for a special character instead of using the special character as described in the table above, enter "\"" (backslash) in front of the character. For example, to filter on output containing an asterisk, enter the asterisk portion of the regular expression as "*".

FastIron#show ip route bgp | include *

Creating an alias for a CLI command

You can create *aliases* for CLI commands. An alias serves as a shorthand version of a longer CLI command. For example, you can create an alias called *shoro* for the CLI command *show ip route*. Then when you enter *shoro* at the command prompt, the *show ip route* command is executed.

To create an alias called *shoro* for *show ip route*, enter the following command.

FastIron(config)#alias shoro = show ip route

Syntax: [no] alias alias-name = cli-command

The <alias-name> must be a single word, without spaces.
After the alias is configured, entering `shoro` at either the Privileged EXEC or CONFIG levels of the CLI executes the `show ip route` command.

To create an alias called `wrsbc` for `copy running-config tftp 10.10.10.10 test.cfg`, enter the following command.

```
FastIron(config)#alias wrsbc = copy running-config tftp 10.10.10.10 test.cfg
```

To remove the `wrsbc` alias from the configuration, enter one of the following commands.

```
FastIron(config)#no alias wrsbc
```

or

```
FastIron(config)#unalias wrsbc
```

Syntax: unalias alias-name

The specified `alias-name` must be the name of an alias already configured on the Brocade device.

To display the aliases currently configured on the Brocade device, enter the following command at either the Privileged EXEC or CONFIG levels of the CLI.

```
FastIron#alias
wrsbc        copy running-config tftp 10.10.10.10 test.cfg
shoro        show ip route
```

Syntax: alias

Configuration notes

The following configuration notes apply to this feature:

- You cannot include additional parameters with the alias at the command prompt. For example, after you create the `shoro` alias, `shoro bgp` would not be a valid command.
- If configured on the Brocade device, authentication, authorization, and accounting is performed on the actual command, not on the alias for the command.
- To save an alias definition to the startup-config file, use the `write memory` command.

Logging on through the Web Management Interface

To use the Web Management Interface, open a Web browser and enter the IP address of the management port on the Brocade device in the Location or Address field. The Web browser contacts the Brocade device and displays a Login panel, such as the one shown below for the FESX.

FIGURE 6 Web Management Interface login panel
NOTE
If you are unable to connect with the device through a Web browser due to a proxy problem, it may be necessary to set your Web browser to direct Internet access instead of using a proxy. For information on how to change a proxy setting, refer to the on-line help provided with your Web browser.

To log in, click on the Login link. The following dialog box is displayed.

FIGURE 7 Web Management Interface login dialog

The login username and password you enter depends on whether your device is configured with AAA authentication for SNMP. If AAA authentication for SNMP is not configured, you can use the user name “get” and the default read-only password “public” for read-only access. However, for read-write access, you must enter “set” for the user name, and enter a read-write community string you have configured on the device for the password. There is no default read-write community string. You must add one using the CLI.

As an alternative to using the SNMP community strings to log in, you can configure the Brocade device to secure Web management access using local user accounts or Access Control Lists (ACLs).

Navigating the Web Management Interface

When you log into a device, the System configuration panel is displayed. This panel allows you to enable or disable major system features. You can return to this panel from any other panel by selecting the Home link.

The Site Map link gives you a view of all available options on a single screen.

NOTE
TurboIron devices do not support Web Management Interface.
Figure 8 displays the first Web Management Interface panel for Layer 3 Switch features, while Figure 9 displays the first panel for Layer 2 Switch features. These panels allow you to configure the features supported by the Layer 3 Switch and Layer 2 Switch software.

FIGURE 8 First panel for Layer 3 Switch features

![First panel for Layer 3 Switch features](image)

NOTE
If you are using Internet Explorer 6.0 to view the Web Management Interface, make sure the version you are running includes the latest service packs. Otherwise, the navigation tree (the left-most pane in Figure 8) will not display properly. For information on how to load the latest service packs, refer to the on-line help provided with your Web browser.

FIGURE 9 First panel for Layer 2 Switch features

![First panel for Layer 2 Switch features](image)

NOTE
If you are using Internet Explorer 6.0 to view the Web Management Interface, make sure the version you are running includes the latest service packs. Otherwise, the navigation tree (the left-most pane in Figure 8) will not display properly. For information on how to load the latest service packs, refer to the on-line help provided with your Web browser.
The left pane of the Web Management Interface window contains a “tree view,” similar to the one found in Windows Explorer. Configuration options are grouped into folders in the tree view. These folders, when expanded, reveal additional options. To expand a folder, click on the plus sign to the left of the folder icon.

You can configure the appearance of the Web Management Interface by using one of the following methods.

Using the CLI, you can modify the appearance of the Web Management Interface with the `web-management` command.

To cause the Web Management Interface to display the List view by default, enter the following command.

```
FastIron(config)#web-management list-menu
```

To disable the front panel frame, enter the following command.

```
FastIron(config)#no web-management front-panel
```

When you save the configuration with the `write memory` command, the changes will take place the next time you start the Web Management Interface, or if you are currently running the Web Management Interface, the changes will take place when you click the Refresh button on your browser.

Using the Web Management Interface

1. Click on the **plus sign** next to Configure in the tree view to expand the list of configuration options.
2. Click on the **plus sign** next to System in the tree view to expand the list of system configuration links.
3. Click on the **plus sign** next to Management in the tree view to expand the list of system management links.
4. Click on the **Web Preference** link to display the Web Management Preferences panel.
5. **Enable** or **disable** elements on the Web Management Interface by clicking on the appropriate radio buttons on the panel. The following figure identifies the elements you can change.
NOTE
The tree view is available when you use the Web Management Interface with Netscape 4.0 or higher or Internet Explorer 4.0 or higher browsers. If you use the Web Management Interface with an older browser, the Web Management Interface displays the List view only, and the Web Management Preferences panel does not include an option to display the tree view.

6. When you have finished, click the Apply button on the panel, then click the Refresh button on your browser to activate the changes.

7. To save the configuration, click the plus sign next to the Command folder, then click the Save to Flash link.

NOTE
The only changes that become permanent are the settings to the Menu Type and the Front Panel Frame. Any other elements you enable or disable will go back to their default settings the next time you start the Web Management Interface.

Logging on through IronView Network Manager

Refer to the IronView® Network Manager User Guide for information about using IronView Network Manager.
Configuring Basic Software Features

Configuring basic system parameters

Brocade devices are configured at the factory with default parameters that allow you to begin using the basic features of the system immediately. However, many of the advanced features such as VLANs or routing protocols for the device must first be enabled at the system (global) level before they can be configured. If you use the Command Line Interface (CLI) to configure system parameters, you can find these system level parameters at the Global CONFIG level of the CLI.

NOTE
Before assigning or modifying any router parameters, you must assign the IP subnet (interface) addresses for each port.

NOTE
For information about configuring IP addresses, DNS resolver, DHCP assist, and other IP-related parameters, refer to Chapter 30, “Configuring IP”.

For information about the Syslog buffer and messages, refer to Chapter 50, “Using Syslog”.

The procedures in this section describe how to configure the basic system parameters listed in Table 26.

TABLE 26 Basic system parameters

<table>
<thead>
<tr>
<th>Basic system parameter</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System name, contact, and location</td>
<td>page 36</td>
</tr>
<tr>
<td>SNMP trap receiver, trap source address, and other parameters</td>
<td>page 36</td>
</tr>
<tr>
<td>Single source address for all Telnet packets</td>
<td>page 41</td>
</tr>
<tr>
<td>Single source address for all TFTP packets</td>
<td>page 43</td>
</tr>
<tr>
<td>Single source address for all Syslog packets</td>
<td>page 43</td>
</tr>
<tr>
<td>Single source address for all SNTP packets</td>
<td>page 44</td>
</tr>
<tr>
<td>System time using a Simple Network Time Protocol (SNTP) server or local system counter</td>
<td>page 44</td>
</tr>
<tr>
<td>System clock</td>
<td>page 46</td>
</tr>
<tr>
<td>Broadcast, multicast, or unknown-unicast limits, if required to support slower third-party devices</td>
<td>page 48</td>
</tr>
<tr>
<td>Banners that are displayed on users’ terminals when they enter the Privileged EXEC CLI level or access the device through Telnet</td>
<td>page 53</td>
</tr>
</tbody>
</table>

NOTE
For information about the Syslog buffer and messages, refer to Chapter 50, “Using Syslog”.

Entering system administration information

You can configure a system name, contact, and location for a Brocade device and save the information locally in the configuration file for future reference. This information is not required for system operation but is suggested. When you configure a system name, the name replaces the default system name in the CLI command prompt.

The name, contact, and location each can be up to 32 alphanumeric characters.

Here is an example of how to configure a system name, system contact, and location.

```plaintext
FastIron(config)# hostname zappa
zappa(config)# snmp-server contact Support Services
zappa(config)# snmp-server location Centerville
zappa(config)# end
zappa# write memory
```

Syntax: hostname *string*

Syntax: snmp-server contact *string*

Syntax: snmp-server location *string*

The text strings can contain blanks. The SNMP text strings do not require quotation marks when they contain blanks but the host name does.

NOTE

The *chassis name* command does not change the CLI prompt. Instead, the command assigns an administrative ID to the device.

Configuring Simple Network Management Protocol (SNMP) parameters

Use the procedures in this section to perform the following configuration tasks:

- Specify an SNMP trap receiver.
- Specify a source address and community string for all traps sent by the device.
- Change the holdown time for SNMP traps
- Disable individual SNMP traps. (All traps are enabled by default.)
- Disable traps for CLI access that is authenticated by a local user account, a RADIUS server, or a TACACS/TACACS+ server.

NOTE

To add and modify “get” (read-only) and “set” (read-write) community strings, refer to Chapter 39, “Securing Access to Management Functions”.

Specifying an SNMP trap receiver

You can specify a trap receiver to ensure that all SNMP traps sent by the Brocade device go to the same SNMP trap receiver or set of receivers, typically one or more host devices on the network. When you specify the host, you also specify a community string. The Brocade device sends all the SNMP traps to the specified hosts and includes the specified community string. Administrators can therefore filter for traps from a Brocade device based on IP address or community string.
When you add a trap receiver, the software automatically encrypts the community string you associate with the receiver when the string is displayed by the CLI or Web Management Interface. If you want the software to show the community string in the clear, you must explicitly specify this when you add a trap receiver. In either case, the software does not encrypt the string in the SNMP traps sent to the receiver.

To specify the host to which the device sends all SNMP traps, use one of the following methods.

To add a trap receiver and encrypt the display of the community string, enter commands such as the following.

```
FastIron(config)# snmp-server host 2.2.2.2 0 mypublic port 200
FastIron(config)# write memory
```

Syntax: `snmp-server host ip-addr [0 | 1] string [port value]`

The `ip-addr` parameter specifies the IP address of the trap receiver.

The `0 | 1` parameter specifies whether you want the software to encrypt the string (1) or show the string in the clear (0). The default is 0.

The `string` parameter specifies an SNMP community string configured on the Brocade device. The string can be a read-only string or a read-write string. The string is not used to authenticate access to the trap host but is instead a useful method for filtering traps on the host. For example, if you configure each of your Brocade devices that use the trap host to send a different community string, you can easily distinguish among the traps from different Brocade devices based on the community strings.

The command in the example above adds trap receiver 2.2.2.2 and configures the software to encrypt display of the community string. When you save the new community string to the startup-config file (using the `write memory` command), the software adds the following command to the file.

```
snmp-server host 2.2.2.2 1 <encrypted-string>
```

To add a trap receiver and configure the software to encrypt display of the community string in the CLI and Web Management Interface, enter commands such as the following.

```
FastIron(config)# snmp-server host 2.2.2.2 0 FastIron-12
FastIron(config)# write memory
```

The `port value` parameter allows you to specify which UDP port will be used by the trap receiver. This parameter allows you to configure several trap receivers in a system. With this parameter, IronView Network Manager Network Manager and another network management application can coexist in the same system. Brocade devices can be configured to send copies of traps to more than one network management application.

Specifying a single trap source

You can specify a single trap source to ensure that all SNMP traps sent by the Brocade device use the same source IP address. When you configure the SNMP source address, you specify the Ethernet port, loopback interface, or virtual interface that is the source for the traps. The Brocade device then uses the lowest-numbered IP address configured on the port or interface as the source IP address in the SNMP traps sent by the device.

Identifying a single source IP address for SNMP traps provides the following benefits:
Configuring basic system parameters

- If your trap receiver is configured to accept traps only from specific links or IP addresses, you can use this feature to simplify configuration of the trap receiver by configuring the Brocade device to always send the traps from the same link or source address.

- If you specify a loopback interface as the single source for SNMP traps, SNMP trap receivers can receive traps regardless of the states of individual links. Thus, if a link to the trap receiver becomes unavailable but the receiver can be reached through another link, the receiver still receives the trap, and the trap still has the source IP address of the loopback interface.

To specify a port, loopback interface, or virtual interface whose lowest-numbered IP address the Brocade device must use as the source for all SNMP traps sent by the device, use the following CLI method.

To configure the device to send all SNMP traps from the first configured IP address on port 4, enter the following commands.

```
FastIron(config)# snmp trap-source ethernet 4
FastIron(config)# write memory
```

Syntax: `snmp-server trap-source loopback num | ethernet [stack-unit][[slotnum][portnum] | ve num`

The `num` parameter is a loopback interface or virtual interface number.

If you specify an Ethernet port, the `slotnum` parameter is required on chassis devices.

If you specify an Ethernet port the `[stack-unit]` parameter is required on all FGS, FWS, FLS, FGS-STK and FLS-STK, and FCX devices.

To specify a loopback interface as the SNMP trap source for the device, enter commands such as the following.

```
FastIron(config)# int loopback 1
FastIron(config-lbif-1)# ip address 10.0.0.1/24
FastIron(config-lbif-1)# exit
FastIron(config)# snmp-server trap-source loopback 1
```

The commands in this example configure loopback interface 1, assign IP address 10.00.1/24 to the loopback interface, then designate the interface as the SNMP trap source for this device. Regardless of the port the Brocade device uses to send traps to the receiver, the traps always arrive from the same source IP address.

Setting the SNMP trap holddown time

When a Brocade device starts up, the software waits for Layer 2 convergence (STP) and Layer 3 convergence (OSPF) before beginning to send SNMP traps to external SNMP servers. Until convergence occurs, the device might not be able to reach the servers, in which case the messages are lost.

By default, a Brocade device uses a one-minute holddown time to wait for the convergence to occur before starting to send SNMP traps. After the holddown time expires, the device sends the traps, including traps such as “cold start” or “warm start” that occur before the holddown time expires.

You can change the holddown time to a value from one second to ten minutes.

To change the holddown time for SNMP traps, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)# snmp-server enable traps holddown-time 30
```
The command in this example changes the holddown time for SNMP traps to 30 seconds. The device waits 30 seconds to allow convergence in STP and OSPF before sending traps to the SNMP trap receiver.

Syntax: `[no] snmp-server enable traps holddown-time secs

The seconds parameter specifies the number of seconds and can be from 1 – 600 (ten minutes). The default is 60 seconds.

Disabling SNMP traps

Brocade devices come with SNMP trap generation enabled by default for all traps. You can selectively disable one or more of the following traps.

NOTE
By default, all SNMP traps are enabled at system startup.

Layer 2 traps

The following traps are generated on devices running Layer 2 software:

- SNMP authentication keys
- Power supply failure
- Fan failure
- Cold start
- Link up
- Link down
- Bridge new root
- Bridge topology change
- Locked address violation

Layer 3 traps

The following traps are generated on devices running Layer 3 software:

- SNMP authentication key
- Power supply failure
- Fan failure
- Cold start
- Link up
- Link down
- Bridge new root
- Bridge topology change
- Locked address violation
- BGP4
- OSPF
- VRRP
- VRRPE
To stop link down occurrences from being reported, enter the following.

FastIron(config)# no snmp-server enable traps link-down

Syntax: [no] snmp-server enable traps trap-type

Displaying virtual routing interface statistics

Platform Support:
- FastIron X Series devices running software release 03.2.00 and later – L2, BL3, L3

In software releases prior to FSX 04.1.00, this feature enables SNMP to extract and display virtual routing interface statistics from the ifTable (32-bit counters).

Starting with software release FSX 04.1.00, this feature enables SNMP to extract and display virtual routing interface statistics from the ifXTable (64-bit counters).

The following describes the limitations of this feature:
- The Brocade device counts traffic from all virtual interfaces (VEs). For example, in a configuration with two VLANs (VLAN 1 and VLAN 20) on port 1, when traffic is sent on VLAN 1, the counters (VE statistics) increase for both VE 1 and VE 20.
- The counters include all traffic on each virtual interface, even if the virtual interface is disabled.
- The counters include traffic that is denied by ACLs or MAC filters.

To enable SNMP to display VE statistics, enter the following command.

FastIron(config)# enable snmp ve-statistics

Syntax: [no] enable snmp ve-statistics

Use the no form of the command to disable this feature once it is enabled.

Note that the above CLI command enables SNMP to display virtual interface statistics. It does not enable the CLI or Web Management Interface to display the statistics.

Disabling Syslog messages and traps for CLI access

Brocade devices send Syslog messages and SNMP traps when a user logs into or out of the User EXEC or Privileged EXEC level of the CLI. The feature applies to users whose access is authenticated by an authentication-method list based on a local user account, RADIUS server, or TACACS/TACACS+ server.

NOTE
The Privileged EXEC level is sometimes called the “Enable” level, because the command for accessing this level is enable.

The feature is enabled by default.

Examples of Syslog messages for CLI access

When a user whose access is authenticated by a local user account, a RADIUS server, or a TACACS/TACACS+ server logs into or out of the CLI User EXEC or Privileged EXEC mode, the software generates a Syslog message and trap containing the following information:
- The time stamp
- The user name
- Whether the user logged in or out
- The CLI level the user logged into or out of (User EXEC or Privileged EXEC level)

NOTE
Messages for accessing the User EXEC level apply only to access through Telnet. The device does not authenticate initial access through serial connections but does authenticate serial access to the Privileged EXEC level. Messages for accessing the Privileged EXEC level apply to access through the serial connection or Telnet.

The following examples show login and logout messages for the User EXEC and Privileged EXEC levels of the CLI.

```
FastIron# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Buffer logging: level ACDMEINW, 12 messages logged
level code: A=alert C=critical D=debugging M=emergency E=error
I=informational N=notification W=warning
Static Log Buffer:
Dec 15 19:04:14:A:Fan 1, fan on right connector, failed

Dynamic Log Buffer (50 entries):
Oct 15 18:01:11:info:dg logout from USER EXEC mode
Oct 15 17:38:07:info:dg login to PRIVILEGE EXEC mode
Oct 15 17:38:03:info:dg login to USER EXEC mode
```

Syntax: show logging

The first message (the one on the bottom) indicates that user “dg” logged in to the CLI User EXEC level on October 15 at 5:38 PM and 3 seconds (Oct 15 17:38:03). The same user logged into the Privileged EXEC level four seconds later.

The user remained in the Privileged EXEC mode until 5:59 PM and 22 seconds. (The user could have used the CONFIG modes as well. Once you access the Privileged EXEC level, no further authentication is required to access the CONFIG levels.) At 6:01 PM and 11 seconds, the user ended the CLI session.

Disabling the Syslog messages and traps
Logging of CLI access is enabled by default. If you want to disable the logging, enter the following commands.

```
FastIron(config)# no logging enable user-login
FastIron(config)# write memory
FastIron(config)# end
FastIron# reload
```

Syntax: [no] logging enable user-login

Configuring an interface as the source for all Telnet packets
You can designate the lowest-numbered IP address configured on an interface as the source IP address for all Telnet packets from the device. Identifying a single source IP address for TelNet packets provides the following benefits:
If your Telnet server is configured to accept packets only from specific links or IP addresses, you can use this feature to simplify configuration of the Telnet server by configuring the Brocade device to always send the Telnet packets from the same link or source address.

If you specify a loopback interface as the single source for Telnet packets, Telnet servers can receive the packets regardless of the states of individual links. Thus, if a link to the Telnet server becomes unavailable but the client or server can be reached through another link, the client or server still receives the packets, and the packets still have the source IP address of the loopback interface.

The software contains separate CLI commands for specifying the source interface for Telnet, TACACS/TACACS+, and RADIUS packets. You can configure a source interface for one or more of these types of packets.

To specify an interface as the source for all Telnet packets from the device, use the following CLI method. The software uses the lowest-numbered IP address configured on the interface as the source IP address for Telnet packets originated by the device.

To specify the lowest-numbered IP address configured on a virtual interface as the device source for all Telnet packets, enter commands such as the following.

```
FastIron(config)# int loopback 2
FastIron(config-lbif-2)# ip address 10.0.0.2/24
FastIron(config-lbif-2)# exit
FastIron(config)# ip telnet source-interface loopback 2
```

The commands in this example configure loopback interface 2, assign IP address 10.0.0.2/24 to the interface, then designate the interface as the source for all Telnet packets from the device.

The following commands configure an IP interface on an Ethernet port and designate the address port as the source for all Telnet packets from the device.

```
FastIron(config)# interface ethernet 4
FastIron(config-if-e1000-4)# ip address 209.157.22.110/24
FastIron(config-if-e1000-4)# exit
FastIron(config)# ip telnet source-interface ethernet 4
```

Cancelling an outbound Telnet session

If you want to cancel a Telnet session from the console to a remote Telnet server (for example, if the connection is frozen), you can terminate the Telnet session by doing the following.

1. At the console, press **Ctrl+^** (Ctrl+Shift-6).
2. Press the X key to terminate the Telnet session.

Pressing **Ctrl+^** twice in a row causes a single **Ctrl+^** character to be sent to the Telnet server. After you press **Ctrl+^**, pressing any key other than X or **Ctrl+^** returns you to the Telnet session.
Configuring an interface as the source for all TFTP packets

Platform Support:

• FastIron X Series devices running software release 02.5.00 and later

You can configure the device to use the lowest-numbered IP or IPv6 address configured on a loopback interface, virtual interface, or Ethernet port as the source for all TFTP packets from the device. The software uses the lowest-numbered IP or IPv6 address configured on the interface as the source IP address for the packets.

For example, to specify the lowest-numbered IP address configured on a virtual interface as the device source for all TFTP packets, enter commands such as the following.

```
FastIron(config)# int ve 1
FastIron(config-vif-1)# ip address 10.0.0.3/24
FastIron(config-vif-1)# exit
FastIron(config)# ip tftp source-interface ve 1
```

The commands in this example configure virtual interface 1, assign IP address 10.0.0.3/24 to the interface, then designate the interface's address as the source address for all TFTP packets.

Syntax: `[no] ip tftp source-interface ethernet [stack-unit] [slotnum] | portnum | loopback num | ve <num>

If you specify an Ethernet port, the `slotnum` parameter is required on chassis devices.

If you specify an Ethernet port the `stack-unit` parameter is required on all FGS, FWS, FCX, and FLS devices.

The default is the lowest-numbered IP address configured on the port through which the packet is sent. The address therefore changes, by default, depending on the port.

Configuring an interface as the source for Syslog packets

Platform Support:

• FastIron X Series devices running software release 02.5.00 and later

You can configure the device to use the lowest-numbered IP or IPv6 address configured on a loopback interface, virtual interface, or Ethernet port as the source for all Syslog packets from the device. The software uses the lowest-numbered IP or IPv6 address configured on the interface as the source IP address for the packets.

For example, to specify the lowest-numbered IP address configured on a virtual interface as the device source for all Syslog packets, enter commands such as the following.

```
FastIron(config)# int ve 1
FastIron(config-vif-1)# ip address 10.0.0.4/24
FastIron(config-vif-1)# exit
FastIron(config)# ip syslog source-interface ve 1
```

The commands in this example configure virtual interface 1, assign IP address 10.0.0.4/24 to the interface, then designate the interface's address as the source address for all Syslog packets.

Syntax: `[no] ip syslog source-interface ethernet [stack-unit] | slotnum | portnum | loopback num | ve <num>

If you specify an Ethernet port, the `slotnum` parameter is required on chassis devices.
If you specify an Ethernet port the `stack-unit` parameter is required on all FGS, FWS, FCX, and FLS devices.

The default is the lowest-numbered IP or IPv6 address configured on the port through which the packet is sent. The address therefore changes, by default, depending on the port.

Configuring an interface as the source for all SNTP packets

Platform Support:
- FastIron X Series devices running software release 02.5.00 and later

You can configure the device to use the lowest-numbered IP or IPv6 address configured on a loopback interface, virtual interface, or Ethernet port as the source for all SNTP packets from the device. The software uses the lowest-numbered IP or IPv6 address configured on the interface as the source IP address for the packets.

For example, to specify the lowest-numbered IP address configured on a virtual interface as the device source for all SNTP packets, enter commands such as the following.

```plaintext
FastIron(config)# int ve 1
FastIron(config-vif-1)# ip address 10.0.0.5/24
FastIron(config-vif-1)# exit
FastIron(config)# ip sntp source-interface ve 1
```

The commands in this example configure virtual interface 1, assign IP address 10.0.0.5/24 to the interface, then designate the interface's address as the source address for all SNTP packets.

Syntax:

```
[no] ip sntp source-interface ethernet [slotnum]/portnum | loopback num | ve num
```

The default is the lowest-numbered IP or IPv6 address configured on the port through which the packet is sent. The address therefore changes, by default, depending on the port.

Specifying a Simple Network Time Protocol (SNTP) server

You can configure the Brocade device to consult SNTP servers for the current time and date.

NOTE

Brocade devices do not retain time and date information across power cycles. Unless you want to reconfigure the system time counter each time the system is reset, Brocade recommends that you use the SNTP feature.

To identify an SNTP server with IP address 208.99.8.95 to act as the clock reference for a Brocade device, enter the following.

```plaintext
FastIron(config)# sntp server 208.99.8.95
```

Syntax:

```
sntp server ip-addr | hostname [version]
```

The `version` parameter specifies the SNTP version the server is running and can be from 1 – 4. The default is 1. You can configure up to three SNTP servers by entering three separate `sntp server` commands.

By default, the Brocade device polls its SNTP server every 30 minutes (1800 seconds). To configure the Brocade device to poll for clock updates from a SNTP server every 15 minutes, enter the following.

```plaintext
FastIron(config)# sntp poll-interval 900
```
Syntax: `[no] snntp poll-interval 1-65535`

To display information about SNTP associations, enter the following command.

```
FastIron# show snntp associations
address ref clock st when poll delay disp
~207.95.6.102 0.0.0.0 16 202 4 0.0 5.45
~207.95.6.101 0.0.0.0 16 202 0 0.0 0.0
* synced, ~ configured
```

Syntax: `show snntp associations`

The following table describes the information displayed by the `show snntp associations` command.

TABLE 27 Output from the `show snntp associations` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(leading character)</td>
<td>One or both of the following:</td>
</tr>
<tr>
<td></td>
<td>* Synchronized to this peer</td>
</tr>
<tr>
<td></td>
<td>~ Peer is statically configured</td>
</tr>
<tr>
<td>address</td>
<td>IP address of the peer</td>
</tr>
<tr>
<td>ref clock</td>
<td>IP address of the peer reference clock</td>
</tr>
<tr>
<td>st</td>
<td>NTP stratum level of the peer</td>
</tr>
<tr>
<td>when</td>
<td>Amount of time since the last NTP packet was received from the peer</td>
</tr>
<tr>
<td>poll</td>
<td>Poll interval in seconds</td>
</tr>
<tr>
<td>delay</td>
<td>Round trip delay in milliseconds</td>
</tr>
<tr>
<td>disp</td>
<td>Dispersion in seconds</td>
</tr>
</tbody>
</table>

To display information about SNTP status, enter the following command.

```
FastIron# show snntp status
Clock is unsynchronized, stratum = 0, no reference clock
precision is 2**0
reference time is 0 .0
clock offset is 0.0  msec, root delay is 0.0  msec
root dispersion is 0.0  msec, peer dispersion is 0.0  msec
```

Syntax: `show snntp status`

The following table describes the information displayed by the `show snntp status` command.

TABLE 28 Output from the `show snntp status` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Indicates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsynchronized</td>
<td>System is not synchronized to an NTP peer.</td>
</tr>
<tr>
<td>synchronized</td>
<td>System is synchronized to an NTP peer.</td>
</tr>
<tr>
<td>stratum</td>
<td>NTP stratum level of this system</td>
</tr>
<tr>
<td>reference clock</td>
<td>IP Address of the peer (if any) to which the unit is synchronized</td>
</tr>
<tr>
<td>precision</td>
<td>Precision of this system's clock (in Hz)</td>
</tr>
<tr>
<td>reference time</td>
<td>Reference time stamp</td>
</tr>
<tr>
<td>clock offset</td>
<td>Offset of clock to synchronized peer</td>
</tr>
</tbody>
</table>
Configuring basic system parameters

SNTP over IPv6

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 and later

To enable the Brocade device to send SNTP packets over IPv6, enter a command such as the following at the Global CONFIG level of the CLI.

FastIron(config)# sntp server ipv6 3000::400

Syntax: `sntp server ipv6 ipv6-address`

The `ipv6-address` is the IPv6 address of the SNTP server. When you enter the IPv6 address, you do not need to specify the prefix length. A prefix length of 128 is implied.

Setting the system clock

In addition to SNTP support, Brocade switches and routers also allow you to set the system time counter. The time counter setting is not retained across power cycles and is not automatically synchronized with an SNTP server. The counter merely starts the system time and date clock with the time and date you specify.

NOTE
You can synchronize the time counter with your SNTP server time by entering the `sntp sync` command from the Privileged EXEC level of the CLI.

NOTE
Unless you identify an SNTP server for the system time and date, you will need to re-enter the time and date following each reboot.

For more details about SNTP, refer to “Specifying a Simple Network Time Protocol (SNTP) server” on page 44.

To set the system time and date to 10:15:05 on October 15, 2003, enter the following command.

Syntax: `[no] clock set hh:mm:ss | mm-dd-yy | mm-dd-yyyy`

By default, Brocade switches and routers do not change the system time for daylight saving time. To enable daylight saving time, enter the following command.

FastIron# clock summer-time

Syntax: `clock summer-time`
Although SNTP servers typically deliver the time and date in Greenwich Mean Time (GMT), you can configure the Brocade device to adjust the time for any one-hour offset from GMT or for one of the following U.S. time zones:

- US Pacific
- Alaska
- Aleutian
- Arizona
- Central
- East-Indiana
- Eastern
- Hawaii
- Michigan
- Mountain
- Pacific
- Samoa

To change the time zone to Australian East Coast time (which is normally 10 hours ahead of GMT), enter the following command.

FastIron(config)# clock timezone gmt+10

Syntax: clock timezone gmt | us time-zone

You can enter one of the following values for `time-zone`:

- **US time zones (us):** alaska, aleutian, arizona, central, east-indiana, eastern, hawaii, michigan, mountain, pacific, samoa.
- **GMT time zones (gmt):** gmt+0:00 to gmt+12:00 in increments of 1, and gmt-0:00 to gmt-12:00 in decrements of 1 are supported.
- **FGS Release 03.0.00 adds support for the following additional time zones:** gmt+11:30, gmt+10:30, gmt+09:30, gmt+06:30, gmt+05:30, gmt+04:30, gmt+03:30, gmt-03:30, gmt-08:30, gmt-09:30.

New start and end dates for US daylight saving time

NOTE

This feature applies to US time zones only.

Starting in 2007, the system will automatically change the system clock to Daylight Saving Time (DST), in compliance with the new federally mandated start of daylight saving time, which is extended one month beginning in 2007. The DST will start at 2:00am on the second Sunday in March and will end at 2:00am on the first Sunday in November. The DST feature is automatic, but to trigger the device to the correct time, the device must be configured to the US time zone, not the GMT offset. To configure your device to use the US time zone, enter the following command.

FastIron(config)# clock timezone us pacific

Syntax: [no] clock timezone us timezone-type

Enter pacific, eastern, central, or mountain for `timezone-type`.
This command must be configured on every device that follows the US DST.
To verify the change, run a `show clock` command.

```
FastIron# show clock
```

Refer to October 19, 2006 - Daylight Saving Time 2007 Advisory, posted on kp.foundrynet.com for more information

Limiting broadcast, multicast, and unknown unicast traffic

Brocade devices can forward all flooded traffic at wire speed within a VLAN. However, some third-party networking devices cannot handle high rates of broadcast, multicast, or unknown-unicast traffic. If high rates of traffic are being received by the Brocade device on a given port of that VLAN, you can limit the number of broadcast, multicast, or unknown-unicast packets or bytes received each second on that port. This can help to control the number of such packets or bytes that are flooded on the VLAN to other devices.

Byte-based limiting for broadcast, multicast, and unknown unicast traffic provides the ability to rate limit traffic based on byte count instead of packet count. When the byte mode is enabled, packets will be received on a port as long as the number of bytes received per second is less than the corresponding limit. Once the limit is reached, further packets will be dropped.

NOTE

Byte-based limiting is not supported on FCX, FGS, FLS, FGS-STK, and FLS-STK devices.

FastIron devices support packet-based and byte-based limiting simultaneously on the same port. For example, you can configure the broadcast limit in packet-based mode and the unknown unicast limit in the byte-based mode on the same port. TurboIron devices do not support packet-based and byte-based limiting simultaneously on the same port. For example, if you configure packet-based limiting for broadcast traffic, you must also configure packet-based limiting for multicast and unknown unicast traffic. Likewise, if you configure byte-based limiting for broadcast traffic, you must also configure byte-based limiting for multicast and unknown unicast traffic.

With FastIron devices, unknown unicast limiting is independent of broadcast and multicast limiting. When you enable broadcast limiting, the total number of broadcast packets or bytes received on the port will not exceed the corresponding limit. To also limit multicast packets on FastIron devices, enable limiting after enabling broadcast limiting. In this case, the total number of broadcast and multicast packets or bytes received on the port will not exceed the corresponding limit. With TurboIron devices, broadcast, multicast, and unknown unicast limiting are independent features. Thus, on TurboIron devices, you can configure separate rate limit values for all three types of traffic.

NOTE

On FastIron CX devices, if you enable unknown-unicast limiting, the device uses the limit defined in broadcast limiting. You cannot set a separate limit for unknown-unicast limiting.
Configuration considerations

- On FastIron X Series devices, when you configure unknown-unicast limiting, the rate applies to all ports in the port range for which unknown unicast is enabled. A 1-Gbps port range consists of 12 ports. For example, the FESX424 has 2 port ranges; ports 1 – 12 are one port range, and ports 13 – 24 are another port range. If you enable unknown unicast limiting on port 2, the configuration applies to the ports from 1 – 12 that have unknown unicast limiting enabled. 10-Gbps ports are not grouped into ranges. So if your device has two 10-Gbps uplinks, you can configure different unknown-unicast limits for each 10-Gbps port.

- This feature is not supported on trunk ports on TurboIron X Series devices.

Command syntax for packet-based limiting

Platform Support:

- FGS, FWS, and FLS – all software releases
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FastIron X Series – all software releases
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

To enable broadcast limiting on a group of ports by counting the number of packets received, enter commands such as the following.

FastIron(config)# interface ethernet 1 to 8
FastIron(config-mif-e1000-1-8)# broadcast limit 65536

These commands configure packet-based broadcast limiting on ports 1 – 8. On each port, the maximum number of broadcast packets per second cannot exceed 65,536 packets per second.

The commands for a FastIron GS or LS device will be slightly different, using the <stack-unit>/slotnum/portnum nomenclature, as shown here.

FGS624(config)# interface ethernet 0/1/1 to 0/1/8
FGS634(config-mif-e1000-0/1/1-0/1/8)# broadcast limit 65536

The commands for a FastIron GS-STK, and FastIron LS-STK or FCX device operating in a stack will resemble the following.

FastIron(config)# interface ethernet 1/1/1 to 1/1/8
FastIron(config-mif-e1000-1/1/1-1/1/8)# broadcast limit 65536

For FastIron devices, to include multicasts in the 65536 packets per second limit on each of the ports, enter the following command after enabling broadcast limiting.

FastIron(config-mif-e1000-1-8)#multicast limit

On TurboIron devices, multicast limiting is independent of broadcast limiting. To enable multicast limiting on TurboIron devices, enter commands such as the following.

TurboIron 24X(config)# interface ethernet 1 to 8
TurboIron 24X(config-mif-e1000-1-8)# multicast limit 65536

To enable unknown unicast limiting by counting the number of packets received, enter commands such as the following.
Configuring basic system parameters

FastIron(config)# interface eth 1
FastIron(config-if-e1000-1)# unknown-unicast limit 65536
The combined number of inbound Unknown Unicast packets permitted for ports 1 to 12 is now set to 65536
FastIron((config-if-e1000-1)#

Syntax:
[no] broadcast limit <num>

Syntax: [no] unknown-unicast limit <num>

Syntax: [no] multicast limit <num>

NOTE
On FCX, FGS, FLS, FGS-STK, and FLS-STK devices, if you enter the multicast limit or unknown-unicast limit commands, multicast packets and unknown-unicast packets are configured in the corresponding broadcast limit.

NOTE
The multicast limit command applies to FastIron devices only. The multicast limit <num> command applies to TurboIron devices only.

The <num> variable specifies the maximum number of packets per second. Acceptable values differ depending on the device you are configuring:

• On FastIron devices, <num> can be any number that is a multiple of 65536, up to a maximum value of 2147418112. If you enter the multicast limit command, multicast packets are included in the corresponding limit. If you specify 0, limiting is disabled. If you specify a number that is not a multiple of 65536, the software rounds the number to the next multiple of 65536. Limiting is disabled by default.

• On TurboIron devices, <num> can be any number between 1 and 8388607 (packets per second). The actual value will be determined by the system. Once you enter the value, the CLI will display a message indicating the actual value. The following shows an example configuration.

TurboIron(config)# interface ethernet 9
TurboIron(config-mif-e1000-9)# multicast limit 50
Multicast limit in pkts/sec set to 31

If you specify 0, limiting is disabled. Limiting is disabled by default.

Command syntax for byte-based limiting

Platform Support:
• FastIron X Series devices running software release 04.0.00 and later – L2, BL3, L3
• TurboIron X Series devices running software release 04.1.00 and later

FastIron devices can limit traffic based on bytes per second, whereas TurboIron devices limit traffic based on kilobits per second (kbps). To enable limiting, refer to the appropriate section, below.

FastIron devices
To enable broadcast limiting on a group of ports by counting the number of bytes received, enter commands such as the following.
Configuring basic system parameters

FastIron(config)# interface ethernet 9 to 10
FastIron(config-mif-e1000-9-10)# broadcast limit 131072 bytes

These commands configure byte-based broadcast limiting on ports 9 and 10. On each port, the total number of bytes received from broadcast packets cannot exceed 131,072 per second.

To include multicasts in the 131072 bytes per second limit on each of the ports, enter the following command after enabling broadcast limiting.

FastIron(config-mif-e1000-1-8)# multicast limit

To enable unknown unicast limiting, enter commands such as the following.

FastIron# config terminal
FastIron(config)# int e 13
FastIron(config-if-e1000-13)# unknown-unicast limit 65536 bytes

The combined number of bytes of inbound Unknown Unicast packets permitted for ports 13 to 24 is now set to 65536

Syntax: [no] broadcast limit num bytes

Syntax: [no] multicast limit

Syntax: [no] unknown-unicast limit num bytes

The num variable can be any number that is a multiple of 65536, up to a maximum value of 2147418112. If you enter the multicast limit command, multicast packets are included in the limit you specify. If you specify 0, limiting is disabled. If you specify a number that is not a multiple of 65536, the software rounds the number to the next multiple of 65536. Limiting is disabled by default.

TurboIron devices

To enable broadcast limiting on a group of ports by counting the number of kilobits received, enter commands such as the following.

TurboIron 24X(config)# interface ethernet 9 to 10
TurboIron 24X(config-mif-e1000-9-10)# broadcast limit 131072 kbps
Broadcast limit in kbits/sec set to 130000

These commands configure broadcast limiting on ports 9 and 10. On each port, the total number of kilobits received from broadcast packets cannot exceed 130,000 per second.

To enable multicast limiting, enter commands such as the following.

TurboIron 24X(config)# interface ethernet 8
TurboIron 24X(config-mif-e1000-1-8)# multicast limit 9000 kbps
Multicast limit in kbits/sec set to 8064

To enable unknown unicast limiting, enter commands such as the following.

TurboIron 24X(config)# int e 13
TurboIron 24X(config-if-e1000-13)# unknown-unicast limit 65536 kbps
Unknown unicast limit in kbits/sec set to 64000

Syntax: [no] broadcast limit num kbps

Syntax: [no] multicast limit num kbps

Syntax: [no] unknown-unicast limit num kbps
The `num` variable can be any number between 1 and 10000000. The actual value will be determined by the system. Once you enter the value, the CLI will display a message indicating the actual value, as shown in the configuration examples above. If you specify 0, limiting is disabled. Limiting is disabled by default.

Viewing broadcast, multicast, and unknown unicast limits

You can use the `show run interface` command to display the broadcast, multicast, and unknown-unicast limits configured on the device.

Starting in software release FSX 04.2.00, you can use the following commands, in addition to the `show run interface` command, to display the broadcast, multicast, and unknown-unicast limits configured on the device:

- `show rate-limit unknown-unicast`
- `show rate-limit broadcast`

Use the `show run interface` command to view the broadcast, multicast, and unknown-unicast limit configured on each port.

```
FastIron# show run interface
interface ethernet 4
broadcast limit 1245184 bytes
multicast limit
!
interface ethernet 5
broadcast limit 1245184 bytes
multicast limit
!
interface ethernet 12
unknown-unicast limit 524288
!
interface ethernet 13
unknown-unicast limit 65536 bytes
!
interface ethernet 14
broadcast limit 65536
!
interface ethernet 23
broadcast limit 131072
multicast limit
!
```

Syntax: `show run interface`

Use the `show rate-limit unknown-unicast` command to display the unknown unicast limit for each port region to which it applies.

```
FastIron# show rate-limit unknown-unicast
Unknown Unicast Limit Settings:
Port Region Combined Limit Packets/Bytes
  1 - 12          524288       Packets
  13 - 24         65536        Bytes
```

Syntax: `show rate-limit unknown-unicast`
Use the `show rate-limit broadcast` command to display the broadcast limit or broadcast and multicast limit for each port to which it applies.

```
FastIron# show rate-limit broadcast
Broadcast/Multicast Limit Settings:
  Port    Limit   Packets/Bytes   Packet Type(s)
  4     1245184   Bytes   Broadcast + Multicast
  5     1245184   Bytes   Broadcast + Multicast
 14      65536   Packets   Broadcast only
 23     131072   Packets   Broadcast + Multicast
```

Syntax: `show rate-limit broadcast`

Configuring CLI banners

Brocade devices can be configured to display a greeting message on users’ terminals when they enter the Privileged EXEC CLI level or access the device through Telnet. In addition, a Brocade device can display a message on the Console when an incoming Telnet CLI session is detected.

Setting a message of the day banner

You can configure the Brocade device to display a message on a user terminal when he or she establishes a Telnet CLI session. For example, to display the message “Welcome to FESX!” when a Telnet CLI session is established.

```
FastIron(config)# banner motd $
(Press Return)
Enter TEXT message, End with the character '$'.
Welcome to FESX! $
```

A delimiting character is established on the first line of the `banner motd` command. You begin and end the message with this delimiting character. The delimiting character can be any character except “ (double-quotation mark) and cannot appear in the banner text. In this example, the delimiting character is $ (dollar sign). The text in between the dollar signs is the contents of the banner. FastIron X Series devices running software release FSX 04.2.00 or later support banner text of up to 4000 characters long, which can consist of multiple lines. FGS, FLS, FGS-STK, FLS-STK, FWS, and FCX devices also support up to 4000 characters. TurboIron X Series and FastIron X Series devices running a software release prior to FSX 04.2.00 support up to 2048 characters, which can consist of multiple lines.

Syntax: `[no] banner motd delimiting-character | banner motd delimiting-character`

To remove the banner, enter the `no banner motd` command.

NOTE
The `banner delimiting-character` command is equivalent to the `banner motd delimiting-character` command.

When you access the Web Management Interface, the banner is displayed.
NOTE
If you are using a Web client to view the message of the day, and your banners are very wide, with large borders, you may need to set your PC display resolution to a number greater than the width of your banner. For example, if your banner is 100 characters wide and the display is set to 80 characters, the banner may distort, or wrap, and be difficult to read. If you set your display resolution to 120 characters, the banner will display correctly.

Requiring users to press the Enter key after the message of the day banner

In releases prior to 03.0.01a for FastIron X Series devices, users were required to press the Enter key after the Message of the Day (MOTD) was displayed, prior to logging in to the Brocade device on a console or from a Telnet session. Beginning with release 03.0.01a, this requirement is disabled by default. Unless configured, users do not have to press Enter after the MOTD banner is displayed.

For example, if the MOTD "Authorized Access Only" is configured, by default, the following messages are displayed when a user access the Brocade device from a Telnet session.

```
Authorized Access Only ...
Username:
```

The user can then login to the device.

However, if the requirement to press the Enter key is enabled, the following messages are displayed when accessing the switch from Telnet.

```
Authorized Access Only ...
Press <Enter> to accept and continue the login process....
```

The user must press the Enter key before the login prompt is displayed.

Also, on the console, the following messages are displayed if the requirement to press the Enter key is disabled.

```
Press Enter key to login
Authorized Access Only ...
User Access Verification
Please Enter Login Name:
```

However, if the requirement to press the Enter key after a MOTD is enabled, the following messages are displayed when accessing the switch on the console.

```
Press Enter key to login
Authorized Access Only ...
Press <Enter> to accept and continue the login process....
```

The user must press the Enter key to continue to the login prompt.
To enable the requirement to press the **Enter key** after the MOTD is displayed, enter a command such as the following.

```
FastIron(config)# banner motd require-enter-key
```

Syntax: `[no] banner motd require-enter-key`

Use the **no** form of the command to disable the requirement.

Setting a privileged EXEC CLI level banner

You can configure the Brocade device to display a message when a user enters the Privileged EXEC CLI level.

```
FastIron(config)# banner exec_mode # (Press Return)
Enter TEXT message, End with the character '#'.
You are entering Privileged EXEC level
Do not foul anything up! #
```

As with the **banner motd** command, you begin and end the message with a delimiting character; in this example, the delimiting character is `#`(pound sign). The delimiting character can be any character except " (double-quotation mark) and cannot appear in the banner text. The text in between the pound signs is the contents of the banner. Fastiron X Series devices running software release FSX 04.2.00 or later support banner text of up to 4000 characters, which can consist of multiple lines. FGS, FLS, FWS, FGS-STK, FLS-STK, and FCX devices, TurboIron X Series devices, as well as Fastiron X Series devices running a software release prior to FSX 04.2.00 support up to 2048 characters, which can consist of multiple lines.

Syntax: `[no] banner exec_mode delimiting-character`

To remove the banner, enter the **no banner exec_mode** command.

Displaying a console message when an incoming Telnet session is detected

You can configure the Brocade device to display a message on the Console when a user establishes a Telnet session. This message indicates where the user is connecting from and displays a configurable text message.

```
FastIron(config)# banner incoming $ (Press Return)
Enter TEXT message, End with the character '}'.
Incoming Telnet Session!! $
```

When a user connects to the CLI using Telnet, the following message appears on the Console.

```
Telnet from 209.157.22.63
Incoming Telnet Session!!
```

As with the **banner motd** command, you begin and end the message with a delimiting character; in this example, the delimiting character is `$`(dollar sign). The delimiting character can be any character except " (double-quotation mark) and cannot appear in the banner text. The text in between the dollar signs is the contents of the banner. Fastiron X Series devices running software release FSX 04.2.00 or later support banner text of up to 4000 characters, which can consist of multiple lines. FGS, FLS, FWS, FGS-STK, FLS-STK, and FCX devices, Turboiron X Series devices, as well as Fastiron X Series devices running a software release prior to FSX 04.2.00, support up to 2048 characters, which can consist of multiple lines.

Syntax: `[no] banner incoming delimiting-character`

To remove the banner, enter the **no banner incoming** command.
Configuring basic port parameters

The procedures in this section describe how to configure the port parameters shown in Table 29.

TABLE 29 Basic port parameters

<table>
<thead>
<tr>
<th>Port parameter</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>page 56</td>
</tr>
<tr>
<td>Speed</td>
<td>page 56</td>
</tr>
<tr>
<td>Auto-negotiation maximum port speed advertisement and down-shift</td>
<td>page 58</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>page 61</td>
</tr>
<tr>
<td>MDI/MDIX detection</td>
<td>page 62</td>
</tr>
<tr>
<td>Port status (enable or disable)</td>
<td>page 63</td>
</tr>
<tr>
<td>Flow control</td>
<td>page 64</td>
</tr>
<tr>
<td>Auto-negotiation and advertisement of flow control</td>
<td>page 64</td>
</tr>
<tr>
<td>Configuring PHY FIFO Rx and TX Depth</td>
<td>page 66</td>
</tr>
<tr>
<td>Interpacket Gap (IPG)</td>
<td>page 67</td>
</tr>
<tr>
<td>Gbps fiber negotiate mode</td>
<td>page 72</td>
</tr>
<tr>
<td>QoS priority</td>
<td>page 72</td>
</tr>
<tr>
<td>Dynamic configuration of Voice over IP (VoIP) phones</td>
<td>page 72</td>
</tr>
<tr>
<td>Port flap dampening</td>
<td>page 74</td>
</tr>
</tbody>
</table>

All Brocade ports are pre-configured with default values that allow the device to be fully operational at initial startup without any additional configuration. However, in some cases, changes to the port parameters may be necessary to adjust to attached devices or other network requirements.

Assigning a port name

A port name can be assigned to help identify interfaces on the network. You can assign a port name to physical ports, virtual interfaces, and loopback interfaces.

To assign a name to a port.

```
FastIron(config)# interface e 2
FastIron(config-if-e1000-2)# port-name Marsha
```

Syntax: `port-name text`

The `text` parameter is an alphanumeric string. The name can be up to 64 characters long. The name can contain blanks. You do not need to use quotation marks around the string, even when it contains blanks.

Modifying port speed and duplex mode

This section describes how to modify port speed and duplex mode on FastIron and TurboIron devices.
Copper ports

The Gigabit Ethernet copper ports are designed to auto-sense and auto-negotiate the speed and duplex mode of the connected device. If the attached device does not support this operation, you can manually enter the port speed to operate at either 10, 100, or 1000 Mbps. The default and recommended setting is 10/100/1000 auto-sense.

NOTE

On FastIron devices, you can modify the port speed of copper ports only; this feature does not apply to fiber ports. On TurboIron devices, you can modify the port speed of copper ports and the 24 fiber ports.

NOTE

For optimal link operation, copper ports on devices that do not support 803.3u must be configured with like parameters, such as speed (10, 100, 1000), duplex (half, full), MDI/MDIX, and Flow Control.

Fiber ports on the TurboIron

The fiber ports on the TurboIron support 1 GbE and 10 GbE connections, depending on the SFP optic installed in the port. SFP+ optics are used for 10 GbE fiber connections, and SFP optics are used for 1 GbE fiber connections. The default setting is 10 GbE full-duplex mode with SFP+ optics. To use 1 GbE in a 10 GbE port, insert an SFP optic and change the speed-duplex to 1 GbE (speed-duplex 1000).

Configuration syntax

The following commands change the port speed of copper interface 8 on a FastIron from the default of 10/100/1000 auto-sense, to 100 Mbps operating in full-duplex mode.

```bash
FastIron(config)# interface e 8
FastIron(config-if-e1000-8)# speed-duplex 100-full
```

The following commands change the port speed of fiber interface 8 on a TurboIron from the default of 10 Gbps to 1 Gbps.

```bash
TurboIron 24X(config)# interface e 8
TurboIron 24X(config-if-e10000-8)# speed-duplex 1000
```

Syntax: `speed-duplex value`

where `value` can be one of the following:

- 10-full – 10 Mbps, full duplex
- 10-half – 10 Mbps, half duplex
- 100-full – 100 Mbps, full duplex
- 100-half – 100 Mbps, half duplex
- 1000 – 1 Gbps, full duplex (supported on TurboIron X Series 10-GbE ports only)
- 1000-full-master – 1 Gbps, full duplex master (not supported on the TurboIron X Series)
- 1000-full-slave – 1 Gbps, full duplex slave (not supported on the TurboIron X Series)
- 10000 – 10 Gbps, full duplex (supported on TurboIron X Series 10-GbE ports only)
- auto – auto-negotiation
The default for copper ports is **auto** (auto-negotiation).

The default for fiber ports on the TurboIron X Series is **10000** (10 Gbps, full duplex).

Use the **no** form of the command to restore the default.

NOTE

On FastIron devices, when setting the speed and duplex-mode of an interface to **1000-full** (1000 full duplex), configure one side of the link as master (1000-full-master) and the other side as slave (1000-full-slave).

On TurboIron X Series devices, when **10/100/1000** copper ports (ports 25 – 28) auto-negotiate to either 1 Gbps or 100 Mbps, the green and amber LEDs will be lit solid (ON) when the link is up, and the amber LED will blink when traffic flows through the port. On TurboIron X Series devices running software release **04.2.00** and later, if the speed is set to Auto for a 1G port, the port auto-negotiates the flow control with the neighboring port.

Auto speed detect

Platform Support:

- TurboIron X Series devices running software release **04.2.00** and later

On TurboIron X Series devices running software release **04.2.00** and later, if you insert a 1G SFP, the device detects the media change and automatically change the speed to support 1G for that port. This happens when the configured speed is 10G. The configured speed continues to be 10G, but the port comes up with operational speed of 1G. This removes the need for explicitly configuring **speed-duplex 1000** for SFPs where the device is able to detect the media type.

NOTE

All the ports with 1G SFPs which need to form a trunk (static or dynamic), need to use either the Auto speed detect feature to come up in 1G mode or use the **speed-duplex 1000** command. Configuring **speed-duplex 1000** on only few of the ports to be part of the trunk will prevent trunk creation.

Enabling auto-negotiation maximum port speed advertisement and down-shift

Platform Support:

- FastIron X Series devices running software release **2.3.01** and later
- FGS and FLS devices running software release **02.5.00** and later
- FGS-STK and FLS-STK devices running software release **05.0.00** and later
- FWS devices running software release **04.3.00** or later

NOTE

This feature is not supported on TurboIron X Series devices.

NOTE

For optimal link operation, link ports on devices that do not support 803.3u must be configured with like parameters, such as speed (10, 100, 1000), duplex (half, full), MDI/MDIX, and Flow Control.
Maximum Port speed advertisement and Port speed down-shift are enhancements to the auto-negotiation feature, a mechanism for accommodating multi-speed network devices by automatically configuring the highest performance mode of inter-operation between two connected devices.

Port speed down-shift enables Gbps copper ports on the Brocade device to establish a link at 1000 Mbps over a 4-pair wire when possible, or to down-shift to 100 Mbps if the medium is a 2-pair wire.

Maximum port speed advertisement enables you to configure an auto-negotiation maximum speed that Gbps copper ports on the Brocade device will advertise to the connected device. You can configure a port to advertise a maximum speed of either 100 Mbps or 10 Mbps. When the maximum port speed advertisement feature is configured on a port that is operating at 100 Mbps maximum speed, the port will advertise 10/100 Mbps capability to the connected device. Similarly, if a port is configured at 10 Mbps maximum speed, the port will advertise 10 Mbps capability to the connected device.

The port speed down-shift and maximum port speed advertisement features operate dynamically at the physical link layer between two connected network devices. They examine the cabling conditions and the physical capabilities of the remote link, then configure the speed of the link segment according to the highest physical-layer technology that both devices can accommodate.

The port speed down-shift and maximum port speed advertisement features operate dynamically at the physical link layer, independent of logical trunk group configurations. Although Brocade recommends that you use the same cable types and auto-negotiation configuration on all members of a trunk group, you could utilize the auto-negotiation features conducive to your cabling environment. For example, in certain circumstances, you could configure each port in a trunk group to have its own auto-negotiation maximum port speed advertisement or port speed down-shift configuration.

Application notes

- Port speed down-shift and maximum port speed advertisement work only when auto-negotiation is enabled (CLI command speed-duplex auto). If auto-negotiation is OFF, the device will reject the port speed down-shift and maximum port speed advertisement configuration.
- When port speed down-shift or maximum port speed advertisement is enabled on a port, the device will reject any configuration attempts to set the port to a forced speed mode (100 Mbps or 1000 Mbps).
- When the port speed down-shift feature is enabled on a combo port, the port will not support true media automatic detection, meaning the device will not be able to detect and select the fiber or copper connector based on link availability.

Enabling port speed down-shift

Platform Support:

- FastIron X Series devices running software release 04.0.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later

To enable port speed down-shift on a port that has auto-negotiation enabled, enter a command such as the following at the Global CONFIG level of the CLI.
Configuring basic port parameters

FastIron(config)# link-config gig copper autoneg-control down-shift e 1 e 2

The above command configures Gbps copper ports 1 and 2 to establish a link at 1000 Mbps over a 4-pair wire when possible, or to down-shift (reduce the speed) to 100 Mbps when the medium is a 2-pair wire.

Syntax: [no] link-config gig copper autoneg-control down-shift ethernet

[stack-unit/slotnum/portnum] | ethernet [stack-unit/slotnum/portnum]

The slotnum parameter is required on chassis devices and on FastIron GS devices.

The portnum parameter is a valid port number.

You can enable port speed down-shift on one or two ports at a time.

To disable port speed down-shift after it has been enabled, enter the no form of the command.

Configuring port speed down-shift and auto-negotiation for a range of ports

Port speed down-shift and auto-negotiation can be configured for an entire range of ports with a single command.

For example, to configure down-shift on ports 0/1/1 to 0/1/10 and 0/1/15 to 0/1/20 on the device, enter the following.

FastIron(config)# link-config gig copper autoneg-control down-shift ethe 0/1/1 to 0/1/10 ethe 0/1/15 to 0/1/20

To configure down-shift on ports 5 to 13 and 17 to 19 on a compact switch, enter the following.

FastIron(config)# link-config gig copper autoneg-control down-shift ethe 5 to 13 ethe 17 to 19

Syntax: [no] link-config gig copper autoneg-control | down-shift | 100m-auto | 10m-auto port-list

The port-list is the list of ports to which the command will be applied.

For port-list, specify the ports in one of the following formats:

- FastIron chassis devices – slotnum/portnum
- FESX, and FWSX compact switches – portnum

You can list all of the ports individually, use the keyword to to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword all instead of listing the ports individually.

The output from the show run command for this configuration will resemble the following.
To disable selective auto-negotiation of 100m-auto on ports 0/1/21 to 0/1/25 and 0/1/30, enter the following.

```
FastIron(config)# no link-config gig copper autoneg-control 100m-auto ethe 0/1/21 to 0/1/25 ethe 0/1/30
```

NOTE
This feature works with Layer 2 and Layer 3 images.

Configuring maximum port speed advertisement

To configure a maximum port speed advertisement of 10 Mbps on a port that has auto-negotiation enabled, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)# link-config gig copper autoneg-control 10m e 1
```

To configure a maximum port speed advertisement of 100 Mbps on a port that has auto-negotiation enabled, enter the following command at the Global CONFIG level of the CLI.

```
FastIron(config)# link-config gig copper autoneg-control 100m-auto ethe 0/1/21 to 0/1/25 ethe 0/1/30
```

Syntax:

```
[no] link-config gig copper autoneg-control 10m | 100m ethernet [stack-unit/slotnum/] portnum> [ethernet [stack-unit/slotnum/] portnum]
```


The **slotnum** parameter is required on chassis devices and on FastIron GS devices.

The **portnum** parameter is a valid port number.

You can enable maximum port speed advertisement on one or two ports at a time.

To disable maximum port speed advertisement after it has been enabled, enter the **no** form of the command.

Modifying port duplex mode

You can manually configure a 10/100 Mbps port to accept either full-duplex (bi-directional) or half-duplex (uni-directional) traffic.
NOTE
You can modify the port duplex mode of copper ports only. This feature does not apply to fiber ports.

Port duplex mode and port speed are modified by the same command.

Configuration syntax

To change the port speed of interface 8 from the default of 10/100/1000 auto-sense to 10 Mbps operating at full-duplex, enter the following.

```
FastIron(config)# interface e 8
FastIron(config-if-e1000-8)# speed-duplex 10-full
```

Syntax: `speed-duplex value`

The `value` can be one of the following:

- 10-full
- 10-half
- 100-full
- 100-half
- auto (default)

Configuring MDI/MDIX

NOTE
This feature is not supported on TurboIron devices.

Brocade devices support automatic Media Dependent Interface (MDI) and Media Dependent Interface Crossover (MDIX) detection on all Gbps Ethernet Copper ports.

MDI/MDIX is a type of Ethernet port connection using twisted pair cabling. The standard wiring for end stations is MDI, whereas the standard wiring for hubs and switches is MDIX. MDI ports connect to MDIX ports using straight-through twisted pair cabling. For example, an end station connected to a hub or a switch uses a straight-through cable. MDI-to-MDI and MDIX-to-MDIX connections use crossover twisted pair cabling. So, two end stations connected to each other, or two hubs or switches connected to each other, use crossover cable.

The auto MDI/MDIX detection feature can automatically correct errors in cable selection, making the distinction between a straight-through cable and a crossover cable insignificant.

Configuration notes

- This feature applies to copper ports only.
- The `mdi-mdix auto` command works only when auto-negotiation is ON. If auto-negotiation is OFF and you enter the command `mdi-mdix auto`, the device automatically resets the port to an MDIX only port. In this case, although the Brocade device does not apply the `mdi-mdix auto` configuration, it accepts and saves it. Consequently, when auto-negotiation is turned back ON, the Brocade device applies the `mdi-mdix auto` configuration.
- The `mdi-mdix mdi` and `mdi-mdix mdix` commands work independently of auto-negotiation. Thus, these commands work whether auto-negotiation is turned ON or OFF.
Do not use the `mdi-mdix` commands on ports that are manually configured with a speed/duplex of 100-full. In this case, make sure the other port (remote end of the connection) is also configured to 100-full and a cross-over cable is used if the connected device is another switch, hub, or router, or a straight-through cable if the connected device is a host NIC.

Configuration syntax

The auto MDI/MDIX detection feature is enabled on all Gbps copper ports by default. For each port, you can disable auto MDI/MDIX, designate the port as an MDI port, or designate the port as an MDIX port.

To turn off automatic MDI/MDIX detection and define a port as an MDI only port.

```
FastIron(config-if-e1000-2)# mdi-mdix mdi
```

To turn off automatic MDI/MDIX detection and define a port as an MDIX only port.

```
FastIron(config-if-e1000-2)# mdi-mdix mdix
```

To turn on automatic MDI/MDIX detection on a port that was previously set as an MDI or MDIX port.

```
FastIron(config-if-e1000-2)# mdi-mdix auto
```

Syntax: `mdi-mdix <mdi | mdix | auto`

After you enter the `mdi-mdix` command, the Brocade device resets the port and applies the change.

To display the MDI/MDIX settings, including the configured value and the actual resolved setting (for `mdi-mdix auto`), enter the command `show interface` at any level of the CLI.

Disabling or re-enabling a port

A port can be made inactive (disable) or active (enable) by selecting the appropriate status option. The default value for a port is enabled.

To disable port 8 of a Brocade device, enter the following.

```
FastIron(config)# interface e 8
FastIron(config-if-e1000-8)# disable
```

Syntax: `disable`

You also can disable or re-enable a virtual interface. To do so, enter commands such as the following.

```
FastIron(config)# interface ve v1
FastIron(config-vif-1)# disable
```

Syntax: `disable`

To re-enable a virtual interface, enter the `enable` command at the Interface configuration level. For example, to re-enable virtual interface v1, enter the following command.

```
FastIron(config-vif-1)#enable
```

Syntax: `enable`
Disabling or re-enabling flow control

You can configure full-duplex ports on a system to operate with or without flow control (802.3x). Flow control is enabled by default.

To disable flow control on full-duplex ports on a system, enter the following.

FastIron(config)# no flow-control

To turn the feature back on.

FastIron(config)# flow-control

Syntax: [no] flow-control

NOTE
For optimal link operation, link ports on devices that do not support 803.3u must be configured with like parameters, such as speed (10,100,1000), duplex (half, full), MDI/MDIX, and Flow Control.

Auto-negotiation and advertisement of flow control

Platform Support:

- FastIron X Series devices running software release 03.2.00 and later
- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later

Auto-negotiation of flow control can be enabled and advertised for 10/100/1000M ports. To enable and advertise flow control capability, enter the following commands.

FastIron(config)# interface ethernet 0/1/21
FastIron(config-if-e1000-0/1/21)# flow-control

To also enable auto-negotiation of flow control, enter the following commands.

FastIron(config)# interface ethernet 0/1/21
FastIron(config-if-e1000-0/1/21)# flow-control neg-on

Syntax: #[no] flow-control [neg-on]

- flow-control [default] - Enable flow control, advertise flow control and disable negotiation of flow control
- flow-control neg-on - Advertise flow control and enable negotiation of flow control
- no flow-control - Disable flow control, disable advertising flow control and also disable negotiation of flow control

Commands may be entered in IF (single port) or MIF (multiple ports at once) mode.

FastIron(config)# interface ethernet 0/1/21
FastIron(config-if-e1000-0/1/21)# flow-control

This command enables flow-control on port 0/1/21.

FastIron(config)# interface e 0/1/11 to 0/1/15
FastIron(config-mif-0/1/11-0/1/15)# flow-control

This command enables flow-control on ports 0/1/11 to 0/1/15.
Asynchronous flow control

The TurboIron X Series devices running software release 04.2.00 and later supports asynchronous flow control. By default, PAUSE frames are honored when you stop or start sending traffic to a switch when another switch sends a PAUSE frame.

Flow control supports honor-only mode and generate-only mode. Honor-only is the default mode. To change the default mode to generate-only mode use the `flow-control generate-only` command.

To set the mode to support both honor and generate modes use the `flow-control both` command. To set the mode to default, use the `flow-control honor-only` command.

Displaying flow-control status

The `show interface port` command displays configuration, operation, and negotiation status where applicable.

For example, on a device running the FGS software release 03.0.00 and later, issuing the command for 10/100/1000M port 0/1/21 displays the following output.

```
FastIron# show interfaces ethernet 0/1/21
GigabitEthernet0/1/21 is up, line protocol is up
Hardware is GigabitEthernet, address is 00e0.5204.4014 (bia 00e0.5204.4014)
Configured speed auto, actual 100Mbit, configured duplex fdx, actual fdx
Configured mdi mode AUTO, actual MDIX
Member of 0 L2 VLANs, port is untagged, port state is LISTENING
BPDU Guard is disabled, Root Protect is disabled
STP configured to ON, priority is level0
Flow Control is config enabled, oper enabled, negotiation disabled
Mirror disabled, Monitor disabled
No port name
Inter-Packet Gap (IPG) is 96 bit times
300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
300 second output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 multicasts, 0 unicasts
0 input errors, 0 CRC, 0 frame, 0 ignored
0 runts, 0 giants
5 packets output, 320 bytes, 0 underruns
Transmitted 0 broadcasts, 5 multicasts, 0 unicasts
0 output errors, 0 collisions
```

Issuing the command on a device running the FSX software release 03.2.00 and later displays the following output.

```
FastIron# show interface ethernet 18/1
GigabitEthernet18/1 is up, line protocol is up
Hardware is GigabitEthernet, address is 0012.f228.0600 (bia 0012.f228.0798)
Configured speed auto, actual 1Gbit, configured duplex fdx, actual fdx
Configured mdi mode AUTO, actual MDIX
Member of 4 L2 VLANs, port is tagged, port state is FORWARDING
BPDU guard is Disabled, ROOT protect is Disabled
Link Error Dampening is Disabled
STP configured to ON, priority is level0, flow control enabled
Flow Control is config enabled, oper enabled, negotiation disabled
Mirror disabled, Monitor disabled
Not member of any active trunks
```
Configuring basic port parameters

Not member of any configured trunks
No port name
IPG MII 96 bits-time, IPG GMII 96 bits-time
IP MTU 1500 bytes, encapsulation ethernet
300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
300 second output rate: 848 bits/sec, 0 packets/sec, 0.00% utilization
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 multicasts, 0 unicasts
0 input errors, 0 CRC, 0 frame, 0 ignored
0 runts, 0 giants
10251 packets output, 1526444 bytes, 0 underruns
Transmitted 1929 broadcasts, 8293 multicasts, 29 unicasts
0 output errors, 0 collisions

The line highlighted in bold will resemble one of the following, depending on the configuration:

- If flow control and auto-negotiation are enabled (and a neighbor does not negotiate flow control), the display shows:

 Flow Control is config enabled, oper disabled, negotiation enabled

- If flow control is enabled, and auto-negotiation is disabled, the output shows.

 Flow Control is config enabled, oper enabled, negotiation disabled

- If flow control is disabled, the display shows.

 Flow Control is config disabled, oper disabled

NOTE

For 10 Gbps ports, the display shows Flow Control is enabled, or Flow Control is disabled, depending on the configuration.

NOTE

Auto-negotiation of flow control is not supported on 10 Gbps ports and copper/fiber combination ports.

NOTE

When any of the commands are applied to a port that is up, the port will be disabled and re-enabled.

NOTE

When flow-control is enabled, the hardware can only advertise Pause. It does not advertise Asym.

Configuring PHY FIFO Rx and Tx depth

Platform Support:

- FGS and FLS devices running software release 03.1.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later

FGS Release 03.1.00 adds a new command to increase the FIFO (First In, First Out) depth to adjust for clock differences between connecting devices, if necessary.
PHY devices on FGS, FLS, FWS, FGS-STK, FLS-STK, and FCX devices contain transmit and receive synchronizing FIFOs to adjust for frequency differences between clocks. The `phy-fifo-depth` command allows you to configure the depth of the transmit and receive FIFOs. There are 4 settings (0-3) with 0 as the default. A higher setting indicates a deeper FIFO.

The default setting works for most connections. However, if the clock differences are greater than the default will handle, CRCs and errors will begin to appear on the ports. Raising the FIFO depth setting will adjust for clock differences.

Brocade recommends that you disable the port before applying this command, and re-enable the port. Applying the command while traffic is flowing through the port can cause CRC and other errors for any packets that are actually passing through the PHY while the command is being applied.

Syntax:

```
[no] phy-fifo-depth setting
```

- `setting` is a value between 0 and 3. (0 is the default.)

This command can be issued for a single port from the IF config mode or for multiple ports from the MIF config mode.

NOTE

Higher settings give better tolerance for clock differences with the partner phy, but may marginally increase latency as well.

Configuring the Interpacket Gap (IPG)

Platform Support:

- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 03.0.00 and later (refer to “Configuring IPG on FGS, FWS, FLS, FGS-STK and FLS-STK, and FCX devices” on page 68)
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- Turbolron X Series devices running software release 04.1.00 and later
- FastIron GS-STK and FastIron LS-STK devices running software version 05.0.00 and later
- FCX-S devices running software release 06.0.00 and later

IPG is the time delay, in bit time, between frames transmitted by the device. You configure IPG at the interface level. The command you use depends on the interface type on which IPG is being configured.

The default interpacket gap is 96 bits-time, which is 9.6 microseconds for 10 Mbps Ethernet, 960 nanoseconds for 100 Mbps Ethernet, 96 nanoseconds for 1 Gbps Ethernet, and 9.6 nanoseconds for 10 Gbps Ethernet.

Configuration notes

- When configuring IPG on a FastIron switch, note the following:

 IPG configuration commands are based on "port regions". All ports within the same port region should have the same IPG configuration. If a port region contains two or more ports, changes to the IPG configuration for one port are applied to all ports in the same port region. When you enter a value for IPG, the CLI displays the ports to which the IPG configuration is applied.
Configuring basic port parameters

```
FastIron(config-if-e1000-7/1)# ipg-gmii 120
IPG 120(120) has been successfully configured for ports 7/1 to 7/12
```

- When you enter a value for IPG, the device applies the closest valid IPG value for the port mode to the interface. For example, if you specify 120 for a 1 Gbps Ethernet port in 1 Gbps mode, the device assigns 112 as the closest valid IPG value to program into hardware.

Configuring IPG on a Gbps Ethernet port

On a Gbps Ethernet port, you can configure IPG for 10/100 mode and for Gbps Ethernet mode.

10/100M mode

To configure IPG on a Gbps Ethernet port for 10/100M mode, enter the following command.

```
FastIron(config)# interface ethernet 7/1
FastIron(config-if-e1000-7/1)# ipg-mii 120
IPG 120(120) has been successfully configured for ports 7/1 to 7/12
```

Syntax: `[no] ipg-mii <bit time>`

Enter 12-124 for `<bit time>`. The default is 96 bit time.

1G mode

To configure IPG on a Gbps Ethernet port for 1-Gbps Ethernet mode, enter commands such as the following.

```
FastIron(config)# interface ethernet 7/1
FastIron(config-if-e1000-7/1)# ipg-mii 120
IPG 120(112) has been successfully configured for ports 0/7/1 to 7/12
```

Syntax: `[no] ipg-gmii <bit time>`

Enter 48 - 112 for `<bit time>`. The default is 96 bit time.

Configuring IPG on a 10 Gbps Ethernet interface

To configure IPG on a 10 Gbps Ethernet interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 9/1
FastIron(config-if-e10000-9/1)# ipg-xgmii 120
IPG 120(128) has been successfully configured for port 9/1
```

Syntax: `[no] ipg-xgimi <bit time>`

Enter 96-192 for `<bit time>`. The default is 96 bit time.

Configuring IPG on FGS, FWS, FLS, FGS-STK and FLS-STK, and FCX devices

Platform Support:
- FGS and FLS devices running software release 03.0.00
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later

On FGS, FLS, FWS, FGS-STK, FLS-STK, and FCX devices, you can configure an IPG for each port. An IPG is a configurable time delay between successive data packets.
You can configure an IPG with a range from 48-120 bit times in multiples of 8, with a default of 96. The IPG may be set from either the interface configuration level or the multiple interface level.

When an IPG is applied to a trunk group, it applies to all ports in the trunk group. When you are creating a new trunk group, the IPG setting on the primary port is automatically applied to the secondary ports.

Syntax: [no] ipg value

To configure an IPG of 112 on Ethernet interface 0/1/21, for example, enter the following command.

```plaintext
FGS624P Switch(config)# interface ethernet 0/1/21
FGS624P Switch(config-if-e1000-0/1/21)# ipg 112
```

or, for multiple interface levels, to configure IPG for ports 0/1/11 and 0/1/14 through 0/1/17, enter the following commands.

```plaintext
FGS624P Switch(config)# interface ethernet 0/1/11 e 0/1/14 to 0/1/17
FGS624P Switch(config-mif-0/1/11,0/1/14-0/1/17)# ipg 104
```

As a result of this configuration, the output from the show interface e 0/1/21 command is.

```plaintext
FGS624P Switch# show interfaces ethernet 0/1/21
GigabitEthernet 0/1/21 is up, line protocol is up
Hardware is GigabitEthernet, address is 00e0.5204.4014 (bia 00e0.5204.4014)
Configured speed auto, actual 100Mbit, configured duplex fdx, actual fdx
Configured mdi mode AUTO, actual MDIX
Member of L2 VLAN ID 1, port is untagged, port state is FORWARDING
BPDGU Guard is disabled, Root Protect is disabled
STP configured to ON, priority is level0
Flow Control is config enabled, oper enabled, negotiation disabled
Mirror disabled, Monitor disabled
Not member of any active trunks
Not member of any configured trunks
No port name
Inter-Packet Gap (IPG) is 112 bit times
IP MTU 10222 bytes
300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
300 second output rate: 248 bits/sec, 0 packets/sec, 0.00% utilization
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 multicasts, 0 unicasts
0 input errors, 0 CRC, 0 frame, 0 ignored
0 runts, 0 giants
80 packets output, 5120 bytes, 0 underruns
Transmitted 0 broadcasts, 80 multicasts, 0 unicasts
0 output errors, 0 collisions
```

This feature is supported on 10/100/1000M ports.

Enabling and disabling support for 100BaseTX

Platform Support:

- FastIron X Series compact switches running software release 03.1.00 and later

You can configure a 1000Base-TX SFP (part number E1MG-TX) to operate at a speed of 100 Mbps. To do so, enter the following command at the Interface level of the CLI.

```plaintext
FastIron(config-if-e1000-11)# 100-tx
```

After the link is up, it will be in 100M/full-duplex mode, as shown in the following example.
The *show media* command will display the SFP transceiver as *1G M-TX*.

Syntax:

```
[no] 100-tx
```

To disable support, enter the *no* form of the command.

Configuration notes

- This feature requires that autonegotiation be enabled on the other end of the link.
- Although combo ports (ports 1 – 4) on Hybrid Fiber (HF) models support the 1000Base-TX SFP, they cannot be configured to operate at 100Mbps. The 100Mbps operating speed is supported only with non-combo ports.
- 1000Base-TX modules must be configured individually, one interface at a time.
- 1000Base-TX modules do not support Digital Optical Monitoring.
- This module requires a Cat5 cable and uses an RJ45 connector.
- Hotswap is supported for this module when it is configured in 100M mode.

Enabling and disabling support for 100BaseFX

Some Brocade devices support 100BaseFX fiber transceivers. After you physically install a 100BaseFX transceiver, you must enter a CLI command to enable it.

NOTE

The CLI syntax for enabling and disabling 100BaseFX support on a Stackable device differs from the syntax for a Chassis device. Follow the appropriate instructions below.

Compact device

This section shows how to enable 100BaseFX on a Compact device.

The Brocade device supports the following types of SFPs for 100BaseFX:

- Multimode SFP – maximum distance is 2 kilometers
- Bidirectional singlemode SFP – maximum distance is 10 kilometers
- Long Reach (LR) – maximum distance is 40 kilometers (introduced in software release FSX 03.1.00)
- Intermediate Reach (IR) – maximum distance is 15 kilometers (introduced in software release FSX 03.1.00)

NOTE

Connect the 100BaseFX fiber transceiver after configuring both sides of the link. Otherwise, the link could become unstable, fluctuating between up and down states.

To enable 100BaseFX on a fiber port, enter the following command at the Global CONFIG level of the CLI.

```
FastIron(config)# link-config gig fiber 100base-fx e 4
```
The above command enables 100BaseFX on port 4.
The following command enables 100BaseFX on ports 3 and 4

FastIron(config)# link-config gig fiber 100base-fx e 3 e 4

Syntax: [no] link-config gig fiber 100base-fx ethernet [stack-unit/slotnum/] portnum ethernet
[stacknum/slotnum/]portnum

The stack-unit parameter is required on FastIron GS and LS devices, and FastIron GS-STK and

The slotnum parameter is required on chassis devices and on FastIron GS devices.

The portnum parameter is a valid port number.

You can specify one or two ethernet ports at a time, as shown in the above examples.

To disable 100BaseFX support on a fiber port, enter the no form of the command. Note that you
must disable 100BaseFX support before inserting a different type of module In the same port.
Otherwise, the device will not recognize traffic traversing the port.

FSX 100/1000 interface module

The FSX 100/1000 Interface module and 100BaseFX SFP was introduced in software release FSX
02.4.00.

NOTE
The following procedure applies to the FSX 100/1000 Fiber interface module only. The CLI syntax
for enabling and disabling 100BaseFX support on the FSX differs than on a Compact device. Make
sure you refer to the appropriate procedures.

The FSX 100/1000 fiber interface module supports the following types of SFPs for 100BaseFX:

- Multimode SFP – maximum distance is 2 kilometers
- Bidirectional single mode SFP – maximum distance is 10 kilometers
- Long Reach (LR) – maximum distance is 40 kilometers (introduced in software release FSX
03.1.00)
- Intermediate Reach (IR) – maximum distance is 15 kilometers (introduced in software release
FSX 03.1.00)

NOTE
Connect the 100BaseFX fiber transceiver after configuring both sides of the link. Otherwise, the
link could become unstable, fluctuating between up and down states.

To enable support for 100BaseFX on an FSX fiber port, enter commands such as the following.

FastIron(config)# interface e 1/6
FastIron(config-if-1/6)# 100-fx

The above commands enable 100BaseFX on port 6 in slot 1.

Syntax: [no] 100-fx

To disable 100BaseFX support on a fiber port, enter the no form of the command. Note that you
must disable 100BaseFX support before inserting a different type of module In the same port.
Otherwise, the device will not recognize traffic traversing the port.
Changing the Gbps fiber negotiation mode

The globally configured Gbps negotiation mode is the default mode for all Gbps fiber ports. You can override the globally configured default and set individual ports to the following:

- **Negotiate-full-auto** – The port first tries to perform a handshake with the other port to exchange capability information. If the other port does not respond to the handshake attempt, the port uses the manually configured configuration information (or the defaults if an administrator has not set the information). This is the default.

- **Auto-Gbps** – The port tries to perform a handshake with the other port to exchange capability information.

- **Negotiation-off** – The port does not try to perform a handshake. Instead, the port uses configuration information manually configured by an administrator.

To change the mode for individual ports, enter commands such as the following.

```
FastIron(config)# int ethernet 1 to 4
FastIron(config-mif-1-4)# gig-default auto-gig
```

This command overrides the global setting and sets the negotiation mode to auto-Gbps for ports 1 – 4.

Syntax: `gig-default neg-full-auto | auto-gig | neg-off`

NOTE

When Gbps negotiation mode is turned off (CLI command `gig-default neg-off`), the Brocade device may inadvertently take down both ends of a link. This is a hardware limitation for which there is currently no workaround.

Modifying port priority (QoS)

You can give preference to the inbound traffic on specific ports by changing the Quality of Service (QoS) level on those ports. For information and procedures, refer to Chapter 22, “Configuring Quality of Service”.

Dynamic configuration of Voice over IP (VoIP) phones

Platform Support:

- FastIron X Series devices running software release 02.2.00 and later
- FCX-S devices running software release 06.0.00 and later
- FastIron GS-STK and FastIron LS-STK devices running software version 05.0.00 and later

You can configure a FastIron device to automatically detect and re-configure a VoIP phone when it is physically moved from one port to another within the same device. To do so, you must configure a **voice VLAN ID** on the port to which the VoIP phone is connected. The software stores the voice VLAN ID in the port database for retrieval by the VoIP phone.

The dynamic configuration of a VoIP phone works in conjunction with the VoIP phone discovery process. Upon installation, and sometimes periodically, a VoIP phone will query the Brocade device for VoIP information and will advertise information about itself, such as, device ID, port ID, and platform. When the Brocade device receives the VoIP phone query, it sends the voice VLAN ID in a reply packet back to the VoIP phone. The VoIP phone then configures itself within the voice VLAN.
As long as the port to which the VoIP phone is connected has a voice VLAN ID, the phone will configure itself into that voice VLAN. If you change the voice VLAN ID, the software will immediately send the new ID to the VoIP phone, and the VoIP phone will re-configure itself with the new voice VLAN.

Configuration notes

- This feature works with any VoIP phone that:
 - Runs CDP
 - Sends a VoIP VLAN query message
 - Can configure its voice VLAN after receiving the VoIP VLAN reply
- Automatic configuration of a VoIP phone will not work if one of the following applies:
 - You do not configure a voice VLAN ID for a port with a VoIP phone
 - You remove the configured voice VLAN ID from a port without configuring a new one
 - You remove the port from the voice VLAN
- Make sure the port is able to intercept CDP packets (`cdp run` command).
- Some VoIP phones may require a reboot after configuring or re-configuring a voice VLAN ID. For example, if your VoIP phone queries for VLAN information only once upon boot up, you must reboot the VoIP phone before it can accept the VLAN configuration. If your phone is powered by a PoE device, you can reboot the phone by disabling then re-enabling the port.
- Brocade devices do not currently support Cisco 7970 VOIP phones.

Enabling dynamic configuration of a Voice over IP (VoIP) phone

You can create a voice VLAN ID for a port, or for a group of ports.

To create a voice VLAN ID for a port, enter commands such as the following.

```
FastIron(config)# interface e 2
FastIron(config-if-e1000-2)# voice-vlan 1001
```

To create a voice VLAN ID for a group of ports, enter commands such as the following.

```
FastIron(config)# interface e 1-8
FastIron(config-mif-1-8)# voice-vlan 1001
```

Syntax: `[no] voice-vlan voice-vlan num`
where `voice-vlan-num` is a valid VLAN ID between 1 – 4095.

To remove a voice VLAN ID, use the `no` form of the command.

Viewing voice VLAN configurations

You can view the configuration of a voice VLAN for a particular port or for all ports.

To view the voice VLAN configuration for a port, specify the port number with the `show voice-vlan` command. The following example shows the command output results.

```
FastIron# show voice-vlan ethernet 2
Voice vlan ID for port 2: 1001
```
Configuring basic port parameters

The following example shows the message that appears when the port does not have a configured voice VLAN.

```
FastIron# show voice-vlan ethernet 2
Voice vlan is not configured for port 2.
```

To view the voice VLAN for all ports, use the `show voice-vlan` command. The following example shows the command output results.

```
FastIron# show voice-vlan
Port ID   Voice-vlan
  2       1001
  8       150
 15       200
```

Syntax: `show voice-vlan ethernet [stacknum/slotnum/]portnum`

If you specify an Ethernet port, note the following.

- The `slotnum` parameter is required on chassis devices and on FastIron GS devices.
- The `portnum` parameter is a valid port number.

Configuring port flap dampening

Platform Support:

- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

Port Flap Dampening increases the resilience and availability of the network by limiting the number of port state transitions on an interface.

If the port link state toggles from up to down for a specified number of times within a specified period, the interface is physically disabled for the specified wait period. Once the wait period expires, the port link state is re-enabled. However, if the wait period is set to zero (0) seconds, the port link state will remain disabled until it is manually re-enabled.

Configuration notes

- When a flap dampening port becomes a member of a trunk group, that port, as well as all other member ports of that trunk group, will inherit the primary port configuration. This means that the member ports will inherit the primary port flap dampening configuration, regardless of any previous configuration.
- The Brocade device counts the number of times a port link state toggles from "up to down", and not from "down to up".

• The sampling time or window (the time during which the specified toggle threshold can occur before the wait period is activated) is triggered when the first "up to down" transition occurs.
• "Up to down" transitions include UDLD-based toggles, as well as the physical link state.

Configuring port flap dampening on an interface

This feature is configured at the interface level.

```bash
FastIron(config)# interface ethernet 2/1
FastIron(config-if-e10000-2/1)# link-error-disable 10 3 10
```

Syntax: `[no] link-error-disable toggle-threshold sampling-time-in-sec wait-time-in-sec`

The **toggle-threshold** is the number of times a port link state goes from up to down and down to up before the wait period is activated. The default is 0. Enter a valid value range from 1-50.

The **sampling-time-in-sec** is the amount of time during which the specified toggle threshold can occur before the wait period is activated. The default is 0 seconds. Enter 0 – 65535 seconds.

The **wait-time-in-sec** is the amount of time the port remains disabled (down) before it becomes enabled. Entering 0 – 65535 seconds; 0 indicates that the port will stay down until an administrative override occurs.

Configuring port flap dampening on a trunk

You can configure the port flap dampening feature on the primary port of a trunk using the **link-error-disable** command. Once configured on the primary port, the feature is enabled on all ports that are members of the trunk. You cannot configure port flap dampening on port members of the trunk.

Enter commands such as the following on the primary port of a trunk.

```bash
FastIron(config)# interface ethernet 2/1
FastIron(config-if-e10000-2/1)# link-error-disable 10 3 10
```

Re-enabling a port disabled by port flap dampening

A port disabled by port flap dampening is automatically re-enabled once the wait period expires; however, if the wait period is set to zero (0) seconds, you must re-enable the port by entering the following command on the disabled port.

```bash
FastIron(config)# interface ethernet 2/1
FastIron(config-if-e10000-2/1)# no link-error-disable 10 3 10
```

Displaying ports configured with port flap dampening

Ports that have been disabled due to the port flap dampening feature are identified in the output of the **show link-error-disable** command. The following shows an example output.

```bash
FastIron# show link-error-disable
Port 2/1 is forced down by link-error-disable.
```

Use the **show link-error-disable all** command to display the ports with the port flap dampening feature enabled.

For FSX software releases prior to release 03.2.00 and for FGS software releases, the output of the command shows the following.
Configuring basic port parameters

FastIron# show link-error-disable all
Port8/1 is configured for link-error-disable
 threshold:1, sampling_period:10, waiting_period:0
Port8/2 is configured for link-error-disable
 threshold:1, sampling_period:10, waiting_period:0
Port8/3 is configured for link-error-disable
 threshold:1, sampling_period:10, waiting_period:0
Port8/4 is configured for link-error-disable
 threshold:1, sampling_period:10, waiting_period:0
Port8/5 is configured for link-error-disable
 threshold:4, sampling_period:10, waiting_period:2
Port8/9 is configured for link-error-disable
 threshold:2, sampling_period:20, waiting_period:0

For TurboIron X Series devices, and FastIron X Series devices running software release 03.2.00, the output of the command shows the following.

FastIron# show link-error-disable all

<table>
<thead>
<tr>
<th>Port #</th>
<th>Threshold</th>
<th>Sampling-Time</th>
<th>Shutoff-Time</th>
<th>State</th>
<th>Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3</td>
<td>120</td>
<td>600</td>
<td>Idle</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>120</td>
<td>500</td>
<td>Down</td>
<td>424</td>
</tr>
</tbody>
</table>

Table 30 defines the port flap dampening statistics displayed by the show link-error-disable all command.

TABLE 30 Output of show link-error-disable

<table>
<thead>
<tr>
<th>This column...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #</td>
<td>The port number.</td>
</tr>
<tr>
<td>Threshold</td>
<td>The number of times the port link state will go from up to down and down to up before the wait period is activated.</td>
</tr>
<tr>
<td>Sampling-Time</td>
<td>The number of seconds during which the specified toggle threshold can occur before the wait period is activated.</td>
</tr>
<tr>
<td>Shutoff-Time</td>
<td>The number of seconds the port will remain disabled (down) before it becomes enabled. A zero (0) indicates that the port will stay down until an administrative override occurs.</td>
</tr>
</tbody>
</table>
| State | The port state can be one of the following:
 - **Idle** – The link is normal and no link state toggles have been detected or sampled.
 - **Down** – The port is disabled because the number of sampled errors exceeded the configured threshold.
 - **Err** – The port sampled one or more errors. |
| Counter | If the port state is **Idle**, this field displays N/A.
 - If the port state is **Down**, this field shows the remaining value of the shutoff timer.
 - If the port state is **Err**, this field shows the number of errors sampled. |
Also, in TurboIron X Series devices, and in FastIron X Series devices running software release 03.2.00 and later, the `show interface` command indicates if the port flap dampening feature is enabled on the port.

```
FastIron# show interface ethernet 15
GigabitEthernet15 is up, line protocol is up
  Link Error Dampening is Enabled
    Hardware is GigabitEthernet, address is 00e0.5200.010e (bia 00e0.5200.010e)
    Configured speed auto, actual 1Gbit, configured duplex fdx, actual fdx
    Configured mdi mode AUTO, actual MDIX
```

```
FastIron# show interface ethernet 17
GigabitEthernet17 is ERR-DISABLED, line protocol is down
  Link Error Dampening is Enabled
    Hardware is GigabitEthernet, address is 00e0.5200.010e (bia 00e0.5200.010e)
    Configured speed auto, actual unknown, configured duplex fdx, actual unknown
```

The line “Link Error Dampening” displays “Enabled” if port flap dampening is enabled on the port or “Disabled” if the feature is disabled on the port. The feature is enabled on the ports in the two examples above. Also, the characters “ERR-DISABLED” is displayed for the “GbpsEthernet” line if the port is disabled because of link errors.

Syntax: `show interface ethernet port-number`

In addition to the show commands above, the output of the `show interface brief` command for TurboIron X Series devices, and FastIron X Series devices running software release 03.2.00 and later, indicates if a port is down due to link errors.

```
FastIron# show interface brief e17

   Port  Link    State     Dupl     Speed  Trunk  Tag Priori MAC            Name
 17    ERR-DIS None     None      None  15    Yes level0 00e0.5200.010e
```

The ERR-DIS entry under the “Link” column indicates the port is down due to link errors.

Syslog messages for port flap dampening

The following Syslog messages are generated on devices running FSX software release 03.2.00 and later.

- If the threshold for the number of times that a port link toggles from “up” to “down” then “down” to “up” has been exceeded, the following Syslog message is displayed.

 `0d00h02m10s:I:ERR_DISABLE: Link flaps on port ethernet 16 exceeded threshold; port in err-disable state`

- If the wait time (port is down) expires and the port is brought up the following Syslog message is displayed.

 `0d00h02m41s:I:ERR_DISABLE: Interface ethernet 16, err-disable recovery timeout`

Configuring a local MAC address for Layer 2 management traffic

Platform Support:

- FGS and FLS devices running software release 04.0.00 and later
• FGS-STK and FLS-STK devices running software release 05.0.00 and later
• FWS devices running software release 04.3.00 or later

By default, Brocade Layer 2 devices use the MAC address of the first port as the MAC address for Layer 2 management traffic. For example, when the Brocade device receives an ARP request for its management IP address, it responds with the first port MAC address. This may cause problems in some configurations where the Brocade device uses the same MAC address for management traffic as for switched traffic.

Starting with the software releases listed above, you can configure the Brocade device to use a different MAC address for Layer 2 management traffic than for switched traffic. When you issue the `use-local-management-mac`, the Brocade device changes a local bit in the first port MAC address and uses this MAC address for management traffic. The second bit of the first port MAC address is changed to 2. For example, if the MAC address is 00e0.5201.9900 after the feature is enabled, the switch uses 02e0.5201.9900 for management functions. Switched traffic will continue to use the first port MAC address without the local bit setting.

Example

FastIron(config)# use-local-management-mac
FastIron(config)# write memory
FastIron(config)# end
FastIron# reload

Syntax: [no] use-local-management-mac

NOTE
You must save the configuration and reload the software to place the change into effect.

NOTE
This feature is only available for the switch code. It is not available for router code.

Port loop detection

Platform Support:

• FGS and FLS devices running software release 04.0.00 and later
• FGS-STK and FLS-STK devices running software release 05.0.00 and later
• FWS devices running software release 04.3.00 or later
• FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
• FCX-S devices running software release 06.0.00 and later
• TurboIron X Series devices running software release 04.1.00 and later

This feature allows the Brocade device to disable a port that is on the receiving end of a loop by sending test packets. You can configure the time period during which test packets are sent.

Strict mode and loose mode

There are two types of loop detection; Strict Mode and Loose Mode. In Strict Mode, a port is disabled only if a packet is looped back to that same port. Strict Mode overcomes specific hardware issues where packets are echoed back to the input port. In Strict Mode, loop detection must be configured on the physical port.
In Loose Mode, loop detection is configured on the VLAN of the receiving port. Loose Mode disables the receiving port if packets originate from any port or VLAN on the same device. The VLAN of the receiving port must be configured for loop detection in order to disable the port.

Recovering disabled ports

Once a loop is detected on a port, it is placed in Err-Disable state. The port will remain disabled until one of the following occurs:

- You manually disable and enable the port at the Interface Level of the CLI.
- You enter the command `clear loop-detection`. This command clears loop detection statistics and enables all Err-Disabled ports.
- The device automatically re-enables the port. To set your device to automatically re-enable Err-Disabled ports, refer to “Configuring the device to automatically re-enable ports” on page 80.

Configuration notes

- Loopback detection packets are sent and received on both tagged and untagged ports. Therefore, this feature cannot be used to detect a loop across separate devices.
- On TurboIron devices running software release 04.2.00, the port loop detection feature works only on untagged ports.

The following information applies to Loose Mode loop detection:

- With Loose Mode, two ports of a loop are disabled.
- Different VLANs may disable different ports. A disabled port affects every VLAN using it.
- Loose Mode floods test packets to the entire VLAN. This can impact system performance if too many VLANs are configured for Loose Mode loop detection.

NOTE

Brocade recommends that you limit the use of Loose Mode. If you have a large number of VLANs, configuring loop detection on all of them can significantly affect system performance because of the flooding of test packets to all configured VLANs. An alternative to configuring loop detection in a VLAN-group of many VLANs is to configure a separate VLAN with the same tagged port and configuration, and enable loop detection on this VLAN only.

NOTE

When loop detection is used with L2 loop prevention protocols, such as spanning tree (STP), the L2 protocol takes higher priority. Loop detection cannot send or receive probe packets if ports are blocked by L2 protocols, so it does not detect L2 loops when STP is running because loops within a VLAN have been prevented by STP. Loop detection running in Loose Mode can detect and break L3 loops because STP cannot prevent loops across different VLANs. In these instances, the ports are not blocked and loop detection is able to send out probe packets in one VLAN and receive packets in another VLAN. In this way, loop detection running in Loose Mode disables both ingress and egress ports.
Enabling loop detection

Use the `loop-detection` command to enable loop detection on a physical port (Strict Mode) or a VLAN (Loose Mode). Loop detection is disabled by default. The following example shows a Strict Mode configuration.

```
FastIron(config)# interface ethernet 1/1
FastIron(config-if-e1000-1/1)# loop-detection
```

The following example shows a Loose Mode configuration.

```
FastIron(config)# vlan20
FastIron(config-vlan-20)# loop-detection
```

By default, the port will send test packets every one second, or the number of seconds specified by the `loop-detection-interval` command. Refer to “Configuring a global loop detection interval” on page 80.

Syntax:
\[no\] loop-detection

Use the `[no]` form of the command to disable loop detection.

Configuring a global loop detection interval

The loop detection interval specifies how often a test packet is sent on a port. When loop detection is enabled, the loop detection time unit is 0.1 second, with a default of 10 (one second). The range is from 1 (one tenth of a second) to 100 (10 seconds). You can use the `show loop-detection status` command to view the loop detection interval.

To configure the global loop detection interval, enter a command similar to the following.

```
FastIron(config)# loop-detection-interval 50
```

This command sets the loop-detection interval to 5 seconds (50 x 0.1).

To revert to the default global loop detection interval of 10, enter one of the following.

```
FastIron(config)# loop-detection-interval 10
OR
FastIron(config)# no loop-detection-interval 50
```

Syntax:
\[no\] loop-detection-interval *number*

where *number* is a value from 1 to 100. The system multiplies your entry by 0.1 to calculate the interval at which test packets will be sent.

Configuring the device to automatically re-enable ports

To configure the Brocade device to automatically re-enable ports that were disabled because of a loop detection, enter the following command.

```
FastIron(config)# errdisable recovery cause loop-detection
```

The above command will cause the Brocade device to automatically re-enable ports that were disabled because of a loop detection. By default, the device will wait 300 seconds before re-enabling the ports. You can optionally change this interval to a value from 10 to 65535 seconds. Refer to “Specifying the recovery time interval” on page 81.

Syntax:
\[no\] errdisable recovery cause loop-detection
Use the \[\text{no}\] form of the command to disable this feature.

Specifying the recovery time interval

The recovery time interval specifies the number of seconds the Brocade device will wait before automatically re-enabling ports that were disabled because of a loop detection. (Refer to “Configuring the device to automatically re-enable ports” on page 80.) By default, the device will wait 300 seconds. To change the recovery time interval, enter a command such as the following.

```
FastIron(config)# errdisable recovery interval 120
```

This command configures the device to wait 120 seconds (2 minutes) before re-enabling the ports.

To revert to the default recovery time interval of 300 seconds (5 minutes), enter one of the following commands.

```
FastIron(config)# errdisable recovery interval 300
```

OR

```
FastIron(config)# no errdisable recovery interval 120
```

Syntax: \[\text{no}\] errdisable recovery interval \textit{seconds}

where \textit{seconds} is a number from 10 to 65535.

Clearing loop-detection

To clear loop detection statistics and re-enable all ports that are in Err-Disable state because of a loop detection, enter the following command.

```
FastIron# clear loop-detection
```

Displaying loop-detection information

Use the \texttt{show loop-detection status} command to display loop detection status, as shown.

```
FastIron# show loop-detection status
loop detection packets interval: 10 (unit 0.1 sec)
Number of err-disabled ports: 3
You can re-enable err-disable ports one by one by "disable" then "enable"
under interface config, re-enable all by "clear loop-detect", or
configure "errdisable recovery cause loop-detection" for automatic recovery

index | port/vlan | status | #errdis | sent-pkts | recv-pkts |
--- | --- | --- | --- | --- | --- |
1 | 1/13 | untag, LEARNING | 0 | 0 | 0 |
2 | 1/15 | untag, BLOCKING | 0 | 0 | 0 |
3 | 1/17 | untag, DISABLED | 0 | 0 | 0 |
4 | 1/18 | ERR-DISABLE by itself | 6 | 1 | 1 |
5 | 1/19 | ERR-DISABLE by vlan 12 | 0 | 0 | 0 |
6 | vlan12 | 2 ERR-DISABLE ports | 24 | 2 |

If a port is errdisabled in Strict mode, it shows “ERR-DISABLE by itself”. If it is errdisabled due to its associated vlan, it shows “ERR-DISABLE by vlan ?”

The following command displays the current disabled ports, including the cause and the time.

```
FastIron# show loop-detection disable
Number of err-disabled ports: 3
You can re-enable err-disable ports one by one by "disable" then "enable"
under interface config, re-enable all by "clear loop-detect", or
3 Configuring basic port parameters

configure "errdisable recovery cause loop-detection" for automatic recovery

<table>
<thead>
<tr>
<th>index</th>
<th>port</th>
<th>caused-by</th>
<th>disabled-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/18</td>
<td>itself</td>
<td>00:13:30</td>
</tr>
<tr>
<td>2</td>
<td>1/19</td>
<td>vlan 12</td>
<td>00:13:30</td>
</tr>
<tr>
<td>3</td>
<td>1/20</td>
<td>vlan 12</td>
<td>00:13:30</td>
</tr>
</tbody>
</table>

This example shows the disabled ports, the cause, and the time the port was disabled. If loop-detection is configured on a physical port, the disable cause will show “itself”. For VLANs configured for loop-detection, the cause will be a VLAN.

The following command shows the hardware and software resources being used by the loop-detection feature.

Vlans configured loop-detection use 1 HW MAC
Vlans not configured but use HW MAC: 1 10

<table>
<thead>
<tr>
<th></th>
<th>alloc</th>
<th>in-use</th>
<th>avail</th>
<th>get-fail</th>
<th>limit</th>
<th>get-mem</th>
<th>size</th>
<th>init</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration pool</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>3712</td>
<td>6</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>linklist pool</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>3712</td>
<td>10</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Syslog message

The following message is logged when a port is disabled due to loop detection. This message also appears on the console.

`loop-detect: port ?\\?\? vlan ?, into errdisable state`

The Errdisable function logs a message whenever it re-enables a port.
Overview

For easy software image management, all Brocade devices support the download and upload of software images between the flash modules on the devices and a Trivial File Transfer Protocol (TFTP) server on the network.

Brocade devices have two flash memory modules:

- **Primary flash** – The default local storage device for image files and configuration files.
- **Secondary flash** – A second flash storage device. You can use the secondary flash to store redundant images for additional reload reliability or to preserve one software image while testing another one.

Only one flash device is active at a time. By default, the primary image will become active upon reload.

You can update the software contained on a flash module using TFTP to copy the update image from a TFTP server onto the flash module. In addition, you can copy software images and configuration files from a flash module to a TFTP server.

NOTE
Brocade devices are TFTP clients but not TFTP servers. You must perform the TFTP transaction from the Brocade device. You cannot “put” a file onto the Brocade device using the interface of your TFTP server.

NOTE
Brocade FGS-STK and FLS-STK devices do not support booting from TFTP.

NOTE
If you are attempting to transfer a file using TFTP but have received an error message, refer to “Diagnostic error codes and remedies for TFTP transfers” on page 106.

Determining the software versions installed and running on a device

Use the following methods to display the software versions running on the device and the versions installed in flash memory.

Determining the flash image version running on the device

To determine the flash image version running on a device, enter the `show version` command at any level of the CLI. Some examples are shown below.
Compact devices

To determine the flash image version running on a Compact device, enter the `show version` command at any level of the CLI. The following shows an example output.

```
FastIron#show version
SW: Version 03.0.00T53 Copyright (c) 2009 Brocade Communications Systems, Inc.
   Compiled on Mar 26 2003 at 13:50:31 labeled as FER03000
   (3089381 bytes) from Primary fer03000.bin
HW: Stackable FES2402-PREM-ILP
==========================================================================
330 MHz Power PC processor 8245 (version 129/1014) 66 MHz bus
512 KB boot flash memory
16384 KB code flash memory
128 MB DRAM
Monitor Option is on
The system uptime is 4 days 4 hours 8 minutes 33 seconds
The system : started=warm start
```

The version information is shown in bold type in this example:

- “03.0.00T53” indicates the flash code version number. The “T53” is used by Brocade for record keeping.
- “labeled as FER03000” indicates the flash code image label. The label indicates the image type and version and is especially useful if you change the image file name.
- “Primary fer03000.bin” indicates the flash code image file name that was loaded.

Chassis devices

To determine the flash image version running on a chassis device, enter the `show version` command at any level of the CLI. The following is an example output.

```
FastIron Switch# show version
==========================================================================
Active Management CPU:
SW: Version 03.1.00aT3e3 Copyright (c) 2009 Brocade Communications Systems, Inc.
   Compiled on Nov 07 2006 at 10:20:07 labeled as SXR03100a
   (3613675 bytes) from Primary sxr03100a.bin
BootROM: Version 03.0.01T3e5 (FEv2)
HW: Chassis FastIron SX 1600-PREM
Serial #: TE15065544
==========================================================================
Standby Management CPU:
SW: Version 03.1.00aT3e3 Copyright (c) 2009 Brocade Communications Systems, Inc.
   Compiled on Nov 07 2006 at 10:20:07 labeled as SXR03100a
BootROM: Version 03.0.01T3e5 (FEv2)
==========================================================================
SL 1: SX-F424C 24-port Gig Copper
Serial #: CH03060022
P-ASIC 0: type 00D1, rev D2
==========================================================================
SL 5: SX-F42XG 2-port 10G
Serial #: CH19050324
P-ASIC 8: type 01D1, rev 00
P-ASIC 9: type 01D1, rev 00
==========================================================================
SL 9: SX-FIZMR4 0-port Management
```
Determining the software versions installed and running on a device

Serial #: Non-exist

SL 10: SX-FIZMR4 0-port Management
Serial #: Non-exist

SL 13: SX-F424C 24-port Gig Copper
Serial #: Non-exist
P-ASIC 24: type 00D1, rev D2
P-ASIC 25: type 00D1, rev D2

SL 18: SX-F42XG 2-port 10G
Serial #: CH13050374
P-ASIC 34: type 01D1, rev 00
P-ASIC 35: type 01D1, rev 00

Active Management Module:
660 MHz Power PC processor 8541 (version 32/0020) 66 MHz bus
512 KB boot flash memory
16384 KB code flash memory
512 MB DRAM

Standby Management Module:
660 MHz Power PC processor 8541 (version 32/0020) 66 MHz bus
512 KB boot flash memory
16384 KB code flash memory
512 MB DRAM

The system uptime is 2 days 4 hours 33 minutes 52 seconds
The system : started=warm start reloaded=by "reload"

The version information is shown in bold type in this example:

- "03.1.00aT3e3" indicates the flash code version number. The "T3e3" is used by Brocade for record keeping.
- "labeled as SXR03100a" indicates the flash code image label. The label indicates the image type and version and is especially useful if you change the image file name.
- "Primary SXR03100a.bin" indicates the flash code image file name that was loaded.

Determining the boot image version running on the device

To determine the boot image running on a device, enter the `show flash` command at any level of the CLI. The following shows an example output.

FastIron# show flash
Active Management Module (Slot 9):
Compressed Pri Code size = 3613675, Version 03.1.00aT3e3 (sxr03100a.bin)
Compressed Sec Code size = 2250218, Version 03.1.00aT3e1 (sxs03100a.bin)
Compressed BootROM Code size = 524288, `Version 03.0.01T3e5`
Code Flash Free Space = 9699328

Standby Management Module (Slot 10):
Compressed Pri Code size = 3613675, Version 03.1.00aT3e3 (sxr03100a.bin)
Compressed Sec Code size = 2250218, Version 03.1.00aT3e1 (sxs03100a.bin)
Compressed BootROM Code size = 524288, `Version 03.0.01T3e5`
Code Flash Free Space = 524288

The boot code version is shown in bold type.
Determining the software versions installed and running on a device

Determining the image versions installed in flash memory

Enter the `show flash` command to display the boot and flash images installed on the device. An example of the command output is shown in “Determining the boot image version running on the device” on page 85:

- The “Compressed Pri Code size” line lists the flash code version installed in the primary flash area.
- The “Compressed Sec Code size” line lists the flash code version installed in the secondary flash area.
- The “Boot Monitor Image size” line lists the boot code version installed in flash memory. The device does not have separate primary and secondary flash areas for the boot image. The flash memory module contains only one boot image.

NOTE
To minimize the boot-monitor image size on FastIron devices, the `ping` and `tftp` operations performed in the boot-monitor mode are restricted to copper ports on the FastIron Chassis management modules and to copper ports on the FastIron stackable switch combination copper and fiber ports. The fiber ports on these devices do not have the ability to `ping` or `tftp` from the boot-monitor mode. This applies to FastIron devices only; it does not apply to TurboIron X Series devices.

Flash image verification

Platform Support:
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FastIron X Series devices running software release 04.0.00 and later
- TurboIron X Series devices running software release 04.1.00 and later

The Flash Image Verification feature allows you to verify boot images based on hash codes, and to generate hash codes where needed. This feature lets you select from three data integrity verification algorithms:

- **MD5** - Message Digest algorithm (RFC 1321)
- **SHA1** - US Secure Hash Algorithm (RFC 3174)
- **CRC** - Cyclic Redundancy Checksum algorithm

CLI commands

Use the following command syntax to verify the flash image:

Syntax: `verify md5 | sha1 | crc32 ASCII string | primary | secondary [hash code]`
Determining the software versions installed and running on a device

- **md5** – Generates a 16-byte hash code
- **sha1** – Generates a 20-byte hash code
- **crc32** – Generates a 4 byte checksum
- **ascii string** – A valid image filename
- **primary** – The primary boot image (primary.img)
- **secondary** – The secondary boot image (secondary.img)
- **hash code** – The hash code to verify

The following examples show how the `verify` command can be used in a variety of circumstances.

To generate an MD5 hash value for the secondary image, enter the following command.

```
FastIron# verify md5 secondary
FastIron#.........................Done
Size = 2044830, MD5 01c410d6d153189a4a5d36c955653862
```

To generate a SHA-1 hash value for the secondary image, enter the following command.

```
FastIron# verify sha secondary
FastIron#.........................Done
Size = 2044830, SHA1 49d12d26552072337f7f5fcaef4cf4b742a9f525
```

To generate a CRC32 hash value for the secondary image, enter the following command.

```
FastIron# verify crc32 secondary
FastIron#.........................Done
Size = 2044830, CRC32 b31fcbc0
```

To verify the hash value of a secondary image with a known value, enter the following commands.

```
FastIron# verify md5 secondary 01c410d6d153189a4a5d36c955653861
FastIron#.........................Done
Size = 2044830, MD5 01c410d6d153189a4a5d36c955653862
```

Verification FAILED.

In the previous example, the codes did not match, and verification failed. If verification succeeds, the output will look like this.

```
FastIron# verify md5 secondary 01c410d6d153189a4a5d36c955653861
FastIron#.........................Done
Size = 2044830, MD5 01c410d6d153189a4a5d36c955653861
```

Verification SUCEEDED.

The following examples show this process for SHA-1 and CRC32 algorithms.

```
FastIron# verify sha secondary 49d12d26552072337f7f5fcaef4cf4b742a9f525
FastIron#.........................Done
Size = 2044830, sha 49d12d26552072337f7f5fcaef4cf4b742a9f525
```

Verification SUCCEEDED.

and

```
FastIron# verify crc32 secondary b31fcbc0
FastIron#.........................Done
Size = 2044830, CRC32 b31fcbc0
```

Verification SUCCEEDED.
Image file types

This section lists the boot and flash image file types supported on the FastIron and Turbolron X Series family of switches and how to install them. For information about a specific version of code, refer to the release notes.

TABLE 31 Software image files

<table>
<thead>
<tr>
<th>Product</th>
<th>Boot image¹</th>
<th>Flash image</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESX pre-release 02.3.01</td>
<td>FEXZxxxxx.bin</td>
<td>FEXSxxxxx.bin</td>
</tr>
<tr>
<td>FESX release 02.3.01 through pre-release 03.0.00</td>
<td>FEXZxxxxx.bin</td>
<td>SXSxxxxx.bin (Layer 2) or SXLxxxxx.bin (Base Layer 3) or SXRxxxxx.bin (Full Layer 3)</td>
</tr>
<tr>
<td>FESX release 03.0.00 and later</td>
<td>SXZxxxxx.bin</td>
<td>SXSxxxxx.bin (Layer 2) or SXLxxxxx.bin (Base Layer 3) or SXRxxxxx.bin (Full Layer 3)</td>
</tr>
<tr>
<td>FGS and FLS</td>
<td>FGZxxxxx.bin</td>
<td>FGSxxxxx.bin (Layer 2) or FGLxxxxx.bin (Base Layer 3)</td>
</tr>
<tr>
<td>FGS-STK and FLS-STK</td>
<td>FGZxxxxx.bin</td>
<td>FGSxxxxx.bin (Layer 2) or FGLxxxxx.bin (Base Layer 3)</td>
</tr>
<tr>
<td>FWS</td>
<td><FWSxxxxx.bin></td>
<td>Need images here</td>
</tr>
<tr>
<td>FSX, FSX 800, and FSX 1600</td>
<td>SXZxxxxx.bin</td>
<td>SXSxxxxx.bin (Layer 2) or SXLxxxxx.bin (Base Layer 3) or SXRxxxxx.bin (Full Layer 3)</td>
</tr>
<tr>
<td>FCX</td>
<td>GRZxxxxx.bin</td>
<td>FCXSxxxxx.bin (Layer 2) or FCXXxxxxx.bin (Layer 3)</td>
</tr>
<tr>
<td>FWSX</td>
<td>FWXZxxxxx.bin</td>
<td>FWXSxxxxx.bin (Layer 2)</td>
</tr>
<tr>
<td>TIX</td>
<td>GRZxxxxx.bin</td>
<td>TISxxxxx.bin (Layer 2)</td>
</tr>
</tbody>
</table>

1. These images are applicable to these devices only and are not interchangeable. For example, you cannot load FWSX boot or flash images on a FSX device, and vice versa. Also, you cannot load other images, such as B2R or B2S, for BigIron devices, on the FastIron family of switches.

Upgrading software

Use the following procedures to upgrade the software.

NOTE

This section does not describe how to upgrade a FESX or FSX base model to a premium (PREM) model. To perform this upgrade, you need an upgrade kit. Contact Brocade for information.
Note regarding upgrading from FGS 02.4.00 to the new release

When upgrading to release 02.5.00, the software automatically converts the saved system configuration to the new stack/slot/port nomenclature (refer to “CLI nomenclature on FGS and FLS devices” on page 22). The software makes the configuration change only for the saved configuration when the device is started. Software release 02.5.00 is not backward-compatible. If the software is downgraded from release 02.5.00, the configuration must be reloaded.

Migrating to the new release (FESX and FSX devices only)

Beginning with release 02.3.01, FESX and FSX devices share the same flash images. In releases prior to 02.3.01, FESX and FSX flash images were separate and were issued through separate software releases. Starting with release 02.3.01, the flash images for these devices were merged and are now issued in the same software release.

The new, combined flash images may create unique software upgrade circumstances for FESX and FSX devices. (FWSX devices are not affected by the software merge.) If your device is currently running software release 02.2.00 or later (FESX devices), or 02.2.01a or later (FSX devices), your device is not affected by the software merge. However, if your FESX or FSX device is running a release earlier than these versions, you must first upgrade the software on your device to FESX release 02.2.00 or later, or FSX release 02.2.01a or later, before loading the new software image. Earlier releases will not allow you to load the 02.3.01 or later software image.

To determine which software version is running on your device, use the show version command. See the following sections for information on how to upgrade the software images on your device.

Upgrading from FESX pre-02.2.00 or FSX pre-02.2.01a to the new release

If your device is running a software release earlier than FESX 02.2.00 or FSX 02.2.01a, you must first upgrade it to FESX 02.2.00 or later, or FSX 02.2.01a or later, before you can upgrade it to the new release. Follow the instructions, below.

1. Upgrade your device to software release FESX 02.2.00 or later, or FSX 02.2.01a or later. Follow the steps presented in “Upgrading software” on page 88 and “Upgrading the flash code” on page 90. Make sure you reload the software after loading the flash code.

2. Upgrade your device to the new software release. Refer to one of the following sections:
 - FESX – “Upgrading from FESX 02.2.00 or later to the new release” on page 89.
 - FSX – “Upgrading from FSX 02.2.01a or later to the new release” on page 90.

Upgrading from FESX 02.2.00 or later to the new release

Follow the instructions, below.

1. Upgrade the boot code to the new version (FEXZ0xxxx.bin) using the steps presented in “Upgrading software” on page 88.

2. Upgrade the flash code to the new version using the steps presented in “Upgrading the flash code” on page 90.
Upgrading from FSX 02.2.01a or later to the new release

Follow the instructions, below.

1. Upgrade the boot code to the new version (SXZ0xxxx.bin) using the steps presented in “Upgrading software” on page 88.
2. Upgrade the flash code to the new version using the steps presented in “Upgrading the flash code” on page 90.

Upgrading the boot code

NOTES:

- If you are upgrading a FESX or FSX device, refer to “Migrating to the new release (FESX and FSX devices only)” on page 89 before performing the steps in this section.
- If you are upgrading an FGS device from release 02.4.00, refer to “Note regarding upgrading from FGS 02.4.00 to the new release” on page 89 before performing the steps in this section.

Follow the steps given below to upgrade the boot code.

1. Place the new boot code on a TFTP server to which the Brocade device has access.
2. Enter the following command at the Privileged EXEC level of the CLI (example: FastIron Switch#) to copy the boot code from the TFTP server into flash memory:

   ```
   copy tftp flash ip-addr image-file-name bootrom
   ```

 NOTE

 Use the `copy tftp flash` command to copy the boot code to the Brocade device only during a maintenance window. Attempting to do so during normal networking operations can cause disruption to the network.

3. Verify that the code has been successfully copied by entering the following command at any level of the CLI:

   ```
   show flash
   ```

 The output will display the compressed boot ROM code size and the boot code version.
4. Upgrade the flash code as instructed in the following section.

Upgrading the flash code

NOTE

If you are upgrading a FESX or FSX device, refer to “Migrating to the new release (FESX and FSX devices only)” on page 89 before performing the steps in this section.

Follow the steps given below to upgrade the flash code.

1. Place the new flash code on a TFTP server to which the Brocade device has access.
2. Enter the following command at the Privileged EXEC level of the CLI (example: FastIron Switch#) to copy the flash code from the TFTP server into the flash memory.

   ```
   copy tftp flash ip-addr image-file-name primary | secondary
   ```
3. Verify that the flash code has been successfully copied by entering the following command at any level of the CLI.

 show flash

4. If the flash code version is correct, go to step 5. Otherwise, go to step 1.

5. Reload the software by entering one of the following commands:
 - **reload** (this command boots from the default boot source, which is the primary flash area by default)
 - **hitless-reload primary | secondary**
 - **boot system flash primary | secondary**

 NOTE
 The **hitless-reload** command is supported on FSX 800 and FSX 1600 devices running software release FSX 05.0.00 or later, and applies to Layer 2 switching and protocols only. Prior to using this command, see the section **Hitless Management Support** in the Brocade FastIron Chassis Hardware Installation Guide for complete details of the command, including some important configuration considerations.

 NOTE
 Release 03.1.00a added a confirmation step in the boot system flash process. This step occurs after a boot system flash primary/secondary command is entered and gives an administrator the opportunity to make last minute changes or corrections before performing a reload. The example below shows the confirmation step.

 FastIron Switch# boot system flash primary
 Are you sure? (enter 'Y' or 'N'): y

Boot code synchronization feature

Release 03.1.00a added support for automatic synchronization of the boot image in the active and redundant management modules. When the new boot image is copied into the active module, it is automatically synchronized with the redundant management module.

 NOTE
 There is currently no option for manual synchronization of the boot image.

 To activate the boot synchronization process, enter the following command.

 FastIron# copy tftp flash 192.168.255.102 superx/boot/sxz03001.bin bootrom

 The system responds with the following message.

 FastIron# Load to buffer (8192 bytes per dot)
 Write to boot flash......................
 TFTP to Flash Done.
 FastIron# Synchronizing with standby module...
 Boot image synchronization done.
Important notes about downgrading from FSX 04.1.00

When downgrading from software release FSX 04.1.00 to an earlier release, you must do the following:

- If the `system-max ip-route` configuration is present, prior to downgrading the software, you must modify the value to reflect the maximum value supported in the earlier release. This is because software release 04.1.00 supports a maximum value of 524288, which is a higher value than in previous releases. For more information, refer to “Modifying system parameter default values” on page 385.

- If the Layer 3 switch has an IPv6 PROM installed, you must remove the following IPv6 configurations from the system, as these features are not supported in release FSX 04.0.01:

 Global CONFIG commands:
 - ipv6 unicast-routing
 - ipv6 router rip
 - ipv6 router ospf
 Interface level commands:
 - ipv6 rip
 - ipv6 ospf
 Tunnel Interface command:
 - tunnel mode ipv6ip

Using SNMP to upgrade software

You can use a third-party SNMP management application such as HP OpenView to upgrade software on a Brocade device.

NOTE
The syntax shown in this section assumes that you have installed HP OpenView in the “/usr” directory.

NOTE
Brocade recommends that you make a backup copy of the startup-config file before you upgrade the software. If you need to run an older release, you will need to use the backup copy of the startup-config file.

1. Configure a read-write community string on the Brocade device, if one is not already configured. To configure a read-write community string, enter the following command from the global CONFIG level of the CLI.

 `snmp-server community string ro | rw`

 where `string` is the community string and can be up to 32 characters long.

2. On the Brocade device, enter the following command from the global CONFIG level of the CLI.

 `no snmp-server pw-check`
This command disables password checking for SNMP set requests. If a third-party SNMP management application does not add a password to the password field when it sends SNMP set requests to a Brocade device, by default the Brocade device rejects the request.

3. From the command prompt in the UNIX shell, enter the following command.

```
/usr/0V/bin/snmpset -c rw-community-string fdry-ip-addr 1.3.6.1.4.1.1991.1.1.2.1.5.0 ipaddress tftp-ip-addr 1.3.6.1.4.1.1991.1.1.2.1.6.0 octetstringascii file-name 1.3.6.1.4.1.1991.1.1.2.1.7.0 integer command-integer
```

where

- `rw-community-string` is a read-write community string configured on the Brocade device.
- `fdry-ip-addr` is the IP address of the Brocade device.
- `tftp-ip-addr` is the TFTP server IP address.
- `file-name` is the image file name.
- `command-integer` is one of the following.
 - **20** – Download the flash code into the device primary flash area.
 - **22** – Download the flash code into the device secondary flash area.

Changing the block size for TFTP file transfers

When you use TFTP to copy a file to or from a Brocade device, the device transfers the data in blocks of 8192 bytes by default. You can change the block size to one of the following if needed:

- 4096
- 2048
- 1024
- 512
- 256
- 128
- 64
- 32
- 16

To change the block size for TFTP file transfers, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)# flash 2047
set flash copy block size to 2048
```

Syntax: `[no] flash num`

The software rounds up the `num` value you enter to the next valid power of two, and displays the resulting value. In this example, the software rounds the value up to 2048.

NOTE

If the value you enter is one of the valid powers of two for this parameter, the software still rounds the value up to the next valid power of two. Thus, if you enter 2048, the software rounds the value up to 4096.
Rebooting

You can use boot commands to immediately initiate software boots from a software image stored in primary or secondary flash on a Brocade device or from a BootP or TFTP server. You can test new versions of code on a Brocade device or choose the preferred boot source from the console boot prompt without requiring a system reset.

NOTE
It is very important that you verify a successful TFTP transfer of the boot code *before* you reset the system. If the boot code is not transferred successfully but you try to reset the system, the system will not have the boot code with which to successfully boot.

By default, the Brocade device first attempts to boot from the image stored in its primary flash, then its secondary flash, and then from a TFTP server. You can modify this booting sequence at the global CONFIG level of the CLI using the `boot system`... command.

To initiate an immediate boot from the CLI, enter one of the `boot system`... commands.

NOTE
In FastIron X Series devices running software release 03.0.00 and higher, the `boot system tftp` command is supported on ports e1 through e12 only.

NOTE
If you are booting the device from a TFTP server through a fiber connection, use the following command: `boot system tftp ip-address filename fiber-port`.

Displaying the boot preference

Use the `show boot-preference` command to display the boot sequence in the startup config and running config files. The boot sequence displayed is also identified as either user-configured or the default.

The following example shows the default boot sequence preference.

```
FastIron# show boot-preference
Boot system preference (Configured):
    Use Default
Boot system preference (Default):
    Boot system flash primary
    Boot system flash secondary
```

The following example shows a user-configured boot sequence preference.

```
FastIron# show boot-preference
Boot system preference (Configured):
    Boot system flash secondary
    Boot system tftp 10.1.1.1 FGS04000b1.bin
    Boot system flash primary
Boot system preference (Default):
    Boot system flash primary
    Boot system flash secondary
```

Syntax: `show boot-preference`
Platform Support:

- FastIron X Series devices running software release 04.0.00
- FGS and FLS devices running software release 04.0.00
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later

The results of the `show run` command for the configured example above appear as follows.

```
FastIron# show run
Current Configuration:
!
ver 04.0.00x1T7el
!
module 1 fgs-48-port-copper-base-module
module 2 fgs-xfp-1-port-10g-module
module 3 fgs-xfp-1-port-10g-module
!
alias cp=copy tf 10.1.1.1 FGS04000bl.bin pri
!
boot sys fl sec
boot sys df 10.1.1.1 FGS04000bl.bin
boot sys fl pri
ip address 10.1.1.4 255.255.255.0
snmp-client 10.1.1.1
!
end
```

Loading and saving configuration files

For easy configuration management, all Brocade devices support both the download and upload of configuration files between the devices and a TFTP server on the network.

You can upload either the startup configuration file or the running configuration file to the TFTP server for backup and use in booting the system:

- **Startup configuration file** – This file contains the configuration information that is currently saved in flash. To display this file, enter the `show configuration` command at any CLI prompt.

- **Running configuration file** – This file contains the configuration active in the system RAM but not yet saved to flash. These changes could represent a short-term requirement or general configuration change. To display this file, enter the `show running-config` or `write terminal` command at any CLI prompt.

Each device can have one startup configuration file and one running configuration file. The startup configuration file is shared by both flash modules. The running configuration file resides in DRAM.

When you load the startup-config file, the CLI parses the file three times.

1. During the first pass, the parser searches for `system-max` commands. A `system-max` command changes the size of statically configured memory.

2. During the second pass, the parser implements the `system-max` commands if present and also implements trunk configuration commands (trunk command) if present.
3. During the third pass, the parser implements the remaining commands.

Replacing the startup configuration with the running configuration

After you make configuration changes to the active system, you can save those changes by writing them to flash memory. When you write configuration changes to flash memory, you replace the startup configuration with the running configuration.

To replace the startup configuration with the running configuration, enter the following command at any Enable or CONFIG command prompt.

`FastIron# write memory`

Replacing the running configuration with the startup configuration

If you want to back out of the changes you have made to the running configuration and return to the startup configuration, enter the following command at the Privileged EXEC level of the CLI.

`FastIron# reload`

Logging changes to the startup-config file

You can configure a Brocade device to generate a Syslog message when the startup-config file is changed. The trap is enabled by default.

The following Syslog message is generated when the startup-config file is changed.

`startup-config was changed`

If the startup-config file was modified by a valid user, the following Syslog message is generated.

`startup-config was changed by <username>`

To disable or re-enable Syslog messages when the startup-config file is changed, use the following command.

Syntax: `[no] logging enable config-changed`

Copying a configuration file to or from a TFTP server

To copy the startup-config or running-config file to or from a TFTP server, use one of the following methods.

NOTE

You can name the configuration file when you copy it to a TFTP server. However, when you copy a configuration file from the server to a Brocade device, the file is always copied as “startup-config” or “running-config”, depending on which type of file you saved to the server.

To initiate transfers of configuration files to or from a TFTP server using the CLI, enter one of the following commands:
• **copy startup-config tftp tftp-ip-addr filename** – Use this command to upload a copy of the startup configuration file from the Layer 2 Switch or Layer 3 Switch to a TFTP server.

• **copy running-config tftp tftp-ip-addr filename** – Use this command to upload a copy of the running configuration file from the Layer 2 Switch or Layer 3 Switch to a TFTP server.

• **copy tftp startup-config tftp-ip-addr filename** – Use this command to download a copy of the startup configuration file from a TFTP server to a Layer 2 Switch or Layer 3 Switch.

Dynamic configuration loading

You can load dynamic configuration commands (commands that do not require a reload to take effect) from a file on a TFTP server into the running-config on the Brocade device. You can make configuration changes off-line, then load the changes directly into the device running-config, without reloading the software.

Usage considerations

• Use this feature only to load configuration information that does not require a software reload to take effect. For example, you cannot use this feature to change statically configured memory (**system-max** command) or to enter trunk group configuration information into the running-config.

• Do not use this feature if you have deleted a trunk group but have not yet placed the changes into effect by saving the configuration and then reloading. When you delete a trunk group, the command to configure the trunk group is removed from the device running-config, but the trunk group remains active. To finish deleting a trunk group, save the configuration (to the startup-config file), then reload the software. After you reload the software, then you can load the configuration from the file.

• Do not load port configuration information for secondary ports in a trunk group. Since all ports in a trunk group use the port configuration settings of the primary port in the group, the software cannot implement the changes to the secondary port.

Preparing the configuration file

A configuration file that you create must follow the same syntax rules as the startup-config file the device creates.

• The configuration file is a script containing CLI configuration commands. The CLI reacts to each command entered from the file in the same way the CLI reacts to the command if you enter it. For example, if the command results in an error message or a change to the CLI configuration level, the software responds by displaying the message or changing the CLI level.

• The software retains the running-config that is currently on the device, and changes the running-config only by adding new commands from the configuration file. If the running config already contains a command that is also in the configuration file you are loading, the CLI rejects the new command as a duplicate and displays an error message. For example, if the running-config already contains a a command that configures ACL 1, the software rejects ACL 1 in the configuration file, and displays a message that ACL 1 is already configured.

• The file can contain global CONFIG commands or configuration commands for interfaces, routing protocols, and so on. You cannot enter User EXEC or Privileged EXEC commands.
The default CLI configuration level in a configuration file is the global CONFIG level. Thus, the first command in the file must be a global CONFIG command or "!". The ! (exclamation point) character means "return to the global CONFIG level".

NOTE
You can enter text following "!" as a comment. However, the "!" is not a comment marker. It returns the CLI to the global configuration level.

NOTE
If you copy-and-paste a configuration into a management session, the CLI ignores the "!" instead of changing the CLI to the global CONFIG level. As a result, you might get different results if you copy-and-paste a configuration instead of loading the configuration using TFTP.

Make sure you enter each command at the correct CLI level. Since some commands have identical forms at both the global CONFIG level and individual configuration levels, if the CLI response to the configuration file results in the CLI entering a configuration level you did not intend, then you can get unexpected results.

For example, if a trunk group is active on the device, and the configuration file contains a command to disable STP on one of the secondary ports in the trunk group, the CLI rejects the commands to enter the interface configuration level for the port and moves on to the next command in the file you are loading. If the next command is a spanning-tree command whose syntax is valid at the global CONFIG level as well as the interface configuration level, then the software applies the command globally. Here is an example.

The configuration file contains these commands.

```
interface ethernet 2
no spanning-tree
```

The CLI responds like this.

```
FastIron(config)# interface ethernet 2
Error - cannot configure secondary ports of a trunk
FastIron(config)# no spanning-tree
FastIron(config)#
```

If the file contains commands that must be entered in a specific order, the commands must appear in the file in the required order. For example, if you want to use the file to replace an IP address on an interface, you must first remove the old address using "no" in front of the ip address command, then add the new address. Otherwise, the CLI displays an error message and does not implement the command. Here is an example.

The configuration file contains these commands.

```
interface ethernet 11
ip address 10.10.10.69/24
```

The running-config already has a command to add an address to port 11, so the CLI responds like this.

```
FastIron(config)# interface ethernet 11
FastIron(config-if-e1000-11)# ip add 10.10.10.69/24
Error: can only assign one primary ip address per subnet
FastIron(config-if-e1000-11)#
```

To successfully replace the address, enter commands into the file as follows.
Loading and saving configuration files

interface ethernet 11
no ip address 20.20.20.69/24
ip address 10.10.10.69/24

This time, the CLI accepts the command, and no error message is displayed.

FastIron(config)# interface ethernet 11
FastIron(config-if-e1000-11)# no ip add 20.20.20.69/24
FastIron(config-if-e1000-11)# ip add 10.10.10.69/24

• Always use the end command at the end of the file. The end command must appear on the last line of the file, by itself.

Loading the configuration information into the running-config

To load the file from a TFTP server, use either of the following commands:

• copy tftp running-config ip-addr filename
• ncopy tftp ip-addr filename running-config

NOTE
If you are loading a configuration file that uses a truncated form of the CLI command access-list, the software will not go into batch mode.

For example, the following command line will initiate batch mode.

access-list 131 permit host pc1 host pc2

The following command line will not initiate batch mode.

acc 131 permit host pc1 host pc2

Maximum file sizes for startup-config file and running-config

Each Brocade device has a maximum allowable size for the running-config and the startup-config file. If you use TFTP to load additional information into a device running-config or startup-config file, it is possible to exceed the maximum allowable size. If this occurs, you will not be able to save the configuration changes.

The maximum size for the running-config and the startup-config file is 64K each.

To determine the size of a running-config or startup-config file, copy it to a TFTP server, then use the directory services on the server to list the size of the copied file. To copy the running-config or startup-config file to a TFTP server, use one of the following commands:

• Commands to copy the running-config to a TFTP server:
 • copy running-config tftp ip-addr filename
 • ncopy running-config tftp ip-addr from-name
• Commands to copy the startup-config file to a TFTP server:
 • copy startup-config tftp ip-addr filename
 • ncopy startup-config tftp ip-addr from-name
Loading and saving configuration files with IPv6

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later

The `copy` command for IPv6 allows you to do the following:
- Copy a file from a specified source to an IPv6 TFTP server
- Copy a file from an IPv6 TFTP server to a specified destination

Copying a file to an IPv6 TFTP server

You can copy a file from the following sources to an IPv6 TFTP server:
- Flash memory
- Running configuration
- Startup configuration

Copying a file from flash memory

For example, to copy the primary or secondary boot image from the device flash memory to an IPv6 TFTP server, enter a command such as the following.

`FESX Router# copy flash tftp 2001:7382:e0ff:7837::3 test.img secondary`

This command copies the secondary boot image named `test.img` from flash memory to a TFTP server with the IPv6 address of `2001:7382:e0ff:7837::3`.

Syntax: `copy flash tftp ipv6-address source-file-name primary | secondary`

The `ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy to the IPv6 TFTP server.

The `primary` keyword specifies the primary boot image, while the `secondary` keyword specifies the secondary boot image.

Copying a file from the running or startup configuration

For example, to copy the running configuration to an IPv6 TFTP server, enter a command such as the following.

`FESX Router# copy running-config tftp 2001:7382:e0ff:7837::3 newrun.cfg`

This command copies the running configuration to a TFTP server with the IPv6 address of `2001:7382:e0ff:7837::3` and names the file on the TFTP server `newrun.cfg`.

Syntax: `copy running-config | startup-config tftp ipv6-address destination-file-name`
Loading and saving configuration files with IPv6

Specify the **running-config** keyword to copy the running configuration file to the specified IPv6 TFTP server.

Specify the **startup-config** keyword to copy the startup configuration file to the specified IPv6 TFTP server.

The tftp **ipv6-address** parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The **destination-file-name** parameter specifies the name of the file that is copied to the IPv6 TFTP server.

Copying a file from an IPv6 TFTP server

You can copy a file from an IPv6 TFTP server to the following destinations:

- Flash memory
- Running configuration
- Startup configuration

Copying a file to flash memory

For example, to copy a boot image from an IPv6 TFTP server to the primary or secondary storage location in the device flash memory, enter a command such as the following.

```bash
FESX Router# copy tftp flash 2001:7382:e0ff:7837::3 test.img secondary
```

This command copies a boot image named test.img from an IPv6 TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 to the secondary storage location in the device flash memory.

Syntax: `copy tftp flash ipv6-address source-file-name primary | secondary`

The **ipv6-address** parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The **source-file-name** parameter specifies the name of the file you want to copy from the IPv6 TFTP server.

The **primary** keyword specifies the primary storage location in the device flash memory, while the **secondary** keyword specifies the secondary storage location in the device flash memory.

Copying a file to the running or startup configuration

For example, to copy a configuration file from an IPv6 TFTP server to the running or startup configuration, enter a command such as the following.

```bash
FESX Router# copy tftp running-config 2001:7382:e0ff:7837::3 newrun.cfg overwrite
```

This command copies the newrun.cfg file from the IPv6 TFTP server and overwrites the running configuration file with the contents of newrun.cfg.

NOTE

To activate this configuration, you must reload (reset) the device.

Syntax: `copy tftp running-config | startup-config ipv6-address source-file-name [overwrite]`
Specify the **running-config** keyword to copy the running configuration from the specified IPv6 TFTP server.

The **ipv6-address** parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The **source-file-name** parameter specifies the name of the file that is copied from the IPv6 TFTP server.

The **overwrite** keyword specifies that the device should overwrite the current configuration file with the copied file. If you do not specify this parameter, the device copies the file into the current running or startup configuration but does not overwrite the current configuration.

Using the IPv6 ncopy command

Platform Support:

- FastIron X Series devices running software release 02.4.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later

The **ncopy** command for IPv6 allows you to do the following:

- Copy a primary or secondary boot image from flash memory to an IPv6 TFTP server.
- Copy the running configuration to an IPv6 TFTP server.
- Copy the startup configuration to an IPv6 TFTP server
- Upload various files from an IPv6 TFTP server.

Copying a primary or secondary boot Image from flash memory to an IPv6 TFTP server

For example, to copy the primary or secondary boot image from the device flash memory to an IPv6 TFTP server, enter a command such as the following.

```
FESX Router# ncopy flash primary tftp 2001:7382:e0ff:7837::3 primary.img
```

This command copies the primary boot image named primary.img from flash memory to a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3.

Syntax: `ncopy flash primary | secondary tftp ipv6-address source-file-name`

The **primary** keyword specifies the primary boot image, while the **secondary** keyword specifies the secondary boot image.

The **tftp ipv6-address** parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The **source-file-name** parameter specifies the name of the file you want to copy from flash memory.

Copying the running or startup configuration to an IPv6 TFTP server

For example, to copy a device running or startup configuration to an IPv6 TFTP server, enter a command such as the following.

```
FESX Router# ncopy running-config tftp 2001:7382:e0ff:7837::3 bakrun.cfg
```
This command copies a device running configuration to a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 and names the destination file bakrun.cfg.

Syntax: `ncopy running-config | startup-config tftp ipv6-address destination-file-name`

Specify the `running-config` keyword to copy the device running configuration or the `startup-config` keyword to copy the device startup configuration.

The `tftp ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `destination-file-name` parameter specifies the name of the running configuration that is copied to the IPv6 TFTP server.

Uploading files from an IPv6 TFTP server

You can upload the following files from an IPv6 TFTP server:

- Primary boot image
- Secondary boot image
- Running configuration
- Startup configuration

Uploading a primary or secondary boot image from an IPv6 TFTP server

For example, to upload a primary or secondary boot image from an IPv6 TFTP server to a device flash memory, enter a command such as the following.

```
FESX Router# ncopy tftp 2001:7382:e0ff:7837::3 primary.img flash primary
```

This command uploads the primary boot image named primary.img from a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 to the device primary storage location in flash memory.

Syntax: `ncopy tftp ipv6-address source-file-name flash primary | secondary`

The `tftp ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy from the TFTP server.

The `primary` keyword specifies the primary location in flash memory, while the `secondary` keyword specifies the secondary location in flash memory.

Uploading a running or startup configuration from an IPv6 TFTP server

For example, to upload a running or startup configuration from an IPv6 TFTP server to a device, enter a command such as the following.

```
FESX Router# ncopy tftp 2001:7382:e0ff:7837::3 newrun.cfg running-config
```

This command uploads a file named newrun.cfg from a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 to the device.

Syntax: `ncopy tftp ipv6-address source-file-name running-config | startup-config`
The `tftp ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `source-file-name` parameter specifies the name of the file you want to copy from the TFTP server.

Specify the `running-config` keyword to upload the specified file from the IPv6 TFTP server to the device. The device copies the specified file into the current running configuration but does not overwrite the current configuration.

Specify the `startup-config` keyword to upload the specified file from the IPv6 TFTP server to the device. The device copies the specified file into the current startup configuration but does not overwrite the current configuration.

Using SNMP to save and load configuration information

You can use a third-party SNMP management application such as HP OpenView to save and load a configuration on a Brocade device. To save and load configuration information using HP OpenView, use the following procedure.

NOTE
The syntax shown in this section assumes that you have installed HP OpenView in the “/usr” directory.

1. Configure a read-write community string on the Brocade device, if one is not already configured. To configure a read-write community string, enter the following command from the global CONFIG level of the CLI.

   ```
   snmp-server community string ro | rw
   ```

 where `string` is the community string and can be up to 32 characters long.

2. On the Brocade device, enter the following command from the global CONFIG level of the CLI.

   ```
   no snmp-server pw-check
   ```

 This command disables password checking for SNMP set requests. If a third-party SNMP management application does not add a password to the password field when it sends SNMP set requests to a Brocade device, by default the Brocade device rejects the request.

3. From the command prompt in the UNIX shell, enter the following command.

   ```
   /usr/OV/bin/snmpset -c rw-community-string fdry-ip-addr 1.3.6.1.4.1.1991.1.1.2.1.5.0 ipaddress tftp-ip-addr 1.3.6.1.4.1.1991.1.1.2.1.8.0 octetstringascii 1.3.6.1.4.1.1991.1.1.2.1.9.0 integer command-integer
   ```

 where

 - `rw-community-string` is a read-write community string configured on the Brocade device.
 - `fdry-ip-addr` is the IP address of the Brocade device.
 - `tftp-ip-addr` is the TFTP server IP address.
 - `config-file-name` is the configuration file name.
 - `command-integer` is one of the following:
Scheduling a system reload

20 – Upload the startup-config file from the flash memory of the Brocade device to the TFTP server.

21 – Download a startup-config file from a TFTP server to the flash memory of the Brocade device.

22 – Upload the running-config from the flash memory of the Brocade device to the TFTP server.

23 – Download a configuration file from a TFTP server into the running-config of the Brocade device.

NOTE
Option 23 adds configuration information to the running-config on the device, and does not replace commands. If you want to replace configuration information in the device, use “no” forms of the configuration commands to remove the configuration information, then use configuration commands to create the configuration information you want. Follow the guidelines in “Dynamic configuration loading” on page 97.

Erasing image and configuration files

To erase software images or configuration files, use the commands described below. These commands are valid at the Privileged EXEC level of the CLI:

- `erase flash primary` erases the image stored in primary flash of the system.
- `erase flash secondary` erases the image stored in secondary flash of the system.
- `erase startup-config` erases the configuration stored in the startup configuration file; however, the running configuration remains intact until system reboot.

Scheduling a system reload

In addition to reloading the system manually, you can configure the Brocade device to reload itself at a specific time or after a specific amount of time has passed.

NOTE
The scheduled reload feature requires the system clock. You can use a Simple Network Time Protocol (SNTP) server to set the clock or you can set the device clock manually. Refer to “Specifying a Simple Network Time Protocol (SNTP) server” on page 44 or “Setting the system clock” on page 46.

Reloading at a specific time

To schedule a system reload for a specific time, use the `reload at` command. For example, to schedule a system reload from the primary flash module for 6:00:00 AM, April 1, 2003, enter the following command at the global CONFIG level of the CLI.

`FastIron# reload at 06:00:00 04-01-03`

Syntax: `reload at hh:mm:ss mm-dd-yy [primary | secondary]`

- `hh:mm:ss` is hours, minutes, and seconds.
Diagnostic error codes and remedies for TFTP transfers

If an error occurs with a TFTP transfer to or from a Brocade Layer 2 Switch or Layer 3 Switch, one of the following error codes is displayed on the console.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Message</th>
<th>Explanation and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flash read preparation failed.</td>
<td>A flash error occurred during the download.</td>
</tr>
<tr>
<td>2</td>
<td>Flash read failed.</td>
<td>Retry the download. If it fails again, contact customer support.</td>
</tr>
<tr>
<td>3</td>
<td>Flash write preparation failed.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Flash write failed.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TFTP session timeout.</td>
<td>TFTP failed because of a time out.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check IP connectivity and make sure the TFTP server is running.</td>
</tr>
</tbody>
</table>
Diagnostic error codes and remedies for TFTP transfers

<table>
<thead>
<tr>
<th>Error code</th>
<th>Message</th>
<th>Explanation and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>TFTP out of buffer space.</td>
<td>The file is larger than the amount of room on the device or TFTP server. If you are copying an image file to flash, first copy the other image to your TFTP server, then delete it from flash. (Use the <code>erase flash...</code> CLI command at the Privileged EXEC level to erase the image in the flash.) If you are copying a configuration file to flash, edit the file to remove unneeded information, then try again.</td>
</tr>
<tr>
<td>7</td>
<td>TFTP busy, only one TFTP session can be active.</td>
<td>Another TFTP transfer is active on another CLI session, or Web management session, or IronView Network Manager session. Wait, then retry the transfer.</td>
</tr>
<tr>
<td>8</td>
<td>File type check failed.</td>
<td>You accidentally attempted to copy the incorrect image code into the system. For example, you might have tried to copy a Chassis image into a Stackable device. Retry the transfer using the correct image.</td>
</tr>
<tr>
<td>16</td>
<td>TFTP remote - general error.</td>
<td>The TFTP configuration has an error. The specific error message describes the error. Correct the error, then retry the transfer.</td>
</tr>
<tr>
<td>17</td>
<td>TFTP remote - no such file.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>TFTP remote - access violation.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TFTP remote - disk full.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TFTP remote - illegal operation.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>TFTP remote - unknown transfer ID.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TFTP remote - file already exists.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>TFTP remote - no such user.</td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic error codes and remedies for TFTP transfers
Brocade Stackable Devices

Table 32 lists the individual Brocade FastIron switches and the Ironstack features they support. These features are supported only on FastIron stackable devices, and are supported in the Layer 2, base Layer 3, edge Layer 3, and full Layer 3 software images, except where explicitly noted.

<table>
<thead>
<tr>
<th>Feature</th>
<th>FESX</th>
<th>FSX</th>
<th>FSX 800</th>
<th>FSX 1600</th>
<th>FGS</th>
<th>FLS</th>
<th>FGS-STK</th>
<th>FLS-STK</th>
<th>FWS</th>
<th>FCX-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building an IronStack</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>• Aecure-setup</td>
<td></td>
</tr>
<tr>
<td>• Automatic configuration</td>
<td></td>
</tr>
<tr>
<td>• Manual configuration</td>
<td></td>
</tr>
<tr>
<td>Ironstack management</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ironstack management MAC address</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ironstack partitioning</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Persistent MAC address</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ironstack software upgrade</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ironstack and stack mismatch troubleshooting</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. FGS and FLS models can be upgraded in the field to support stacking using the Upgrade Kit. For information about how to order and install the Upgrade Kit, refer to the Foundry FastIron GS Compact Layer 2 Switch Hardware Installation Guide and the Foundry FastIron LS Hardware Installation Guide.

Brocade IronStack overview

This section gives a brief overview of IronStack technology, including IronStack terminology. This section also lists the FastIron models that support stacking.

IronStack technology features

A stack is a group of devices that are connected so that they operate as a single chassis. Brocade IronStack technology features include:

- Management by a single IP address
- Support for up to eight units per stack
- Flexible stacking ports
- Linear and ring stack topology support
- Secure-setup utility to make stack setup easy and secure
Brocade IronStack overview

- Active Controller, Standby Controller, and member units in a stack
- Active Controller management of entire stack
- Active Controller download of software images to all stack units
- Standby Controller for stack redundancy
- Active Controller maintenance of information database for all stack units
- Packet switching in hardware between ports on stack units
- All protocols operate on an IronStack in the same way as on a chassis system.

Brocade stackable models

Platform Support:
- FCX-S devices running software release 06.0.00 and later
- FastIron GS-STK and FastIron LS-STK devices running software version 05.0.00 and later

FastIron GS-STK and FastIron LS-STK devices

All FastIron GS-STK and FastIron LS-STK devices running software release 05.0.00 or later can be active members of a Brocade IronStack. Existing FGS and FLS models can be upgraded in the field to support stacking using the Upgrade Kit. For information about how to order and install the Upgrade Kit, refer to the Foundry FastIron GS Compact Layer 2 Switch Hardware Installation Guide and the Foundry FastIron LS Hardware Installation Guide.

The FGS-STK and FLS-STK models, and the upgrade kits are listed below:

FGS-STK models:
- FGS624P-STK
- FGS648P-STK
- FGS624P-DC-STK
- FGS648P-DC-STK
- FGS624P-POE-STK
- FGS648P-POE-STK
- FGS624P-POE-DC-STK
- FGS648P-POE-DC-STK
- FGS624XGP-STK
- FGS648P-POE-DC-STK
- FGS624XGP-DC-STK
- FGS624XGP-POE-STK
- FGS624XGP-POE-DC-STK

FLS-STK Models:
- FLS624-STK
- FLS648-STK
- FLS624-STK-CXU
- FLS648-STK-CXU
- FLS624-STK-U
Upgrade Kits:

- FGS624-STK-CXU
- FGS648-STK-CXU
- FGS624-STK-U
- FGS648-STK-U
- FLS624-STK-CXU
- FLS648-STK-CXU
- FLS624-STK-U
- FLS648-STK-U

FastIron CX-S devices

All FastIron CX-S devices running software release 06.0.00 or later can be active members of a Brocade IronStack. For information about how to install FCX devices, see the Brocade FastIron CX Hardware Installation Guide.

FCX-S Models:

- FCX648S
- FCX624S-HPOE
- FCX648S-HPOE
- FCX624S-ADV
- FCX648S-ADV
- FCX624S-HPOE-ADV
- FCX648S-HPOE-ADV

FCX-S Field Replaceable Units

- 2-port 10 Gbps E XFP pluggable module
- 210 Watt removable Power Supply Unit (non-POE models)
- 620 Watt removable Power Supply Unit (POE models)
- Removable blower for non-POE models
- Removable blower for POE models

Brocade IronStack terminology

Stack unit roles:

- **Active Controller** - Handles stack management and configures all system- and interface-level features.
- **Future Active Controller** - The unit that will take over as Active Controller after the next reload, if its priority has been changed to the highest priority. When a priority for a stack unit is changed to be higher than the existing Active Controller, the takeover does not happen immediately to prevent disruptions in the stack operation.
• **Standby Controller** - The stack member with the highest priority after the Active Controller. The Standby Controller takes over if the current Active Controller fails.

• **Stack Member** - A unit functioning in the stack in a capacity other than Active or Standby Controller.

• **Stack Unit** - Any device functioning within the stack, including the Active Controller and Standby Controller.

 • **Upstream Stack Unit** - An upstream unit is connected to the first stacking port on the Active Controller. (The left-hand port as you face the stacking ports.) Refer to Figure 10 and Figure 11.

 • **Downstream Stack Unit** - A downstream unit is connected to the second stacking port on the Active Controller. (The right-hand port as you face the stacking ports.) Refer to Figure 10 and Figure 11.

General terminology

• **Bootup Role** - the role a unit takes during the boot sequence. This role can be standalone, Active Controller, Standby Controller, or stack member. The Active Controller or a standalone unit can access the full range of the CLI. Until a stack is formed, the local consoles on the Standby Controller and stack members provide access to a limited form of the CLI, such as the show, stack, and a few debug commands. When the stack is formed, all local consoles are directed to the Active Controller, which can access the entire CLI. The last line of output from the `show version` command indicates the role of a unit, unless it is a standalone unit, in which case it is not shown. For example:

 My stack unit ID = 1, bootup role = active

• **Clean Unit** - A unit that contains no startup flash configuration or run time configuration. To erase old configuration information, enter the `erase startup-config` command and reset the unit. For FCX devices, the run-time configuration on a clean unit may also contain default-port information.

• **Control Path** - A path across stacking links dedicated to carrying control traffic such as commands to program hardware or software image data for upgrades. A stack unit must join the control path to operate fully in the stack.

• **Default Port** - FastIron CX devices use the `default-port` command to define stacking port candidates.

• **Interprocessor Communications (IPC)** - The process by which proprietary packets are exchanged between stack unit CPUs.

• **IronStack** - A set of Brocade stackable units (maximum of eight) and their connected stacking links so that: all units can be accessed through their common connections, a single unit can manage the entire stack, and configurable entities, such as VLANs and trunk groups, can have members on multiple stack units.

• **Non-Functioning Stack Unit** - A stack unit that is recognized as a stack member, and is communicating with the Active Controller over the Control Path, but is in a non-functioning state. Because of this state, traffic from the non-stack ports will not be forwarded into the stack - they will be dropped or discarded. This may be caused by an image or configuration mismatch.

• **Sequential Connection** - Stack unit IDs, beginning with the Active Controller, are sequential. For example, 1, 3, 4, 6, 7 is sequential if Active Controller is 1 (gaps are allowed). 1, 7, 6, 4, 3 are non-sequential in a linear topology, but become sequential in a ring topology when counted from the other direction as: 1, 3, 4, 6, 7.
Building an IronStack

This section describes how to build an IronStack. Before you begin, you should be familiar with the supported stack topologies and the software requirements. When you are ready to build your stack, you can go directly to the instructions.

Brocade IronStack topologies

Brocade IronStack technology supports linear and ring stack topologies. Although Brocade stackable units may be connected in a simple linear topology, Brocade recommends a ring topology because it offers the best redundancy and the most resilient operation.

Figure 10 shows a linear stack topology. Figure 11 shows a ring stack topology. These illustrations depict one cabling configuration, but cabling methods may differ depending on requirements. For information about how to physically connect your stacking units, see the Foundry FastIron GS Compact Layer 2 Switch Hardware Installation Guide, the Foundry FastIron LS Hardware Installation Guide, or the Foundry FastIron CX Hardware Installation Guide.
Mixed unit topologies

A Brocade IronStack can contain all FGS-STK devices, all FLS-STK devices, or any combination of the two. FastIron CX-S devices cannot be combined in a stack with FGS-STK or FLS-STK devices. In mixed stacks, the stack ports are located on the front panel of FGS-STK devices, and on the rear panel of FLS-STK devices. Building a mixed-environment stack requires longer cables than an unmixed stack. Plan your installation accordingly.

For more information about connecting mixed stacks, see the *Foundry FastIron GS Compact Layer 2 Switch Hardware Installation Guide* and the *Foundry FastIron LS Hardware Installation Guide*.

For more information about connecting FastIron CX-S devices in stack topologies, see the *Brocade FastIron CX Hardware Installation Guide*.

Figure 10 shows a linear stack topology. *Figure 11* shows a ring stack topology. These illustrations depict only one cabling configuration, but cabling methods may differ depending on requirements. For information about how to physically connect your stacking units, refer to the *Foundry FastIron GS Compact Layer 2 Switch Hardware Installation Guide* and the *Foundry FastIron LS Hardware Installation Guide*.

NOTE

FCX devices cannot be connected in a stack with non-FCX devices.

FIGURE 10 Linear stack topology (FGS-STK and FLS-STK devices)

NOTE

In FGS-STK and FLS-STK linear topologies, stack units at either end of the stack use only one stacking port. The unused stacking port may be used as a data port.

FIGURE 11 Ring stack topology (FGS-STK and FLS-STK devices)
In FGS-STK and FLS-STK ring topologies, stack units are considered both upstream and downstream because every unit can be accessed from either direction.

FastIron CX stack topologies

FastIron CX devices cannot be mixed in a stack with other devices. However, you can mix 24-port and 48-port FCX devices in a single stack, to a maximum of eight units per stack.

FIGURE 12 FastIron CX linear and ring stack topologies
Software requirements

All units in an IronStack must be running the same software version. See “Troubleshooting an IronStack” on page 177 for more information about troubleshooting software and other mismatches on an IronStack.

IronStack construction methods

There are three ways to build an IronStack.

1. Use the secure-setup utility to form your stack. Secure-setup gives you control over the design of your stack topology and provides security through password verification. For the secure-setup procedure, refer to “Scenario 1 - Configuring a three-member IronStack in a ring topology using secure-setup” on page 117.

2. Automatic stack configuration. With this method, you enter all configuration information, including the module type and the priorities of all members into the unit you decide will be the Active Controller and set its priority to be the highest. When you enable stacking on the Active Controller the stack then forms automatically. This method requires that you start with clean units (except for the Active Controller) that do not contain startup or run time configurations. Refer to “Scenario 2 - Configuring a three-member IronStack in a ring topology using the automatic setup process” on page 121.

3. Manual stack configuration. With this method, you configure every unit individually, and enable stacking on each unit. Once the units are connected together, they will automatically operate as an IronStack. With this method the unit with the highest priority becomes the Active Controller, and ID assignment is determined by the sequence in which you physically connect the units. Refer to “Scenario 3 - Configuring a three-member IronStack in a ring topology using the manual configuration process” on page 124.

Configuration notes

Before you configure your IronStack, consider the following guidelines:

- Consider the number of units, and the mix of units your stack will contain, and how the stacking ports on the units will be connected. For more information refer to the Foundry FastIron GS Compact Layer 2 Switch Hardware Installation Guide, or the Foundry FastIron LS Hardware Installation Guide. For FCX devices, refer to the Brocade FastIron CX Hardware Installation Guide.

- The stack should be physically cabled in a linear or ring topology. Connect only those units that will be active in the stack.

- Make sure all units intended for the stack are running the same software version (release 05.0.00 and later). Refer to “Confirming software versions” on page 148.

- When you have a full stack of 8 units, you may need to increase the trap hold time from the default, which is 60 seconds, to three minutes (180 seconds). This will prevent the loss of initial boot traps. To increase the trap hold time, use the following command.

 FCX Switch# snmp-server enable traps hold 180
 Syntax: snmp-server enable traps hold <seconds>

 NOTE
 The router image takes longer to boot than the switch image.
Scenario 1 - Configuring a three-member IronStack in a ring topology using secure-setup

NOTE
This example uses FGS-STK and FLS-STK devices, however this process also works for FCX devices. For more detailed information about configuring an FCX IronStack, see “Configuring an FCX IronStack” on page 125.

This scenario describes how to build an IronStack using the secure-setup utility. Secure-setup lets you easily configure your entire stack through the Active Controller, which propagates the configuration to all stack members. Secure-setup is the most secure way to build an IronStack, and gives you the most control over how your stack is built. For example, secure-setup offers three security features that prevent unauthorized devices from accessing or joining an IronStack:

- Authentication of secure-setup packets provides verification that these packets are from genuine Brocade stack unit. MD5-based port verification confirms stacking ports.
- Superuser password is required to allow password-protected devices to become members of an IronStack.
- The stack disable command. When this command is issued, a unit does not listen for or send stacking packets, which means that no other device in the network can force the stacking-disabled unit to join an IronStack.

Secure-setup can also be used to add units to an existing IronStack (refer to “Adding, removing, or replacing units in an IronStack” on page 172) and to change the stack IDs of stack members (refer to “IronStack unit identification” on page 143).

When secure-setup is issued on a unit that is not already the Active Controller, this unit becomes the Active Controller, and, if it does not have an assigned priority, secure-setup assigns it a priority of 128. Any unit that then tries to join the stack must have an assigned priority less than 128. If secure-setup discovers a unit with a priority of 128 or higher, it changes the priority to 118.

When secure-setup is issued on a unit that is not already the Active Controller, this unit becomes the Active Controller. If this unit does not already have an assigned priority, secure-setup will assign this unit a priority of 128 by default, if no other units in the stack have a priority higher than 128. If another unit in the stack has a priority of 128 or higher, secure-setup will give the Active Controller a priority equal to the highest priority unit in the stack (which is by default the Standby Controller). When the Active Controller and the Standby Controller have identical priorities, during a reset, the old Active Controller cannot reassume its role from the Standby Controller (which has become the Active Controller at the reset).

If the previous Active Controller again becomes active, and you want it to resume the role of Active Controller, you should set the priority for the Standby Controller to a priority lower than 128. If you do not want the previous Active Controller to remain Active Controller, you can set the same priority for both Active and Standby controllers, (higher than, or equal to 128).

NOTE
Secure-setup works for units within a single stack. It does not work across stacks.

Figure 11 on page 114 shows an IronStack with three units in a ring topology. Refer to this figure as you follow the procedure steps for this scenario.

Follow the steps given below to configure a three-member stack in a ring topology using secure-setup.
1. Connect the devices using the stacking ports and stack cabling. For more information refer to the appropriate hardware installation guides.

2. Power on the units.

3. Connect your console to the intended Active Controller. The unit through which you run secure-setup becomes the Active Controller by default.

4. Issue the `stack enable` command on the intended Active Controller.

```
FGS648-STK Switch# config t
FGS648-STK Switch(config)# stack enable
FGS648-STK Switch(config)# exit
FGS648-STK Switch#
```

5. Enter the `stack secure-setup` command. As shown in the following example, this command triggers a Brocade proprietary discovery protocol that begins the discovery process in both upstream and downstream directions. The discovery process produces a list of upstream and downstream devices that are available to join the stack. Secure-setup can detect up to 7 units in each direction (14 total), but since the maximum number of units in a stack is 8, you must select a maximum of 7 units from both directions.

NOTE
To exit the secure-setup, enter `^C` at any time.

You should see output similar to the following.

```
FLS648-STK Switch# stack secure-setup
FLS648-STK Switch# Discovering the stack topology...

Current Discovered Topology - RING

Available UPSTREAM units
Hop(s)  Type    Mac Address
1       FLS624  0012.f239.2d40
2       FLS624  0012.f2d5.2100

Available DOWNSTREAM units
Hop(s)  Type    Mac Address
1       FLS624  0012.f2d5.2100
2       FGS624  0012.f239.2d40

Do you accept the topology (RING) (y/n)?: y

If you accept the topology, you will see output similar to the following.

Selected Topology:
Active  Id   Type    Mac Address
1    FLS648  00e0.52ab.cd00

Selected UPSTREAM units
Hop(s)  Id   Type    Mac Address
1       3    FLS624  0012.f239.2d40
2       2    FGS624  0012.f2d5.2100

Selected DOWNSTREAM units
Hop(s)  Id   Type    Mac Address
1  2  FGS624  0012.f2d5.2100
2  3  FLS624  0012.f239.2d40

Do you accept the unit ids (y/n)?: y

To accept the unit ID assignments, type y. If you do not want to accept the ID assignments, type n. You can use secure-setup to renumber the units in your stack. Refer to “Renumbering stack units” on page 174.

If you accept the unit IDs, the stack is formed, and you can see the stack topology using the show stack command.

FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID   Type   Role    Mac Address    Pri State    Comment
1  S FLS648 active 00e0.52ab.cd00 128 local    Ready
2  D FLS624 standby 0012.f2d5.2100  60 remote   Ready
3  D FGS624 member 0012.f239.2d40   0 remote   Ready

active        standby
+---+        +---+        +---+
-2/1| 1 |3/1--2/1| 2 |3/1--2/2| 3 |2/1-
+---+        +---+        +---+

Current stack management MAC is 00e0.52ab.cd00

NOTE
For field descriptions for the show stack command, refer to “Displaying stack resource information” on page 160.

NOTE
In this output, D indicates a dynamic configuration. After you perform a write memory, this display will change to S, for static configuration.

6. The Active Controller automatically checks all prospective stack members to see if they are password protected. If a unit is password protected, you will be asked to enter the password before you can add the unit. If you do not know the password, take one of the following actions:

- Discontinue secure-setup by entering ^C
- Obtain the device password from the administrator
- Continue secure-setup for your stack. The password-protected device and all devices connected behind it will not be included in the setup process.

In the following example, the second unit is password protected, so you are asked for the password.

FGS624-STK Switch# stack secure-setup
FGS624-STK Switch# Discovering the stack topology...

Verifying password for the password protected units...

Found UPSTREAM units
Hop(s)   Type    Mac Address
1  2  FLS648  001b.ed5e.c480
2  3  FGS648  00e0.5205.0000

Enter password for FGS648 located at 2 hop(s): ****

Enter the number of the desired UPSTREAM units (1-2)[1]: 2
5 Building an IronStack

Selected Topology:
Active  Id   Type    Mac Address
 1  FGS624  00e0.5201.4000

Selected UPSTREAM units
Hop(s)  Id   Type    Mac Address
 1     2    FLS648  001b.ed5e.c480
 2     3    FGS648  00e0.5205.0000

Do you accept the unit id's (y/n)?: y

7. When the Active Controller has finished the authentication process, you will see output that shows the suggested assigned stack IDs for each member. You can accept these recommendations, or you can manually configure stack IDs. Enter the show stack command to verify that all units are in the ready state.

FGS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role    Mac Address    Pri State    Comment
 1 S FGS624 active  00e0.5201.4000 128 local    Ready
 2 S FLS648 standby 001b.ed5e.c480   0 remote   Ready
 3 S FGS648 member  00e0.5205.0000   0 remote   Ready

---+        +---+        +---+
-2/1| 1 |3/1--2/1| 2 |3/1--2/2| 3 |2/1--
    +---+        +---+        +---+   |
    |                                     |
---+-------------------------------------|
Current stack management MAC is 00e0.5201.4000
FLS624-STK Switch#

NOTE
For field descriptions for the show stack command, refer to “Displaying stack resource information” on page 160.

8. Enter the write memory command on the Active Controller once all of the stack units are active. This command initiates configuration synchronization, which copies the configuration file of the Active Controller to the rest of the stack units.

NOTE
The secure-setup process may modify your configuration with information about new units, stacking ports, etc. For this reason, it is very important to save this information by issuing the write memory command. If you do not do this, you may lose your configuration information the next time the stack reboots.

The secure-setup process for your stack is now complete.

NOTE
During the secure-setup process, after 1 minute of inactivity, authentication for stack members will expire and you will need to restart the process.
Scenario 2 - Configuring a three-member IronStack in a ring topology using the automatic setup process

This example uses FGS-STK and FLS-STK devices, however this process also works for FCX devices. FCX devices determine stacking port candidates through the default-port setting. An FCX device with the default port configuration is still considered a clean unit. To ensure that the device remains a clean unit, do not do a write memory on the device.

For more detailed information about configuring an FCX IronStack, see “Configuring an FCX IronStack” on page 125.

Follow the steps given below to configure a three-member IronStack in a ring topology using automatic setup process.

1. Power on the devices.
2. This process requires clean devices (except for the Active Controller) that do not contain any configuration information. To change a device to a clean device, enter the `erase startup-config` command and reset the device. When all of the devices are clean, continue with the next step.

   **NOTE**
   The physical connections must be sequential, and must match the stack configuration.

3. Log in to the device that you want to be the Active Controller.
4. Configure the rest of the units by assigning ID numbers and module information on each unit. The stack ID can be any number from 1 through 8.

   ```
 FLS624-STK Switch# config t
 FLS624-STK Switch(config)# stack unit 2
 FLS624-STK Switch(config-unit-2)# module 1 fls-24-port-copper-base-module
 FLS624-STK Switch(config-unit-2)# module 2 fls-xfp-1-port-10g-module
 FLS624-STK Switch(config-unit-2)# module 3 fls-xfp-1-port-10g-module
 FLS624-STK Switch(config-unit-2)# stack unit 3
 FLS624-STK Switch(config-unit-3)# module 1 fls-24-port-copper-base-module
 FLS624-STK Switch(config-unit-3)# module 2 fls-xfp-1-port-10g-module
 FLS624-STK Switch(config-unit-3)# module 3 fls-xfp-1-port-10g-module
   ```

   **NOTE**
   Each stack unit must have a unique ID number.

5. Assign a priority to the Active Controller using the `priority` command, as shown.

   ```
 FLS624-STK Switch(config)# stack unit 1
 FLS624-STK Switch(config-stack-1)# priority 255
   ```

   **Syntax:** priority <num from 0-255> (255 is the highest priority)

6. Assign a priority to the unit that will act as Standby Controller.

   ```
 FLS624-STK Switch(config)# stack unit 2
 FLS624-STK Switch(config-unit-2)# priority 240
   ```

7. Do a `write memory` command to save your settings.

8. Enter the `stack enable` command.
9. Physically connect the devices in a stack topology, which triggers an election during which the stack is automatically configured. For more information about cabling the devices, refer to the appropriate hardware installation guides.

**NOTE**
When you are configuring individual stack units, you can skip ID numbers. However, the sequence in which the units are connected must match the order in which you configure them. For example, you could configure unit 1 as FGS624, unit 3 as FGS648, unit 4 as FGS624, unit 6 as FLS624 and unit 7 as FLS648. The physical connection order must be: Active (FGS624), FGS648 (3), FGS624 (4), FLS624 (6) and FLS648 (7). The Active Controller is stack unit 1.

10. Verify your stack configuration by entering the `show running config` command.

```
FLS624-STK Switch# show running config
Current configuration:
! ver 05.0.02
! stack unit 1
 module 1 fls-24-port-copper-base-module
 module 2 fls-xfp-1-port-10g-module
 module 3 fls-xfp-1-port-10g-module
 priority 255
stack unit 2
 module 1 fls-24-port-copper-base-module
 module 2 fls-xfp-1-port-10g-module
 module 3 fls-xfp-1-port-10g-module
 priority 240
stack unit 3
 module 1 fls-24-port-copper-base-module
 module 2 fls-xfp-1-port-10g-module
 module 3 fls-xfp-1-port-10g-module
stack enable
!
```

**NOTE**
For field descriptions for the `show running config` command, refer to “Displaying running configuration information” on page 168.

11. To see information about your stack, enter the `show stack` command.

```
FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
-----+--------+---------+----------------+------------+-------------
1 S FLS624 active 00e0.5200.0100 255 local Ready
2 S FLS624 standby 0012.f2eb.afc0 240 remote Ready
3 S FGS624 member 001b.ed5d.a1c0 0 remote Ready

active standby
+-++-+-++-+-++-
-2/1| 1 |3/1--2/1| 2 |3/1--2/2| 3 |2/1-
|+-++-+-++-+-++
|
|-----------------------------|

Current stack management MAC is 00e0.5200.0100
FLS624-STK Switch#
```
NOTE
For field descriptions for the `show stack` command, refer to “Displaying stack resource information” on page 160.

Configuration notes for scenario 2

Consider the following items when building a stack using the automatic setup process:

- If a new unit configuration matches other unit configurations, the Active Controller gives this unit the lowest sequential ID. For example, in a stack configuration that contains eight FGS624 configurations, but only units 1, 4 and 8 are currently active, if you place a new FGS624 unit between units 4 and 8, the new unit will be assigned ID 5, even though it might match unused IDs 2, 3, 5, 6, and 7, because 5 is the lowest sequential ID.

- In a ring topology, the same new unit might assume either ID if either direction produces sequential IDs. For example, in a four-member stack where IDs 2 and 4 are reserved, a new unit could assume either ID 2 or ID 4 because either ID 1, 2, 3 or 1, 3, 4 is sequential.
Building an IronStack

Scenario 3 - Configuring a three-member IronStack in a ring topology using the manual configuration process

NOTE
This example uses FGS-STK and FLS-STK devices, however this process also works for FCX devices. For more detailed information about configuring an FCX IronStack, see “Configuring an FCX IronStack” on page 125

Follow the steps given below to configure a three-member IronStack in a ring topology using the manual configuration process.

1. Power on the devices. Do not connect the stacking cables at this point.

2. Assign a priority of 255 to unit 1, and a priority of 240 to unit 3 using the priority command. You do not have to assign a priority to the third device. Enter the stack enable command on each device. In this example, device 1 will be the Active Controller and device 2 will be the Standby Controller.

   **Unit 1**
   
   FLS624-STK Switch# config t
   FLS624-STK Switch(config)# stack unit 1
   FLS624-STK Switch(config-unit-1)# priority 255
   FLS624-STK Switch(config-unit-1)# stack enable

   Enable stacking. This unit actively participates in stacking
   Write startup-config done.
   FLS624-STK Switch(config-unit-1)# Flash Memory Write (8192 bytes per dot)
   .Flash to Flash Done.
   FLS624-STK Switch(config-unit-1)# end

   **Unit 2**
   
   FLS624-STK Switch# config t
   FLS624-STK Switch(config)# stack enable

   Enable stacking. This unit actively participates in stacking
   FLS624-STK Switch(config)# Handle election, was standalone --> member, assigned-ID=2, T=261285 ms.
   Write startup-config done.
   FLS624-STK Switch(config-unit-1)# Flash Memory Write (8192 bytes per dot)
   .Flash to Flash Done.
   FLS624-STK Switch(config-unit-1)# end
   FLS624-STK Switch# config t

   **Unit 3**
   
   FLS624-STK Switch# config t
   FLS624-STK Switch(config)# stack unit 1
   FLS624-STK Switch(config-unit-1)# priority 240
   FLS624-STK Switch(config-unit-1)# stack enable

   Enable stacking. This unit actively participates in stacking
   FLS624-STK Switch(config-unit-1)# end

3. Connect the devices in a stack topology. The Active Controller will retain its ID. The rest of the units are assigned unique ID numbers depending on the sequence in which you connected them.
For more information about cabling the devices, refer to the appropriate hardware installation guides.

**NOTE**
This method does not guarantee sequential stack IDs. If you want to change stack IDs to make them sequential, you can use secure-setup. Refer to “Renumbering stack units” on page 174.

### Configuring an FCX IronStack

The process for building a stack of FCX devices is similar to that for mixed stacks of FGS-STK and FLS-STK devices, except that FCX devices cannot be intermixed with non-FCX devices, and FCX devices have more possible stacking ports.

Every FCX device contains two default 16 Gbps stacking ports on the rear panel and two 10 Gbps ports on the front panel that can also be used as stacking ports. An FCX IronStack may contain up to 8 24-port and 48-port devices, using any combination of the rear panel stacking ports and the front panel optional stacking ports. To use ports other than the factory-default 16 Gbps ports, you must define the ports for each device in the run time configuration. You can also configure the 16 Gbps ports to operate as 10 Gbps ports. See “Configuring FCX stacking ports” on page 125.

An FCX “clean unit” may contain a default port configuration, but it is still considered a clean unit. To preserve this state, do not do a write memory on the unit before you build the stack. An FCX device with the default port configuration is still considered a clean unit. To ensure that the device remains a clean unit, do not do a write memory on the device. (Write memory adds a startup-config, and the device is no longer a clean unit.)

**NOTE**
The automatic setup process will not work for FCX devices that do not contain the default port information in their clean unit configurations.

### Configuring FCX stacking ports

FastIron CX devices have two 10 Gbps ports on the front panel and two 16 Gbps ports on the rear panel. All of these ports may be used as stacking ports, however there are some rules for configuring the ports when setting up an FCX IronStack.

**Configuring CX4 ports from 16 Gbps to 10 Gbps**

You can configure the 16 Gbps CX4 ports to operate as 10 Gbps ports, as shown in the following example.

**NOTE**
Both ends of a link must be configured for 10 Gbps for the link to operate as 10 Gbps. If you want the link to operate as a 16 Gbps link, both ends of the link must be configured for 16 Gbps.

```
FCX624S-F Router# config t
FCX624S-F Router(config)# interface e 1/2/1
FCX624S-F Router(config-if-e10000-cx4-1/2/1)# speed-duplex
10-full 10M, full duplex
10-half 10M, half duplex
100-full 100M, full duplex
100-half 100M, half duplex
1000-full-master 1G, full duplex, master
```
Building an IronStack

1000-full-slave  1G, full duplex, slave
10g-full         10G, full duplex
auto            Autonegotiation
FCX624S-F Router(config-if-e10000-cx4-1/2/1)# speed-duplex 10g-full
FCX624S-F Router(config-if-e10000-cx4-1/2/1)# end
FCX624S-F Router# show int br | in Up
1/1/4   Up   Forward Full 1G None No 1 0 001b.f288.0003
1/2/1   Up   Forward Full 10G None No 1 0 001b.f288.0019
1/3/1   Up   Forward Full 10G None No N/A 0 001b.f288.001b
3/3/1   Up   Forward Full 10G None No N/A 0 024.3814.9df3
mgmt1   Up   None     Full 1G None No 1 0 001b.f288.0018
FCX624S-F Router# show interface e 1/2/1
16GigabitEthernet1/2/1 is up, line protocol is up
Hardware is 16GigabitEthernet, address is 001b.f288.0019 (bia 001b.f288.0019)
Interface type is 16Gig CX4
Configured speed 10Gbit, actual 10Gbit, configured duplex fdx, actual fdx
Member of L2 VLAN ID 1, port is untagged, port state is FORWARDING
BPDU guard is Disabled, ROOT protect is Disabled
Link Error Dampening is Disabled
STP configured to ON, priority is level0, mac-learning is enabled
Flow Control is enabled
mirror disabled, monitor disabled
Not member of any active trunks
Not member of any configured trunks
No port name
IP MTU 1500 bytes, encapsulation ethernet
300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
300 second output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 multicasts, 0 unicast
0 input errors, 0 CRC, 0 frame, 0 ignored
0 runts, 0 giants
0 packets output, 0 bytes, 0 underruns
Transmitted 0 broadcasts, 0 multicasts, 0 unicast
0 output errors, 0 collisions
Relay Agent Information option: Disabled

Configuring CX4 ports from 10 Gbps to 16 Gbps

To change the CX4 ports from 10 Gbps back to 16 Gbps, enter the no speed-duplex 10g command at the interface level of the CLI, as shown in this example.

FCX624S-F Router# config t
FCX624S-F Router(config)# interface e 1/2/1
FCX624S-F Router(config-if-e10000-cx4-1/2/1)# no speed-duplex 10g
FCX624S-F Router(config-if-e10000-cx4-1/2/1)# show interface br | in Up
1/1/4   Up   Forward Full 1G None No 1 0 001b.f288.0003
1/2/1   Up   Forward Full 16G None No 1 0 001b.f288.0019
1/3/1   Up   Forward Full 10G None No N/A 0 001b.f288.001b
3/3/1   Up   Forward Full 10G None No N/A 0 024.3814.9df3
mgmt1   Up   None     Full 1G None No 1 0 001b.f288.0018
FCX624S-F Router(config-if-e10000-cx4-1/2/1)# show interface e 1/2/1
16GigabitEthernet1/2/1 is up, line protocol is up
Hardware is 16GigabitEthernet, address is 001b.f288.0019 (bia 001b.f288.0019)
Interface type is 16Gig CX4
Configured speed 16Gbit, actual 16Gbit, configured duplex fdx, actual fdx
Member of L2 VLAN ID 1, port is untagged, port state is FORWARDING
BPDU guard is Disabled, ROOT protect is Disabled
Link Error Dampening is Disabled  
STP configured to ON, priority is level0, mac-learning is enabled  
Flow Control is enabled  
mirror disabled, monitor disabled  
Not member of any active trunks  
Not member of any configured trunks  
No port name  
IP MTU 1500 bytes, encapsulation ethernet  
300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization  
300 second output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization  
0 packets input, 0 bytes, 0 no buffer  
Received 0 broadcasts, 0 multicasts, 0 unicasts  
0 input errors, 0 CRC, 0 frame, 0 ignored  
0 runts, 0 giants  
0 packets output, 0 bytes, 0 underruns  
Transmitted 0 broadcasts, 0 multicasts, 0 unicasts  
0 output errors, 0 collisions  
Relay Agent Information option: Disabled

FCX624S-F Router(config-if-e10000-cx4-1/2/1)#

**Configuring default ports on FCX devices**

FCX devices ship with two default stacking ports configured. Use the `stack-port` command to select only one of these factory default ports as the stacking port. If you do not configure `stack-port`, both default ports will operate as stacking ports.

Use the `default-port` command to use ports other than the factory default ports as stacking ports. You must configure default-port on each unit before building a stack. Once you have configured default-port on all units, you can then use any of the three stack construction methods to build a stack. The Active Controller then learns the port configuration for each unit.

**NOTE**
You cannot change the setting for a default port if the port is in use.

**Configuring stacking ports**

When stacking is enabled on FGS-STK and FLS-STK devices, the first two ports can act as stacking ports. The stacking ports for FGS-STK devices are ports X/2/1 and X/2/2. The stacking ports for FLS-STK devices are ports X/2/1 and X/3/1.

You have the option to configure only one of these ports as a stacking port, in which case the other port functions as a regular port. **Table 33** identifies these ports for each model.

<table>
<thead>
<tr>
<th>Device</th>
<th>Slot 1</th>
<th>Slot 2</th>
<th>Slot 3</th>
<th>Slot 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLS624-STK</td>
<td>24 10/100/1000 ports on front panel</td>
<td>Left 10 Gbps port on back panel</td>
<td>Right 10 Gbps port on back panel</td>
<td>10 Gbps uplink port on front panel</td>
</tr>
<tr>
<td>FLS648-STK</td>
<td>48 10/100/1000 ports on front panel</td>
<td>Left 10 Gbps port on back panel</td>
<td>Right 10 Gbps port on back panel</td>
<td>N/A</td>
</tr>
<tr>
<td>FGS624-STK</td>
<td>24 10/100/1000 ports on front panel</td>
<td>Two 10 Gbps ports on front panel</td>
<td>10 Gbps uplink port on front panel</td>
<td>N/A</td>
</tr>
<tr>
<td>FGS648-STK</td>
<td>48 10/100/1000 ports on front panel</td>
<td>Two 10 Gbps ports on front panel</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
FIGS624XGP-STK Switch(config)# stack unit 3
FIGS624XGP-STK Switch(config-unit-3)# stack-port 3/2/1
Syntax: [no] stack-port stack-unit/slotnum/portnum
If you enter an incorrect stack port number, you will get an error similar to the following.

FGS624XGP-STK Switch(config-unit-3)# stack-port 3/4/1
Error! port 3/4/1 is invalid
FGS624XGP-STK Switch(config-unit-3)# stack-port 3/2/1

To return both ports to stacking status, enter the no stack-port command on the single stacking port. This converts both ports to stacking ports. By default, if both ports are stacking ports, they are displayed by the system only when stacking is enabled. If only one port is configured as a stacking port, the system always displays this port.

**Build a stack using the default 16 Gbps stacking ports**

On all FCX devices, the 16 Gbps ports are the default stacking ports. If you are building a stack of FCX devices, and you want to use only the 16 Gbps ports, simply connect the units and use secure-setup on stack unit 1. secure-setup will build the stack automatically, as shown in the following example.

1. To build a stack of three FCX devices using the default stacking ports, first connect all three devices using the stacking ports. If you issue a show stack and show running config commands at this point on each stack unit 1, you should see results similar to the following.

FCX624S-ADV Router# show stack
***** Warning! stack is not enabled. *****
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FCX624 alone 0012.f2d4.69c0 0 local None:0

+-++-+-
-2/2| 1 |2/1-
+-++-
Current stack management MAC is 0012.f2d4.69c0
FCX624S-ADV Router# show running config
Current configuration:

!
Building an IronStack

Issue the same commands for stack unit 2 and stack unit 3:

For stack unit 2
FCX624S-ADV Router# show stack
***** Warning! stack is not enabled. *****
alone: standalone, D: dynamic config, S: static config
ID  Type  Role  Mac Address  Pri State  Comment
1 S  FCX624  alone 0200.9999.0000 0 local None:0

+----+
| 2/2| 1 |2/1-|
+----+
Current stack management MAC is 0200.9999.0000
FCX624S-ADV Router# show running configuration
Current configuration:
! ver 06.0.00T7f3
! stack unit 1
  module 1 FCX-24-port-management-module
  module 2 FCX-cx4-2-port-16g-module
  module 3 FCX-xfp-2-port-10g-module
!

For stack unit 3:
FCX624S-ADV Router# show stack
***** Warning! stack is not enabled. *****
alone: standalone, D: dynamic config, S: static config
ID  Type  Role  Mac Address  Pri State  Comment
1 S  FCX624  alone 0200.9999.0000 0 local None:0

+----+
| 2/2| 1 |2/1-|
+----+
Current stack management MAC is 0200.9999.0000
FCX624S-ADV Router# show running configuration
Current configuration:
! ver 06.0.00T7f3
! stack unit 1
  module 1 FCX-24-port-management-module
  module 2 FCX-cx4-2-port-16g-module
  module 3 FCX-xfp-2-port-10g-module
!

2. Log in to the unit that you want to be the Active Controller (in this example, stack unit 1). Enable stacking and secure-setup as shown.
FCX624S-ADV Router# config t
FCX624S-ADV Router(config)# stack enable
Enable stacking. This unit actively participates in stacking.

FCX624S-ADV Router(config)# end
FCX624S-ADV Router# show running config
Current configuration:
!
ver 06.0.00T7f3
!
stack unit 1
  module 1 FCX-24-port-management-module
  module 2 FCX-cx4-2-port-16g-module
  module 3 FCX-xfp-2-port-10g-module
  stack-port 1/2/1 1/2/2
stack enable
!
FCX624S-ADV Router# stack secure-setup
FCX624S-ADV Router# Discovering the stack topology...
Available UPSTREAM units
Hop(s)  Id   Type       Mac Address
1       new  FCX624     001b.f2c8.0611
2       new  FCX624     0200.9999.0000
Enter the number of the desired UPSTREAM units (0-2)[0]: 2
Selected Topology:
Active  Id   Type       Mac Address
1    FCX624     0012.f2d4.69c0
Selected UPSTREAM units
Hop(s)  Id   Type       Mac Address
1  2    FCX624     001b.f2c8.0611
2  3    FCX624     0200.9999.0000
Do you accept the unit id (y/n)?: y

3. Enter the show running config command to confirm that the stack has been built correctly.

FCX624S-ADV Router# show running config
Current configuration:
!
ver 06.0.00T7f3
!
stack unit 1
  module 1 fcx-24-port-management-module
  module 2 fcx-cx4-2-port-16g-module
  module 3 fcx-xfp-2-port-10g-module
  priority 128
  stack-port 1/2/1
stack unit 2
  module 1 fcx-24-port-management-module
  module 2 fcx-cx4-2-port-16g-module
  module 3 fcx-xfp-2-port-10g-module
  stack-port 2/2/1 2/2/2
stack unit 3
  module 1 fcx-24-port-management-module
  module 2 fcx-cx4-2-port-16g-module
  module 3 fcx-xfp-2-port-10g-module
  stack-port 3/2/2
stack enable
**Build a stack using the 10 Gbps stacking ports**

If you are building a stack of FCX devices, and you want to use only the 10 Gbps ports, you must change the default port setting on all units before you connect the stack. Once this is done, you can enable stacking and secure-setup on stack unit 1 and the stack will build automatically, as shown in the following example.

---

**NOTE**

For this scenario, all units must be clean units (unit ID 1) before you add them to the stack. FCX devices determine stacking port candidates through the default-port setting. An FCX clean unit with the default-port configuration is still considered a clean unit. To make sure the device remains a clean unit, do not do a write memory on the device (which adds a startup-config, and the device is no longer a clean unit).

1. Change default-port from the 16 Gbps rear panel port to the 10 Gbps front panel port for all 3 units, as shown.

   **For stack unit 1:**
   
   FC624S-ADV Router# config t
   FC624S-ADV Router(config)# stack unit 1
   FC624S-ADV Router(config-unit-1)# default-port 1/3/1 1/3/2
   FC624S-ADV Router(config-unit-1)# write mem
   Write startup-config done.
   FC624S-ADV Router(config-unit-1)# Flash Memory Write (8192 bytes per dot)
   Flash to Flash Done.
   FC624S-ADV Router(config-unit-1)# end

   **For stack unit 2:**
   
   FC624S-ADV Router# config t
   FC624S-ADV Router(config)# stack unit 1
   FC624S-ADV Router(config-unit-1)# default-port 1/3/1 1/3/2
   FC624S-ADV Router(config-unit-1)# write mem
   Write startup-config done.
   FC624S-ADV Router(config-unit-1)# Flash Memory Write (8192 bytes per dot)
   Flash to Flash Done.
   FC624S-ADV Router(config-unit-1)# end

   **For stack unit 3:**
   
   FC624S-ADV Router# config t
   FC624S-ADV Router(config)# stack unit 1
   FC624S-ADV Router(config-unit-1)# default-port 1/3/1 1/3/2
   FC624S-ADV Router(config-unit-1)# write mem
   Write startup-config done.
   FC624S-ADV Router(config-unit-1)# Flash Memory Write (8192 bytes per dot)
   Flash to Flash Done.
   FC624S-ADV Router(config-unit-1)# end

   Enter the show stack command and the show running config command on each unit to confirm the settings. The following example shows settings for stack unit 1.
Building an IronStack

2. Connect the devices using the front panel 10 Gbps ports.

3. Log in to the unit that is functioning as the Active Controller (in this example, stack unit 1) and enable stacking and start stack secure-setup, as shown:

   On stack unit 1:

   FCX624S-ADV Router# config t
   FCX624S-ADV Router(config)# stack enable
   Enable stacking. This unit actively participates in stacking
   FCX624S-ADV Router(config)# end
   FCX624S-ADV Router# stack secure-setup
   FCX624S-ADV Router# Discovering the stack topology...
   Available DOWNSTREAM units
   Hop(s)  Id   Type       Mac Address
   1       new  FCX624     001b.f2c8.0611
   2       new  FCX624     0200.9999.0000
   Enter the number of the desired DOWNSTREAM units (0-2)[0]: 2
   Selected Topology:
   Active  Id   Type       Mac Address
   1    FCX624     0012.f2d4.69c0
   Selected DOWNSTREAM units
   Hop(s)  Id   Type       Mac Address
   1  2    FCX624     001b.f2c8.0611
   2  3    FCX624     0200.9999.0000
   Do you accept the unit ids (y/n)?: y
   Election, was active, no role change, assigned-ID=1, total 3 units, my priority=128
   Config changed due to add/del units. Do write mem if you want to keep it
   FCX624S-ADV Router#

4. After you have formed the stack, enter the show running config command to confirm that the Active Controller has learned the default-port for each unit.

   FCX624S-ADV Router # show running config
   Current configuration:
   !
   ver 06.0.00T7f3
   !
Building an IronStack

Building an FCX IronStack using default 16 Gbps stacking ports and front panel 10 Gbps ports.

Perform the following steps to configure an FCX IronStack using the default 16 Gbps ports on stack unit 1, a 16 Gbps and a 10 Gbps port on stack unit 2, and a 10 Gbps port on stack unit 3.

**NOTE**
When more than three units in an FCX IronStack are using a mix of 10 Gbps and 16 Gbps ports, and you want to change the port settings from 10 Gbps back to 16 Gbps, the unit where you are making the changes may be disconnected from the Active Controller.

1. Since stack unit 1 will be using the default 16 Gbps ports, you do not need to define the default port for this unit.
2. On the device that will become stack unit 2, configure both the 16 Gbps port and the 10 Gbps port as the default ports.

**NOTE**
Until the stack is built, all units will display as stack unit 1.

```
FCX648SHPOE Router# config t
FCX648SHPOE Router(config)# stack unit 1
FCX648SHPOE Router(config-unit-1)# default-port 1/2/1 1/3/1
FCX648SHPOE Router(config-unit-1)# write memory
Write startup-config done.
FCX648SHPOE Router(config-unit-1)# Flash Memory Write (8192 bytes per dot)
Flash to Flash Done.
FCX648SHPOE Router(config-unit-1)# end
```

3. On the device that will become stack unit 3, configure the 10 Gbps port as the default port.

```
FCX648SHPOE Router# config t
FCX648SHPOE Router(config)# stack unit 1
FCX648SHPOE Router(config-unit-1)# default-port 1/3/1 1/3/2
FCX648SHPOE Router(config-unit-1)# write memory
```
Write startup-config done.
FCX648SHPOE Router(config-unit-1)# Flash Memory Write (8192 bytes per dot)
. Flash to Flash Done.
FCX648SHPOE Router(config-unit-1)# end

4. Connect the 16 Gbps port between stack unit 1 (1/2/1) and stack unit 2 (2/2/1) then connect the 10 Gbps port between stack unit 2 (2/3/1) and stack unit 3 (3/3/1).

On stack unit 1:
FCX624SHPOE Router# show interface brief | in /2/
1/2/1 Up Forward Full 16G None No 0 001b.f2e5.0119
1/2/2 Down None None None None No 0 001b.f2e5.011a
FCX624SHPOE Router#

On stack unit 2:
FCX648SHPOE Router# show interface brief | in /2/
2/2/1 Up Forward Full 16G None No 0 0012.f2d6.0542
2/2/2 Down None None None None No 0 0012.f2d6.0543
FCX648SHPOE Router#

On stack unit 3:
FCX-648SHPOE Router# show interface brief | in /3/
1/3/1 Up Forward Full 10G None No 0 0012.f2d6.0544
1/3/2 Down None None None None No 0 0012.f2d6.0545

You are now ready to activate your stack using stack enable and secure-setup. Proceed to the next section.

**Using secure-setup to build an FCX stack**

You can use the secure-setup utility to build an FCX IronStack by performing the following steps.

1. When you have designated the desired stacking ports and connected your FCX units together, on stack unit 1, enter stack enable and stack secure-setup, as shown.

    FCX624SHPOE Router# stack enable
    FCX624SHPOE Router# stack secure-setup
    FCX624SHPOE Router# Discovering the stack topology...

    Available UPSTREAM units
    Hop(s)  Id       Type       Mac Address
    1       new FCX648POE 0012.f2d6.0511
    2       new FCX624  0200.9999.0000

    Enter the number of the desired UPSTREAM units (0-2)[0]: 2

    Selected Topology:
    Active  Id       Type       Mac Address
    1       FCX648POE 001b.f2e5.0100

    Selected UPSTREAM units
    Hop(s)  Id       Type       Mac Address
    1       2       FCX648POE 0012.f2d6.0511
    2       3       FCX624  0200.9999.0000

    Do you accept the unit ids (y/n)?: y
FCX624SHPOE Router# Election, was alone --> active, assigned-ID=1, total 3 units, my priority=128
Election, was active, no role change, assigned-ID=1, total 3 units, my priority=128
reset unit 2: diff bootup id=1
reset unit 3: diff bootup id=1
Election, was alone --> active, assigned-ID=1, total 3 units, my priority=128
Detect stack member 2 POE capable
Detect stack unit 2 has different startup config flash, will synchronize it
Detect stack unit 3 has different startup config flash, will synchronize it
Done hot swap: Set stack unit 3 to Ready
Done hot swap: Set stack unit 2 to Ready
Synchronize startup config to stack unit 2
Flash Memory Write (8192 bytes per dot). Synchronize startup config to stack unit 3
Flash Memory Write (8192 bytes per dot).POE: Stack unit 2 Power supply 1 with 4 10000 mwatts capacity is up
Stack unit 2 Power supply 2 is down
Stack unit 3 Power supply 1 is up
Stack unit 3 Power supply 2 is down
Config changed due to add/del units. Do write mem if you want to keep it
Election, was active, no role change, assigned-ID=1, total 3 units, my priority=128

FCX624SHPOE Router#
Config changed due to add/del units. Do write mem if you want to keep it

FCX624SHPOE Router# PoE Info: PoE module 1 of Unit 2 on ports 2/1/1 to 2/1/48 detected. Initializing....
PoE Info: PoE module 1 of Unit 2 initialization is done.

FCX624SHPOE Router# show stack
alone: standalone, D: dynamic config, S: static config
ID   Type      Role    Mac Address    Pri State    Comment
1  S FCX624POE active  001b.f2e5.0100 128 local    Ready
2  D FCX648POE standby 0012.f2d6.0511   0 remote   Ready
3  D FCX624    member  0200.9999.0000   0 remote   Ready
standby active
+----+        +----+        +----+
| 3 |3/1--3/1| 2 |2/1--2/1| 1 |
+----+        +----+        +----+

Current stack management MAC is 001b.f2e5.0100
FCX624SHPOE Router# write mem
Write startup-config done.
FCX624SHPOE Router# Flash Memory Write (8192 bytes per dot). Flash to Flash Done.

FCX624SHPOE Router# show stack
alone: standalone, D: dynamic config, S: static config
ID   Type      Role    Mac Address    Pri State    Comment
1  S FCX624POE active  001b.f2e5.0100 128 local    Ready
2  S FCX648POE standby 0012.f2d6.0511   0 remote   Ready
3  S FCX624    member  0200.9999.0000   0 remote   Ready
standby active
+----+        +----+        +----+
| 3 |3/1--3/1| 2 |2/1--2/1| 1 |
+----+        +----+        +----+
Verifying an IronStack configuration

Follow the steps given below to verify your IronStack configuration.

1. Log in to the Active Controller and verify the stack information by entering the `show running-config` and `show stack` or `show stack detail` commands. If your stack is configured properly, you should see the following:
   - One Active Controller, one Standby Controller, and stack members.
   - All stack members show a status of Ready.

The following output shows a stack of mixed FGS and FLS devices. For output from an FCX stack, see “Verifying an FCX IronStack configuration” on page 136.

```
FLS624-STK Switch(config)# show running-configuration
Current configuration:
!
ver 05.0.00
!
stack unit 1
 module 1 fgs-24-port-management-module
 module 2 fgs-cx4-2-port-10g-module
 module 3 fgs-xfp-1-port-10g-module
 priority 255
stack unit 2
 module 1 fgs-48-port-management-module
 module 2 fgs-xfp-2-port-10g-module
stack unit 3
 module 1 fls-48-port-copper-base-module
 module 2 fls-xfp-1-port-10g-module
 module 3 fls-cx4-1-port-10g-module
 priority 240
stack enable

FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FLS624 active 0012.f2eb.a900 128 local Ready
2 S FLS648 standby 00f0.424f.4243 60 remote Ready
3 S FGS624 member 00e0.5201.0100 0 remote Ready

 active standby
 +-----+ +-----+ +-----+
-2/1| 1 |3/1--2/1| 2 |3/1--2/2| 3 |2/1-
| +-----+ +-----+ +-----|
| | |
| +------------------------+

Current stack management MAC is 0012.f2eb.a900
FLS624-STK Switch#
```

Verifying an FCX IronStack configuration

The following output shows an example configuration of an FCX IronStack.
Building an IronStack

```
FCX648SHPOE Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
 2 S FCX648POE standby 00e0.5202.0000 0 remote Ready
 3 S FCX624POE member 00e0.5203.0000 0 remote Ready
 4 S FCX648 member 00e0.5204.0000 0 remote Ready
 5 S FCX648POE member 0000.0000.0000 0 reserved
 8 S FCX648POE active 00e0.5201.0000 128 local Ready

active standby
+-----+-----+-----+-----+
<p>| | #2 1| 8 | 2/2--2/1| 4 | 2/2--2/1| 3 | 2/2--2/1| 2 | 2/2--2/1 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Current stack management MAC is 00e0.5201.0000
```

The next example shows output from the `show version` command for the same FCX stack.

```
FCX648SHPOE Switch# show version
Copyright (c) 1996-2009 Brocade Communications Systems, Inc.
UNIT 8: compiled on Jun 17 2009 at 06:23:29 labeled as FCX06000a359
 (3578117 bytes) from Primary FCX06000a359.bin
 SW: Version 06.0.00a359T7f1
UNIT 2: compiled on Jun 17 2009 at 06:23:29 labeled as FCX06000a359
 (3578117 bytes) from Primary FCX06000a359.bin
 SW: Version 06.0.00a359T7f1
UNIT 3: compiled on Jun 17 2009 at 06:23:29 labeled as FCX06000a359
 (3578117 bytes) from Primary FCX06000a359.bin
 SW: Version 06.0.00a359T7f1
UNIT 4: compiled on Jun 17 2009 at 06:23:29 labeled as FCX06000a359
 (3578117 bytes) from Primary FCX06000a359.bin
 SW: Version 06.0.00a359T7f1
Boot-Monitor Image size = 365257, Version:06.0.00T7f5 (grz06000)
HW: Stackable FCX648P-POE
```

```
UNIT 2: SL 1: FCX-48G POE 48-port Management Module
 P-ENGINE 0: type DB90, rev 01
 P-ENGINE 1: type DB90, rev 01

UNIT 2: SL 2: FCX-2XGC 2-port 16G Module (2-CX4)

UNIT 3: SL 1: FCX-24G POE 24-port Management Module
 P-ENGINE 0: type DB90, rev 01

UNIT 3: SL 2: FCX-2XGC 2-port 16G Module (2-CX4)

UNIT 3: SL 3: FCX-2XG 2-port 10G Module (2-XFP)

UNIT 4: SL 1: FCX-48G 48-port Management Module
 P-ENGINE 0: type DB90, rev 01
 P-ENGINE 1: type DB90, rev 01

UNIT 4: SL 2: FCX-2XGC 2-port 16G Module (2-CX4)

UNIT 4: SL 3: FCX-2XG 2-port 10G Module (2-XFP)

UNIT 8: SL 1: FCX-48G POE 48-port Management Module
 P-ENGINE 0: type DB90, rev 01
```
P-ENGINE 1: type DB90, rev 01
==========================================================================
UNIT 8: SL 2: FCX-2XGC 2-port 16G Module (2-CX4)
==========================================================================
800 MHz Power PC processor (version 33/0022) 144 MHz bus
65536 KB flash memory
256 MB DRAM
Monitor Option is on
STACKID 8 system uptime is 21 hours 2 minutes 23 seconds
STACKID 2 system uptime is 21 hours 2 minutes 22 seconds
STACKID 3 system uptime is 21 hours 2 minutes 23 seconds
STACKID 4 system uptime is 21 hours 2 minutes 22 seconds
The system : started=warm start  reloaded=by "reload"
My stack unit ID = 8, bootup role = active
*** NOT FOR PRODUCTION ***

**NOTE**
For field descriptions for the `show running config` command, refer to “Displaying running configuration information” on page 168.

**NOTE**
For field descriptions for the `show stack` and `show stack detail` commands, refer to “Displaying stack resource information” on page 160.

The output from the `show stack` command contains a visual diagram of the stack. The dashed line between ports 1/2/1 and 3/2/1 indicates that this stack is configured in a ring topology. If the link between ports 1/2/1 and 3/2/1 is lost, the stack topology changes to linear, and the diagram changes to resemble the following.

```
 active standby
+-----+ +-----+ +-----+
-2/1 | 1 |3/1--2/1| 2 |3/1--2/2| 3 |2/1-
 +-----+ +-----+ +-----+
```

The interfaces at either of a stack member are stacking ports. If no interface is displayed, it indicates that there is no stacking port configured. For example, the following diagram shows that stack units 1 and 3 each have only one stacking port configured.

```
 active standby
+-----+ +-----+ +-----+
| 1 |3/1--2/1| 2 |3/1--2/2| 3 |
 +-----+ +-----+ +-----+
```

For more detailed information, you can enter the `show stack detail` command.

**IronStack management**

This section describes how to manage your IronStack:
Managing your Brocade IronStack

Your Brocade IronStack can be managed through a single IP address. You can manage the stack using this IP address even if you remove the Active Controller or any member from the stack. You can also connect to the Active Controller through Telnet or SSH using this address. All management functions, such as SNMP, use this IP address to acquire MIB information and other management data.

A Brocade IronStack can be configured and managed using the command line interface (CLI) over a serial connection to a console port, or using IronView Network Manager. To determine what version of IronView Network Manager supports IronStack refer to the IronView Network Manager User Guide.

Logging in through the CLI

You can access the IronStack and the CLI in two ways:

- Through a direct serial connection to the console port
- Through a local or remote Telnet session using the stack IP address

You can initiate a local Telnet or SNMP connection by attaching a cable to a port and specifying the assigned management station IP address.

The stacking commands in the CLI are organized into the following levels:

- **Global** – Commands issued in the global mode are applied to the entire stack.
- **Stack Member Configuration Mode** – Commands issued in this mode apply to the specified stack member. Configuration information resides in the Active Controller.
- **Configuration Mode** – This is where you make configuration changes to the unit. To save changes across reloads, you need to save them to the Active Controller startup-config file. The configuration mode contains sub-levels for individual ports, for VLANs, for routing protocols, and other configuration areas.

**NOTE**

By default, any user who can open a serial or Telnet connection to the IronStack can access all of these CLI levels. To secure access, you can configure Enable passwords or local user accounts, or you can configure the Active Controller to use a RADIUS or TACACS/TACACS+ server for authentication. Refer to Chapter 39, “Securing Access to Management Functions”.

Logging in through IronView Network Manager

IronView Network Manager supports stack technology. To determine what version of IronView Network Manager supports stack technology and to find information on IronView Network Manager, refer to the IronView Network Manager User Guide.

Logging in through the console port

When a device becomes a stack member in the IronStack, it establishes a remote connection to a virtual console port on the Active Controller. Input and output are relayed between the physical console port on the stack member and the virtual console port on the Active Controller. Since each stack member connects to an independent virtual console port on the Active Controller, the console ports on multiple stack units may be used simultaneously. However, messages displayed on the Active Controller physical console port during a reload will not be visible on the console ports.
of the stack members because the remote connections are not established until the software loading process is complete. It is preferable to connect a cable to the console port on the stack unit that will normally be the Active Controller, rather than to the console port of one of the other stack units.

When a stack unit establishes communication with the Active Controller, it also establishes a remote console session to the Active Controller. In a normally functioning IronStack, a console cable may be connected to any of the stack units and provide access to the same commands on the Active Controller.

You can terminate a session by entering Ctrl+O followed by 'x' or 'X', or by entering the 'exit' command from the User EXEC level, or by entering the 'logout' command at any level.

**NOTE**
For the rconsole connections from the stack units to the Active Controller, the escape sequence and other methods of terminating the session are not available.

**NOTE**
Error messages that are generated during a reload of the Active Controller will not appear on rconsole connections from the stack units to the Active Controller. To see these error messages, you must connect a console cable to the Active Controller itself.

To establish an rconsole session, enter the rconsole command as shown:

```
FGS648P-STK Switch# rconsole 1
```

**Syntax:** rconsole stack-unit

The following example shows how to establish rconsole sessions to stack members. Notice that the show stack command on the stack members displays different information than what is shown when the show stack command is entered on the Active Controller.

To see the status of your stack units, enter the show stack command on the Active Controller.

```
FGS648P-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FGS648P active 0012.f2de.8100 128 local Ready
2 S FGS624P standby 0012.f2e2.ba40 0 remote Ready
3 S FGS624P member 001b.ed7a.22c0 0 remote Ready
```

To see the status of your stack units, enter the show stack command on the Active Controller.

```
Current stack management MAC is 0012.f2de.8100
```

**NOTE**
For field descriptions for the show stack command, refer to “Displaying stack resource information” on page 160.

Establish a remote console session with stack unit 2.
Establish a remote console session with stack unit 3.

FGS648P-STK Switch# rconsole 3
Connecting to unit 3... (Press Ctrl-O X to exit)
rconsole-3@FLS624P Switch# show stack
ID Type Role Mac Address Prio State Comment
3 S FGS624P member 001b.ed7a.22c0 0 local Ready
rconsole-3@FLS624P Switch# logout
Disconnected. Returning to local session...

IronStack management MAC address

The IronStack is identified in the network by a single MAC address, usually the MAC address of the Active Controller (the default). If a new Active Controller is elected, the MAC address of the new Active Controller (by default) becomes the MAC address for the entire stack. However, you can manually configure your stack to use a specified MAC address. Refer to “Manual allocation of the IronStack MAC address” on page 141.

In an IronStack, the management MAC address is generated by the software, and is always the MAC address of the first port of the Active Controller. This ensures that the management MAC address remains consistent across stack reboots, and helps prevent frequent topology changes as a result of protocol enable, disable, and configuration changes.

When you are configuring Layer 2 protocols on stack units, such as STP, RSTP, and MSTP, the management MAC address of the Active Controller acts as the Bridge ID.

You can also configure the IronStack to retain its original MAC address, or wait for a specified amount of time before assuming the address of a new Active Controller, using the Persistent MAC Address feature (refer to “Persistent MAC address” on page 153).

NOTE
All physical IP interfaces on IronStack devices share the same MAC address. For this reason, if more than one connection is made between two devices, one of which is an FGS-STK or FLS-STK device, Brocade recommends the use of virtual interfaces. It is not recommended to connect two or more physical IP interfaces between two routers.

Manual allocation of the IronStack MAC address

You can manually configure your IronStack to use a specific MAC address. This overrides the default condition where the stack uses the MAC address of whatever unit is currently serving as Active Controller.
NOTE
This command is useful for administration purposes, however it should be used with caution to prevent duplication of MAC addresses.

To configure a stack MAC address manually, enter the following command.

FGS648P-STK Switch(config)# stack mac 0000.0000.0011

Syntax:  [no] stack mac mac-address

mac-address - a hexadecimal MAC address in the xxxx.xxxx.xxxx format

Enter the no form of this command to return the MAC address to that of the Active Controller.

Output for this command resembles the following.

FLS648-STK Switch(config)# stack mac 0000.0000.0011
FPLS648-STK Switch(config)# show running-config
Current configuration:
!
ver 05.0.01 100T7e1
!
stack 1
   module 1 fls-48-port-copper-base-module
   module 2 fls-cx4-1-port-10g-module
   priority 80
stack 2
   module 1 fls-24-port-copper-base-module
   module 2 fls-cx4-1-port-10g-module
   module 3 fls-cx4-1-port-10g-module
stack enable
stack mac 0000.0000.0011

To display the stack MAC address, enter the show chassis command.

FGS648P-STK Switch# show chassis
The stack unit 1 chassis info:

Power supply 1 (NA - AC - Regular) present, status ok
Power supply 2 not present

Fan 1 ok
Fan 2 ok
Exhaust Side Temperature Readings:
   Current temperature : 35.5 deg-C
   Warning level........: 80.0 deg-C
   Shutdown level......: 90.0 deg-C
Intake Side Temperature Readings:
   Current temperature : 33.5 deg-C
Boot Prom MAC: 0012.f2de.9440
Management MAC: 0000.0000.0011

The stack unit 2 chassis info:

Power supply 1 (NA - AC - Regular) present, status ok
Power supply 2 not present
NOTE
For field descriptions for the show chassis command, refer to “Displaying chassis information” on page 158.

Removing MAC address entries

You can remove the following types of learned MAC address entries from the Brocade system MAC address table:

- All MAC address entries
- All MAC address entries for a specified Ethernet port
- All MAC address entries for a specified VLAN
- A specified MAC address entry in all VLANs

For example, to remove entries for the MAC address 000d.cb80.00d0 in all VLANs, enter the following command at the Privileged EXEC level of the CLI.

```
FCX648SHPOE Switch# clear mac-address 000d.cb80.00d0
```

Syntax: clear mac-address mac-address | ethernet port-num | vlan number

If you enter the clear mac-address command without any parameters, the software removes all MAC entries.

Use the <mac-address> parameter to remove a specified MAC address from all VLANs. Specify the MAC address in the following format: HHHH.HHHH.HHHH.

Use the ethernet port-num parameter to remove all MAC addresses for a specified Ethernet port.

Use the vlan number parameter to remove all MAC addresses for a specified VLAN.

IronStack unit identification

Stack units are identified by numbers 1 though 8. You can display stack unit IDs by entering the show stack command (refer to “Displaying IronStack information” on page 156).

A new device (one that has not been connected in an IronStack or has not been manually assigned a stack unit number) ships with a default number of 1. Once you enable stacking and the unit becomes part of an IronStack, its default stack unit number changes to the lowest available number in the stack.

Stack units must each have a unique identification number. Every stack member, including any standalone units, retains its stack unit number unless that number is already being used in the stack, or until you manually renumber the unit using secure-setup. For more information about how to renumber stack IDs using secure-setup, refer to “Renumbering stack units” on page 174.

IronStack unit priority

A unit with a higher priority is more likely to be elected Active Controller. The priority value can be 0 to 255 with a priority of 255 being the highest. The default priority value assigned to the Active Controller and Standby is 128.
You can assign the highest priority value to the stack unit you want to function as the Active Controller. When you enter a new priority value for a stack unit, that value takes effect immediately, but does not affect the current Active Controller until the next reset. Refer to “Changing the priority of a stack unit” on page 144.

You can give your Active and Standby Controllers the same priority, or different priorities (Active highest, Standby second-highest). When Active and Standby Controllers have the same priority, if the Active fails and the Standby takes over, then the original Active becomes operational again, it will not be able to resume its original role. In the same situation, when the priorities of the Active and Standby Controllers are different, the old Active Controller will regain its role and will reset the other units.

If you want to assign the same priority to the Active and Standby Controllers, you must do so after the stack is formed. This prevents the intended Standby Controller from becoming the Active Controller during stack construction.

Changing the priority of a stack member will trigger an election that takes effect immediately unless the Active Controller role changes. If this is the case, the changes will not take effect until after the next stack reload.

To display stack member priority values, enter the show stack command.

```
FLS624-STK Switch(config-unit-3)# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FLS624 active 0012.f2eb.a900 128 local Ready
2 S FLS624 standby 00f0.424f.4243 0 remote Ready, member after reload
3 S FLS624 member 001b.ed5d.a100 200 remote Ready, active after reload
FLS624-STK Switch(config-unit-3)#
```

Changing the priority of a stack unit

To change the priority value for a stack unit, enter the priority command.

```
FLS624-STK Switch(Config)# stack unit 1
FLS624-STK Switch(Config-unit-1)# priority 128
```

Syntax: `priority num from 0-255` (255 is the highest priority)

CLI command syntax

CLI syntax that refers to stack units must contain all of the following parameters:

Syntax: `command [stack-unit | slotnum | portnum]`

- `stack-unit` - required on stackable FastIron devices running software release 0.5.00 or later. If the FastIron GS or LS device is operating as a standalone, the stack-unit will always be 1. Stack IDs can be any number from 1 through 8.
- `slotnum` - required on chassis devices and on FastIron GS devices running software release 02.5.00 or later. For stackable devices, slotnum refers to specific groups of ports on each device.
- `portnum` - a valid port number.
- `port-list` - you can list all of the ports individually, use the keyword to to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually.
**IronStack CLI commands**

CLI commands specific to stacking are listed in Table 34, with a link to the description for each command. For more information about CLI commands and syntax conventions, refer to Chapter 2, “Getting Familiar with Management Applications”.

**TABLE 34** Stacking CLI commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>location...</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy flash flash</td>
<td>“Copying the flash image to a stack unit from the Active Controller”</td>
<td>on page 149</td>
</tr>
<tr>
<td>clear stack ipc</td>
<td>“Troubleshooting an unsuccessful stack build”</td>
<td>on page 177</td>
</tr>
<tr>
<td>cx4-10g</td>
<td>“Controlling stack topology”</td>
<td>on page 151</td>
</tr>
<tr>
<td>kill console</td>
<td>“Configuring TACACS/TACAS+ for devices in a Brocade IronStack”</td>
<td>on page 1442</td>
</tr>
<tr>
<td>priority</td>
<td>“Changing the priority of a stack unit”</td>
<td>on page 144</td>
</tr>
<tr>
<td>rconsole</td>
<td>“Logging in through the console port”</td>
<td>on page 139</td>
</tr>
<tr>
<td>reload stack unit</td>
<td>“Reloading a stack unit”</td>
<td>on page 150</td>
</tr>
<tr>
<td>show chassis</td>
<td>“Displaying chassis information”</td>
<td>on page 158</td>
</tr>
<tr>
<td>show flash</td>
<td>“Displaying flash information”</td>
<td>on page 156</td>
</tr>
<tr>
<td>show memory</td>
<td>“Displaying memory information”</td>
<td>on page 157</td>
</tr>
<tr>
<td>show module</td>
<td>“Displaying stack module information”</td>
<td>on page 159</td>
</tr>
<tr>
<td>show running-config</td>
<td>“Displaying running configuration information”</td>
<td>on page 168</td>
</tr>
<tr>
<td>show stack</td>
<td>“Displaying stack resource information”</td>
<td>on page 160</td>
</tr>
<tr>
<td>show stack detail</td>
<td>“Displaying stack resource information”</td>
<td>on page 160</td>
</tr>
<tr>
<td>show stack flash</td>
<td>“Displaying stack flash information”</td>
<td>on page 162</td>
</tr>
<tr>
<td>show stack ipc</td>
<td>“Troubleshooting an unsuccessful stack build”</td>
<td>on page 177</td>
</tr>
<tr>
<td>show stack neighbors</td>
<td>“Displaying stack neighbors”</td>
<td>on page 167</td>
</tr>
<tr>
<td>show stack resource</td>
<td>“Displaying stack resource information”</td>
<td>on page 160</td>
</tr>
<tr>
<td>show stack rel-ipc stats</td>
<td>“Displaying stack rel-IPC statistics”</td>
<td>on page 163</td>
</tr>
<tr>
<td>show stack rel-ipc stats unit #</td>
<td>“Displaying stack rel-IPC statistics for a specific stack unit”</td>
<td>on page 166</td>
</tr>
<tr>
<td>show show stack stack-port</td>
<td>“Displaying stack port information”</td>
<td>on page 168</td>
</tr>
<tr>
<td>show statistics stack-port</td>
<td>“Displaying stacking port statistics”</td>
<td>on page 171</td>
</tr>
<tr>
<td>show interfaces stack-ports</td>
<td>“Displaying stacking port interface information”</td>
<td>on page 170</td>
</tr>
<tr>
<td>show version</td>
<td>“Displaying software version information”</td>
<td>on page 169</td>
</tr>
<tr>
<td>stack enable</td>
<td>“Stacking mode”</td>
<td>on page 146</td>
</tr>
<tr>
<td>stack disable</td>
<td>“Stacking mode”</td>
<td>on page 146</td>
</tr>
<tr>
<td>stack mac [mac-address]</td>
<td>“IronStack management MAC address”</td>
<td>on page 141</td>
</tr>
<tr>
<td>stack persistent-mac-timer</td>
<td>“Persistent MAC address”</td>
<td>on page 153</td>
</tr>
<tr>
<td>stack-port</td>
<td>“Configuring stacking ports”</td>
<td>on page 127</td>
</tr>
<tr>
<td>default-ports</td>
<td>“Configuring stacking ports”</td>
<td>on page 127</td>
</tr>
</tbody>
</table>
Stacking mode

When a unit is stack-enabled or joins a stack either actively or passively, it reserves Priority Queue 7 for stacking traffic control, assigns buffers for the stacking ports, and configures the first two 10 Gbps ports as stacking ports.

NOTE
Designated stacking ports cannot contain any configuration information, such as vlan membership, etc. If configuration information exists, stack enable will fail. You must remove all configuration information from the port and re-issue the stack enable command.

To enable stacking mode on a new unit before you add it to the stack, enter the following command.

```
FLS648-STK Switch(config)# stack enable
```

Enable stacking. This unit actively participates in stacking

Syntax:  [no] stack enable

To see the configuration of the stack at any time, enter the show stacking configuration command.

To remove stacking capability, enter the no stack enable command. This prevents the unit from actively sending out probe messages, however the unit could still be called to join a stack by an Active Controller. To prevent this, enter the stack disable command.

The stack disable command prevents a unit from sending or listening for any stacking probe messages. In this mode, the unit cannot be forced to join a stack.

```
FLS648 Switch(config)# stack disable
```

Syntax:  [no] stack disable

To remove this restriction, enter the no stack disable command.

Upgrading software

This section describes how to upgrade FGS and FLS devices currently running release 04.2.00 or earlier to release 04.1.00. This section does not apply to FCX devices.

NOTE
If you are running software versions earlier than 04.2.00 (for example, 04.1.00, 04.1.01...), you must first upgrade to release 04.2.00 or later (e.g., 04.3.01) non-stacking software before upgrading to 05.0.01. Software releases that are numbered 04.x.xx and lower are non-stacking releases. Software release that are numbered 05.x.xx and higher are stacking releases.

Perform the following steps to upgrade software version 04.2.00 to version 04.1.00.
1. Perform the memory and EEPROM upgrade on the device. For more information, see the instructions that shipped with your upgrade kit.

**NOTE**
Software version 04.1.00 will not work on standalone devices that have not been upgraded to support IronStack stacking technology.

2. Copy new boot code using the following command.

   FGS624P-STK Switch# copy tftp flash X.X.X.X FGZ05000.bin bootrom

   You should see output similar to the following.

   FGS624P-STK Switch# Flash Memory Write (8192 bytes per dot).........................
   (Boot Flash Update)Erase........Write..........
   TFTP to Flash Done

3. Copy the 04.1.00 software image using the following command.

   FGS624P-STK Switch# copy tftp flash X.X.X.X FGS05001.bin primary
   FGS624P-STK Switch# Flash Memory Write (8192 bytes per dot)
   ..................................................
   ...........................................
   ...........................................
   TFTP to Flash Done
   FGS624P-STK Switch# show flash
   Compressed Pri Code size = 3096603, Version 05.0.01 (FGS05001.bin)
   Compressed Sec Code size = 2873963, Version 04.2.00 (fgs04200.bin)
   Compressed BootROM Code size = 416315, Version 05.0.01T7e5
   Code Flash Free Space = 196608
   FGS624P-STK Switch#

4. Restart the device with the upgraded software and proceed to step 5. If you encounter a problem at this step, make sure the memory DIMM and stacking EEPROM are installed correctly. If the stacking EEPROM is missing or not installed correctly or if you have installed the wrong EEPROM, you may see output similar to the following.

   FGS MEM size: 0x10000000
   FGS Flash config....
   FGS Boot Code Version 05.0.01
   Enter 'b' to stop at boot....
   BOOT INFO: load monitor from primary, size=103408
   BOOT INFO: load image from primary........
   BOOT INFO: bootparam at 000543e8, mp_flash_size=002ee6c5
   BOOT INFO: code decompression completed
   BOOT INFO: branch to 00400100
   Starting Main Task....... 
   ############################################################################### 
   ERR: This software needs License PROM to be installed in the system
   ############################################################################### 
   System Reset!

   If your memory DIMM is not installed correctly, you will see output similar to the following.

   FGS Mem size: 0x8000000
   Flash Config...
   FGS Boot Code Version 05.0.01
   Enter 'b' to stop at boot.....
   BOOT INFO: load monitor from primary, size = 103380
   BOOT INFO: debug enabled!!
Upgrading software

BOOT INFO: load image from primary...
BOOT INFO: bootparam at 00054338 mp_flash_size = 002f1aeb
BOOT INFO: code decompression completed
BOOT INFO: branch to 00400100
Starting Main Task...

*****************************************************************************
ERR: This software requires 256M memory to be installed in the system.
*****************************************************************************
System Reset!

NOTE
You will also see this message if your memory is installed correctly, but your boot code is not 05.0.00a or later.

NOTE
If you do not have the correct EEPROM for the upgrade, you will need to recover your 4.2 image. For information about how to do this refer to “Recovering an earlier version of a startup configuration” on page 156.

5. When you have confirmed that your hardware upgrade is installed correctly, restart to system and check the software version using the show version command.

FLS624-STK Switch# show version
  SW: Version 05.0.11T7e1 Copyright (c) 2009 Brocade Communications Systems, Inc.
  Compiled on Nov 21 2008 at 12:26:40 labeled as FGS05001
  (3094296 bytes) from Primary FGS05001.bin
  BootROM: Version 05.0.00
 ============================================================================= STACKID 1: FGS-24G-24-port Management Module + PoE
  Serial#: CY02083345
  P-ASIC 0: type D804, rev 01
 ============================================================================= STACKID: SL 2: FGS-2XGC 2-port 10G Module (2-CX4)
  400 MHz Power PC processor 8245 (version 129/1014) 66 MHz bus
  512 KB boot flash memory
  8192 KB code flash memory
  256 MB DRAM
  Monitor Option is on
  The system uptime is 36 minutes 4 seconds
  The system: started=warm start reloaded=by “reload”

Confirming software versions

All units in an IronStack must be running the same software image. To confirm this, check the software version on all devices that you want to add to your IronStack. Upgrade any units that are running older versions of the software before you build your stack.

1. Attach a console to the console port of the stack unit.

2. Enter the show version command. Output similar to the following is displayed.
If any unit is running an incorrect version of the software, it will appear as non-operational. You must install the correct version on this unit for it to operate properly in the stack.

**NOTE**
A stack unit in a non-operational state can still receive an image file from the Active Controller.

**Running 5.X software images on devices with 4.X or 3.X startup configuration files**

Release 05.0.00 can read startup-config.txt files generated by earlier software images but a 05.0.00 startup-config.txt file cannot be read by earlier software images. In addition, some features that are supported in release 04.2.00, such as DHCP-client, are not supported in 05.0.00.

To recover a pre-05-0.00 startup-config.txt file, use the `stack unconfigure rollback` command (refer to “Recovering an earlier version of a startup configuration” on page 156 for more information.)

When you boot a 5.x image on a device with a 4.x or 3.x startup-config.txt file, the operation should be transparent. The system automatically performs interface format conversion from 0/X/X to 1/X/X. The pre-5.0 startup-config.txt is renamed to start-config.v4 when a `write memory` command is issued, or when the Active Controller tries to synchronize all startup configurations.

**NOTE**
If you enter the `erase startup-config` or `stack unconfigure clean` commands, all startup-config txt-related files, such as startup-config.v4 and startup-config.old are erased. You will no longer be able to recover pre 5.x startup-config.txt files.

**Running 4.X software images on devices with 5.X startup configuration files**

Devices running 4.2 or later non-stacking software (i.e., 4.X) cannot read 5.X startup-config.txt files. You should recover the 4.X startup-config.txt file before running a 4.X software image. Use the `stack unconfigure rollback` command on devices running the 5.X image.(refer to “Recovering an earlier version of a startup configuration” on page 156 for more information.)

**Copying the flash image to a stack unit from the Active Controller**

**Syntax:** `copy flash flash`

To copy the flash image to a stack unit from the Active Controller primary or secondary flash, enter the following command.

**Syntax:** `copy flash flash [primary | secondary | unit-id-pri | unit-id-sec]`

- **primary** - Copy secondary to primary
- **secondary** - Copy primary to secondary
- **unit-id-pri** - Copy active primary image to unit-id
Upgrading software

- **unit-id-sec** - Copy active secondary image to unit-id

The **unit-id-pri** or **unit-id-sec** keywords are used to copy the images to a stack member from the Active Controller primary and secondary flash, respectively. An example is given below.

```
FLS624-STK Switch# copy flash flash unit-id-pri ?
ASCII string unit-id (1-8) list or all
FLS624-STK Switch# copy flash flash unit-id-pri 2
```

**Reloading a stack unit**

To reload a stack unit, enter the following command.

```
FLS624-STK Switch# reload
```

Syntax: `reload [after | at | cancel | unit-id]`

- **after** - schedule reloading after certain time period
- **at** - schedule reloading at an exact later time
- **cancel** - cancel scheduled reload
- **unit-id** - stack members to reload

```
FLS624-STK Switch# reload unit-id ?
ASCII string unit-id list: 2,3,5-7,8 (no space)
```

```
FLS624-STK Switch# reload unit-id 2,4-6,8
```

Reload request sent to specified stack member(s)...

**NOTE**
The unit-id list can be a combination, such as 2,4-6,8 (tokens must be separated by comma and there is no space).

**Configuring default ports on FCX devices**

On FCX devices, the **default-port** command is used to define stacking port candidates. A stacking port is always a default port, but a default port may not necessarily be a stacking port. Default ports can become stacking ports using the secure-setup utility, or through automatic stack building.

Secure-setup probe packets can be received by a default port whether or not it is a stacking port. Stacking packets can be only received by a stacking port (which is also always a default port). In order to use stacking ports that are not defined in the default configuration, you must define the port settings for each unit using the **default-port** command, so that secure-setup can discover the topology of the stack.

Every FCX device contains two default 16 Gbps stacking ports on the rear panel and two 10 Gbps ports on the front panel that can also be used as stacking ports. An FCX IronStack may contain up to 8 24-port and 48-port devices, using any combination of the rear panel stacking ports and the front panel optional stacking ports. To use the front panel ports as stacking ports, you must define the ports for each device in the run time configuration.

The 4-byte Ethernet preamble for the Ethernet frame is used when a port is configured as a default port. For non-default ports, the standard 8-byte Ethernet preamble is used. Frames that travel from a default port on one device must go to a peer default port, otherwise the preambles will not match and the packet will not be forwarded.
Controlling stack topology

Because FGS-STK and FLS-STK devices allow you to use one of the two ports intended for stacking as a regular data port, you can control the size of your stack. The following example shows a stack where the existing ring topology is changed so that only one unit in the upstream direction is connected through a stacking port, which limits the size of the stack to two units.

```
FLS624-STK Switch# stack secure-setup
FLS624-STK Switch# Discovering the stack topology...

Current Discovered Topology - RING

Available UPSTREAM units
Hop(s) Type Mac Address
1 FLS624 0012.f2d5.2100
2 FLS624 001b.ed5d.9940

Available DOWNSTREAM units
Hop(s) Type Mac Address
1 FLS624 001b.ed5d.9940
2 FLS624 0012.f2d5.2100

Do you accept the topology (RING) (y/n)?: n

Available UPSTREAM units
Hop(s) Type Mac Address
1 FLS624 0012.f2d5.2100
2 FLS624 001b.ed5d.9940

Available DOWNSTREAM units
Hop(s) Type Mac Address
1 FLS624 001b.ed5d.9940
2 FLS624 0012.f2d5.2100

Enter the number of the desired UPSTREAM units (0-2)[0]: 1
Enter the number of the desired DOWNSTREAM units (0-1)[0]:

Selected Topology:
Active Id Type Mac Address
1 FLS624 0012.f239.2d40

Selected UPSTREAM units
Hop(s) Id Type Mac Address
1 2 FLS624 0012.f2d5.2100

Do you accept the unit id's (y/n)?: y
FLS624-STK Switch# Election, was alone --> active, assigned-ID=1
reset unit 2: diff bootup id=1

FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FLS624 active 0012.f239.2d40 128 local Ready
2 S FLS624 standby 0012.f2d5.2100 0 remote Ready
```
Managing IronStack partitioning

When a unit in an IronStack with a linear topology fails, the IronStack divides (partitions) into two or more separate stacks that all have the same configuration. This may cause an IP address conflict in the network. If you want to keep the stacks separate, you will need to change the IP address of each new stack.

When a stack breaks into partitions, the partition with the Active Controller remains operational. If a partition contains the Standby Controller, this partition will become operational because the Standby Controller will assume the Active role and will reload the partition units. A partition without an Active or Standby Controller will not function. To reconfigure these units to act in standalone mode, you must first do a `stack unconfigure me` command on each unit. Refer to "Unconfiguring an IronStack" on page 154.

To reverse the partitioning, reconnect all of the units into the original stack topology using the stacking ports. This is the same as merging stacks. If the original Active Controller again has the highest priority, it will regain its role. If two partition Active Controllers have the same priority, the Active Controller with the most stack members will win the election. This process helps minimize traffic interruption.

Ring topology stacks do not partition in the event of a member failure. Operation is interrupted briefly while the stack recalculates a new path. Ring topologies are more stable than linear topologies because they provide redundant pathways in case of accidental failure.

Merging IronStacks

IronStacks may be merged, but the total number of stack units must not exceed 8. For example, you could combine two stacks with 4 units each into a single stack of 8 units.

You can merge stacks by connecting them together using the stacking ports. Before doing this, make sure that none of the stacking ports have been reconfigured as data ports (for example, ports on an end unit in a linear stack topology). You cannot use secure-setup to merge stacks because secure-setup does not work across stack boundaries.

When stacks are merged, an election is held among the Active Controllers. The winner retains its configuration and the IDs of all of its original stack members. The remaining stack units lose their configuration and are reset. If the IDs of the losing stack units conflict with the IDs of the winning units they may change, and the IDs will no longer be sequential. You can use secure-setup to renumber the members in the newly merged stack. The following examples show how stack merging works:

- If a stack partitions into multiple stacks because of a connection failure, and you fix the connection, the stack partitions will merge back into the original stack with no change to stack IDs, because in this case all stack IDs are distinct.
- In a linear stack topology, the end units of the stack will have only one stacking port configured. Before you can merge two linear stacks, you must reconfigure the end units so that both ports are stacking ports.

MIB support for the IronStack

All statistics about packets received and sent, RMON, jumbo frames, runts, giants, and other instances are gathered through the stack interfaces and are accessible through SNMP. The functionality for an IronStack is the same as that for a standard 10 Gbps interface. Information includes types of modules, including optics modules.
NOTE
A type counter has been added to count the number of packets greater than 1518 bytes (jumbo frames).

For detailed information about stacking MIBs, refer to the *MIB Reference Guide*.

**Persistent MAC address**

The MAC address for the entire IronStack is determined by the MAC address of the Active Controller. When an Active Controller is removed from the stack, and a new Active Controller is elected, by default the MAC address of the new Active Controller becomes the MAC address for the IronStack. When you enable the Persistent MAC Address feature, you configure a time delay before the stack MAC address changes. During this configured interval, if the previous Active Controller is reinstalled in the stack, the stack continues to use the MAC address of this unit, even though it may no longer be the Active Controller. If the previous Active Controller does not rejoin the stack during the specified time interval, the stack assumes the address of the new Active Controller as the stack MAC address.

The Persistent MAC Address feature allows you to configure a period of time during which the original base MAC address will not change if Active Controller fails, or is removed for maintenance. This timer is triggered when the Standby Controller becomes the Active Controller. When the timer expires, the new Active Controller will change the previous MAC address to its base MAC address and advertise this MAC address to management VLANs to update the ARP peer table. If you want to use the new address, you will have to re-enter the `stack-persistent-mac-timer` command again to reactivate the persistent MAC address,

```plaintext
stack persistent-mac-timer
```

**Syntax:** `[no] stack persistent-mac-timer number`

- `number` - the number of minutes during which the IronStack will retain the original MAC Address if the Active Controller fails or is removed for service. The valid value range is from 5 - 6000 minutes. If you enter a 0, it means “keep this address forever”. The default is 60 minutes.

To enable Persistent MAC Address, enter the following command.

```plaintext
FGS624P-STK Switch(config)# stack persistent-mac-timer <number>
```

To disable Persistent MAC Address, enter the following command.

```plaintext
FGS624P-STK Switch# no stack persistent-mac-timer
```

**NOTE**
If you enter the `[no]` version of this command while the persistent MAC address timer is active, the stack will disregard the persistent MAC address and will assume the MAC address of the new Active Controller.

In the following example, the persistent MAC timer has been set to the default of 60 minutes.

**NOTE**
Persistent MAC and stack MAC cannot be used together.
Upgrading software

FLS648-STK Switch(config)# stack persistent-mac 60

FLS648-STK Switch(config)# show running-config
Current configuration:
!
ver 05.0.011T7e1
!
stack 1
  module 1 fls-48-port-copper-base-module
  module 2 fls-cx4-1-port-10g-module
  priority 80
stack 2
  module 1 fls-24-port-copper-base-module
  module 2 fls-cx4-1-port-10g-module
  module 3 fls-cx4-1-port-10g-module
stack 3
  module 1 fgs-48-port-management-module
  module 2 fgs-cx4-2-port-10g-module
  priority 40
stack enable
stack persistent-mac 60
stack mac 0012.f2d5.9380

To display the stack MAC addresses, enter the `show stack` command.

FGS648P-STK Switch(config)# show stack
alone: standalone, D: dynamic config, S: static config
ID     Type      Role       Mac Address      Prio State    Comment
1 S  FGS648p   active     0012.f2d5.9380   80   reserved    Ready
2 S  FGS648    standby    00e0.6666.8880   0    remote   Ready
3 S  FGS624     master     0012.f2dc.0ec0   40   local    Ready
Current persistent MAC is 0012.f2d5.9380

FGS648P-STK Switch(config)# stack mac 111.111.111
Error: persistent stacking MAC address timer is configured

FLS648 Switch(config)#

The following example shows what the Persistent MAC information looks like in the output of the `show stack` command when the Standby Controller becomes the Active Controller.

FGS648P-STK Switch(config)# show stack
alone: standalone, D: dynamic config, S: static config
ID     Type      Role       Mac Address      Prio State    Comment
1 S  FGS648P   active     0000.0000.0000   80   reserved    Ready
2 S  FGS648    standby    00e0.6666.8880   0    remote   Ready
3 S  FGS624     master     0012.f2dc.0ec0   40   local    Ready
FGS648P-STK Switch# Persistent MAC timer expires in 59 minutes 52 seconds.

Current persistent MAC is 0012.f2d5.9380

Unconfiguring an IronStack

The `stack unconfigure` command is a run time command that returns stack units to their pre-stacking state. When a stack unit is unconfigured, its stacking flash is removed, and its startup-config.txt flash file is recovered. These actions apply to all units to which this command is applied, regardless of the role of the unit in the stack.
When the `stack unconfigure` command is applied to the Active Controller, it removes `stack enable` from the run time configuration but not from the startup configuration. If you want to remove `stack enable` from the Active Controller permanently, you must enter the `write memory` command.

When the `stack unconfigure` command is applied to the Standby Controller or a stack member (besides the Active Controller) it removes `stack enable` from the recovered startup-config.txt and resets the unit.

When a stack unit that did not have an original startup-config file is unconfigured, it becomes a clean unit. It is possible that this unit could automatically rejoin the stack if its module configuration matches that of the Active Controller. To prevent this from happening accidentally, it is best to first disconnect the unit, and then issue the `stack unconfigure` command on it.

To remove the configuration from a specific IronStack unit, or from the entire stack, enter a command similar to the following.

```plaintext
FGS648P-STK Switch# stack unconfigure 3
```

**Syntax:** `stack unconfigure stack-unit | all | me | clean | rollback`

- `stack unit` - unconfigure the stack member with this ID
- `all` - unconfigure every unit including this unit
- `me` - unconfigure this unit only
- `clean` - removes all startup configuration files including v4 and v5 and makes this a clean unit
- `rollback` - recovers the earlier version (4 or 3) of a startup configuration (refer to “Recovering an earlier version of a startup configuration” on page 156.)

**NOTE**
The `stack unconfigure me` command is available to all units, while `stack unconfigure all` and `stack unconfigure stack-unit` are available on the Active Controller only.

The following example shows a session where stack unit 2 is unconfigured.

```plaintext
FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FLS624 active 0012.f2eb.a900 128 local Ready
2 S FLS648 standby 00f0.424f.4243 0 remote Ready
3 S FGS624 member 00e0.5201.0100 0 remote Ready

FLS624-STK Switch# stack unconfigure 2
Will recover pre-stacking startup config of this unit, and reset it. Are you sure? (enter 'y' or 'n'): y
Stack 2 deletes stack bootup flash and recover startup-config.txt from .old

FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FLS624 active 0012.f2eb.a900 128 local Ready
2 S FLS648 member 0000.0000.0000 0 reserved
3 S FGS624 standby 00e0.5201.0100 0 remote Ready
```

When the `stack unconfigure 2` command is issued, stack unit 2 recovers the startup-config.txt from the startup-config.old configuration file that was saved when this unit downloaded its configuration from the Active Controller. As the output shows, stack member 2 has been removed from the stack, and ID 2 is now is reserved for a replacement unit. Stack member 3 is now the Standby Controller.
Recovering an earlier version of a startup configuration

The **stack unconfigure rollback** command recovers the earlier version (4 or 3) of a startup configuration. When a system that is running stacking (05.0.00 and later) discovers that its startup configuration is an earlier version, it saves this configuration to a startup-config.v4 when a **write memory** command is issued, or when the Active Controller tries to synchronize all startup configurations. The **stack unconfigure rollback** command is similar to the **stack unconfigure** command except that it does not remove “stack enable” from the run time or startup configuration.

**stack unconfigure** and **stack unconfigure rollback** are unrelated commands that recover different startup-config.txt files. Both commands permanently delete the current startup-config.txt and replace it with a pre-stacking (pre-05.0.00) startup-config.txt file.

**NOTE**
When you issue the **stack unconfigure rollback** command to recover the previous startup-config.v4 file, DO NOT issue a **write memory** command, as **write memory** will overwrite the recovered file. You should reboot from a pre-5.x image without doing a **write memory**.

If you enter the **erase startup-config** or **stack unconfigure clean** commands, all startup-config text-related files, such as startup-config.v4 and startup-config.old are erased. You will no longer be able to recover pre 5.x startup-config.txt files.

**Syntax:** `stack unconfigure rollback [<stack-unit> | all | me]`
- `<stack-unit>` - recover the version 4 startup config for the stack member with this ID
- `all` - recover the version 4 startup config for every unit including this unit
- `me` - recover the version 4 startup config for this unit only

Displaying IronStack information

This section describes the **show** commands for an IronStack, including output examples and field descriptions.

Displaying flash information

Use the **show flash** command to display flash memory information for all members of a stack, or for a specified stack member.

**Syntax:** `show flash stack-id`

Output from the **show flash** command for a stack resembles the following (for a stack with three members).

From the Active Controller for the entire stack:

```
FGS624P-STK Switch# show flash
Stack unit 1:
Compressed Pri Code size = 3034232, Version 05.0.00T7e1 (fgs05000.bin)
Compressed Sec Code size = 2873568, Version 04.2.00T7e1 (fgs04200.bin)
Compressed BootROM Code size = 405217, Version 04.0.00T7e5
Code Flash Free Space = 2146304
Stack unit 2:
Compressed Pri Code size = 3034232, Version 05.0.00T7e1 (fgs05000.bin)
Compressed Sec Code size = 2873523, Version 04.2.00aT7e1 (fgs04200a.bin)
Compressed BootROM Code size = 403073, Version 03.0.00T7e5
```
Code Flash Free Space = 24117248
Stack unit 3:
Compressed Pri Code size = 3034232, Version 05.0.00T7e1 (fgs05000.bin)
Compressed Sec Code size = 2873568, Version 04.2.00T7e1 (fgs04200.bin)
Compressed BootROM Code size = 405217, Version 04.0.00T7e5
Code Flash Free Space = 2252800
FGS624P-STK Switch#

For stack member 3 only:

FGS624P-STK Switch# show flash stack 3
Stack unit 3:
Compressed Pri Code size = 3034232, Version 05.0.00T7e1 (fgs05000.bin)
Compressed Sec Code size = 2873568, Version 04.2.00T7e1 (fgs04200.bin)
Compressed BootROM Code size = 405217, Version 04.0.00T7e5
Code Flash Free Space = 2252800
FGS624P-STK Switch#

Table 35 describes the fields displayed in this example.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Pri Code size</td>
<td>The compressed size, version, and image name for the Primary Code</td>
</tr>
<tr>
<td>Compressed Sec Code size</td>
<td>The compressed size, version, and image name for the Secondary Code</td>
</tr>
<tr>
<td>Compressed BootROM Code size</td>
<td>The compressed size and version for the BootROM Code</td>
</tr>
<tr>
<td>Code Flash Free Space</td>
<td>The amount of available free space on the Flash memory</td>
</tr>
</tbody>
</table>

**Displaying memory information**

The `show memory` command displays information about stack units. The following example shows output from this command for a stack with eight units.

**Syntax: show memory**

FGS648P-STK Switch# show memory
Stack unit 1:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 182820476 bytes free, 23% used
Stack unit 2:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 172751776 bytes free, 27% used
Stack unit 3:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 172751776 bytes free, 27% used
Stack unit 4:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 172751776 bytes free, 27% used
Stack unit 5:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 107140664 bytes free, 54% used
Stack unit 6:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 172751740 bytes free, 27% used
Stack unit 7:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 182820504 bytes free, 23% used
Stack unit 8:
  Total DRAM: 268435456 bytes
  Dynamic memory: 238026752 bytes total, 182811440 bytes free, 23% used
BR-FGS648P Router#

Table 36 describes the fields displayed in this output example.

<table>
<thead>
<tr>
<th>This field</th>
<th>Describes...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total DRAM</td>
<td>The size (in bytes) of DRAM</td>
</tr>
<tr>
<td>Dynamic memory</td>
<td>The total number of bytes in dynamic memory, including the number of bytes</td>
</tr>
<tr>
<td></td>
<td>that are available (free, or unused), and the percentage of memory used.</td>
</tr>
</tbody>
</table>

**Displaying chassis information**

The `show chassis` command displays chassis information for each stack unit. Output resembles the following (in this example, a three member stack).

**Syntax: show chassis**

FGS648P-STK Switch# show chassis
The stack unit 1 chassis info:

  Power supply 1 (NA - AC - Regular) present, status ok
  Power supply 2 not present
  
  Fan 1 ok
  Fan 2 ok
  
  Exhaust Side Temperature Readings:
  Current temperature : 33.0 deg-C
  Warning level.......: 85.0 deg-C
  Shutdown level......: 90.0 deg-C
  
  Intake Side Temperature Readings:
  Current temperature : 31.0 deg-C

  Boot Prom MAC: 0012.f2e4.6e00
  Management MAC: 0012.f2e4.6e00

The stack unit 2 chassis info:

  Power supply 1 (NA - AC - Regular) present, status ok
  Power supply 2 not present
  
  Fan 1 ok
  Fan 2 ok
  
  Exhaust Side Temperature Readings:
  Current temperature : 32.5 deg-C
  Warning level.......: 85.0 deg-C
  Shutdown level......: 90.0 deg-C
  
  Intake Side Temperature Readings:
  Current temperature : 31.0 deg-C

  Boot Prom MAC: 0012.f2e3.11c0

The stack unit 3 chassis info:

  Power supply 1 (NA - AC - Regular) present, status ok
  Power supply 2 not present
  
  Fan 1 ok
Fan 2 ok

Exhaust Side Temperature Readings:
Current temperature : 31.5 deg-C
Warning level.......: 85.0 deg-C
Shutdown level......: 90.0 deg-C

Intake Side Temperature Readings:
Current temperature : 32.0 deg-C

Boot Prom MAC: 0012.f2db.e500

Table 37 describes the fields displayed in this output example.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Describes...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply 1</td>
<td>The status of the primary power supply.</td>
</tr>
<tr>
<td>Power Supply 2</td>
<td>The status of the secondary power supply, if present.</td>
</tr>
<tr>
<td>Fan 1 and Fan 2</td>
<td>The status of the cooling fans</td>
</tr>
<tr>
<td>Exhaust Side Temperature Readings</td>
<td>From the air exhaust side of the chassis, the current temperature reading, the warning level temperature setting, and the shutdown level temperature setting.</td>
</tr>
<tr>
<td>Intake Side Temperature Reading</td>
<td>The current temperature reading from the air intake side of the chassis.</td>
</tr>
<tr>
<td>Boot Prom MAC</td>
<td>The MAC address of the boot prom</td>
</tr>
<tr>
<td>Management MAC</td>
<td>For the Active Controller only, the management MAC address</td>
</tr>
</tbody>
</table>

Displaying stack module information

The show module command displays information about the stack unit modules. Output resembles the following.

Syntax: show module

```text
FLS648P-STK Switch(config)# show module

Module Status Ports Starting MAC
S1:M1 FGS-24G 24-port Management Module + PoE OK 24 00e0.5201.4000
S1:M2 FGS-2XGC 2-port 10G Module (2-CX4) OK 2 00e0.5201.4018
S1:M3 FGS-1XG 1-port 10G Module (1-XFP) OK 1 00e0.5201.401a
S3:M1 FLS-48G 48-port Management Module OK 48 001b.ed5e.c480
S3:M2 FLS-1XG 1-port 10G Module (1-XFP) OK 1 001b.ed5e.c4b0
S3:M3 FLS-1XGC 1-port 10G Module (1-CX4) OK 1 001b.ed5e.c4b1
S4:M1 FLS-48G 48-port Management Module OK 48 001b.ed5e.ac00
S4:M2 FLS-1XGC 1-port 10G Module (1-CX4) OK 1 001b.ed5e.ac30
S4:M3 FLS-1XG 1-port 10G Module (1-XFP) OK 1 001b.ed5e.ac31
S5:M1 FLS-24G 24-port Management Module OK 24 001b.ed5d.a180
S5:M2 FLS-1XG 1-port 10G Module (1-XFP) OK 1 001b.ed5d.a198
S5:M3 FLS-1XG 1-port 10G Module (1-XFP) OK 1 001b.ed5d.a199
S5:M4 FLS-1XG 1-port 10G Module (1-XFP) OK 1 001b.ed5d.a19a
S6:M1 FLS-24G 24-port Management Module OK 24 00e0.5200.3000
S6:M2 FLS-1XGC 1-port 10G Module (1-CX4) OK 1 00e0.5200.3018
S6:M3 FLS-1XGC 1-port 10G Module (1-CX4) OK 1 00e0.5200.3019
S7:M1 FLS-48G 48-port Management Module OK 48 00e0.4444.0000
S7:M2 FLS-1XGC 1-port 10G Module (1-CX4) OK 1 00e0.4444.0030
S7:M3 FLS-1XGC 1-port 10G Module (1-CX4) OK 1 00e0.4444.0031
S8:M1 FLS-48G 48-port Management Module OK 48 0012.f2eb.d540
```
Displaying stack resource information

Use the show stack resource command to display stack resource information, as shown in this example.

Syntax: show stack resource

```
FCX648SHPOE Switch# show stack resource

<table>
<thead>
<tr>
<th>alloc</th>
<th>in-use</th>
<th>avail</th>
<th>get-fail</th>
<th>limit</th>
<th>get-mem</th>
<th>size</th>
<th>init</th>
</tr>
</thead>
<tbody>
<tr>
<td>register attribute</td>
<td>2400</td>
<td>2347</td>
<td>53</td>
<td>0</td>
<td>556800</td>
<td>3089</td>
<td>142</td>
</tr>
<tr>
<td>general 12B data</td>
<td>32</td>
<td>8</td>
<td>24</td>
<td>0</td>
<td>7424</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>RB-tree node</td>
<td>4096</td>
<td>2347</td>
<td>1749</td>
<td>0</td>
<td>237568</td>
<td>2702</td>
<td>18</td>
</tr>
</tbody>
</table>
```

Displaying stack information

You can display information about any and all of the members in an IronStack by entering `show` commands from the Active Controller console port. If you enter show commands from a member unit that is not the Active Controller, the information may not be displayed correctly.

The `show stack` command displays general information about an IronStack, for all members, for a specified member, and with additional detail if required.
Syntax: `show stack stack-unit | detail`

The following output covers the entire stack.

```text
FLS648-STK Switch(config)# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FLS648 active 00:12.f2eb.a900 130 local Ready
2 S FLS648 standby 00f0.424f.4243 0 remote Ready
3 S FGS624 member 00e0.5201.0100 0 remote Ready
4 S FGS624 member 0000.0000.0000 0 reserved
```

If you add a stack member ID, output is displayed for that member only.

```text
FGS648-STK Switch# show stack 1
ID Type Role Mac Address Prio State Comment
1 S FGS648 active 0012.f2eb.a900 130 local Ready
```

```text
FGS648-STK Switch# show stack 2
ID Type Role Mac Address Prio State Comment
2 S FGS648 standby 00f0.424f.4243 0 remote Ready, member after reload
```

```text
FGS648-STK Switch# show stack 3
ID Type Role Mac Address Prio State Comment
3 S FGS624 member 00f0.424f.4243 0 remote Ready
```

If you add `detail` to the `show stack` command, output resembles the following.

```text
FLS648P-STK Switch(config)# show stack detail
ID Type Role Mac Address Prio State Comment
1 S FGS624 member 00e0.5201.4000 0 remote Ready
2 S FGS624 member 00e0.5205.0000 0 remote Ready
3 S FGS624 member 001b.ed5e.c480 0 remote Ready
4 S FGS624 active 001b.ed5e.ac00 128 local Ready
5 S FGS624 standby 001b.ed5d.a180 0 remote Ready
6 S FGS624 member 00e0.5200.3000 0 remote Ready
7 S FGS624 member 00e0.4444.0000 0 remote Ready
8 S FGS624 member 0012.f2eb.d540 0 remote Ready
```

```text
Table 40 describes the fields displayed by the `show stack` command.

<table>
<thead>
<tr>
<th>Field descriptions for the <code>show stack</code> command</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field</td>
</tr>
<tr>
<td>alone: Standalone</td>
</tr>
<tr>
<td>S: static configuration</td>
</tr>
</tbody>
</table>
```
Upgrading software

### Displaying stack flash information

Use the `show stack flash` command to display information about flash memory for stack members, as shown in this example.

**Syntax:** `show stack flash`

FCX624S-F Switch# show stack flash
There is no startup-config.old
There was no stack flash read during bootup

Current written stack flash:
FCX624SF, ID =1, role= active, priority=128, config=1, jumbo=X PPVLAN=X S2M= stack p: [0]=1/2/1 [1]=1/2/2 , , hash-chain=X vlan#=X active-chg=0

**Syntax:** `show stack flash`

### Table 40

<table>
<thead>
<tr>
<th>This field</th>
<th>Indicates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>D: dynamic configuration</td>
<td>The configuration for this unit is dynamic and may be overwritten by a new stack unit. To change to a static configuration, enter the <code>write memory</code> command.</td>
</tr>
<tr>
<td>ID</td>
<td>The stack identification number for this unit.</td>
</tr>
<tr>
<td>Type</td>
<td>The model of this unit.</td>
</tr>
<tr>
<td>Role</td>
<td>The role of this unit within the stack.</td>
</tr>
<tr>
<td>MAC address</td>
<td>The MAC address of this unit.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority assigned to this unit.</td>
</tr>
<tr>
<td>State</td>
<td>The operational state of this unit.</td>
</tr>
<tr>
<td>Comments</td>
<td>Additional information about this unit (optional).</td>
</tr>
</tbody>
</table>

Table 41 describes the output from the `show stack detail` command (in addition to the `show stack` command fields shown in the previous table).

### Table 41

<table>
<thead>
<tr>
<th>This field</th>
<th>Indicates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack Port Status</td>
<td>Indicates stacking port status for each stack unit.</td>
</tr>
<tr>
<td>Neighbors</td>
<td>Identifies stack neighbors (by unit ID) for each stack unit.</td>
</tr>
<tr>
<td>ID</td>
<td>The stack identification number for this unit.</td>
</tr>
<tr>
<td>Stack-port 1</td>
<td>Indicates the port state (up or down) and identifies the port by number (stack-ID/slot/port).</td>
</tr>
<tr>
<td>Stack-port 2</td>
<td>Indicates the port state (up or down) and identifies the port by number (stack-ID/slot/port).</td>
</tr>
</tbody>
</table>
Displaying stack rel-IPC statistics

Use the `show stack rel-ipc stats` command to display session statistics for stack units.

Syntax: `show stack rel-ipc stats`

FCX624S-F Switch# show stack rel-ipc stats
Reliable IPC statistics:

Global statistics:
Pkts rcvd w/no session: 2
Msgs rcvd w/no handler: 0

Unit statistics:
Unit 2 statistics:
Msgs sent: 1678  Msgs received: 470, Pkt sends failed: 0
Message types sent:
[19]=53,
Message types received:
Session statistics, unit 2, channel 0:
Session state: established (last established 31 minutes 7 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 1440, Msgs received: 467
Pkt sends: 1242, Pkts received: 1094
Msg bytes sent: 68013, Msg bytes received: 16812
Pkt bytes sent: 291680, Pkt bytes received: 31808
Flushes requested: 108, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 467, WND: 6, ACK+WND: 0
DAT: 768, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 160, Zero-window probes sent: 0
Dup ACK pkts rcvd: 19, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 2, channel 2:
Session state: established (last established 31 minutes 5 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 0, Msgs received: 0

<table>
<thead>
<tr>
<th>Field</th>
<th>Indicates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>The priority of this device in the stack</td>
</tr>
<tr>
<td>config</td>
<td>Indicates the port state (up or down) and identifies the port by number (stack-ID/slot/port).</td>
</tr>
<tr>
<td>jumbo</td>
<td>Indicates the port state (up or down) and identifies the port by number (stack-ID/slot/port).</td>
</tr>
</tbody>
</table>
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1, Pkts received: 6
Msg bytes sent: 0, Msg bytes received: 0
Pkt bytes sent: 12, Pkt bytes received: 72
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
DAT: 0, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 0, Zero-window probes sent: 0
Dup ACK pkts rcvd: 6, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 2, channel 3:
Session state: established (last established 31 minutes 7 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 234, Msgs received: 0
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 255, Pkts received: 241
Msg bytes sent: 8424, Msg bytes received: 0
Pkt bytes sent: 13220, Pkt bytes received: 2892
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
DAT: 254, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 20, Zero-window probes sent: 0
Dup ACK pkts rcvd: 7, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 2, channel 5:
Session state: established (last established 31 minutes 5 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 2, Msgs received: 2
Atomic batches sent: 0, Atomic batches received: 2
Pkts sent: 7, Pkts received: 11
Msg bytes sent: 123, Msg bytes received: 20
Pkt bytes sent: 260, Pkt bytes received: 216
Flushes requested: 2, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 3, ACK: 1, WND: 0, ACK+WND: 0
DAT: 3, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 1, Zero-window probes sent: 0
Dup ACK pkts rcvd: 6, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Unit 3 statistics:
Msgs sent: 1193  Msgs received: 492, Pkt sends failed: 0
Message types sent:
Message types received:
Session statistics, unit 3, channel 0:
Session state: established (last established 31 minutes 11 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 955, Msgs received: 489
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1172, Pkts received: 1054
Msg bytes sent: 43705, Msg bytes received: 18696
Pkt bytes sent: 236968, Pkt bytes received: 33564
Flushes requested: 59, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 2, ACK: 487, WND: 7, ACK+WND: 0
DAT: 675, DAT+ACK: 1, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 129, Zero-window probes sent: 0
Dup ACK pkts rcvd: 17, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 3, channel 2:
Session state: established (last established 31 minutes 10 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 0, Msgs received: 0
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1, Pkts received: 7
Msg bytes sent: 0, Msg bytes received: 0
Pkt bytes sent: 12, Pkt bytes received: 84
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
DAT: 0, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 0, Zero-window probes sent: 0
Dup ACK pkts rcvd: 7, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 3, channel 3:
Session state: established (last established 31 minutes 11 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 234, Msgs received: 0
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 235, Pkts received: 238
Msg bytes sent: 8424, Msg bytes received: 0
Pkt bytes sent: 12180, Pkt bytes received: 2856
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
DAT: 234, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 0, Zero-window probes sent: 0
Dup ACK pkts rcvd: 4, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 3, channel 6:
Session state: established (last established 31 minutes 10 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 2, Msgs received: 2
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 8, Pkts received: 13
Displaying stack rel-IPC statistics for a specific stack unit

To display IPC statistics for a specific unit, enter the following command:

```
Syntax: show stack rel-ipc unit num
```

```
FCX624S-F Switch# show stack rel-ipc stats unit 3

Unit 3 statistics:
Msgs sent: 1217 Msgs received: 509, Pkt sends failed: 0
Message types sent:
Message types received:
Session state: established (last established 32 minutes 19 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 971, Msgs received: 506
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1205, Pkts received: 1088
Msg bytes sent: 44281, Msg bytes received: 19308
Pkt bytes sent: 238004, Pkt bytes received: 34652
Flushes requested: 59, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 2, ACK: 504, WND: 7, ACK+WND: 0
Dup ACK pkts rcvd: 129, zero-window probes sent: 0
Pkts rcvd w/data past window: 0
```

```
Session statistics, unit 3, channel 2:
Session state: established (last established 32 minutes 17 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 0, Msgs received: 0
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1, Pkts received: 7
Msg bytes sent: 0, Msg bytes received: 0
Pkt bytes sent: 12, Pkt bytes received: 84
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
```

Displaying stack rel-IPC statistics for a specific stack unit

To display IPC statistics for a specific unit, enter the following command:

```
Syntax: show stack rel-ipc unit num
```

```
FCX624S-F Switch# show stack rel-ipc stats unit 3

Unit 3 statistics:
Msgs sent: 1217 Msgs received: 509, Pkt sends failed: 0
Message types sent:
Message types received:
Session state: established (last established 32 minutes 19 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 971, Msgs received: 506
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1205, Pkts received: 1088
Msg bytes sent: 44281, Msg bytes received: 19308
Pkt bytes sent: 238004, Pkt bytes received: 34652
Flushes requested: 59, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 2, ACK: 504, WND: 7, ACK+WND: 0
Dup ACK pkts rcvd: 129, zero-window probes sent: 0
Pkts rcvd w/data past window: 0
```

```
Session statistics, unit 3, channel 2:
Session state: established (last established 32 minutes 17 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 0, Msgs received: 0
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1, Pkts received: 7
Msg bytes sent: 0, Msg bytes received: 0
Pkt bytes sent: 12, Pkt bytes received: 84
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
```

Displaying stack rel-IPC statistics for a specific stack unit

To display IPC statistics for a specific unit, enter the following command:

```
Syntax: show stack rel-ipc unit num
```

```
FCX624S-F Switch# show stack rel-ipc stats unit 3

Unit 3 statistics:
Msgs sent: 1217 Msgs received: 509, Pkt sends failed: 0
Message types sent:
Message types received:
Session state: established (last established 32 minutes 19 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 971, Msgs received: 506
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1205, Pkts received: 1088
Msg bytes sent: 44281, Msg bytes received: 19308
Pkt bytes sent: 238004, Pkt bytes received: 34652
Flushes requested: 59, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 2, ACK: 504, WND: 7, ACK+WND: 0
Dup ACK pkts rcvd: 129, zero-window probes sent: 0
Pkts rcvd w/data past window: 0
```

```
Session statistics, unit 3, channel 2:
Session state: established (last established 32 minutes 17 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 0, Msgs received: 0
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 1, Pkts received: 7
Msg bytes sent: 0, Msg bytes received: 0
Pkt bytes sent: 12, Pkt bytes received: 84
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
```
Dat: 0, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 0, Zero-window probes sent: 0
Dup ACK pkts rcvd: 7, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 3, channel 3:
Session state: established (last established 32 minutes 19 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 242, Msgs received: 0
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 243, Pkts received: 246
Mag bytes sent: 8712, Mag bytes received: 0
Pkts bytes sent: 12596, Pkt bytes received: 2952
Flushes requested: 0, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 1, ACK: 0, WND: 0, ACK+WND: 0
Dat: 242, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 0, Zero-window probes sent: 0
Dup ACK pkts rcvd: 4, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Session statistics, unit 3, channel 6:
Session state: established (last established 32 minutes 17 seconds ago)
Connections established: 1
Remote resets: 0, Reset packets sent: 0
Connection statistics (for current connection, if established):
Msgs sent: 2, Msgs received: 2
Atomic batches sent: 0, Atomic batches received: 0
Pkts sent: 8, Pkts received: 13
Mag bytes sent: 123, Mag bytes received: 20
Pkts bytes sent: 232, Pkt bytes received: 296
Flushes requested: 2, Suspends: 0, Resumes: 0
Packets sent with data (DAT), ACKs, and window updates (WND):
Other: 5, ACK: 1, WND: 0, ACK+WND: 0
Dat: 2, DAT+ACK: 0, DAT+WND: 0, DAT+ACK+WND: 0
Data retransmits done: 0, Zero-window probes sent: 0
Dup ACK pkts rcvd: 6, Pkts rcvd w/dup data: 0
Pkts rcvd w/data past window: 0

Displaying stack neighbors

The show stack neighbors command displays information about stack member neighbors.

Syntax: show stack neighbors

FGS648P-STK Switch# show stack neighbors
ID Stack-port1 Stack-port2
1  3   2
2  1   3
3  2   1

The topology of stack system is ring, and has 3 stack unit(s)
From left to right (starting with active unit): 1 2 3

Table 43 describes the output from the show stack neighbors command.
Displaying stack port information

The `show stack stack-ports` command displays information about stack port status.

Syntax: `show stack stack-ports`

```
FLS648-STK Switch(config)# show stack stack-ports
ID Stack-port1 Stack-port2
1 up (1/2/1) up (1/2/2)
2 up (2/2/1) up (2/2/2)
3 up (3/2/1) up (3/3/1)
4 up (4/2/1) up (4/3/1)
5 up (5/2/1) up (5/3/1)
```

**Table 44** describes the output from the `show stack stack-ports` command.

Displaying running configuration information

The `show running-config` command displays information about the current stack configuration.

Syntax: `show running-config`

```
FLS648P-STK Switch(config)# show running-config
Current configuration:
!
ver 05.0.00T7e1
!
stack unit 1
 module 1 fgs-24-port-management-module
 module 2 fgs-cx4-2-port-10g-module
 module 3 fgs-xfp-1-port-10g-module
 stack-port 1/2/1 1/3/1
stack unit 2
 module 1 fgs-48-port-management-module
 module 2 fgs-xfp-2-port-10g-module
stack unit 3
 module 1 fls-48-port-copper-base-module
 module 2 fls-xfp-1-port-10g-module
 module 3 fls-cx4-1-port-10g-module
stack unit 4
 module 1 fls-48-port-copper-base-module
 module 2 fls-cx4-1-port-10g-module
```
module 3 fgs-xfp-1-port-10g-module
priority 128
stack enable
!

Table 45 describes the output from the show running-config command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Indicates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack unit &lt;#&gt;</td>
<td>The stack identification number for this unit.</td>
</tr>
<tr>
<td>Module &lt;#&gt;</td>
<td>Identifies the configuration for modules on this unit.</td>
</tr>
<tr>
<td>Pri</td>
<td>Indicates that a priority has been assigned to this stack unit</td>
</tr>
</tbody>
</table>

**Displaying configured stacking ports**

The stacking ports may display in the output from the show running-config command in three different ways.

1. When stacking is enabled, the output shows both stacking ports.

```
stack unit 1
 module 1 fgs-24-port-management-module
 module 2 fgs-cx4-2-port-10g-module
 module 3 fgs-xfp-1-port-10g-module
 stack-port 1/2/1 1/3/1
```

2. When stacking is not enabled, neither stacking port is displayed.

```
stack unit 1
 module 1 fgs-24-port-management-module
 module 2 fgs-cx4-2-port-10g-module
 module 3 fgs-xfp-1-port-10g-module
```

3. If one stacking port is configured, that port will be displayed regardless of whether or not stacking is enabled.

```
stack unit 1
 module 1 fgs-24-port-management-module
 module 2 fgs-cx4-2-port-10g-module
 module 3 fgs-xfp-1-port-10g-module
 stack-port 1/3/1
```

**Displaying software version information**

The show version command shows the software version that the stack is running. Note that the last line of this output shows the bootup ID and role for this unit. Output resembles the following.

**Syntax: show version**

```
FLS648P-STK Switch(config)# show version
SW: Version 05.0.02T7el Copyright (c) 2009 Brocade Communications Systems, Inc.
 Compiled on Jul 23 2008 at 02:38:03 labeled as FGS05002
 (3054675 bytes) from Primary fgs05002.bin
STACKID 1: compiled on Jul 23 2008 at 02:38:03 labeled as FGS05000
 (3054675 bytes) from Primary fgs05000.bin
STACKID 2: compiled on Jul 23 2008 at 02:38:03 labeled as FGS05000
 (3054675 bytes) from Primary fgs05000.bin
STACKID 3: compiled on Jul 23 2008 at 02:38:03 labeled as FGS05000
```
Upgrading software

(3054675 bytes) from Primary fgs05000.bin
BootROM: Version 04.0.00T7e5 (Fev2)

HW: Chassis FLS648

STACKID 1: SL 1: FGS-24G 24-port Management Module + PoE
  Serial #: PR11060248
  P-ASIC 0: type D804, rev 01

STACKID 1: SL 2: FGS-2XGC 2-port 10G Module (2-CX4)

STACKID 1: SL 3: FGS-1XG 1-port 10G Module (1-XFP)

STACKID 2: SL 1: FLS-48G 48-port Management Module
  Serial #: AN07510010
  P-ASIC 0: type D804, rev 01
  P-ASIC 1: type D804, rev 01

STACKID 2: SL 2: FLS-1XG 1-port 10G Module (1-XFP)

STACKID 2: SL 3: FLS-1XGC 1-port 10G Module (1-CX4)

STACKID 3: SL 1: FLS-48G 48-port Management Module
  Serial #: AN07510269
  P-ASIC 0: type D804, rev 01
  P-ASIC 1: type D804, rev 01

STACKID 3: SL 2: FLS-1XGC 1-port 10G Module (1-CX4)

STACKID 3: SL 3: FLS-1XG 1-port 10G Module (1-XFP)

400 MHz Power PC processor 8248 (version 130/2014) 66 MHz bus
512 KB boot flash memory
30720 KB code flash memory
128 MB DRAM
Monitor Option is on
The system uptime is 18 minutes 4 seconds
STACKID 1 system uptime 18 minutes 4 seconds
STACKID 2 system uptime 18 minutes 3 seconds
STACKID 3 system uptime 18 minutes 3 seconds
The system started at 21:08:51 GMT+00 Fri Jul 25 2008
The system : started=warm start  reloaded-by "reload"
My stack unit ID = 1, bootup role = active

Displaying stacking port interface information

The **show interfaces stack-ports** command displays information about the stacking ports on all stack units.

**Syntax:** show interfaces stack-ports
Upgrading software

FGS648P-STK Switch# show interfaces stack-ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Link</th>
<th>State</th>
<th>Dupl</th>
<th>Speed</th>
<th>Trunk</th>
<th>Tag</th>
<th>P</th>
<th>MAC</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2/1</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2e4.6e30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2/2</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2e4.6e31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2/1</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2e3.11f0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/2/2</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2e3.11f1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2/1</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2db.e530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2/2</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2db.e531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/2/1</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2e2.c770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/2/2</td>
<td>Up</td>
<td>Forward</td>
<td>Full</td>
<td>10G-CX4</td>
<td>None</td>
<td>No</td>
<td>l 0012.f2e2.c771</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 46 describes the fields displayed by the show interfaces stack-ports command.

**TABLE 46** Field descriptions for the show interfaces stack-ports command

<table>
<thead>
<tr>
<th>This field</th>
<th>Indicates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The stack identification number for this unit.</td>
</tr>
<tr>
<td>Link</td>
<td>Identifies the configuration for modules on this unit.</td>
</tr>
<tr>
<td>State</td>
<td>Indicates that a priority has been assigned to this stack unit.</td>
</tr>
<tr>
<td>Dupl</td>
<td>Indicates whether the port is configured as half or full duplex.</td>
</tr>
<tr>
<td>Speed</td>
<td>Indicates the port speed.</td>
</tr>
<tr>
<td>Trunk</td>
<td>Indicates whether the port is part of a trunk.</td>
</tr>
<tr>
<td>Tag</td>
<td>Indicates whether the port is tagged or untagged.</td>
</tr>
<tr>
<td>P</td>
<td>Port priority.</td>
</tr>
<tr>
<td>MAC</td>
<td>The MAC address of the port.</td>
</tr>
<tr>
<td>Name</td>
<td>An optional name assigned to the port.</td>
</tr>
</tbody>
</table>

Displaying stacking port statistics

The show statistics stack-ports command displays information about all stacking ports in an IronStack topology.

Syntax: show statistics stack-ports
Adding, removing, or replacing units in an IronStack

The following sections describe how to add, remove, or replace units in an IronStack. The recommended method is to connect units to the stack before you supply power to the units, however, you can also connect powered units.

**Installing a new unit in an IronStack using secure-setup**

This method can be applied to clean units, or units that have existing configurations.

1. Connect the new unit to the stack by connecting the 10 Gbps stacking ports.
2. Run secure-setup on the Active Controller and assign an ID to the new unit. The Active Controller will reset the new unit.
3. Once the new unit boots and joins the stack, do a write memory on the Active Controller.

**Installing a new unit using static configuration**

If the new unit is a clean unit and the connection is sequential you can add it using the static setup process.

---

**Table 47** describes the fields displayed by the `show statistics stack-ports` command.

**TABLE 47** Field definitions for the `show statistics stack-ports` command

<table>
<thead>
<tr>
<th>This field</th>
<th>Indicates...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The stack identification number for this unit.</td>
</tr>
<tr>
<td>In Packets</td>
<td>The number of incoming packets on this port.</td>
</tr>
<tr>
<td>Out Packets</td>
<td>The number of outgoing packets on this port.</td>
</tr>
<tr>
<td>In Errors</td>
<td>The number of incoming errors on this port.</td>
</tr>
<tr>
<td>Out Errors</td>
<td>The number of outgoing errors on this port.</td>
</tr>
</tbody>
</table>

FGS648P-STK Switch# show statistics stack-ports

<table>
<thead>
<tr>
<th>Port</th>
<th>In Packets</th>
<th>Out Packets</th>
<th>In Errors</th>
<th>Out Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2/1</td>
<td>22223</td>
<td>4528</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2/2</td>
<td>35506</td>
<td>3844</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/2/1</td>
<td>3161</td>
<td>34173</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/2/2</td>
<td>24721</td>
<td>3676</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2/1</td>
<td>3048</td>
<td>23881</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3/2/2</td>
<td>13540</td>
<td>2857</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/2/1</td>
<td>2862</td>
<td>13537</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/2/2</td>
<td>3626</td>
<td>3184</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5/2/1</td>
<td>3183</td>
<td>3621</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5/2/2</td>
<td>3265</td>
<td>13508</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6/2/1</td>
<td>14020</td>
<td>3655</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6/3/1</td>
<td>3652</td>
<td>17705</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7/2/1</td>
<td>17705</td>
<td>3658</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7/3/1</td>
<td>4047</td>
<td>21802</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>154559</td>
<td>153629</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
1. Enter the module configuration of the new unit into the Active Controller's configuration.

2. Connect the new unit to the stack using the 10 Gbps stacking ports. The sequence in which you connect the unit must match that of the Active Controller configuration. The Active Controller automatically resets the unit.

3. Once the new unit boots and joins the stack, do a write memory on the Active Controller. You should see the following message.

   Done hot swap: Set stack unit 3 to Fully-Operational:16

### Configuration notes

Configuration on a new unit can be accomplished in three ways:

- If the Active Controller has no configuration information for the new unit, it learns the new unit configuration. This is a dynamic configuration and will disappear if the new unit leaves the stack. In order for the configuration to stay on the Active Controller (to make it a static configuration), you must do a write memory on the Active Controller.

- If the Active Controller has configuration information for a new unit, and it matches the base module (module 1) of the new unit, no action is necessary. If configuration information for non-base modules on the new unit does not match the information on the Active Controller, the Active Controller learns the configuration for the new unit module types and merges it with the information it has for the base module. This merged configuration remains static and will stay on the Active Controller even if the new unit leaves the stack.

- If the Active Controller has configuration information for the new unit, but it does not match the base module of the new unit, a configuration mismatch can occur where the configuration related to this unit is removed even after the mismatch is resolved. Refer to “Recovering from a mismatch” on page 182 for more information.

### Removing a unit from an IronStack

To remove a unit from the stack, disconnect the cables from the stacking ports. This can be done whether the units are powered-on or powered-off. When you remove a unit that is powered-on, it is still in stacking enabled mode. To remove the stacking files, enter the `stack unconfigure me` or `stack unconfigure clean` command. When the unit reboots, it will operate as a standalone unit. Refer to “Unconfiguring an IronStack” on page 154.

When a unit is removed from a stack, the Active Controller deletes this unit configuration if it is dynamically learned. Refer to “Brocade IronStack terminology” on page 111 for definitions of static and dynamic configurations.

### Replacing an IronStack unit

**Replacing with a clean unit**

If the stack unit ID numbering is sequential, you can easily swap a failed unit with an identical clean unit using this procedure.

1. Remove the old unit from the stack.

2. Make sure that the hardware (module) configuration of the replacement unit is identical to that of the failed unit.

3. Connect the new unit to the stack using the same stacking ports used by the old unit.
4. If the configuration of the replacement unit matches the configuration on the Active Controller, the Active Controller resets the new unit, which automatically becomes active in the stack, and the stack retains its original topology.

**Replacing with multiple clean units**

If you are replacing multiple old units with clean units, the Active Controller replaces the unit with the lowest ID first. For example, if you remove units 5 and 6 (which are FGS624P-STK devices), the Active Controller assigns ID 5 to the first new FGS624P-STK device you install. If you wanted this particular unit to replace unit 6, instead of unit 5, you must use secure-setup.

You must use secure-setup if the replacement is not a clean unit, the connection is not sequential, or you do not want the Active Controller to trigger an automatic replacement. Use the following steps.

1. Remove the old stack unit from the stack
2. Connect the new unit to the existing stack using the same stacking ports used by the old unit.
3. Run secure-setup to select the ID of the old unit for the new unit. The Active Controller resets the unit, and it joins the stack.

**NOTE**

Adding, removing or replacing a stack unit which is not at the end of linear topology may cause the other units in the stack to reset if these units lose their path to the Active controller during the process. Adding or removing a unit in a ring topology should not cause the other units to reset because each unit can still find a path to the Active Controller.

**Moving a unit to another stack**

Moving a member from a stack and to another stack can result in non-sequential ID assignment. The Active Controller will honor the new unit original ID if that ID is not being used in the new stack. The Active Controller will assign a new ID if the original ID is already being used. To prevent non-sequential stack ID assignments, configure the unit that is moving as a clean unit before adding it to the new stack.

**Removing an Active Controller from a powered stack**

To remove an Active Controller from a powered stack, disconnect the Active Controller. The Standby Controller waits for 30 seconds and then assumes the role of Active Controller. A single Active Controller device functions as a standalone unit even it is still stacking-enabled. You do not have to issue a `stack unconfigure me` command for an Active Controller.

**Renumbering stack units**

You can use secure-setup to renumber stack units in a previously constructed stack. In the following example, three units make up a stack, yet two of the units are numbered 5 and 6 (the Active Controller is numbered 1). Since this stack is only going to contain 3 units, you can renumber the other units so that they are unit 2 and unit 3.

The most effective way to number your stack members is sequentially. You can skip numbers, but they should still be sequential, from 1 to 8. Sequential numbering makes it easy to replace stack units, and easier to troubleshoot issues.
NOTE
In a ring topology, 1, 2, 4, 5, and 1, 5, 4, 2 are both sequential.

Example

FGS624-STK Switch# stack secure-setup
FLS624-STK Switch# Discovering the stack topology...

Available UPSTREAM units
Hop(s)  Type       Mac Address
1       FLS624  0012.f2d5.2100
2       FLS624  001b.ed5d.9940

Enter the number of the desired UPSTREAM units (1-2) [1]: 2

Selected topology:
Active id  Type       Mac Address
  1   FLS624  0012.f239.2d40

Selected UPSTREAM units
Hop(s)   id  Type       Mac Address
 1   5   FLS624  0012.f2d5.2100
 2   6   FLS624  001b.ed5d.9940

Do you accept the unit ids? (y/n)?: n

Enter an unused id for the UPSTREAM FLS623 unit at 1 hop(s) (1-8) [5]: 2
Enter an unused id for the UPSTREAM FLS624 unit at 2 hop(s) (1-8) [6]: 3

FLS624-STK Switch# Election, was active, no role change, assigned-ID=1
reset unit 2: diff bootup id=5
reset unit 3: diff bootup id=6
Election, was active, no role change, assigned-ID=1

FLS624-STK Switch# show stack
ID  Type   Role  Mac Address  Pri  State    Comment
 1  S  FLS624 active  0012.f239.2d40 128  local    Ready
 2  S  FLS624 standby 0012.f2d5.2100  0  remote   Ready
 3  S  FLS624 member  001b.ed5d.9940  0  remote   Ready

Configuration Notes:

- Renumbering may result in the removal of a unit configuration if the stack unit base module
does not match the configuration on the Active Controller. However, secure-setup renumbering
never changes the interface configuration. For example, if you switch the IDs of identical units
2 and 3, the Active Controller does not change 2/1/5 to 3/1/5 and vice versa.

- If the configuration for the ID you select for a specific unit does not match the configuration on
that unit, secure-setup will change the static configuration into a dynamic configuration so it
can be overwritten by the learned configuration.

- When swapping IDs for two or more identical units - for example, if units 2, 3, and 4 are
identical, changing 2 to 3, 3 to 4, and 4 to 2 will not affect the configurations of the units
except that the units will reset and assume the new IDs.

- If you swap IDs for two units that are not identical - for example, unit 2 is an FGS624 and unit 3
is an FLS624, you may cause a configuration mismatch. If this happens, the Active Controller
removes the configurations and resets both units. When both units boot with new IDs, the
Active Controller learns their module types and creates new unit configurations for both.
However, all interface configuration information related to units 2 and 3 is gone.
- When you renumber identical units using secure-setup, the configurations are not mapped to the new units (since the configurations match exactly). However, if you switch the IDs of units that are not identical, a configuration mismatch occurs. Refer to “Recovering from a mismatch” on page 182.
- When you assign an unused ID to a stack unit, the unit is reset with the new ID. All unit and interface configuration information related to the old stack ID is deleted. The Active Controller learns the configuration for the new unit (instead of creating interface configuration for the new unit).
- Release 5.0 does not support user changes to the Active Controller ID.
- Secure-setup does not swap configuration information for units that have had their IDs changed. For example, it does not change the 2/1/3 interface configuration or VLAN membership information into 3/1/3 information if the unit ID changes from 2 to 3.
- If the configuration for a unit being replaced does not match the new unit type, the Active Controller removes the unit configuration and associated interface configuration.
- All learned configurations due to mismatches or the addition of new units are dynamic configurations. To convert them into static configurations, do a write memory to preserve the configurations if a unit is removed from the stack.

Syslog, SNMP, and traps

Syslog messages from stack units are forwarded to, and can be viewed from, the Active Controller. All stack units support SNMP gets, sets, and traps, which are managed by the Active Controller. An SNMP trap is sent from a stack unit to the stack Active Controller, and forwarded from the Active Controller to an SNMP-configured server. An external network management station can execute SNMP gets and sets for MIBs and collect information about any port on the stack.

SNMP traps can be configured for the insertion or removal of a stack unit or uplink module, and for optic identification.

For more information about Syslog messages, refer to Chapter 50, “Using Syslog”.

Configuring SNMP for an IronStack

SNMP server and feature configuration is the same for an IronStack as it is for standalone units. In an IronStack, SNMP gets and sets are processed by the Active Controller for the Standby Controller and all stack members. SNMP traps generated by the Standby Controller and stack members are propagated to the configured SNMP server through the Active Controller. For more information about how to configure an SNMP server for FastIron devices, refer to Chapter 48, “Securing SNMP Access”.

SNMP engine IDs for stackable devices

For Brocade stacking devices, if an engine ID is not manually created or a stack MAC address is not specified and saved, the stack will lose its engine ID if the Active Controller fails and the Standby Controller takes over, because the Standby Controller creates a new engine ID at bootup. To prevent this from happening, you will need to either create a new engine ID or create a new stack MAC address to ensure that the engine ID is saved to the startup configuration. This should be done before the SNMPv3 user is created.

If a new Active Controller is elected (for example, the Standby Controller becomes the Active Controller) you will see the following results:
Troubleshooting an IronStack

The most common reason for an unsuccessful stack build is either a software configuration mismatch, a hardware configuration mismatch, or a combination of both.

The following sections describe common troubleshooting procedures for an IronStack:

- “Troubleshooting an unsuccessful stack build” on page 177
- “Troubleshooting a stacking upgrade” on page 179
- “Troubleshooting image copy issues” on page 180
- “Configuration mismatch” on page 182
- “Recovering from a mismatch” on page 182
- “Troubleshooting secure-setup” on page 184
- “Troubleshooting unit replacement issues” on page 184

Troubleshooting an unsuccessful stack build

If you are unable to build a stack, (for example, the `show stack` command does not display any stack units), perform the following steps.

1. Enter the `show run` command on each unit to make sure the configuration contains “stack enable”. If it does not, enter the `stack enable` command on the unit. Before a stack is formed, you can still access the console port on each device. Once a stack is successfully formed, you are redirected to the Active Controller.

   NOTE
   If you are building a stack using secure-setup, you do not have to enter stack enable on each unit.

2. Check that all of your stacking port connections are secure and working properly. Enter the `show interface stack` on each device to confirm that the stacking port links are up and the ports are in the forward state.

   FLS624-STK Switch# show interfaces stack
   Port Link State Dupl Speed Trunk Tag P MAC Name
   1/2/1 Up Forward Full 10G None No 1 0012.f2eb.a902
   1/2/2 Up Forward Full 10G None No 1 0012.f2eb.a904

3. Confirm that all of the devices are running the same software image
4. Use the `show log` command to display any IPC version mismatch messages. These messages appear in one minute when receiving mismatched probe packets, and then once every 10 minutes.

5. Type `show stack ipc` to see if any traffic has been sent or received. Enter `clear stack ipc` to clear the traffic statistics and then enter `show stack ipc` again so you can easily see differences in traffic flow.

```
FLS648-STK Switch# show stack ipc
Recv IPC 330 packets
Message types have callbacks:
 1 : Reliable IPC message 2 : Reliable IPC atomic batch
 more message types removed.
Send message types:
 [14]=126,
Recv message types:
 [20]=1, [27]=9,
Statistics:
 send pkt num : 964, recv pkt num : 330,
 send msg num : 964, recv msg num : 330,
 send frag pkt num : 0, recv frag pkt num : 0,
 pkt buf alloc : 964,
 Reliable-mail send success receive time us
 target ID 0 0 0 0
 target MAC 0 0 2 0
There is 0 current jumbo IPC session
Possible errors:
 *** state not ready : 1,
```

If the send message types: field is empty, it means that stack enable has not been configured. If the number of Recv IPC packets increases, but there are no Recv message types, then the packets are being dropped for various reasons, including the wrong IPC version, or a checksum error. The Possible errors field will list reasons for packet loss.

**NOTE**
A small ***state not ready" count is normal, but if it continues to increase a problem is indicated.

6. If the results of a `show stack` command show other stack members, but lists them as non-operational, this could be due to an image mismatch, or a configuration mismatch. In the event of an image mismatch, you can download the correct images to the entire stack from the Active Controller. Refer to “Configuration mismatch” on page 182 for more information about configuration mismatches.

**NOTE**
If your intended stacking ports are connected in a ring topology, they will not all appear to be in the forwarding state because of spanning tree, but secure-setup can still build the stack.
7. If you run out of flash memory while doing a **write memory**, your stack devices may contain very large startup-config.v4 or startup-config.old files, which are preserved for recovery purposes (refer to “**Unconfiguring an IronStack**” on page 154 for more information). If you do not need these files, you can delete them using the **flash delete** command. Enter the **show dir** command to see all flash files.

8. Check to be sure you do not have any stacking to non-stacking connections. You may see a message similar to the following.

   Warning! Proc ????? packet in 2m from 0012.f2222.8300, Wrong dev/port: dev=4, port=18, DSA=4971100 497--E
   You might have stacking to non-stacking port connections

   This indicates that you may have a connection between a stacking port and a non-stacking port. This message will appear every 10 minutes after the first display. If you see this message once only, and your connections are correct, your stack should be operating properly. Only repeat displays of this message indicate a problem.

**Troubleshooting a stacking upgrade**

After you upgrade your FGS or FLS to support stacking, (refer to the **FastIron GS Compact Switch Hardware Installation Guide** for more information about hardware upgrades for stacking), restart the device with the upgraded 05.0.00 software. If you encounter a problem at this step, make sure the memory DIMM and stacking EEPROM are installed correctly. If they are not installed correctly, you may see output similar to the following.

   FGS MEM size: 0x10000000
   FGS Flash config....
   FGS Boot Code Version 05.0.00
   Enter 'b' to stop at boot....
   BOOT INFO: load monitor from primary, size=103408
   BOOT INFO: load image from primary.........
   BOOT INFO: bootparam at 000543e8, mp_flash_size=002ee6c5
   BOOT INFO: code decompression completed
   BOOT INFO: branch to 00400100
   Starting Main Task....
   *****************************************************************************
   ERR: This software needs License PROM to be installed in the system
   *****************************************************************************
   System Reset!

   If your memory DIMM is not installed correctly, you will see output similar to the following.

   FGS Mem size: 0x8000000
   Flash Config...
   FGS Boot Code Version 05.0.00
   Enter 'b' to stop at boot.....
   BOOT INFO: load monitor from primary, size = 103380
   BOOT INFO: debug enabled!!
   BOOT INFO: load image from primary...
   BOOT INFO: bootparam at 00054338 mp_flash_size = 002f1aeb
   BOOT INFO: code decompression completed
   BOOT INFO: branch to 00400100
   Starting Main Task ...
   *****************************************************************************
   ERR: This software requires 256M memory to be installed in the system.
   *****************************************************************************
   System Reset!
Check your upgraded hardware for the following situations:

- EEPROM is installed incorrectly in the socket. Make sure Pin 1 on the EEPROM matches the Pin 1 hole in the socket.
- Make sure your memory DIMM is securely installed in the memory DIMM socket. Refer to the hardware installation guide or the instructions that came with your upgrade kit for more information.

Troubleshooting image copy issues

The `copy tftp flash` command copies the image to all stack units including the Active Controller. The `copy flash flash` command copies the image from the primary or secondary flash on the Active Controller to the primary or secondary flash image of a stack member, respectively. If you are unable to copy an image to one or more stack units, check the following:

- Make sure the unit is actually part of the stack. Use the `show stack` command.
- If a unit joins a stack after the `image copy` command was issued, you will need to copy the image to this unit separately.

Stack mismatches

When a stack mismatch occurs, the Active Controller can put any stack member into a non-operational state, which disables all of the ports except the stacking ports. Stack mismatches can occur for a variety of reasons, which are discussed in this section.

**NOTE**
The Active Controller can still download an image to the non-operational unit.

The Active Controller generates a log message whenever it puts a stack unit into a non-operational state. The following examples describe the types of mismatches and the related log message:

- **Advanced feature mismatch** - The Active Controller is enabled for advanced features (such as BGP) and the stack unit is not enabled.
  
  Stack: Unit 2 00e0.1020.0100 doesn't have the matching advanced feature privileges

- **Image mismatch** - A stack unit is running a different software image than that of the Active Controller.
  
  Stack: Unit 2 00c0.1020.0100 image mismatch

- **Configuration mismatch** - The module configuration for a stack unit does not match the reserved configuration on the Active Controller.
  
  Stack: Unit 2 00e0.1020.0100 config mismatch

- **Memory allocation mismatch** - The Active Controller does not have enough memory to accommodate the stack unit.
  
  Stack: Malloc failure for unit 2.00e0.1020.0100

These mismatches are described in the following sections.
Advanced feature mismatch

FCX stack unit advanced feature privileges must be enabled to run advanced features such as BGP. Both Active and Standby units must be enabled for advanced features for these features to operate across the stack. A unit that is not enabled for these features is put into a non-operational state.

If the Active Controller is not enabled for advanced features, these features will not operate on the stack.

Image mismatch

IronStack technology requires that all stack units run the same version of the software image. In cases where the software version differs, there are two levels of mismatch, major and minor.

Major mismatch

A major mismatch indicates an Interprocessor Communications (IPC)-related data structure change, or an election algorithm change, or that a version of the software that does not support stacking is installed on a unit. This can happen when the software undergoes a major change (such as a change from 05.0.00 to 05.1.00). When a major mismatch occurs, the system logs and prints a message similar to the following.

Warning! Recv 424 IPC in 1m from 0012.f2eb.a900 e1/1/25: wrong version 5 !=6. Please make sure all units run the same image.

In a major mismatch, the stack cannot be built and will not operate. You must download the correct version of the software to the mismatched units individually.

Minor mismatch

With a minor mismatch, an operating stack can still exist, but traffic is dropped from all ports except for the stacking ports for units with the mismatched software. You can download the correct image to the mismatched devices from the Active Controller. A minor software mismatch means that there is no IPC or election algorithm change, but there is a release version disparity. Minor software mismatches can happen with patch release upgrades. The system logs and prints a message similar to the following.

Warning! put stack unit 2 to non-operational reason=image mismatch

The show stack command displays output similar to the following.

```
FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 S FLS624 active 0012.f2eb.a900 128 local Ready
2 S FLS648 standby 00f0.424f.4243 0 remote NON-OP: image mismatch
3 S FGS624 member 00e0.5201.0100 0 remote Ready
```

If the configuration of a stack unit does not match the configuration of the Active Controller, the stack unit will not function. You must manually correct the configuration error for the unit to become operational within the stack. In this example, unit 2 is non-operational due to an image mismatch. To correct this situation, use the copy flash flash command (refer to “Copying the flash image to a stack unit from the Active Controller” on page 149).
Stack mismatches

Configuration mismatch

Generally, when a stack unit is added to or removed from the stack, its static configuration is not overwritten by the Active Controller. However, secure-setup allows you to overwrite a static configuration on a unit, in which case the Active Controller deletes the configuration for the old unit, and adds the configuration of the new unit.

A configuration mismatch occurs when the base module configuration for a replacement stack unit does not match the run time configuration on the Active Controller (for example, if you remove an FGS624P-STK unit and try to replace it with an FLS624-STK unit). If the configuration on the Active Controller is static, it cannot be overwritten by the new configuration, and a configuration mismatch occurs.

Configuration mismatches can happen during manual setups, or when moving a unit from one stack to another stack. secure-setup will try to overwrite a configuration mismatch even if the configuration is static. The overwrite attempt may fail if there are multi-slot trunk or LACP configurations on the ports of the unit to be overwritten. If this is the case, secure-setup will be unable to resolve the mismatch.

When you renumber identical units using secure-setup, the configurations are not mapped to the new units (since they match exactly). However, if you switch the IDs of units that are not identical, a configuration mismatch occurs.

Configuration mismatches can also occur when LACP or multi-slot trunking configurations exist on the modules of replacement units. In these cases, you will need to manually remove the LACP or multi-slot trunking configuration on the replacement unit before you try to add it to the stack.

When a configuration mismatch occurs, port-related functions on all ports are disabled on the mismatched unit (except for the stacking ports). All other functions are unaffected. For example, the Active Controller can still copy the unit’s image or reset the unit. Please refer to “Recovering from a mismatch” on page 182.

Memory allocation failure

A memory allocation (malloc) failure occurs when the Active Controller does not have enough memory to run a stack unit. This failure may occur if you configure large numbers (for example, 4 K of VLANs, or STP instances (for example, 255) in the router image. This message means that the Active Controller is low on memory after allocating these resources and does not have enough remaining memory to control a stack member. You can correct this by reducing the number of VLANs or STP instances.

**NOTE**

After you make configuration changes such as number of VLANs or STP instances, you must reset the stack.

Recovering from a mismatch

When a configuration mismatch occurs, the Active Controller logs and displays a configuration mismatch message, and puts the mismatched unit into a non-operational state. In the following example, the original stack unit 3 has failed, and a replacement unit has been installed that does not match the configuration of the original unit. You should see the following message.

Warning! put stack unit 3 to non-operational reason= config mismatch
Follow the steps given below to recover from a configuration or image mismatch.

1. Enter the `stack secure-setup` command.

2. Enter the `show stack` command to see the status of the stack, and a `show running-config` command to see the configurations of the stack units. If secure-setup does not resolve the configuration mismatch, proceed to step 3.

```
FLS624-STK Switch# show stack
alone: standalone, D: dynamic config, S: static config
ID Type Role Mac Address Pri State Comment
1 FLS624 active 0012.f2eb.a900 128 local Ready
2 FLS648 member 00f0.424f.4243 0 remote Ready
3 FGS624 standby 00e0.5201.0100 0 remote NON-OP: config mismatch
```

```
FLS624-STK Switch# show running config
stack unit 1
 module 1 fls-24-port-copper-base-module
 module 3 fls-cx4-1-port-10g-module
 module 4 fls-xfp-1-port-10g-module
 priority 128

stack unit 2
 module 1 fgs-24-port-management-module
 module 3 fgs-xfp-1-port-10g-module

stack unit 3
 module 1 fls-48-port-copper-base-module
 module 2 fls-cx4-1-port-10g-module
 module 3 fls-cx4-1-port-10g-module
 stack enable
```

3. To resolve the mismatch, you must remove the configuration for stack unit 3. Use the following command.

```
FLS624-STK Switch# no stack unit 3
```

If you are unable to remove the configuration because of a multi-slot trunk configuration, it means secure-setup cannot overwrite the Active Controller's configuration due to multi-slot trunking configurations on the ports of the unit to be overwritten. You must first manually remove the multi-slot trunk configuration.

4. When you have successfully deleted the mismatched stack unit, a re-election is triggered, and the Active Controller learns the correct module configuration from the Standby Controller or from other stack members.

Follow the steps given below to recover from an image mismatch.

1. Use the `copy flash flash` command to replace a mis-matched image with the correct image. Refer to “Copying the flash image to a stack unit from the Active Controller” on page 149.

2. Reset the unit. After the reset, the unit will contain the new image and the mis-match condition will not exist. To verify, use the `show stack` command.
Troubleshooting secure-setup

Secure-setup can be used to form linear and ring stack topologies. For information about the procedure, refer to “Scenario 1 - Configuring a three-member IronStack in a ring topology using secure-setup” on page 117. During this procedure, if secure-setup does not detect all the units that should be detected, perform the following checks:

- Make sure that all the cables are properly connected
- Make sure that all the relevant ports are in UP state
- Make sure that all the units are running the same image
- Make sure that you issue the stack enable command only on the unit that will serve as the Active Controller
- Make sure that stack disable is not configured on any prospective members
- Make sure that the connection is sequential (refer to “Brocade IronStack terminology” on page 111, Sequential Connection.)

If secure-setup times out (this may happen due to inactivity), you will not be able to make any changes in your configuration or stack topology until you restart the session by entering the stack secure-setup command.

The unit discovery process is triggered when secure-setup is initiated. However, if the stack unit is placed in a topology where another unit in the stack is already running the discovery process, the current discovery process is terminated. If this is the case, you will see a message similar to the following.

"Topology discovery is already in progress originated from <mac-address>. Please try later."

This means a discovery process is already active and was initiated from the unit with the <mac-address> mentioned in the message. You will need to re-issue secure-setup.

If there is already an active discovery process, secure-setup may not discover all the intended units. If this is the case, you will need to restart the secure-setup process.

Troubleshooting unit replacement issues

If you are unsuccessful in building a stack using the automatic setup process (refer to “Scenario 2 - Configuring a three-member IronStack in a ring topology using the automatic setup process” on page 121), or adding or replacing a unit in a stack, consider the following issues:

- Make sure that the number of units in your stack does not exceed the maximum of 8
- Make sure that the replacement unit is a clean unit (does not contain a startup-config.txt file)
- Make sure that the replacement unit running configuration does not contain “stack enable”
- Make sure that the replacement unit running configuration does not contain “stack disable”
- Make sure that the configurations of the stack ports on the Active Controller match the physical connections to the unit
More about IronStack technology

This section discusses stacking technology in greater detail than the information presented in Section 1.

Configuration, startup configuration files and stacking flash

Stacking system behavior is defined by the run time configuration, which can be displayed using the `show run` command. The `write memory` command stores the run time configuration in a flash file called `startup-config.txt`. During bootup, the system reads and applies the `startup-config.txt` file to the run time configuration. The `startup-config.txt` file can be shown using the `show config` command.

The stacking system installs a `stacking.boot` file on each unit that tells the unit what its role is during the boot process. The `stacking.boot` file is generated whenever there is an election that defines the roles for all units.

When an Active Controller is booted, or a `write memory` command is issued, the Active Controller synchronizes its `startup-config.txt` file to every stack unit. The original `startup-config.txt` files in the Standby Controller and other stack members are renamed to `startup-config.old`. If you issue the “stack unconfigure me” command on the Standby Controller or stack member directly, these units will recover their original `startup-config.txt` files and reboot as standalone devices. If you enter the `stack unconfigure all` command from the Active Controller all devices will recover their old `startup-config.txt` files and become standalone devices. When this happens, the `startup-config.old` file is renamed to `startup-config.txt`, and the `stacking.boot` file is removed. For more information, refer to “Unconfiguring an IronStack” on page 154.

Whenever a change is made to a stack unit’s configuration, such as priority, (which could affect stack elections) an election is held, and the result is written into the `stacking.boot` file. A prompt message appears on the console that suggests you do a `write memory`. For an Active Controller role change to take effect, you will need to reset the entire stack.

If you do not do a `write memory`, and reset the stack, the stack units will continue to operate in their roles as defined by the `stacking.boot` file. After the reset, each unit readjusts based on the current run time configuration. However, you may get different results depending on what has not been saved. If you have renumbered the stack unit IDs, you may see a configuration mismatch, because your changes no longer match the Active Controller configuration.

If you change priorities to elect an Active Controller, the new Active Controller will assume its role after a reboot whether you have done a `write memory` or not. If you do not save your priority change before the next reboot, the reboot will trigger an election that may result in a different winner based on the priority in the unsaved configuration. The new winner assumes its role after the next reboot.

If you change the stacking port configuration and do not save your changes, you may encounter connectivity errors. To recover from a configuration error, run Secure Startup to define the correct stacking port.

**NOTE**

You should always do a `write memory` after making stacking-related configuration changes such as priority and stacking ports. If you do not want to keep the changes, change the configuration back to the previous version, and do a `write memory`. Do not discard configuration changes by using the reset without a `write memory`. 
Flexible stacking ports

Because FGS-STK and FLS-STK devices do not have dedicated stacking ports, they offer the flexibility to use each 10 Gbps port as a stacking port or a regular data port. Each stack member contains two full-duplex 10 Gbps possible stack ports, and can operate in a stack with up to 40 Gbps throughput. When stacking is enabled, the first two 10 Gbps ports become stacking ports by default. You have the option, however, to configure only one of the 10 Gbps ports as a stacking port and use the other 10 Gbps port as a regular data port.

For the locations of these ports on FGS-STK and FLS-STK devices, refer to Table 33 on page 127.

IronStack topologies

Brocade IronStack technology supports both linear and ring stack topologies. Because the unicast switching follows the shortest path in a ring topology, this topology offers the strongest redundancy. When the ring is broken, the stack recalculates the forwarding path the resumes the flow of traffic within a few seconds. In a ring topology, all stack members must have two stacking ports, however, in a linear topology, both end units use only one stacking port, leaving the other port available as a data port. To see an illustrated example of each topology, refer to “Brocade IronStack topologies” on page 113.

Port down and aging

If a unit is powered down, or the stacking link is removed, the system immediately detects the port down and knows that its neighbor is gone. That unit is immediately removed from the Active Controller. If a unit is gone or no longer stack-enabled, but its stacking link is still on, it will take 20 seconds to age the neighbor out. The following message will be logged and displayed.

Warning! my mac=00f0.424f.4243, age out up-stream

Device roles and elections

There are three distinct roles played by units that are part of an IronStack:

- Active Controller
- Standby Controller
- Stack member

Active Controller

The Active Controller contains the saved and running configuration files for each stack member. The configuration files include the system-level settings for the stack, and the interface-level settings for each stack member, as well as MIB counters and port status. The Standby Controller also has a synchronized copy of the Active Controller startup config file for use in the event the Active Controller fails.

When a stack is formed, the console function for each stack member is automatically redirected to the Active Controller console. The Active Controller console port handles all stack management functions, as well as ping, Telnet sessions, and tftp image downloads for every stack member. If you connect to the console port on a stack member that is not the Active Controller, you are automatically directed through the console of the Active Controller.
The Active Controller synchronizes its start-up configuration with the Standby Controller and the rest of the stack members. You can recover the previous flash configuration of the Standby Controller and the stack members by issuing the `stack unconfigure` command. For an example of this command and the output generated, refer to “Unconfiguring an IronStack” on page 154.

The Active Controller may reset the rest of the stack members, if necessary. However, if the Active Controller itself must be reset because of a role or ID change, you must issue the `reset` command.

If the Active Controller fails, the Standby controller waits 30 seconds, and then takes over as Active Controller, resetting itself and all other stack members. If the old Active Controller becomes operational, it may or may not resume its role as Active, depending on the configured priorities.

**Standby Controller**

In addition to the Active Controller, another stack member is elected as the Standby Controller. After a default interval of 30 seconds, the Standby Controller takes over if the Active Controller fails.

**NOTE**

Because it can take as long as 20 seconds to age out a neighbor, the Standby takeover period may last up to 50 seconds. Refer to “Port down and aging” on page 186.)

The Standby Controller synchronizes its configuration with the Active Controller at each reset.

**Bootup role**

When a stack unit boots, it boots in a particular role, such as standalone, Active Controller, Standby Controller, or stack member. When the bootup role is Standby Controller or stack member, the CLI available to the unit is limited to `show` and `stack` commands. A unit in the role of Standby or stack member will not act without instructions from the Active Controller. To convert a Standby Controller or stack member into a standalone device, use the `stack unconfigure me` command, (refer to “Unconfiguring an IronStack” on page 154).

The last line of the `show version` output identifies the unit role unless if the unit is a standalone.

```
My stack unit ID = 1, bootup role = active
My stack unit ID = 3, bootup role = standby
```

**Active Controller and Standby Controller elections**

Whenever there is a topology change in the stack (a reset, unit failure, or the addition or removal of members), elections are held to determine the status of the Active Controller and Standby Controller. The results of an election take effect after the next stack reset.

The following conditions, in the order shown, determine which units will serve as Active Controller and Standby Controller after an election:

- **Boot as active controller** - Indicates that a unit was previously Active Controller before the current boot sequence and will again assume the role of Active Controller when two standalone units are combined into a stack. When a third standalone unit joins the stack, a current Active Controller becomes subject to the other factors in this list. The reason for this hierarchy of factors is to achieve a predictable winner regardless of the boot up sequence for a unit. You can upgrade your current Active Controller to “boot as active controller” status by performing a `write memory`. The system interprets the write memory action as a directive to maintain the current Active Controller role regardless of resets or a new unit joining the stack.
More about IronStack technology

- **Priority** - The unit with the highest priority value.
- **Greater number of members** - The unit that has control over the greater number of stack members.
- **Lowest boot stack ID** - The unit that has the lowest boot stack ID (1-8, 1 is the lowest).
- **MAC address** - The member with the lowest MAC address.

**Active Controller and Standby Controller resets**

If the Active Controller is reset or removed from the stack, the entire stack reloads and Active Controller and Standby Controller elections are initiated. If the unit functioning as the previous Active Controller is no longer part of the stack, the Standby Controller unit becomes the new Active Controller. After a reset, if no stack member qualifies as Active Controller, the existing Standby Controller waits 30 seconds and then assumes the role of Active Controller.

If both Active and Standby Controllers are removed the rest of the stack will continue to function because they are operating on whatever is programmed in the hardware. The stack members will not be able to learn any new addresses. You will see the following message every few minutes.

*Stack member is non-operational because of no Active or Standby Controller*

You can recover to standalone mode by "stack unconfigure me"

Use `stack unconfigure me` to restore the units into standalone devices with a pre-stacking configuration.

**Selecting a standby unit**

You can choose a Standby Controller by configuring a stack unit priority to be the second highest, or the same as the Active Controller. If the priorities are configured the same for both, when the original Active Controller fails, the Standby Controller takes over. If the original Active Controller becomes active again, it will not win back its active role, which helps to minimize interruption of the stack. However, if the original Active Controller has the higher priority, it will win back its role and reset all of the stack units.

**Standby controller election criteria**

The Standby Controller election is based on the following criteria.

1. The highest priority
2. Bootup as Active Controller
3. Bootup as Standby Controller
4. The lowest boot ID
5. The lowest MAC address

Since Standby election candidates must have startup configurations that have been synchronized with the Active Controller, if the Active Controller does not have a startup-config.txt file, there will not be a Standby controller. Once a `write memory` is performed on the Active Controller, the startup-config.txt file is written and synchronized to all stack members, and a Standby Controller can be elected.
IPv6 management overview

This chapter describes the IPv6 management features available for FGS, FLS, FWS, FGS-STK, FLS-STK, FCX, and TIX devices, including command syntax and management examples.

NOTE
For details about IPv6 management on FastIron X Series devices, refer to “IPv6 management (IPv6 host support)” on page 218.

IPv6 was designed to replace IPv4, the Internet protocol that is most commonly used currently throughout the world. IPv6 increases the number of network address bits from 32 (IPv4) to 128, which provides more than enough unique IP addresses to support all of the network devices on the planet into the future. IPv6 is expected to quickly become the network standard.

Brocade FastIron devices that support IPv6 may be used as management hosts. Interfaces on these devices are configured with IPv6 addresses, but do not have full IPv6 routing enabled. IPv6 is available on all FastIron devices that are running Layer 2, Base Layer 3, or Full Layer 3 software images.

NOTE
Brocade FastIron devices can serve as management hosts on an IPv6 network. However, IPv6 routing functionality is not supported for these devices.

IPv6 addressing

IPv4 is limited because of the 32-bit addressing format, which cannot satisfy potential increases in the number of users, geographical needs, and emerging applications. To address this limitation, IPv6 introduces a new 128-bit addressing format.

An IPv6 address is composed of 8 fields of 16-bit hexadecimal values separated by colons (:). Figure 13 shows the IPv6 address format.

FIGURE 13 IPv6 address format

<table>
<thead>
<tr>
<th>Network Prefix</th>
<th>Interface ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHHH HHHH HHHH</td>
<td>HHHH HHHH</td>
</tr>
</tbody>
</table>

As shown in Figure 13, HHHH is a 16-bit hexadecimal value, while H is a 4-bit hexadecimal value. The following is an example of an IPv6 address.

Note that this IPv6 address includes hexadecimal fields of zeros. To make the address less cumbersome, you can do the following:

- Omit the leading zeros; for example, 2001:0:0:200:DOFF:FE48:4672.
- Compress the successive groups of zeros at the beginning, middle, or end of an IPv6 address to two colons (::) once per address; for example, 2001::200:DOFF:FE48:4672.

When specifying an IPv6 address in a command syntax, keep the following in mind:

- You can use the two colons (::) only once in the address to represent the longest successive hexadecimal fields of zeros
- The hexadecimal letters in IPv6 addresses are not case-sensitive

As shown in Figure 13, the IPv6 network prefix is composed of the left-most bits of the address. As with an IPv4 address, you can specify the IPv6 prefix using the `<prefix>/<prefix-length>` format, where the following applies.

The `<prefix>` parameter is specified as 16-bit hexadecimal values separated by a colon.

The `<prefix-length>` parameter is specified as a decimal value that indicates the left-most bits of the IPv6 address.

The following is an example of an IPv6 prefix.

2001:FF08:49EA:D088::/64

### Enabling and disabling IPv6 on FastIron devices

IPv6 is enabled by default for Brocade devices that support it. If desired, you can disable IPv6 on a global basis on an device by entering the following command at the Global CONFIG level of the CLI.

```
FastIron(config)# no ipv6 enable
```

**Syntax:** no ipv6 enable

To re-enable IPv6 after it has been disabled, enter the `ipv6 enable` command.

### IPv6 management features

**Platform Support:**

- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later (except where noted)
- TurboIron devices running software release 04.2.00 and later

This section describes the CLI management commands that are available to FastIron devices that support IPv6.

### IPv6 access list

**Platform Support:**

- Not supported on FCX devices
IPv6 management features

- Not supported on TurboIron devices

When you enter the `ipv6 access-list` command, the Brocade device enters the IPv6 Access List configuration level, where you can access several commands for configuring IPv6 ACL entries.

**NOTE**
Unlike IPv4, there is no distinction between standard and extended ACLs in IPv6.

**Example**
```
FastIron(config)# ipv6 access-list netw
FastIron(config-ipv6-access-list-netw)#
```

**Syntax:** `ipv6 access-list` *ACL name*

The `ACL name` parameter specifies a name for the IPv6 ACL. An IPv6 ACL name cannot start with a numeral, for example, `1access`. Also, an IPv4 ACL and an IPv6 ACL cannot share the same name.

**IPv6 debug**

**Platform Support:**
- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- Not supported for FCX devices

The `debug ipv6` commands enable the collection of information about IPv6 configurations for troubleshooting.

**Syntax:** `debug ipv6 address cache icmp mld nd packet ra`

- `address` - IPv6 address
- `cache` - IPv6 cache entry
- `icmp` - ICMPv6
- `mld` - MLD protocol activity
  - `add-del-oif [ all clear ] clear detail down-port error group level mcache-group mcache-source packet phy-port prime-port show source timer vlan`
- `nd` - neighbor discovery
- `packet` - IPv6 packet
- `ra` - router add

**IPv6 Web management using HTTP and HTTPS**

**Platform Support:**
- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- Not supported on FCX devices
- Not supported on TurboIron devices
When you have an IPv6 management station connected to a switch with an IPv6 address applied to the management port, you can manage the switch from a Web browser by entering `http://[ipv6 address]` or `https://[ipv6 address]` in the browser address field.

**NOTE**
You must enclose the IPv6 address with square brackets `[ ]` in order for the Web browser to work.

### Restricting web access

**Platform Support:**
- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later
- Not supported on TurboIron devices

You can restrict Web management access to include only management functions on a Brocade device that is acting as an IPv6 host, or restrict access so that the Brocade host can be reached by a specified IPv6 device.

**Restricting Web management access by specifying an IPv6 ACL**
You can specify an IPv6 ACL that restricts Web management access to management functions on the device that is acting as the IPv6 host.

**Example**

```
FastIron(config)# access-list 12 deny host 2000:2383:e0bb::2/128 log
FastIron(config)# access-list 12 deny 30ff:3782::ff89/128 log
FastIron(config)# access-list 12 deny 3000:4828::fe19/128 log
FastIron(config)# access-list 12 permit any
FastIron(config)# web access-group ipv6 12
```

**Syntax:** `web access-group ipv6 ipv6 ACL name`
where `ipv6 ACL name` is a valid IPv6 ACL.

**Restricting Web management access to an IPv6 host**
You can specify a single device with an IPv6 address to have Web management access to the host device. No other device except the one with the specified IPv6 address can access the Web Management Interface.

**Example**

```
FastIron(config)# web client ipv6 3000:2383:e0bb::2/128
```

**Syntax:** `web client ipv6 ipv6-address`

The `ipv6-address` you specify must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

### IPv6 logging

**Platform Support:**
- FGS and FLS devices running software release 04.0.00 and later
IPv6 management features

- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later

This feature allows you to specify an IPv6 server as the Syslog server.

**Specifying an IPv6 Syslog server**

To specify an IPv6 Syslog server, enter the `log host ipv6` command as shown below.

```plaintext
FastIron(config)# log host ipv6 2000:2383:e0bb::4/128
```

**Syntax:**

```plaintext
[no] log host ipv6 ipv6-address [udp-port-num]
```

- The `ipv6-address` must be in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `udp-port-num` optional parameter specifies the UDP application port used for the Syslog facility.

**Name-to-IPv6 address resolution using IPv6 DNS server**

The Domain Name Server (DNS) resolver feature lets you use a host name to perform Telnet, ping, and traceroute commands. You can also define a DNS domain on a Brocade device and thereby recognize all hosts within that domain. After you define a domain name, the Brocade device automatically appends the appropriate domain to the host and forwards it to the domain name server.

For example, if the domain “newyork.com” is defined on a Brocade device, and you want to initiate a ping to host “NYC01” on that domain, you need to reference only the host name in the command instead of the host name and its domain name. For example, you could enter either of the following commands to initiate the ping.

```plaintext
FastIron# ping nyc01
FastIron# ping nyc01.newyork.com
```

**NOTE**

FCX devices do not support IPv6 DNS server name resolution.

**Defining an IPv6 DNS entry**

IPv6 defines new DNS record types to resolve queries for domain names to IPv6 addresses, as well as IPv6 addresses to domain names. Brocade devices running IPv6 software support AAAA DNS records, which are defined in RFC 1886.

AAAA DNS records are analogous to the A DNS records used with IPv4. They store a complete IPv6 address in each record. AAAA records have a type value of 28.

To establish an IPv6 DNS entry for the device, enter the following command.

```plaintext
FastIron(config)# ipv6 dns domain-name companynet.com
```

**Syntax:**

```plaintext
[no] ipv6 dns domain-name domain name
```

To define an IPv6 DNS server address, enter the following command.

```plaintext
FastIron(config)# ipv6 dns server-address 200::1
```

**Syntax:**

```plaintext
[no] ipv6 dns server-address ipv6-addr [ipv6-addr] [ipv6-addr] [ipv6-addr]
```
As an example, in a configuration where ftp6.companynet.com is a server with an IPv6 protocol stack, when a user pings ftp6.companynet.com, the Brocade device attempts to resolve the AAAA DNS record. In addition, if the DNS server does not have an IPv6 address, as long as it is able to resolve AAAA records, it can still respond to DNS queries.

**IPv6 ping**

The ping command allows you to verify the connectivity from a Brocade device to an IPv6 device by performing an ICMP for IPv6 echo test.

For example, to ping a device with the IPv6 address of 2001:3424:847f:a385:34dd::45 from the Brocade device, enter the following command:

```
FastIron# ping ipv6 2001:3424:847f:a385:34dd::45
```

**Syntax:**
```
ping ipv6 ipv6-address [outgoing-interface [port | ve number]] [source ipv6-address] [count number] [timeout milliseconds] [ttl number] [size bytes] [quiet] [numeric] [no-fragment] [verify] [data 1-to-4 byte hex] [brief]
```

- The `ipv6-address` parameter specifies the address of the router. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `outgoing-interface` keyword specifies a physical interface over which you can verify connectivity. If you specify a physical interface, such as an Ethernet interface, you must also specify the port number of the interface. If you specify a virtual interface, such as a VE, you must specify the number associated with the VE.
- The `source` `ipv6-address` parameter specifies an IPv6 address to be used as the origin of the ping packets.

**NOTE**
The `outgoing-interface` and `source` options are available only on router code and not on switch code.

- The `count number` parameter specifies how many ping packets the router sends. You can specify from 1 - 4294967296. The default is 1.
- The `timeout milliseconds` parameter specifies how many milliseconds the router waits for a reply from the pinged device. You can specify a timeout from 1 - 4294967294 milliseconds. The default is 5000 (5 seconds).
- The `ttl number` parameter specifies the maximum number of hops. You can specify a TTL from 1 - 255. The default is 64.
- The `size bytes` parameter specifies the size of the ICMP data portion of the packet. This is the payload and does not include the header. You can specify from 0 - 10173. The default is 16.
- The `no-fragment` keyword turns on the "do not fragment" bit in the IPv6 header of the ping packet. This option is disabled by default.

**NOTE**
The `no-fragment` option is not supported on TurboIron devices.

- The `quiet` keyword hides informational messages such as a summary of the ping parameters sent to the device, and instead only displays messages indicating the success or failure of the ping. This option is disabled by default.
- The `verify` keyword verifies that the data in the echo packet (the reply packet) is the same as the data in the echo request (the ping). By default the device does not verify the data.
• The **data 1 - 4 byte hex** parameter lets you specify a specific data pattern for the payload instead of the default data pattern, "abcd", in the packet's data payload. The pattern repeats itself throughout the ICMP message (payload) portion of the packet.

**NOTE**
For parameters that require a numeric value, the CLI does not check whether the value you enter is within the allowed range. Instead, if you do exceed the range for a numeric value, the software rounds the value to the nearest valid value.

• The **brief** keyword causes ping test characters to be displayed. The following ping test characters are supported.

  I Indicates that a reply was received.
  . Indicates that the network server timed out while waiting for a reply.
  U Indicates that a destination unreachable error PDU was received.
  I Indicates that the user interrupted ping.

**SNMP3 over IPv6**

Brocade FastIron devices (with the exception of FCX devices) support IPv6 for SNMP version 3. For more information about how to configure SNMP, refer to Chapter 48, "Securing SNMP Access".

**Secure Shell and IPv6**

Secure Shell (SSH) is a mechanism that allows secure remote access to management functions on the Brocade device. SSH provides a function similar to Telnet. You can log in to and configure the Brocade device using a publicly or commercially available SSH client program, just as you can with Telnet. However, unlike Telnet, which provides no security, SSH provides a secure, encrypted connection to the Brocade device.

To open an SSH session between an IPv6 host running an SSH client program and the Brocade device, open the SSH client program and specify the IPv6 address of the device. For more information about configuring SSH on the Brocade device, refer to “SSH version 2 support” on page 1495.

**IPv6 Telnet**

Telnet sessions can be established between a Brocade device to a remote IPv6 host, and from a remote IPv6 host to the Brocade device using IPv6 addresses.

The **telnet** command establishes a Telnet connection from a Brocade device to a remote IPv6 host using the console. Up to five **read-access** Telnet sessions are supported on the router at one time. **Write-access** through Telnet is limited to one session, and only one outgoing Telnet session is supported on the router at one time. To see the number of open Telnet sessions at any time, enter the **show telnet** command.

**Example**

To establish a Telnet connection to a remote host with the IPv6 address of 3001:2837:3de2:c37::6, enter the following command.

```
FastIron# telnet 3001:2837:3de2:c37::6
```
IPv6 management commands

Syntax: telnet ipv6-address [port-number | outgoing-interface ethernet port | ve number]

• The ipv6-address parameter specifies the address of a remote host. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
• The port-number parameter specifies the port number on which the Brocade device establishes the Telnet connection. You can specify a value between 1 - 65535. If you do not specify a port number, the Brocade device establishes the Telnet connection on port 23.
• If the IPv6 address you specify is a link-local address, you must specify the outgoing-interface ethernet port | ve number parameter. This parameter identifies the interface that must be used to reach the remote host. If you specify an Ethernet interface, you must also specify the port number associated with the interface. If you specify a VE interface, also specify the VE number.

Establishing a Telnet session from an IPv6 host

To establish a Telnet session from an IPv6 host to the Brocade device, open your Telnet application and specify the IPv6 address of the Layer 3 Switch.

IPv6 traceroute

The traceroute command allows you to trace a path from the Brocade device to an IPv6 host.

NOTE
IPv6 traceroute is not supported on FCX devices.

The CLI displays trace route information for each hop as soon as the information is received. Traceroute requests display all responses to a minimum TTL of 1 second and a maximum TTL of 30 seconds. In addition, if there are multiple equal-cost routes to the destination, the Brocade device displays up to three responses.

For example, to trace the path from the Brocade device to a host with an IPv6 address of 3301:23dd:349e:a384::34, enter the following command.

FastIron# traceroute ipv6 3301:23dd:349e:a384::34

Syntax: traceroute ipv6 ipv6-address

The ipv6-address parameter specifies the address of a host. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

IPv6 management commands

The following management CLI commands are available in FastIron devices that support IPv6:

• show ipv6 traffic
• clear ipv6 traffic
• show ipv6 TCP
• show ipv6 access-list
• show ipv6 neighbor
• clear ipv6 neighbor
Chapter 7

Monitoring Hardware Components

Hardware support

The procedures in this chapter describe how to configure the software to monitor hardware components. You can configure the software to do the following:

- Detect and report statistics about a cable connected to a copper port
- Monitor temperature and signal power levels for optical transceivers

Table 48 lists which Brocade devices support the features discussed in this chapter.

<table>
<thead>
<tr>
<th>Feature</th>
<th>FastIron X Series</th>
<th>FGS, FWS, FLS</th>
<th>FGS-STK, FLS-STK, FCX</th>
<th>TurboIron X Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual cable testing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Digital optical monitoring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Virtual cable testing

FastIron devices support Virtual Cable Test (VCT) technology. VCT technology enables the diagnosis of a conductor (wire or cable) by sending a pulsed signal into the conductor, then examining the reflection of that pulse. This method of cable analysis is referred to as Time Domain Reflectometry (TDR). By examining the reflection, the Brocade device can detect and report cable statistics such as local and remote link pair, cable length, and link status.

Configuration notes

- This feature is supported on copper ports only. It is not supported on fiber ports.
- This feature is not supported on TurboIron X Series devices.
- The port to which the cable is connected must be enabled when you issue the command to diagnose the cable. If the port is disabled, the command is rejected.
- If the port is operating at 100 Mbps half-duplex, the TDR test on one pair will fail.
- If the remote pair is set to forced 100 Mbps, any change in MDI/MDIX may cause the device to interpret the Multilevel Threshold-3 (MLT-3) as a reflected pulse, in which case, the device will report a faulty condition. In this scenario, it is recommended that you run the TDR test a few times for accurate results.

Command syntax

To diagnose a cable using TDR, enter commands such as the following at the Privileged EXEC level of the CLI.
Virtual cable testing

FastIron# phy cable-diag tdr 1

The above command diagnoses the cable attached to port 1.

When you issue the `phy-cable-diag` command, the command brings the port down for a second or two, then immediately brings the port back up.

Syntax: `phy cable-diag tdr port-num`

For `portnum`, specify the port in one of the following formats:

- FastIron GS and LS compact switches – `stack-unit/slotnum/portnum`
- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

**Viewing the results of the cable analysis**

To display the results of the cable analysis, enter a command such as the following at the Privileged EXEC level of the CLI.

```
FastIron> show cable-diag tdr 1
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Speed</th>
<th>Local pair</th>
<th>Pair Length</th>
<th>Remote pair</th>
<th>Pair status</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1000M</td>
<td>Pair A</td>
<td>&lt;50M</td>
<td>Pair B</td>
<td>Terminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pair B</td>
<td>&lt;50M</td>
<td>Pair A</td>
<td>Terminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pair C</td>
<td>&lt;50M</td>
<td>Pair D</td>
<td>Terminated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pair D</td>
<td>&lt;50M</td>
<td>Pair C</td>
<td>Terminated</td>
</tr>
</tbody>
</table>

In the above output, **Local pair** indicates the assignment of wire pairs from left to right, where Pair A is the left-most pair. **Table 49** shows the **Local pair** mapping to the T568A pin/pair and color assignment from the TIA/EIA-568-B standard.

**TABLE 49** Local pair definition

<table>
<thead>
<tr>
<th>Local pair</th>
<th>T568A pair and color assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair A</td>
<td>Pair 3 (green)</td>
</tr>
<tr>
<td>Pair B</td>
<td>Pair 2 (orange)</td>
</tr>
<tr>
<td>Pair C</td>
<td>Pair 1 (blue)</td>
</tr>
<tr>
<td>Pair D</td>
<td>Pair 4 (brown)</td>
</tr>
</tbody>
</table>

**Figure 14** illustrates the T568A pin/pair assignment.
**Syntax:** show cable-diag tdr *port-num*

For *portnum*, specify the port in one of the following formats:

- FastIron GS and LS compact switches – *stack-unit/slotnum/portnum*
- FastIron chassis devices – *slotnum/portnum*
- FESX, and FWSX compact switches – *portnum*

*Table 50* defines the fields shown in the command output.

**TABLE 50**  
Cable statistics

<table>
<thead>
<tr>
<th>This line...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port that was tested.</td>
</tr>
<tr>
<td>Speed</td>
<td>The port current line speed.</td>
</tr>
<tr>
<td>Local pair</td>
<td>The local link name. Refer to <em>Table 49</em>.</td>
</tr>
<tr>
<td>Pair Length</td>
<td>The cable length when terminated, or the distance to the point of fault</td>
</tr>
<tr>
<td></td>
<td>when the line is not up.</td>
</tr>
<tr>
<td>Remote pair</td>
<td>The remote link name.</td>
</tr>
<tr>
<td>Pair status</td>
<td>The status of the link. This field displays one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Terminated: The link is up.</td>
</tr>
<tr>
<td></td>
<td>• Shorted: A short is detected in the cable.</td>
</tr>
<tr>
<td></td>
<td>• Open: An opening is detected in the cable.</td>
</tr>
<tr>
<td></td>
<td>• ImpedMis: The impedance is mismatched.</td>
</tr>
<tr>
<td></td>
<td>• Failed: The TDR test failed.</td>
</tr>
</tbody>
</table>
Digital optical monitoring

You can configure your Brocade device to monitor optical transceivers in the system, either globally or by specified ports. When this feature is enabled, the system will monitor the temperature and signal power levels for the optical transceivers in the specified ports. Console messages and syslog messages are sent when optical operating conditions fall below or rise above the XFP or SFP manufacturer recommended thresholds.

Supported media

Digital optical monitoring is supported with the following Brocade-qualified media types:

- 1000Base-LHA
- 1000Base-LHB
- 1000Base-LX
- 1000Base-SX
- 100Base-FX-SR (not supported on the TurboIron X Series)
- 100Base-FX-IR (not supported on the TurboIron X Series)
- 100Base-FX-LR (not supported on the TurboIron X Series)
- 10GBase-1310 (not supported on the TurboIron X Series)
- 10GBase-E2R (not supported on the TurboIron X Series)
- 10GBase-LR
- 10GBase-SR
- 10GBase-ZR (not supported on the TurboIron X Series)
- 10GBase-ZRD (not supported on the TurboIron X Series)

Media not supported

Digital optical monitoring is not supported for the following optics:

- 1000Base-SX 2
- 1000Base-BX-D
- 1000Base-BX-U
- E1MG-100BXU
- E1MG-100BXD
- E1MG-BXU
- E1MG-BXD

Supported media

Digital optical monitoring is supported with the following Brocade-qualified media types:

- 1000Base-BX-D
- 1000Base-BX-U
- 1000Base-LHA
• 1000Base-LHB
• 1000Base-LX
• 1000Base-SX
• 1000Base-SX 2

Media not supported
Digital optical monitoring is not supported for the following optics:
• E1MG-100BXU
• E1MG-100BXD
• E1MG-BXU
• E1MG-BXD

Configuration limitations
A Brocade chassis device can monitor a maximum of 24 SFPs and 12 XFPs.

Enabling digital optical monitoring
To enable optical monitoring on all Brocade-qualified optics installed in the device, use the following command.

```
FastIron(config)# optical-monitor
```

To enable optical monitoring on a specific port, use the following command.

```
FastIron(config)# interface ethernet 1/1
FastIron(config-if-e10000-1/1)# optical-monitor
```

To enable optical monitoring on a range of ports, use the following command.

```
FastIron(config)# interface ethernet 1/1 to 1/2
FastIron(config-mif-e10000-1/1-1/2)# optical-monitor
```

Syntax: `[no] optical-monitor`

Use the **no** form of the command to disable digital optical monitoring.

Setting the alarm interval
You can optionally change the interval between which alarms and warning messages are sent. The default interval is three minutes. To change the interval, use the following command.

```
FastIron(config)# interface ethernet 1/1 to 1/2
FastIron(config-mif-e10000-1/1-1/2)# optical-monitor 10
```

Syntax: `[no] optical-monitor [ alarm-interval ]`

For `alarm-interval`, enter a value between 1 and 65535. Enter 0 to disable alarms and warning messages.
NOTE
The commands no optical-monitor and optical-monitor 0 perform the same function. That is, they both disable digital optical monitoring.

Displaying information about installed media

Use the show media, show media slot, and show media ethernet commands to obtain information about the media devices installed per device, per slot, and per port. In release 04.1.00 and later, the results displayed from these commands provide the Type, Vendor, Part number, Version and Serial number of the SFP or XFP optical device installed in the port. 1G M-C indicates 1b Gbps copper media. If no SFP or XFP device is installed in a port, the “Type” field will display “EMPTY”.

The following example outputs are from a FastIron X Series device running software release 04.1.00. The display outputs on your device may differ, depending on the software version running on the device.

Use the show media command to obtain information about the media devices installed in a device.

FastIron# show media
Port   1: Type  : 1G M-SX2(SFP)
        Vendor: Brocade Communications, Inc. Version: 0000
        Part# : TRPAG1XRPBSS-FY    Serial#: 0635000468
Port   2: Type  : EMPTY
Port   3: Type  : EMPTY
Port   4: Type  : 100M M-FX-SR(SFP)
        Vendor: Brocade Communications, Inc. Version: A
        Part# : FTLF1217P2HTL-F1   Serial#: UCQ003A
Port   5: Type  : 1G M-C
Port   6: Type  : 1G M-C
Port   7: Type  : 1G M-C
Port   8: Type  : 1G M-C
Port   9: Type  : 1G M-C
Port  10: Type  : 1G M-C
Port  11: Type  : 1G M-C
Port  12: Type  : 1G M-C
Port  13: Type  : 1G M-C
Port  14: Type  : 1G M-C
Port  15: Type  : 1G M-C
Port  16: Type  : 1G M-C
Port  17: Type  : 1G M-C
Port  18: Type  : 1G M-C
Port  19: Type  : 1G M-C
Port  20: Type  : 1G M-C
Port  21: Type  : 1G M-C
Port  22: Type  : 1G M-C
Port  23: Type  : 1G M-C
Port  24: Type  : 1G M-C
Port  25: Type  : 10G XG-SR(XFP)
        Vendor: Brocade Communications Inc. Version: 02
        Part# : JXPR01S05306      Serial#: F617604000A3
Port  26: Type  : EMPTY

Use the show media slot command to obtain information about the media device installed in a slot.

FastIron# show media slot 1
Port    1/1: Type  : 1G M-SX(SFP)
        Vendor: Brocade Communications, Inc. Version: 
        Part# : PL-XPL-VC-S13-19   Serial#: 425HC109
Digital optical monitoring

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Vendor</th>
<th>Version</th>
<th>Part#</th>
<th>Serial#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1G M-SX(SFP)</td>
<td>Brocade Communications, Inc.</td>
<td></td>
<td>PL-XPL-VC-S13-19</td>
<td>411HC0AH</td>
</tr>
<tr>
<td>1/3</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1G M-SX(SFP)</td>
<td>FINISAR CORP.</td>
<td>X1</td>
<td>FTRJ-8519-3</td>
<td>H11654K</td>
</tr>
<tr>
<td>1/5</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/7</td>
<td>100M M-FX-IR(SFP)</td>
<td>Brocade Communications, Inc.</td>
<td>A</td>
<td>FTLF1323P1BTR-FD</td>
<td>UCT000T</td>
</tr>
<tr>
<td>1/8</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/9</td>
<td>100M M-FX-LR(SFP)</td>
<td>Brocade Communications, Inc.</td>
<td>A</td>
<td>FTLF1323P1BTL-FD</td>
<td>UD3085J</td>
</tr>
<tr>
<td>1/10</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/11</td>
<td>100M M-FX-SR(SFP)</td>
<td>Brocade Communications, Inc.</td>
<td>A</td>
<td>FTLF1217P2BTL-F1</td>
<td>UCQ003J</td>
</tr>
<tr>
<td>1/12</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/13</td>
<td>100M M-FX-IR(SFP)</td>
<td>Brocade Communications, Inc.</td>
<td>A</td>
<td>FTLF1323P1BTR-F1</td>
<td>PCA2XC5</td>
</tr>
<tr>
<td>1/14</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/15</td>
<td>100M M-FX-LR(SFP)</td>
<td>Brocade Communications, Inc.</td>
<td>A</td>
<td>FTLF1323P1BTL-F1</td>
<td>PCA2XC5</td>
</tr>
<tr>
<td>1/16</td>
<td>EMPTY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use the `show media ethernet` command to obtain information about the media device installed in a port.

```
FastIron# show media e 1/17
```

**Syntax:** `show media [slot <slot-num> | ethernet [<slot-num>/]<port-num>]`

### Viewing optical monitoring information

To view temperature and power information for all qualified XFPs and SFPs in a particular slot, use the `show optic` command. The following shows an example output.

```
FastIron> show optic 4
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature</th>
<th>Tx Power</th>
<th>Rx Power</th>
<th>Tx Bias Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>30.8242 C</td>
<td>-001.8822 dBm</td>
<td>-002.5908 dBm</td>
<td>41.790 mA</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>4/2</td>
<td>31.7070 C</td>
<td>-001.4116 dBm</td>
<td>-006.4092 dBm</td>
<td>41.976 mA</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>4/3</td>
<td>30.1835 C</td>
<td>-000.5794 dBm</td>
<td>-000.0000 dBm</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Low-Alarm</td>
<td>Normal</td>
<td>Low-Alarm</td>
</tr>
<tr>
<td>4/4</td>
<td>0.0000 C</td>
<td>0.0000 mA</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

**Syntax:** `show optic slot number`
NOTE
This function takes advantage of information stored and supplied by the manufacturer of the XFP or SFP transceiver. This information is an optional feature of the Multi-Source Agreement standard defining the optical interface. Not all component suppliers have implemented this feature set. In such cases where the XFP or SFP transceiver does not supply the information, a “Not Available” message will be displayed for the specific port on which the module is installed.

The following table describes the information displayed by the show optic command.

TABLE 51  Output from the show optic command

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The Brocade port number.</td>
</tr>
<tr>
<td>Temperature</td>
<td>The operating temperature, in degrees Celsius, of the optical transceiver.</td>
</tr>
<tr>
<td></td>
<td>The alarm status, as described in Table 52.</td>
</tr>
<tr>
<td>Tx Power</td>
<td>The transmit power signal, in decibels (dB), of the measured power referenced to one milliwatt (mW).</td>
</tr>
<tr>
<td></td>
<td>The alarm status, as described in Table 52.</td>
</tr>
<tr>
<td>Rx Power</td>
<td>The receive power signal, in decibels (dB), of the measured power referenced to one milliwatt (mW).</td>
</tr>
<tr>
<td></td>
<td>The alarm status, as described in Table 52.</td>
</tr>
<tr>
<td>Tx Bias Current</td>
<td>The transmit bias power signal, in milliamperes (mA).</td>
</tr>
<tr>
<td></td>
<td>The alarm status, as described in Table 52.</td>
</tr>
</tbody>
</table>

For Temperature, Tx Power, Rx Power, and Tx Bias Current in the show optic command output, values are displayed along with one of the following alarm status values: Low-Alarm, Low-Warn, Normal, High-Warn or High-Alarm. The thresholds that determine these status values are set by the manufacturer of the optical transceivers. Table 52 describes each of these status values.

TABLE 52  Alarm status value description

<table>
<thead>
<tr>
<th>Status value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Alarm</td>
<td>Monitored level has dropped below the &quot;low-alarm&quot; threshold set by the manufacturer of the optical transceiver.</td>
</tr>
<tr>
<td>Low-Warn</td>
<td>Monitored level has dropped below the &quot;low-warn&quot; threshold set by the manufacturer of the optical transceiver.</td>
</tr>
<tr>
<td>Normal</td>
<td>Monitored level is within the &quot;normal&quot; range set by the manufacturer of the optical transceiver.</td>
</tr>
<tr>
<td>High-Warn</td>
<td>Monitored level has climbed above the &quot;high-warn&quot; threshold set by the manufacturer of the optical transceiver.</td>
</tr>
<tr>
<td>High-Alarm</td>
<td>Monitored level has climbed above the &quot;high-alarm&quot; threshold set by the manufacturer of the optical transceiver.</td>
</tr>
</tbody>
</table>

Viewing optical transceiver thresholds

The thresholds that determine the alarm status values for an optical transceiver are set by the manufacturer of the XFP or SFP. To view the thresholds for a qualified optical transceiver in a particular port, use the show optic threshold command as shown below.
Digital optical monitoring

FastIron> show optic threshold 2/2
Port 2/2 sfp monitor thresholds:
Temperature High alarm                5a00          90.0000 C
Temperature Low alarm                 d300          -45.0000 C
Temperature High warning              5500          85.0000 C
Temperature Low warning               d800          -40.0000 C
Supply Voltage High alarm             9088
Supply Voltage Low alarm              7148
Supply Voltage High warning            8ca0
Supply Voltage Low warning             7530
TX Bias High alarm                    7530          60.000 mA
TX Bias Low alarm                     01f4          1.000 mA
TX Bias High warning                  61a8          50.000 mA
TX Bias Low warning                   05dc          3.000 mA
TX Power High alarm                   1f07        -001.0001 dBm
TX Power Low alarm                    02c4        -011.4996 dBm
TX Power High warning                 18a6        -001.9997 dBm
TX Power Low warning                  037b        -010.5012 dBm
RX Power High alarm                   2710          000.0000 dBm
RX Power Low alarm                    0028        -023.9794 dBm
RX Power High warning                 1f07        -001.0001 dBm
RX Power Low warning                  0032        -023.0102 dBm

Syntax: show optic threshold port-num

For port-num, specify the port in one of the following formats:

- FastIron GS and LS compact switches – stack-unit/slotnum/portnum
- FastIron chassis devices – slotnum/portnum
- FESX, and FWSX compact switches – portnum

For Temperature, Supply Voltage, TX Bias, TX Power, and RX Power, values are displayed for each of the following four alarm and warning settings: High alarm, Low alarm, High warning, and Low warning. The hexadecimal values are the manufacturer internal calibrations, as defined in the SFF-8472 standard. The other values indicate at what level (above the high setting or below the low setting) the system should send a warning message or an alarm. Note that these values are set by the manufacturer of the optical transceiver, and cannot be configured.

Syslog messages

The system generates Syslog messages for optical transceivers in the following circumstances:

- The temperature, supply voltage, TX Bias, TX power, or TX power value goes above or below the high or low warning or alarm threshold set by the manufacturer.
- The optical transceiver does not support digital optical monitoring.
- The optical transceiver is not qualified, and therefore not supported by Brocade.

For details about the above Syslog messages, refer to Chapter 50, “Using Syslog”.
Digital optical monitoring
IPv6 addressing overview

This chapter explains IPv6 addressing and features and how to configure them on a Brocade FastIron X Series switch.

NOTE
With exception to IPv6 host features, the commands in this chapter are supported on FastIron X Series switches running software release 04.1.00 and later. IPv6 host features, covered in “IPv6 management (IPv6 host support)” on page 218, have been supported on FastIron X Series switches since software release 02.4.00 and TurboIron X Series devices running software release 04.2.00 and later.

NOTE
This chapter does not describe IPv6 routing protocols, which are covered in separate chapters throughout this guide.

IPv6 was designed to replace IPv4, the Internet protocol that is most commonly used currently throughout the world. IPv6 increases the number of network address bits from 32 (IPv4) to 128 bits, which provides more than enough unique IP addresses to support all of the network devices on the planet into the future. IPv6 is expected to quickly become the network standard.

An IPv6 address is composed of 8 fields of 16-bit hexadecimal values separated by colons (::). Figure 15 shows the IPv6 address format.

**Figure 15** IPv6 address format

As shown in Figure 15, HHHH is a 16-bit hexadecimal value, while H is a 4-bit hexadecimal value. The following is an example of an IPv6 address.


Note that this IPv6 address includes hexadecimal fields of zeros. To make the address less cumbersome, you can do the following:

- Omit the leading zeros; for example, 2001:0:0:200:002D:D0FF:FE48:4672.
- Compress the successive groups of zeros at the beginning, middle, or end of an IPv6 address to two colons (::) once per address; for example, 2001::200:2D:D0FF:FE48:4672.

When specifying an IPv6 address in a command syntax, keep the following in mind:
You can use the two colons (::) only once in the address to represent the longest successive hexadecimal fields of zeros.

- The hexadecimal letters in IPv6 addresses are not case-sensitive.

As shown in Figure 15, the IPv6 network prefix is composed of the left-most bits of the address. As with an IPv4 address, you can specify the IPv6 prefix using the `prefix / prefix-length` format, where the following applies.

The `prefix` parameter is specified as 16-bit hexadecimal values separated by a colon.

The `prefix-length` parameter is specified as a decimal value that indicates the left-most bits of the IPv6 address.

The following is an example of an IPv6 prefix.

```
2001:FF08:49EA:D088::/64
```

### IPv6 address types

As with IPv4 addresses, you can assign multiple IPv6 addresses to a switch interface. Table 53 presents the three major types of IPv6 addresses that you can assign to a switch interface.

A major difference between IPv4 and IPv6 addresses is that IPv6 addresses support `scope`, which describes the topology in which the address may be used as a unique identifier for an interface or set of interfaces.

Unicast and multicast addresses support scoping as follows:

- Unicast addresses support two types of scope: global scope and local scope. In turn, local scope supports site-local addresses and link-local addresses. Table 53 describes global, site-local, and link-local addresses and the topologies in which they are used.
- Multicast addresses support a scope field, which Table 53 describes.
IPv6 addressing overview

A switch automatically configures a link-local unicast address for an interface by using the prefix of FE80::/10 (1111 1110 10) and a 64-bit interface ID. The 128-bit IPv6 address is then subjected to duplicate address detection to ensure that the address is unique on the link. If desired, you can override this automatically configured address by explicitly configuring an address.

### IPv6 stateless autoconfiguration

Brocade routers use the IPv6 stateless autoconfiguration feature to enable a host on a local link to automatically configure its interfaces with new and globally unique IPv6 addresses associated with its location. The automatic configuration of a host interface is performed without the use of a server, such as a Dynamic Host Configuration Protocol (DHCP) server, or manual configuration.

### Table 53: IPv6 address types

<table>
<thead>
<tr>
<th>Address type</th>
<th>Description</th>
<th>Address structure</th>
</tr>
</thead>
</table>
| Unicast      | An address for a single interface. A packet sent to a unicast address is delivered to the interface identified by the address. | Depends on the type of the unicast address:  
- Aggregatable global address—An address equivalent to a global or public IPv4 address. The address structure is as follows: a fixed prefix of 2000::/3 (001), a 45-bit global routing prefix, a 16-bit subnet ID, and a 64-bit interface ID.  
- Site-local address—An address used within a site or intranet. (This address is similar to a private IPv4 address.) A site consists of multiple network links. The address structure is as follows: a fixed prefix of FEC0::/10 (1111 1110 11), a 16-bit subnet ID, and a 64-bit interface ID.  
- Link-local address—An address between directly connected nodes on a single network link. The address structure is as follows: a fixed prefix of FE80::/10 (1111 1110 10) and a 64-bit interface ID.  
- IPv4-compatible address—An address used in IPv6 transition mechanisms that tunnel IPv6 packets dynamically over IPv4 infrastructures. The address embeds an IPv4 address in the low-order 32 bits and the high-order 96 bits are zeros. The address structure is as follows: 0:0:0:0:0:0:A.B.C.D.  
- Loopback address—An address (0:0:0:0:0:0:0:1 or ::1) that a switch can use to send an IPv6 packet to itself. You cannot assign a loopback address to a physical interface.  
- Unspecified address—An address (0:0:0:0:0:0:0:0 or ::) that a node can use until you configure an IPv6 address for it. |
| Multicast    | An address for a set of interfaces belonging to different nodes. Sending a packet to a multicast address results in the delivery of the packet to all interfaces in the set. | A multicast address has a fixed prefix of FF00::/8 (1111 1111). The next 4 bits define the address as a permanent or temporary address. The next 4 bits define the scope of the address (node, link, site, organization, global). |
| Anycast      | An address for a set of interfaces belonging to different nodes. Sending a packet to an anycast address results in the delivery of the packet to the closest interface identified by the address. | An anycast address looks similar to a unicast address, because it is allocated from the unicast address space. If you assign a unicast address to multiple interfaces, it is an anycast address. An interface assigned an anycast address must be configured to recognize the address as an anycast address. An anycast address can be assigned to a switch only. An anycast address must not be used as the source address of an IPv6 packet. |
The automatic configuration of a host interface works in the following way: a switch on a local link periodically sends switch advertisement messages containing network-type information, such as the 64-bit prefix of the local link and the default route, to all nodes on the link. When a host on the link receives the message, it takes the local link prefix from the message and appends a 64-bit interface ID, thereby automatically configuring its interface. (The 64-bit interface ID is derived from the MAC address of the host NIC.) The 128-bit IPv6 address is then subjected to duplicate address detection to ensure that the address is unique on the link.

The duplicate address detection feature verifies that a unicast IPv6 address is unique before it is assigned to a host interface by the stateless auto configuration feature. Duplicate address detection uses neighbor solicitation messages to verify that a unicast IPv6 address is unique.

**NOTE**
For the stateless auto configuration feature to work properly, the advertised prefix length in switch advertisement messages must always be 64 bits.

The IPv6 stateless autoconfiguration feature can also automatically reconfigure a host interfaces if you change the ISP for the host network. (The host interfaces must be renumbered with the IPv6 prefix of the new ISP.)

The renumbering occurs in the following way: a switch on a local link periodically sends advertisements updated with the prefix of the new ISP to all nodes on the link. (The advertisements still contain the prefix of the old ISP.) A host can use the addresses created from the new prefix and the existing addresses created from the old prefix on the link. When you are ready for the host to use the new addresses only, you can configure the lifetime parameters appropriately using the `ipv6 nd prefix-advertisement` command. During this transition, the old prefix is removed from the switch advertisements. At this point, only addresses that contain the new prefix are used on the link.

### IPv6 CLI command support

Table 54 lists the IPv6 CLI commands supported.

<table>
<thead>
<tr>
<th>IPv6 command</th>
<th>Description</th>
<th>Switch code</th>
<th>Router code</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 cache</td>
<td>Deletes all entries in the dynamic host cache.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>clear ipv6 mld-snooping</td>
<td>Deletes MLD-snooping-related counters or cache entries.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>clear ipv6 neighbor</td>
<td>Deletes all dynamic entries in the IPv6 neighbor table.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>clear ipv6 ospf</td>
<td>Clears OSPF-related entries.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>clear ipv6 rip</td>
<td>Clears RIP-related entries.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>clear ipv6 route</td>
<td>Deletes all dynamic entries in the IPv6 route table.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>clear ipv6 traffic</td>
<td>Resets all IPv6 packet counters.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>clear ipv6 tunnel</td>
<td>Clears statistics for IPv6 tunnels.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>copy tftp</td>
<td>Downloads a copy of a Brocade software image from a TFTP server into the system flash using IPv6.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>debug ipv6</td>
<td>Displays IPv6 debug information.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IPv6 command</td>
<td>Description</td>
<td>Switch code</td>
<td>Router code</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ipv6 access-class</td>
<td>Configures access control for IPv6 management traffic.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 access-list</td>
<td>Configures an IPv6 access control list for IPv6 access control.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 address</td>
<td>Configures an IPv6 address on an interface (router) or globally (switch).</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 debug</td>
<td>Enables IPv6 debugging.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 dns domain-name</td>
<td>Configures an IPv6 domain name.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 dns server-address</td>
<td>Configures an IPv6 DNS server address.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 enable</td>
<td>Enables IPv6 on an interface.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 hop-limit</td>
<td>Sets the IPv6 hop limit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv6 icmp</td>
<td>Configures IPv6 ICMP parameters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv6 load-sharing</td>
<td>Enables IPv6 load sharing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv6 mld-snooping</td>
<td>Configures MLD snooping.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 mtu</td>
<td>Configures the maximum length of an IPv6 packet that can be transmitted on a particular interface.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ipv6 nd</td>
<td>Configures neighbor discovery.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv6 neighbor</td>
<td>Maps a static IPv6 address to a MAC address in the IPv6 neighbor table.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ipv6 ospf</td>
<td>Configures OSPF V3 parameters on an interface.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ipv6 prefix-list</td>
<td>Builds an IPv6 prefix list.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv6 redirects</td>
<td>Enables the sending of ICMP redirect messages on an interface.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ipv6 rip</td>
<td>Configures RIPng parameters on an interface.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ipv6 route</td>
<td>Configures an IPv6 static route.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ipv6 router</td>
<td>Enables an IPv6 routing protocol.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ipv6 traffic-filter</td>
<td>Applies an IPv6 ACL to an interface.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ipv6 unicast-routing</td>
<td>Enables IPv6 unicast routing.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>log host ipv6</td>
<td>Configures the IPv6 Syslog server.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ping ipv6</td>
<td>Performs an ICMP for IPv6 echo test.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>show ipv6</td>
<td>Displays some global IPv6 parameters, such IPv6 DNS server address.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>show ipv6 access-list</td>
<td>Displays configured IPv6 access control lists.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>show ipv6 cache</td>
<td>Displays the IPv6 host cache.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>show ipv6 interface</td>
<td>Displays IPv6 information for an interface.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>show ipv6 mld-snooping</td>
<td>Displays information about MLD snooping.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>show ipv6 neighbor</td>
<td>Displays the IPv6 neighbor table.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>show ipv6 ospf</td>
<td>Displays information about OSPF V3.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Configuring an IPv6 host address on a Layer 2 switch

In a Layer 3 (router) configuration, each port can be configured separately with an IPv6 address. This is accomplished using the interface configuration process that is described in “Configuring IPv6 on each router interface” on page 214.

In a Layer 2 (switch) configuration, individual ports cannot be configured with an IP address (IPv4 or IPv6). In this situation, the switch has one IP address for the management port and one IP address for the system. This has previously been supported for IPv4 but not for IPv6.

There is support for configuring an IPv6 address on the management port as described in “Configuring the management port for an IPv6 automatic address configuration” on page 213, and for configuring a system-wide IPv6 address on a Layer 2 switch. Configuration of the system-wide IPv6 address is exactly like configuration of an IPv6 address in router mode, except that the IPv6 configuration is at the Global Config level instead of at the Interface Config level.

The process for defining the system-wide interface for IPv6 is described in the following sections:

- “Configuring a global or site-local IPv6 address with a manually configured interface ID” on page 213
- “Configuring a link-local IPv6 address as a system-wide address for a switch” on page 213

NOTE

When configuring an IPv6 host address on a Layer 2 switch that has multiple VLANs, make sure the configuration includes a designated management VLAN that identifies the VLAN to which the global IP address belongs. Refer to “Designated VLAN for Telnet management sessions to a Layer 2 Switch” on page 1421.
Configuring a global or site-local IPv6 address with a manually configured interface ID

To configure a global or site-local IPv6 address with a manually-configured interface ID, such as a system-wide address for a switch, enter a command similar to the following at the Global Config level.

```
```

**Syntax:** `ipv6 address ipv6-prefix / prefix-length`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter in decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

Configuring a link-local IPv6 address as a system-wide address for a switch

To enable IPv6 and automatically configure a global interface enter commands such as the following.

```
FastIron(config)# ipv6 enable
```

This command enables IPv6 on the switch and specifies that the interface is assigned an automatically computed link-local address.

**Syntax:** `[no] ipv6 enable`

To override a link-local address that is automatically computed for the global interface with a manually configured address, enter a command such as the following.

```
FastIron(config)# ipv6 address FE80::240:D0FF:FE48:4672 link-local
```

This command explicitly configures the link-local address `FE80::240:D0FF:FE48:4672` for the global interface.

**Syntax:** `ipv6 address ipv6-address link-local`

You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `link-local` keyword indicates that the router interface should use the manually configured link-local address instead of the automatically computed link-local address.

Configuring the management port for an IPv6 automatic address configuration

You can have the management port configured to automatically obtain an IPv6 address. This process is the same for any other port and is described in detail in the “Configuring a global IPv6 address with an automatically computed EUI-64 interface ID” on page 216.
Configuring basic IPv6 connectivity on a Layer 3 switch

To configure basic IPv6 connectivity on a Brocade Layer 3 Switch, you must do the following:

- Enable IPv6 routing globally on the switch
- Configure an IPv6 address or explicitly enable IPv6 on each router interface over which you plan to forward IPv6 traffic
- Configure IPv4 and IPv6 protocol stacks. (This step is mandatory only if you want a router interface to send and receive both IPv4 and IPv6 traffic.)

All other configuration tasks in this chapter are optional.

Enabling IPv6 routing

By default, IPv6 routing is disabled. To enable the forwarding of IPv6 traffic globally on the Layer 3 switch, enter the following command.

```
FastIron(config)# ipv6 unicast-routing
```

Syntax: `[no] ipv6 unicast-routing`

To disable the forwarding of IPv6 traffic globally on the Brocade device, enter the `no` form of this command.

**NOTE**

This command is not supported on TurboIron devices because IPv6 unicast routing is not supported on the device.

Configuring IPv6 on each router interface

To forward IPv6 traffic on a router interface, the interface must have an IPv6 address, or IPv6 must be explicitly enabled. By default, an IPv6 address is not configured on a router interface.

If you choose to configure a global or site-local IPv6 address for an interface, IPv6 is also enabled on the interface. Further, when you configure a global or site-local IPv6 address, you must decide on one of the following in the low-order 64 bits:

- A manually configured interface ID.
- An automatically computed EUI-64 interface ID.

If you prefer to assign a link-local IPv6 address to the interface, you must explicitly enable IPv6 on the interface, which causes a link-local address to be automatically computed for the interface. If preferred, you can override the automatically configured link-local address with an address that you manually configure.

This section provides the following information:

- Configuring a global or site-local address with a manually configured or automatically computed interface ID for an interface.
- Automatically or manually configuring a link-local address for an interface.
- Configuring IPv6 anycast addresses
Configuring a global or site-local IPv6 address on an interface

Configuring a global or site-local IPv6 address on an interface does the following:

- Automatically configures an interface ID (a link-local address), if specified.
- Enables IPv6 on that interface.

Additionally, the configured interface automatically joins the following required multicast groups for that link:

- Solicited-node multicast group FF02:0:0:0:1:FF00::/104 for each unicast address assigned to the interface.
- Solicited-node for subnet anycast address for each unicast assigned address
- Solicited-node for anycast address FF02:0:0:0:1:FF00::0000
- All-nodes link-local multicast group FF02::1
- All-routers link-local multicast group FF02::2

The neighbor discovery feature sends messages to these multicast groups. For more information, refer to “Configuring IPv6 neighbor discovery” on page 238.

Configuring a global or site-local IPv6 address with a manually configured interface ID

To configure a global or site-local IPv6 address, including a manually configured interface ID, for an interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 address 2001:200:12D:1300::240:D0FF:FE48:4672:/64
```

These commands configure the global prefix 2001:200:12D:1300::/64 and the interface ID ::240:D0FF:FE48:4672, and enable IPv6 on Ethernet interface 3/1.

Syntax: `ipv6 address ipv6-prefix / prefix-length`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

To configure a /122 address on a VE enter commands similar to the following.

```
FastIron(config-vlan-11)# int ve11
FastIron(config-vif-11)# ipv6 add 2020::1/122
FastIron(config-vif-11)# sh ipv6 int
Routing Protocols : R - RIP O - OSPF
Interface Status Routing Global Unicast Address
VE 11 up/up 2020::1/122
FastIron(config-vif-11)# sh ipv6 route
IPv6 Routing Table - 1 entries:
Type Codes: C - Connected, S - Static, R - RIP, O - OSPF, B - BGP
OSPF Sub Type Codes: O - Intra, Oi - Inter, O1 - Type1 external, O2 - Type2 external
Type IPv6 Prefix Next Hop Router Interface Dis/Metric
C 2020::/122 :: ve 11 0/0
```

Configuring a global IPv6 address with an automatically computed EUI-64 interface ID
To configure a global IPv6 address with an automatically computed EUI-64 interface ID in the low-order 64-bits, enter commands such as the following.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 address 2001:200:12D:1300::/64 eui-64
```

These commands configure the global prefix 2001:200:12d:1300::/64 and an interface ID, and enable IPv6 on Ethernet interface 3/1.

**Syntax:** `ipv6 address ipv6-prefix / prefix-length eui-64`

You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `eui-64` keyword configures the global address with an EUI-64 interface ID in the low-order 64 bits. The interface ID is automatically constructed in IEEE EUI-64 format using the interface MAC address.

Configuring a link-local IPv6 address on an interface
To explicitly enable IPv6 on a router interface without configuring a global or site-local address for the interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 enable
```

These commands enable IPv6 on Ethernet interface 3/1 and specify that the interface is assigned an automatically computed link-local address.

**Syntax:** `[no] ipv6 enable`

**NOTE**
When configuring VLANs that share a common tagged interface with a physical or Virtual Ethernet (VE) interface, Brocade recommends that you override the automatically computed link-local address with a manually configured unique address for the interface. If the interface uses the automatically computed address, which in the case of physical and VE interfaces is derived from a global MAC address, all physical and VE interfaces will have the same MAC address.

To override a link-local address that is automatically computed for an interface with a manually configured address, enter commands such as the following.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 address FE80::240:D0FF:FE48:4672 link-local
```

These commands explicitly configure the link-local address FE80::240:D0FF:FE48:4672 for Ethernet interface 3/1.

**Syntax:** `ipv6 address ipv6-address link-local`

You must specify the `ipv6-address` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The `link-local` keyword indicates that the router interface should use the manually configured link-local address instead of the automatically computed link-local address.
Configuring an IPv6 anycast address on an interface

In IPv6, an anycast address is an address for a set of interfaces belonging to different nodes. Sending a packet to an anycast address results in the delivery of the packet to the closest interface configured with the anycast address.

An anycast address looks similar to a unicast address, because it is allocated from the unicast address space. If you assign an IPv6 unicast address to multiple interfaces, it is an anycast address. On the Brocade device, you configure an interface assigned an anycast address to recognize the address as an anycast address.

For example, the following commands configure an anycast address on interface 2/1.

```
FastIron(config)# int e 2/1
FastIron(config-if-e1000-2/1)# ipv6 address 2002::/64 anycast
```

Syntax: `ipv6 address ipv6-prefix / prefix-length [ anycast ]`

IPv6 anycast addresses are described in detail in RFC 1884. See RFC 2461 for a description of how the IPv6 Neighbor Discovery mechanism handles anycast addresses.

Configuring IPv4 and IPv6 protocol stacks

One situation in which you must configure a router to run both IPv4 and IPv6 protocol stacks is if it is deployed as an endpoint for an IPv6 over IPv4 tunnel.

Each router interface that will send and receive both IPv4 and IPv6 traffic must be configured with an IPv4 address and an IPv6 address. (An alternative to configuring a router interface with an IPv6 address is to explicitly enable IPv6 using the `ipv6 enable` command. For more information about using this command, refer to “Configuring a link-local IPv6 address on an interface” on page 216.)

To configure a router interface to support both the IPv4 and IPv6 protocol stacks, use commands such as the following.

```
FastIron(config)# ipv6 unicast-routing
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ip address 192.168.1.1 255.255.255.0
FastIron(config-if-e1000-3/1)# ipv6 address 2001:200:12d:1300::/64 eui-64
```

These commands globally enable IPv6 routing and configure an IPv4 address and an IPv6 address for Ethernet interface 3/1.

Syntax: `[no] ipv6 unicast-routing

To disable IPv6 traffic globally on the router, enter the `no` form of this command.

Syntax: `ip address ip-address sub-net-mask [ secondary ]`

You must specify the `ip-address` parameter using 8-bit values in dotted decimal notation.

You can specify the `sub-net-mask` parameter in either dotted decimal notation or as a decimal value preceded by a slash mark (/).

The `secondary` keyword specifies that the configured address is a secondary IPv4 address.

To remove the IPv4 address from the interface, enter the `no` form of this command.

Syntax: `ipv6 address ipv6-prefix / prefix-length [ eui-64 ]`

This syntax specifies a global or site-local IPv6 address. For information about configuring a link-local IPv6 address, refer to “Configuring a link-local IPv6 address on an interface” on page 216.
You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.

The `eui-64` keyword configures the global address with an EUI-64 interface ID in the low-order 64 bits. The interface ID is automatically constructed in IEEE EUI-64 format using the interface MAC address. If you do not specify the `eui-64` keyword, you must manually configure the 64-bit interface ID as well as the 64-bit network prefix. For more information about manually configuring an interface ID, refer to “Configuring a global or site-local IPv6 address on an interface” on page 215.

### IPv6 management (IPv6 host support)

**Platform Support:**
- FastIron X Series devices running software release 02.4.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.2.00 and later

An **IPv6 host** has IPv6 addresses on its interfaces, but does not have full IPv6 routing enabled on it.

This section describes the following IPv6 host features:
- “IPv6 access control lists”
- “Restricting SNMP access to an IPv6 node”
- “Specifying an IPv6 SNMP trap receiver”
- “SNMP V3 over IPv6”
- “SNTP over IPv6”
- “Secure Shell, SCP, and IPv6”
- “IPv6 Telnet”
- “IPv6 Web management using HTTP and HTTPS”
- “Restricting Web management access”
- “Configuring name-to-IPv6 address resolution using IPv6 DNS resolver”
- “Defining an IPv6 DNS entry”
- “Using the IPv6 copy command”
- “Using the IPv6 ncopy command”
- “IPv6 ping”
- “Configuring an IPv6 Syslog server”
- “Viewing IPv6 SNMP server addresses”
- “Disabling router advertisement and solicitation messages”
- “IPv6 debug”
- “Disabling IPv6 on a Layer 2 switch”

The following IPv6 host feature is also supported:
- “Configuring a link-local IPv6 address as a system-wide address for a switch”

The following IPv6 host features are not supported in TurboIron 24x:
- IPv6 access control lists
IPv6 management (IPv6 host support)

- IPv6 Web management using HTTP and HTTPS

IPv6 access control lists

You can configure an IPv6 ACL to filter traffic to or from an IPv6 host. To do so, refer to Chapter 18, “Configuring IPv6 Access Control Lists (ACLs)”.

Restricting SNMP access to an IPv6 node

You can restrict SNMP access (which includes IronView Network Manager) to the device to the IPv6 host whose IP address you specify. To do so, enter a command such as the following.

```
FastIron(config)# snmp-client ipv6 2001:efff:89::23
```

Syntax: `snmp-client ipv6 ipv6-address`

- The `ipv6-address` you specify must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

Specifying an IPv6 SNMP trap receiver

You can specify an IPv6 host as a trap receiver to ensure that all SNMP traps sent by the device will go to the same SNMP trap receiver or set of receivers, typically one or more host devices on the network. To do so, enter a command such as the following.

```
FastIron(config)# snmp-server host ipv6 2001:efff:89::13
```

Syntax: `snmp-server host ipv6 ipv6-address`

- The `ipv6-address` you specify must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

SNMP V3 over IPv6

Brocade devices support IPv6 for SNMP version 3. For more information about how to configure SNMP, refer to Chapter 48, “Securing SNMP Access”.

SNTP over IPv6

To enable the Brocade device to send SNTP packets over IPv6, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)# sntp server ipv6 3000::400
```

Syntax: `sntp server ipv6 ipv6-address`

- The `ipv6-address` is the IPv6 address of the SNTP server. When you enter the IPv6 address, you do not need to specify the prefix length. A prefix length of 128 is implied.
Secure Shell, SCP, and IPv6

Secure Shell (SSH) is a mechanism that allows secure remote access to management functions on the Brocade device. SSH provides a function similar to Telnet. You can log in to and configure the Brocade device using a publicly or commercially available SSH client program, just as you can with Telnet. However, unlike Telnet, which provides no security, SSH provides a secure, encrypted connection to the Brocade device.

To open an SSH session between an IPv6 host running an SSH client program and the Brocade device, open the SSH client program and specify the IPv6 address of the device. For more information about configuring SSH on the Brocade device, refer to “SSH version 2 support” on page 1495.

IPv6 Telnet

Telnet sessions can be established between a Brocade device to a remote IPv6 host, and from a remote IPv6 host to the Brocade device using IPv6 addresses.

The `telnet` command establishes a Telnet connection from a Brocade device to a remote IPv6 host using the console. Up to five `read-access` Telnet sessions are supported on the router at one time. `Write-access` through Telnet is limited to one session, and only one outgoing Telnet session is supported on the router at one time. To see the number of open Telnet sessions at any time, enter the `show telnet` command.

Example

To establish a Telnet connection to a remote host with the IPv6 address of 3001:2837:3de2:c37::6, enter the following command.

```
FastIron# telnet 3001:2837:3de2:c37::6
```

Syntax: `telnet ipv6-address [ port-number | outgoing-interface ethernet port | ve number ]`

- The `ipv6-address` parameter specifies the address of a remote host. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `port-number` parameter specifies the port number on which the Brocade device establishes the Telnet connection. You can specify a value between 1 - 65535. If you do not specify a port number, the Brocade device establishes the Telnet connection on port 23.
- If the IPv6 address you specify is a link-local address, you must specify the `outgoing-interface` Ethernet `port | ve number` parameter. This parameter identifies the interface that must be used to reach the remote host. If you specify an Ethernet interface, you must also specify the port number associated with the interface. If you specify a VE interface, also specify the VE number.

Establishing a Telnet session from an IPv6 host

To establish a Telnet session from an IPv6 host to the Brocade device, open your Telnet application and specify the IPv6 address of the Layer 3 Switch.

IPv6 Web management using HTTP and HTTPS

**NOTE**

Web management interface is not supported on TurboIron devices.
IPv6 management (IPv6 host support)

When you have an IPv6 management station connected to a switch with an IPv6 address applied to the management port, you can manage the switch from a Web browser by entering one of the following in the browser address field.

http://[ipv6 address]

or

https://[ipv6 address]

**NOTE**

You must enclose the IPv6 address with square brackets [ ] in order for the Web browser to work.

**Restricting Web management access**

You can restrict Web management access to include only management functions on a Brocade device that is acting as an IPv6 host, or restrict access so that the Brocade host can be reached by a specified IPv6 device.

**Restricting Web management access by specifying an IPv6 ACL**

You can specify an IPv6 ACL that restricts Web management access to management functions on the device that is acting as the IPv6 host.

```
FastIron(config)# access-list 12 deny host 2000:2383:e0bb::2/128 log
FastIron(config)# access-list 12 deny 30ff:3782::ff89/128 log
FastIron(config)# access-list 12 deny 3000:4828::fe19/128 log
FastIron(config)# access-list 12 permit any
FastIron(config)# web access-group ipv6 12
```

**Syntax:**  `web access-group ipv6 ipv6 ACL name`

where `ipv6 ACL name` is a valid IPv6 ACL.

**Restricting Web management access to an IPv6 host**

You can restrict Web management access to the device to the IPv6 host whose IP address you specify. No other device except the one with the specified IPv6 address can access the Web Management Interface.

```
FastIron(config)# web client ipv6 3000:2383:e0bb::2/128
```

**Syntax:**  `web client ipv6 ipv6-address`

- The `ipv6-address` you specify must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

**Configuring name-to-IPv6 address resolution using IPv6 DNS resolver**

The Domain Name Server (DNS) resolver feature lets you use a host name to perform Telnet and ping commands. You can also define a DNS domain on a Brocade device and thereby recognize all hosts within that domain. After you define a domain name, the Brocade device automatically appends the appropriate domain to the host and forwards it to the domain name server.
For example, if the domain "newyork.com" is defined on a Brocade device, and you want to initiate a ping to host “NYC01” on that domain, you need to reference only the host name in the command instead of the host name and its domain name. For example, you could enter either of the following commands to initiate the ping.

```
FastIron# ping ipv6 nyc01
FastIron# ping ipv6 nyc01.newyork.com
```

### Defining an IPv6 DNS entry

IPv6 defines new DNS record types to resolve queries for domain names to IPv6 addresses, as well as IPv6 addresses to domain names. Brocade devices running IPv6 software support AAAA DNS records, which are defined in RFC 1886.

AAAA DNS records are analogous to the A DNS records used with IPv4. They store a complete IPv6 address in each record. AAAA records have a type value of 28.

To establish an IPv6 DNS entry for the device, enter the following command.

```
FastIron(config)# ipv6 dns domain-name companynet.com
```

**Syntax:**

```
[no] ipv6 dns domain-name domain name
```

To define an IPv6 DNS server address, enter the following command.

```
FastIron(config)# ipv6 dns server-address 200::1
```

**Syntax:**

```
[no] ipv6 dns server-address ipv6-addr [ipv6-addr] [ipv6-addr] [ipv6-addr]
```

As an example, in a configuration where ftp6.companynet.com is a server with an IPv6 protocol stack, when a user pings ftp6.companynet.com, the Brocade device attempts to resolve the AAAA DNS record. In addition, if the DNS server does not have an IPv6 address, as long as it is able to resolve AAAA records, it can still respond to DNS queries.

### Using the IPv6 copy command

The `copy` command for IPv6 allows you to do the following:

- Copy a file from a specified source to an IPv6 TFTP server.
- Copy a file from an IPv6 TFTP server to a specified destination.

#### Copying a file to an IPv6 TFTP server

You can copy a file from the following sources to an IPv6 TFTP server:

- Flash memory.
- Running configuration.
- Startup configuration.

**Copying a file from flash memory**

For example, to copy the primary or secondary boot image from the device flash memory to an IPv6 TFTP server, enter a command such as the following.

```
FastIron# copy flash tftp 2001:7382:e0ff:7837::3 test.img secondary
```

This command copies the secondary boot image named test.img from flash memory to a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3.
IPv6 management (IPv6 host support)

Syntax: copy flash tftp ipv6-address source-file-name primary | secondary

- The `ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `source-file-name` parameter specifies the name of the file you want to copy to the IPv6 TFTP server.
- The `primary` keyword specifies the primary boot image, while the `secondary` keyword specifies the secondary boot image.

Copying a file from the running or startup configuration

For example, to copy the running configuration to an IPv6 TFTP server, enter a command such as the following.

```
FastIron# copy running-config tftp 2001:7382:e0ff:7837::3 newrun.cfg
```

This command copies the running configuration to a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 and names the file on the TFTP server newrun.cfg.

Syntax: copy running-config | startup-config tftp ipv6-address destination-file-name

- Specify the `running-config` keyword to copy the running configuration file to the specified IPv6 TFTP server.
- Specify the `startup-config` keyword to copy the startup configuration file to the specified IPv6 TFTP server.
- The `tftp ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `destination-file-name` parameter specifies the name of the file that is copied to the IPv6 TFTP server.

Copying a file from an IPv6 TFTP server

You can copy a file from an IPv6 TFTP server to the following destinations:

- Flash memory.
- Running configuration.
- Startup configuration.

Copying a file to flash memory

For example, to copy a boot image from an IPv6 TFTP server to the primary or secondary storage location in the device flash memory, enter a command such as the following.

```
FastIron# copy tftp flash 2001:7382:e0ff:7837::3 test.img secondary
```

This command copies a boot image named test.img from an IPv6 TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 to the secondary storage location in the device flash memory.

Syntax: copy tftp flash ipv6-address source-file-name primary | secondary

- The `ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `source-file-name` parameter specifies the name of the file you want to copy from the IPv6 TFTP server.
- The `primary` keyword specifies the primary storage location in the device flash memory, while the `secondary` keyword specifies the secondary storage location in the device flash memory.
Copying a file to the running or startup configuration
For example, to copy a configuration file from an IPv6 TFTP server to the router running or startup configuration, enter a command such as the following.

```
FastIron# copy tftp running-config 2001:7382:e0ff:7837::3 newrun.cfg overwrite
```

This command copies the new running .onfig file from the IPv6 TFTP server and overwrites the router running configuration file with the contents of newrun.cfg.

**NOTE**
To activate this configuration, you must reload (reset) the device.

**Syntax:** `copy tftp running-config | startup-config ipv6-address source-file-name [overwrite]`

- Specify the `running-config` keyword to copy the running configuration from the specified IPv6 TFTP server.
- Specify the `startup-config` keyword to copy the startup configuration from the specified IPv6 TFTP server.
- The `ipv6-address` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `source-file-name` parameter specifies the name of the file that is copied from the IPv6 TFTP server.
- The `overwrite` keyword specifies that the device should overwrite the current configuration file with the copied file. If you do not specify this parameter, the device copies the file into the current running or startup configuration but does not overwrite the current configuration.

**NOTE**
You cannot use the overwrite option from non-console sessions, because it will disconnect the session.

Using the IPv6 ncopy command
The `ncopy` command for IPv6 allows you to do the following:

- Copy a primary or secondary boot image from flash memory to an IPv6 TFTP server.
- Copy the running configuration to an IPv6 TFTP server.
- Copy the startup configuration to an IPv6 TFTP server.
- Upload various files from an IPv6 TFTP server.

**Copying a primary or secondary boot image from flash memory to an IPv6 TFTP server**

For example, to copy the primary or secondary boot image from the device flash memory to an IPv6 TFTP server, enter a command such as the following.

```
FastIron# ncopy flash primary tftp 2001:7382:e0ff:7837::3 primary.img
```

This command copies the primary boot image named primary.img from flash memory to a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3.

**Syntax:** `ncopy flash primary | secondary tftp ipv6-address source-file-name`
• The **primary** keyword specifies the primary boot image, while the **secondary** keyword specifies the secondary boot image.

• The **tftp ipv6-address** parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

• The **source-file-name** parameter specifies the name of the file you want to copy from flash memory.

**Copying the running or startup configuration to an IPv6 TFTP server**

For example, to copy a device running or startup configuration to an IPv6 TFTP server, enter a command such as the following.

FastIron# ncopy running-config tftp 2001:7382:e0ff:7837::3 bakrun.cfg

This command copies a device running configuration to a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 and names the destination file bakrun.cfg.

**Syntax:** ncopy running-config | startup-config tftp ipv6-address destination-file-name

• Specify the **running-config** keyword to copy the device running configuration or the **startup-config** keyword to copy the device startup configuration.

• The **tftp ipv6-address** parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

• The **destination-file-name** parameter specifies the name of the running configuration that is copied to the IPv6 TFTP server.

**Uploading files from an IPv6 TFTP server**

You can upload the following files from an IPv6 TFTP server:

• Primary boot image.

• Secondary boot image.

• Running configuration.

• Startup configuration.

**Uploading a primary or secondary boot image from an IPv6 TFTP server**

For example, to upload a primary or secondary boot image from an IPv6 TFTP server to a device flash memory, enter a command such as the following.

FastIron# ncopy tftp 2001:7382:e0ff:7837::3 primary.img flash primary

This command uploads the primary boot image named primary.img from a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 to the device primary storage location in flash memory.

**Syntax:** ncopy tftp ipv6-address source-file-name flash primary | secondary

• The **tftp ipv6-address** parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.

• The **source-file-name** parameter specifies the name of the file you want to copy from the TFTP server.

• The **primary** keyword specifies the primary location in flash memory, while the **secondary** keyword specifies the secondary location in flash memory.
Uploading a running or startup configuration from an IPv6 TFTP server
For example to upload a running or startup configuration from an IPv6 TFTP server to a device, enter a command such as the following.

```
FastIron# ncopy tftp 2001:7382:e0ff:7837::3 newrun.cfg running-config
```

This command uploads a file named newrun.cfg from a TFTP server with the IPv6 address of 2001:7382:e0ff:7837::3 to the device.

Syntax: `ncopy tftp ipv6-address source-file-name running-config | startup-config`

• The `tftp ipv6-address>` parameter specifies the address of the TFTP server. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
• The `source-file-name>` parameter specifies the name of the file you want to copy from the TFTP server.
• Specify the `running-config` keyword to upload the specified file from the IPv6 TFTP server to the device. The device copies the specified file into the current running configuration but does not overwrite the current configuration.

Specify the `startup-config` keyword to upload the specified file from the IPv6 TFTP server to the device. The device copies the specified file into the current startup configuration but does not overwrite the current configuration.

IPv6 ping

The `ping` command allows you to verify the connectivity from a Brocade device to an IPv6 device by performing an ICMP for IPv6 echo test.

For example, to ping a device with the IPv6 address of 2001:3424:847f:a385:34dd::45 from the Brocade device, enter the following command.

```
FastIron# ping ipv6 2001:3424:847f:a385:34dd::45
```

Syntax: `ping ipv6 ipv6-address [ outgoing-interface [ port | ve number ]] [ source ipv6-address ] [ count number ] [ timeout milliseconds ] [ ttl number ] [ size bytes ] [ quiet ] [ numeric ] [ no-fragment ] [ verify ] [ data 1-to-4 byte hex ] [ brief ]`

• The `ipv6-address` parameter specifies the address of the router. You must specify this address in hexadecimal using 16-bit values between colons as documented in RFC 2373.
• The `outgoing-interface` keyword specifies a physical interface over which you can verify connectivity. If you specify a physical interface, such as an Ethernet interface, you must also specify the port number of the interface. If you specify a virtual interface, such as a VE, you must specify the number associated with the VE.
• The `source ipv6-address` parameter specifies an IPv6 address to be used as the origin of the ping packets.

**NOTE**
The `outgoing-interface` and `source` options are available only on router code and not on switch code.

• The `count number` parameter specifies how many ping packets the router sends. You can specify from 1 - 4294967296. The default is 1.
• The `timeout milliseconds` parameter specifies how many milliseconds the router waits for a reply from the pinged device. You can specify a timeout from 1 - 4294967294 milliseconds. The default is 5000 (5 seconds).
IPv6 management (IPv6 host support)

- The **ttl** number parameter specifies the maximum number of hops. You can specify a TTL from 1 - 255. The default is 64.

- The **size** bytes parameter specifies the size of the ICMP data portion of the packet. This is the payload and does not include the header. You can specify from 0 - 10173. The default is 16.

- The **no-fragment** keyword turns on the "do not fragment" bit in the IPv6 header of the ping packet. This option is disabled by default.

  **NOTE**
  The **no-fragment** option is not supported on TurboIron devices.

- The **quiet** keyword hides informational messages such as a summary of the ping parameters sent to the device, and instead only displays messages indicating the success or failure of the ping. This option is disabled by default.

- The **verify** keyword verifies that the data in the echo packet (the reply packet) is the same as the data in the echo request (the ping). By default the device does not verify the data.

- The **data 1 - 4 byte hex** parameter lets you specify a specific data pattern for the payload instead of the default data pattern, "abcd", in the packet's data payload. The pattern repeats itself throughout the ICMP message (payload) portion of the packet.

  **NOTE**
  For parameters that require a numeric value, the CLI does not check that the value you enter is within the allowed range. Instead, if you do exceed the range for a numeric value, the software rounds the value to the nearest valid value.

- The **brief** keyword causes ping test characters to be displayed. The following ping test characters are supported.
  
<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Indicates that a reply was received.</td>
</tr>
<tr>
<td>.</td>
<td>Indicates that the network server timed out while waiting for a reply.</td>
</tr>
<tr>
<td>U</td>
<td>Indicates that a destination unreachable error PDU was received.</td>
</tr>
<tr>
<td>I</td>
<td>Indicates that the user interrupted ping.</td>
</tr>
</tbody>
</table>

### Configuring an IPv6 Syslog server

To enable IPv6 logging, specify an IPv6 Syslog server. Enter a command such as the following.

```
FastIron(config)# log host ipv6 2000:2383:e0bb::4/128
```

**Syntax:** `log host ipv6 ipv6-address [ udp-port-num ]`

- The **ipv6-address** must be in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The **udp-port-num** optional parameter specifies the UDP application port used for the Syslog facility.

### Viewing IPv6 SNMP server addresses

Some of the `show` commands display IPv6 addresses for IPv6 SNMP servers. The following shows an example output for the `show snmp server` command.
IPv6 management (IPv6 host support)

FastIron# show snmp server

Contact:
Location:
Community(ro): .....

Traps

<table>
<thead>
<tr>
<th>Warm/Cold start</th>
<th>Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link up</td>
<td>Enable</td>
</tr>
<tr>
<td>Link down</td>
<td>Enable</td>
</tr>
<tr>
<td>Authentication</td>
<td>Enable</td>
</tr>
<tr>
<td>Locked address violation</td>
<td>Enable</td>
</tr>
<tr>
<td>Power supply failure</td>
<td>Enable</td>
</tr>
<tr>
<td>Fan failure</td>
<td>Enable</td>
</tr>
<tr>
<td>Temperature warning</td>
<td>Enable</td>
</tr>
<tr>
<td>STP new root</td>
<td>Enable</td>
</tr>
<tr>
<td>STP topology change</td>
<td>Enable</td>
</tr>
<tr>
<td>vsrp</td>
<td>Enable</td>
</tr>
</tbody>
</table>

Total Trap-Receiver Entries: 4

<table>
<thead>
<tr>
<th>Trap-Receiver IP-Address</th>
<th>Port-Number</th>
<th>Community</th>
</tr>
</thead>
</table>
| 1 192.147.201.100        | 162         | .....
| 2 4000::200              | 162         | .....
| 3 192.147.202.100        | 162         | .....
| 4 3000::200              | 162         | .....

Disabling router advertisement and solicitation messages

Router advertisement and solicitation messages enable a node on a link to discover the routers on the same link. By default, router advertisement and solicitation messages are permitted on the device. To disable these messages, configure an IPv6 access control list that denies them. The following shows an example configuration.

Example

FastIron(config)# ipv6 access-list rtradvert
FastIron(config)# deny icmp any any router-advertisement
FastIron(config)# deny icmp any any router-solicitation
FastIron(config)# permit ipv6 any any

IPv6 debug

The debug ipv6 commands enable the collection of information about IPv6 configurations for troubleshooting.

Syntax: debug ipv6 address cache icmp mld nd packet ra

- address - IPv6 address
- cache - IPv6 cache entry
Configuring a static IPv6 route

You can configure a static IPv6 route to be redistributed into a routing protocol, but you cannot redistribute routes learned by a routing protocol into the static IPv6 routing table.

Before configuring a static IPv6 route, you must enable the forwarding of IPv6 traffic on the Layer 3 switch using the `ipv6 unicast-routing` command and enable IPv6 on at least one interface by configuring an IPv6 address or explicitly enabling IPv6 on that interface. For more information on performing these configuration tasks, refer to "Configuring IPv4 and IPv6 protocol stacks" on page 217.

To configure a static IPv6 route for a destination network with the prefix 8eff::0/32, a next-hop gateway with the global address 4fee:2343:0:ee44::1, and an administrative distance of 110, enter the following command.

```
FastIron(config)# ipv6 route 8eff::0/32 4fee:2343:0:ee44::1 distance 110
```

**Syntax:** `ipv6 route dest-ipv6-prefix / prefix-length next-hop-ipv6-address> [ metric ] [ distance number ]`

To configure a static IPv6 route for a destination network with the prefix 8eff::0/32 and a next-hop gateway with the link-local address fe80::1 that the Layer 3 switch can access through Ethernet interface 3/1, enter the following command.

```
FastIron(config)# ipv6 route 8eff::0/32 ethernet 1 fe80::1
```

**Syntax:** `ipv6 route dest-ipv6-prefix / prefix-length [ ethernet slot/port | ve num | null0 ] next-hop-ipv6-address [ metric ] [ distance number ]`
To configure a static IPv6 route for a destination network with the prefix 8eff::0/32 and a next-hop gateway that the Layer 3 switch can access through tunnel 1, enter the following command.

FastIron(config)# ipv6 route 8eff::0/32 tunnel 1

**Syntax:** `ipv6 route dest-ipv6-prefix / prefix-length interface port [ metric ] [ distance number ]`

Table 55 describes the parameters associated with this command and indicates the status of each parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration details</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IPv6 prefix and prefix length of the route destination network.</td>
<td>You must specify the <code>dest-ipv6-prefix&gt;</code> parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the <code>prefix-length&gt;</code> parameter as a decimal value. A slash mark (<code>/</code>) must follow the <code>ipv6-prefix&gt;</code> parameter and precede the <code>prefix-length&gt;</code> parameter.</td>
<td>Mandatory for all static IPv6 routes.</td>
</tr>
<tr>
<td>The route next-hop gateway, which can be one of the following: The IPv6 address of a next-hop gateway. A tunnel interface.</td>
<td>You can specify the next-hop gateway as one of the following types of IPv6 addresses: A global address. A link-local address. If you specify a global address, you do not need to specify any additional parameters for the next-hop gateway. If you specify a link-local address, you must also specify the interface through which to access the address. You can specify one of the following interfaces: An Ethernet interface. A tunnel interface. A virtual interface (VE). If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE or tunnel interface, also specify the VE or tunnel number. You can also specify the next-hop gateway as a tunnel interface. If you specify a tunnel interface, also specify the tunnel number.</td>
<td>Mandatory for all static IPv6 routes.</td>
</tr>
<tr>
<td>The route metric.</td>
<td>You can specify a value from 1 – 16. Optional for all static IPv6 routes. (The default metric is 1.)</td>
<td></td>
</tr>
<tr>
<td>The route administrative distance.</td>
<td>You must specify the <code>distance</code> keyword and any numerical value. Optional for all static IPv6 routes. (The default administrative distance is 1.)</td>
<td></td>
</tr>
</tbody>
</table>

A metric is a value that the Layer 3 switch uses when comparing this route to other static routes in the IPv6 static route table that have the same destination. The metric applies only to routes that the Layer 3 switch has already placed in the IPv6 static route table.
The administrative distance is a value that the Layer 3 switch uses to compare this route with routes from other route sources that have the same destination. (The Layer 3 switch performs this comparison before placing a route in the IPv6 route table.) This parameter does not apply to routes that are already in the IPv6 route table. In general, a low administrative distance indicates a preferred route. By default, static routes take precedence over routes learned by routing protocols. If you want a dynamic route to be chosen over a static route, you can configure the static route with a higher administrative distance than the dynamic route.

**IPv6 over IPv4 tunnels**

**Platform Support:**
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3

To enable communication between isolated IPv6 domains using the IPv4 infrastructure, you can manually configure IPv6 over IPv4 tunnels that provide static point-point connectivity.

As shown in **Figure 16**, these tunnels encapsulate an IPv6 packet within an IPv4 packet.

**FIGURE 16** IPv6 over an IPv4 tunnel

In general, a manually configured tunnel establishes a permanent link between switches in IPv6 domains. A manually configured tunnel has explicitly configured IPv4 addresses for the tunnel source and destination.

This tunneling mechanism requires that the Layer 3 switch at each end of the tunnel run both IPv4 and IPv6 protocol stacks. The Layer 3 switches running both protocol stacks, or dual-stack routers, can interoperate directly with both IPv4 and IPv6 end systems and routers. Refer to “Configuring IPv4 and IPv6 protocol stacks” on page 217.

**Configuration notes**
- The local tunnel configuration must include both source and destination addresses.
- The remote side of the tunnel must have the opposite source/destination pair.
- A tunnel interface supports static and dynamic IPv6 configuration settings and routing protocols.
- Duplicate Address Detection (DAD) is not currently supported with IPv6 tunnels. Make sure tunnel endpoints do not have duplicate IP addresses.
- Neighbor Discovery (ND) is not supported with IPv6 tunnels.
- If a tunnel source port is a multi-homed IPv4 source, the tunnel will use the first IPv4 address only. For proper tunnel operation, use the `ip address` option.
### Configuring a manual IPv6 tunnel

You can use a manually configured tunnel to connect two isolated IPv6 domains. You should deploy this point-to-point tunnelling mechanism if you need a permanent and stable connection.

To configure a manual IPv6 tunnel, enter commands such as the following on a Layer 3 Switch running both IPv4 and IPv6 protocol stacks on each end of the tunnel.

```
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel source ethernet 3/1
FastIron(config-tnif-1)# tunnel destination 198.162.100.1
FastIron(config-tnif-1)# tunnel mode ipv6ip
FastIron(config-tnif-1)# ipv6 enable
```

This example creates tunnel interface 1 and assigns a link local IPv6 address with an automatically computed EUI-64 interface ID to it. The IPv4 address assigned to Ethernet interface 3/1 is used as the tunnel source, while the IPv4 address 192.168.100.1 is configured as the tunnel destination. The tunnel mode is specified as a manual IPv6 tunnel. Finally, the tunnel is enabled. Note that instead of entering `ipv6 enable`, you could specify an IPv6 address, for example, `ipv6 address 2001:b78:384d:34::/64 eui-64`, which would also enable the tunnel.

**Syntax:**

```
[no] interface tunnel number
```

- For the `number` parameter, specify a value between 1 – 8.

**Syntax:**

```
[no] tunnel source ipv4-address | ethernet port | loopback number | ve number
```

- The `tunnel source` can be an IP address or an interface.
- For `ipv4-address`, use 8-bit values in dotted decimal notation.

The `ethernet` | `loopback` | `ve` parameters specify an interface as the tunnel source. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a loopback, VE, or interface, also specify the loopback, VE, or interface number, respectively.

**Syntax:**

```
[no] tunnel destination ipv4-address
```

- Specify the `ipv4-address` parameter using 8-bit values in dotted decimal notation.

**Syntax:**

```
[no] tunnel mode ipv6ip
```

- `ipv6ip` indicates that this is an IPv6 manual tunnel.

**Syntax:** `ipv6 enable`

This command enables the tunnel. You could specify an IPv6 address, which also enables the tunnel.

**Syntax:**

```
ipv6 address ipv6-prefix / prefix-length> [eui-64]
```

The `ipv6 address` command enables the tunnel. You could also enter `ipv6 enable`, which enables the tunnel.

Specify the `ipv6-prefix` parameter in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

Specify the `prefix-length` parameter as a decimal value. A slash mark (`/`) must follow the `ipv6-prefix` parameter and precede the `prefix-length>` parameter. The `eui-64` keyword configures the global address with an EUI-64 interface ID in the low-order 64 bits. The interface ID is automatically constructed in IEEE EUI-64 format using the interface MAC address.
Clearing IPv6 tunnel statistics

You can clear statistics (reset all fields to zero) for all IPv6 tunnels or for a specific tunnel interface. For example, to clear statistics for tunnel 1, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

FastIron\# clear ipv6 tunnel 1

To clear statistics for all IPv6 tunnels, enter the following command.

FastIron\# clear ipv6 tunnel

Syntax: clear ipv6 tunnel [number]
The number parameter specifies the tunnel number.

Displaying IPv6 tunnel information

Use the commands in this section to display the configuration, status, and counters associated with IPv6 tunnels.

Displaying a summary of tunnel information

To display a summary of tunnel information, enter the following command at any level of the CLI.

FastIron\# show ipv6 tunnel

Syntax: show ipv6 tunnel

This display shows the following information.

TABLE 56 IPv6 tunnel summary information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel</td>
<td>The tunnel interface number.</td>
</tr>
<tr>
<td>Mode</td>
<td>The tunnel mode. Possible modes include the following:</td>
</tr>
<tr>
<td></td>
<td>• configured – Indicates a manually configured tunnel.</td>
</tr>
<tr>
<td>Packet Received</td>
<td>The number of packets received by a tunnel interface. Note that this is the number of packets received by the CPU. It does not include the number of packets processed in hardware.</td>
</tr>
<tr>
<td>Packet Sent</td>
<td>The number of packets sent by a tunnel interface. Note that this is the number of packets sent by the CPU. It does not include the number of packets processed in hardware.</td>
</tr>
</tbody>
</table>

Displaying tunnel interface information

To display status and configuration information for tunnel interface 1, enter the following command at any level of the CLI.
IPv6 over IPv4 tunnels

FastIron# show interfaces tunnel 1
Tunnel1 is up, line protocol is up
  Hardware is Tunnel
  Tunnel source ve 30
  Tunnel destination is 2.2.2.10
  Tunnel mode ipv6ip
  No port name
  MTU 1480 bytes, encapsulation IPV4

Syntax:  

show interfaces tunnel number>

The  

number> parameter indicates the tunnel interface number for which you want to display information.

This display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel interface status</td>
<td>The status of the tunnel interface can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• up – The tunnel mode is set and the tunnel interface is enabled.</td>
</tr>
<tr>
<td></td>
<td>• down – The tunnel mode is not set.</td>
</tr>
<tr>
<td></td>
<td>• administratively down – The tunnel interface was disabled with the</td>
</tr>
<tr>
<td></td>
<td>disable command.</td>
</tr>
<tr>
<td>Line protocol status</td>
<td>The status of the line protocol can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• up – IPv4 connectivity is established.</td>
</tr>
<tr>
<td></td>
<td>• down – The line protocol is not functioning and is down.</td>
</tr>
<tr>
<td>Hardware is tunnel</td>
<td>The interface is a tunnel interface.</td>
</tr>
<tr>
<td>Tunnel source</td>
<td>The tunnel source can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• An IPv4 address</td>
</tr>
<tr>
<td></td>
<td>• The IPv4 address associated with an interface/port.</td>
</tr>
<tr>
<td>Tunnel destination</td>
<td>The tunnel destination can be an IPv4 address.</td>
</tr>
<tr>
<td>Tunnel mode</td>
<td>The tunnel mode can be the following:</td>
</tr>
<tr>
<td></td>
<td>• ipv6ip – indicates a manually configured tunnel</td>
</tr>
<tr>
<td>Port name</td>
<td>The port name configured for the tunnel interface.</td>
</tr>
<tr>
<td>MTU</td>
<td>The setting of the IPv6 maximum transmission unit (MTU).</td>
</tr>
</tbody>
</table>

**Displaying interface level IPv6 settings**

To display Interface level IPv6 settings for tunnel interface 1, enter the following command at any level of the CLI.
The display command above reflects the following configuration.

FastIron# show ipv6 inter tunnel 1
Interface Tunnel 1 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::3:4:2 [Preferred]
Global unicast address(es):
  1001::1 [Preferred], subnet is 1001::/64
  1011::1 [Preferred], subnet is 1011::/64
Joined group address(es):
  ff02::1:ff04:2
  ff02::5
  ff02::1:ff00:1
  ff02::2
  ff02::1
MTU is 1480 bytes
ICMP redirects are enabled
No Inbound Access List Set
No Outbound Access List Set
OSPF enabled

This display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| Interface Tunnel status | The status of the tunnel interface can be one of the following:  
  - **up** – IPv4 connectivity is established.  
  - **down** – The tunnel mode is not set.  
  - **administratively down** – The tunnel interface was disabled with the **disable** command. |
| Line protocol status | The status of the line protocol can be one of the following:  
  - **up** – IPv6 is enabled through the **ipv6 enable** or **ipv6 address** command.  
  - **down** – The line protocol is not functioning and is down. |

**ECMP load sharing for IPv6**

**NOTE**
This feature is not supported on TurboIron devices.
The IPv6 route table selects the best route to a given destination from among the routes in the tables maintained by the configured routing protocols (BGP4, OSPF, static, and so on). The IPv6 route table can contain more than one path to a given destination. When this occurs, the Brocade device selects the path with the lowest cost for insertion into the routing table. If more than one path with the lowest cost exists, all of these paths are inserted into the routing table, subject to the configured maximum number of load sharing paths (by default 4). The device uses **Equal-Cost Multi-Path (ECMP) load sharing** to select a path to a destination.

When a route is installed by routing protocols or configured static route for the first time, and the IPv6 route table contains multiple, equal-cost paths to that route, the device checks the IPv6 neighbor for each next hop. Every next hop where the link layer address has been resolved will be stored in hardware. The device will initiate neighbor discovery for the next hops whose link layer addresses are not resolved. The hardware will hash the packet and choose one of the paths. The number of paths would be updated in hardware as the link layer gets resolved for a next hop.

If the path selected by the device becomes unavailable, the IPv6 neighbor should change state and trigger the update of the destination in the hardware.

Brocade devices support network-based ECMP load-sharing methods for IPv6 traffic. The Brocade device distributes traffic across equal-cost paths based on a XOR of some bits from the MAC source address, MAC destination address, IPv6 source address, IPv6 destination address, IPv6 flow label, IPv6 next header. The software selects a path based on a calculation involving the maximum number of load-sharing paths allowed and the actual number of paths to the destination network. This is the default ECMP load-sharing method for IPv6.

You can manually disable or enable ECMP load sharing for IPv6 and specify the number of equal-cost paths the device can distribute traffic across. In addition, you can display information about the status of ECMP load-sharing on the device.

### Disabling or re-enabling ECMP load sharing for IPv6

ECMP load sharing for IPv6 is enabled by default. To disable the feature, enter the following command.

```
FastIron(config)# no ipv6 load-sharing
```

If you want to re-enable the feature after disabling it, you must specify the number of load-sharing paths. The maximum number of paths the device supports is a value from 2 – 6. By entering a command such as the following, IPv6 load-sharing will be re-enabled.

```
FastIron(config)# ipv6 load-sharing 4
```

**Syntax:** `[no] ipv6 load-sharing num`

The `num` parameter specifies the number of paths and can be from 2 – 6. The default is 4.

### Changing the maximum load sharing paths for IPv6

By default, IPv6 ECMP load sharing allows traffic to be balanced across up to four equal paths. You can change the maximum number of paths the device supports to a value from 2 – 6.

To change the number of ECMP load sharing paths for IPv6, enter a command such as the following.

```
FastIron(config)# ipv6 load-sharing 6
```

**Syntax:** `[no] ipv6 load-sharing [ num ]`
The `num` parameter specifies the number of paths and can be from 2 – 6. The default is 4.

### Enabling support for network-based ECMP

#### load sharing for IPv6

Network-based ECMP load sharing is supported. In this configuration, traffic is distributed across equal-cost paths based on the destination network address. Routes to each network are stored in CAM and accessed when a path to a network is required. Because multiple hosts are likely to reside on a network, this method uses fewer CAM entries.

### Displaying ECMP load-sharing information for IPv6

To display the status of ECMP load sharing for IPv6, enter the following command.

```
FastIron# show ipv6
Global Settings
 unicast-routing enabled, hop-limit 64
 No Inbound Access List Set
 No Outbound Access List Set
 Prefix-based IPv6 Load-sharing is Enabled, Number of load share paths: 4
```

Syntax: `show ipv6`

### Configuring IPv6 ICMP features

As with the Internet Control Message Protocol (ICMP) for IPv4, ICMP for IPv6 provides error and informational messages. Implementation of the stateless auto configuration, neighbor discovery, and path MTU discovery features use ICMP messages.

This section explains how to configure following IPv6 ICMP features:

- ICMP rate limiting
- ICMP redirects

### Configuring ICMP rate limiting

You can limit the rate at which IPv6 ICMP error messages are sent out on a network. IPv6 ICMP implements a token bucket algorithm.

To illustrate how this algorithm works, imagine a virtual bucket that contains a number of tokens. Each token represents the ability to send one ICMP error message. Tokens are placed in the bucket at a specified interval until the maximum number of tokens allowed in the bucket is reached. For each error message that ICMP sends, a token is removed from the bucket. If ICMP generates a series of error messages, messages can be sent until the bucket is empty. If the bucket is empty of tokens, error messages cannot be sent until a new token is placed in the bucket.

You can adjust the following elements related to the token bucket algorithm:

- The interval at which tokens are added to the bucket. The default is 100 milliseconds.
- The maximum number of tokens in the bucket. The default is 10 tokens.

For example, to adjust the interval to 1000 milliseconds and the number of tokens to 100 tokens, enter the following command.
Configuring IPv6 neighbor discovery

The neighbor discovery feature for IPv6 uses IPv6 ICMP messages to do the following:

- Determine the link-layer address of a neighbor on the same link.

---

Syntax: ipv6 icmp error-interval interval [ number-of-tokens ]

- The interval in milliseconds at which tokens are placed in the bucket can range from 0 – 2147483647. The maximum number of tokens stored in the bucket can range from 1 – 200.

**NOTE**

If you retain the default interval value or explicitly set the value to 100 milliseconds, output from the show run command does not include the setting of the ipv6 icmp error-interval command because the setting is the default.

Also, if you configure the interval value to a number that does not evenly divide into 100000 (100 milliseconds), the system rounds up the value to a next higher value that does divide evenly into 100000. For example, if you specify an interval value of 150, the system rounds up the value to 200.

ICMP rate limiting is enabled by default. To disable ICMP rate limiting, set the interval to zero.

---

Enabling IPv6 ICMP redirect messages

**Platform Support:**

- FastIron X Series devices running software release 04.2.00 and later – L3
- TurboIron X Series devices running software release 04.2.00 and later

You can enable a Layer 3 switch to send an IPv6 ICMP redirect message to a neighboring host to inform it of a better first-hop router on a path to a destination. By default, the sending of IPv6 ICMP redirect messages by a Layer 3 switch is disabled. (For more information about how ICMP redirect messages are implemented for IPv6, refer to “Configuring IPv6 neighbor discovery” on page 238.)

**NOTE**

This feature is supported on Virtual Ethernet (VE) interfaces only.

For example, to enable the sending of IPv6 ICMP redirect messages on VE 2, enter the following commands.

```
FastIron(config)# interface ve2
FastIron(config-vif-2)# ipv6 redirects
```

To disable the sending of IPv6 ICMP redirect messages after it has been enabled on VE 2, enter the following commands.

```
FastIron(config)# interface ve2
FastIron(config-vif-2)# no ipv6 redirects
```

**Syntax:** [no] ipv6 redirects

Use the show ipv6 interface command to verify that the sending of IPv6 ICMP redirect messages is enabled on a particular interface.
• Verify that a neighbor is reachable.
• Track neighbor routers.

An IPv6 host is required to listen for and recognize the following addresses that identify itself:
• Link-local address.
• Assigned unicast address.
• Loopback address.
• All-nodes multicast address.
• Solicited-node multicast address.
• Multicast address to all other groups to which it belongs.

You can adjust the following IPv6 neighbor discovery features:
• Neighbor solicitation messages for duplicate address detection.
• Router advertisement messages:
  • Interval between router advertisement messages.
  • Value that indicates a router is advertised as a default router (for use by all nodes on a given link).
  • Prefixes advertised in router advertisement messages.
  • Flags for host stateful autoconfiguration.
  • Amount of time during which an IPv6 node considers a remote node reachable (for use by all nodes on a given link).

### Configuration notes

**NOTE**
For all solicitation and advertisement messages, Brocade uses seconds as the unit of measure instead of milliseconds.

• If you add a port to a port-based VLAN, and the port has IPv6 neighbor discovery configuration, the system will clean up the neighbor discovery configuration from the port and display the following message on the console.

```
ND6 port config on the new member ports removed
```

• Neighbor discovery is not supported on tunnel interfaces.

### Neighbor solicitation and advertisement messages

Neighbor solicitation and advertisement messages enable a node to determine the link-layer address of another node (neighbor) on the same link. (This function is similar to the function provided by the Address Resolution Protocol [ARP] in IPv4.) For example, node 1 on a link wants to determine the link-layer address of node 2 on the same link. To do so, node 1, the source node, multicasts a neighbor solicitation message. The neighbor solicitation message, which has a value of 135 in the Type field of the ICMP packet header, contains the following information:

• **Source address:** IPv6 address of node 1 interface that sends the message.
• **Destination address:** solicited-node multicast address (FF02:0:0:0:1:FF00::/104) that corresponds the IPv6 address of node 2.
• Link-layer address of node 1.
• A query for the link-layer address of node 2.

After receiving the neighbor solicitation message from node 1, node 2 replies by sending a neighbor advertisement message, which has a value of 136 in the Type field of the ICMP packet header. The neighbor solicitation message contains the following information:

• **Source address**: IPv6 address of the node 2 interface that sends the message.
• **Destination address**: IPv6 address of node 1.
• **Link-layer address**: IPv6 address of node 2.

After node 1 receives the neighbor advertisement message from node 2, nodes 1 and 2 can now exchange packets on the link.

After the link-layer address of node 2 is determined, node 1 can send neighbor solicitation messages to node 2 to verify that it is reachable. Also, nodes 1, 2, or any other node on the same link can send a neighbor advertisement message to the all-nodes multicast address (FF02::1) if there is a change in their link-layer address.

### Router advertisement and solicitation messages

Router advertisement and solicitation messages enable a node on a link to discover the routers on the same link.

Each configured router interface on a link sends out a router advertisement message, which has a value of 134 in the Type field of the ICMP packet header, periodically to the all-nodes link-local multicast address (FF02::1).

A configured router interface can also send a router advertisement message in response to a router solicitation message from a node on the same link. This message is sent to the unicast IPv6 address of the node that sent the router solicitation message.

At system startup, a host on a link sends a router solicitation message to the all-routers multicast address (FF01). Sending a router solicitation message, which has a value of 133 in the Type field of the ICMP packet header, enables the host to automatically configure its IPv6 address immediately instead of awaiting the next periodic router advertisement message.

Because a host at system startup typically does not have a unicast IPv6 address, the source address in the router solicitation message is usually the unspecified IPv6 address (0:0:0:0:0:0:0:0). If the host has a unicast IPv6 address, the source address is the unicast IPv6 address of the host interface sending the router solicitation message.

Entering the `ipv6 unicast-routing` command automatically enables the sending of router advertisement messages on all configured router Ethernet interfaces. You can configure several router advertisement message parameters. For information about disabling the sending of router advertisement messages and the router advertisement parameters that you can configure, refer to “Enabling and disabling IPv6 router advertisements” on page 244 and “Setting IPv6 router advertisement parameters” on page 242.

### Neighbor redirect messages

After forwarding a packet, by default, a router can send a neighbor redirect message to a host to inform it of a better first-hop router. The host receiving the neighbor redirect message will then readdress the packet to the better router.
A router sends a neighbor redirect message only for unicast packets, only to the originating node, and to be processed by the node.

A neighbor redirect message has a value of 137 in the Type field of the ICMP packet header.

### Setting neighbor solicitation parameters for duplicate address detection

Although the stateless auto configuration feature assigns the 64-bit interface ID portion of an IPv6 address using the MAC address of the host NIC, duplicate MAC addresses can occur. Therefore, the duplicate address detection feature verifies that a unicast IPv6 address is unique before it is assigned to a host interface by the stateless auto configuration feature. Duplicate address detection verifies that a unicast IPv6 address is unique.

If duplicate address detection identifies a duplicate unicast IPv6 address, the address is not used. If the duplicate address is the link-local address of the host interface, the interface stops processing IPv6 packets.

**NOTE**
Duplicate Address Detection (DAD) is not currently supported with IPv6 tunnels. Make sure tunnel endpoints do not have duplicate IP addresses.

You can configure the following neighbor solicitation message parameters that affect duplicate address detection while it verifies that a tentative unicast IPv6 address is unique:

- The number of consecutive neighbor solicitation messages that duplicate address detection sends on an interface. By default, duplicate address detection sends three neighbor solicitation messages without any follow-up messages.
- The interval in seconds at which duplicate address detection sends a neighbor solicitation message on an interface. By default, duplicate address detection sends a neighbor solicitation message every 1000 milliseconds.

For example, to change the number of neighbor solicitation messages sent on Ethernet interface 3/1 to two and the interval between the transmission of the two messages to 9 seconds, enter the following commands.

```plaintext
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 nd dad attempt 2
FastIron(config-if-e1000-3/1)# ipv6 nd ns-interval 9000
```

**Syntax:** `[no] ipv6 nd dad attempt number`

For the number of neighbor solicitation messages, specify a number from 0 – 255. The default is 3. Configuring a value of 0 disables duplicate address detection processing on the specified interface. To restore the number of messages to the default value, use the `no` form of this command.

For the interval between neighbor solicitation messages and the value for the retrans timer in router advertisements, specify a number from 0 – 4294967295 milliseconds. The default value for the interval between neighbor solicitation messages is 1000 milliseconds. The default value for the retrans timer is 0. Brocade does not recommend very short intervals in normal IPv6 operation. When a non-default value is configured, the configured time is both advertised and used by the router itself. To restore the default interval, use the `no` form of this command.
Setting IPv6 router advertisement parameters

You can adjust the following parameters for router advertisement messages:

- The interval (in seconds) at which an interface sends router advertisement messages. By default, an interface sends a router advertisement message every 200 seconds.
- The "router lifetime" value, which is included in router advertisements sent from a particular interface. The value (in seconds) indicates if the router is advertised as a default router on this interface. If you set the value of this parameter to 0, the router is not advertised as a default router on an interface. If you set this parameter to a value that is not 0, the router is advertised as a default router on this interface. By default, the router lifetime value included in router advertisement messages sent from an interface is 1800 seconds.
- The hop limit to be advertised in the router advertisement.

When adjusting these parameter settings, Brocade recommends that the interval between router advertisement transmission be less than or equal to the router lifetime value if the router is advertised as a default router. For example, to adjust the interval of router advertisements to 300 seconds and the router lifetime value to 1900 seconds on Ethernet interface 3/1, enter the following commands.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 nd ra-interval 300
FastIron(config-if-e1000-3/1)# ipv6 nd ra-lifetime 1900
FastIron(config-if-e1000-3/1)# ipv6 nd ra-hop-limit 1
```

Here is another example with a specified range.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 nd ra-interval range 33 55
FastIron(config-if-e1000-3/1)# ipv6 nd ra-lifetime 1900
FastIron(config-if-e1000-3/1)# ipv6 nd ra-hop-limit 1
```

Syntax: `[no] ipv6 nd ra-interval number | min range value max range value`

Syntax: `[no] ipv6 nd ra-lifetime number`

Syntax: `ipv6 nd ra-hop-limit number`

- `number` is a value from 0 – 255. The default is 64.

The `ipv6 nd ra-interval number>` can be a value between 3 – 1800 seconds. The default is 200 seconds. The actual RA interval will be from .5 to 1.5 times the configured or default value. For example, in the above configuration, for `ipv6 nd ra-interval 300`, the range would be 150 – 450. To restore the default interval of 200 seconds, use the no form of the command.

The `ipv6 nd ra-interval range min range value max range value>` command lets you specify a range of values instead of a single value.

The `min range value` specifies the minimum number of seconds allowed between sending unsolicited multicast router advertisements from the interface. The default is 0.33 times the `max range value>` if the `max range value` is greater than or equal to 9 seconds. Otherwise, the default is the value specified by the `max range value>`. The `min range value` can be a number between -3 - (.75 x `max range value>.

The `max range value` parameter specifies the maximum number of seconds allowed between sending unsolicited multicast router advertisements from the interface. This number can be between 4 – 1800 seconds and must be greater than the `min range value x 1.33`. The default is 600 seconds.
Configuring IPv6 neighbor discovery

The `ipv6 nd ra-lifetime` number is a value between 0 – 9000 seconds. To restore the router lifetime value of 1800 seconds, use the `no` form of the command.

The `ipv6 nd ra-hop-limit` number is a value from 0 – 255. The default is 64.

**NOTE**
By default, router advertisements will always have the MTU option. To suppress the MTU option, use the following command at the Interface level of the CLI: `ipv6 nd suppress-mtu-option`.

Controlling prefixes advertised in IPv6 router advertisement messages

By default, router advertisement messages include prefixes configured as addresses on router interfaces using the `ipv6 address` command. You can use the `ipv6 nd prefix-advertisement` command to control exactly which prefixes are included in router advertisement messages. Along with which prefixes the router advertisement messages contain, you can also specify the following parameters:

- **Valid lifetime**—(Mandatory) The time interval (in seconds) in which the specified prefix is advertised as valid. The default is 2592000 seconds (30 days). When the timer expires, the prefix is no longer considered to be valid.

- **Preferred lifetime**—(Mandatory) The time interval (in seconds) in which the specified prefix is advertised as preferred. The default is 604800 seconds (7 days). When the timer expires, the prefix is no longer considered to be preferred.

- **Onlink flag**—(Optional) If this flag is set, the specified prefix is assigned to the link upon which it is advertised. Nodes sending traffic to addresses that contain the specified prefix consider the destination to be reachable on the local link.

- **Autoconfiguration flag**—(Optional) If this flag is set, the stateless auto configuration feature can use the specified prefix in the automatic configuration of 128-bit IPv6 addresses for hosts on the local link, provided the specified prefix is aggregatable, as specified in RFC 2374.

For example, to advertise the prefix 2001:e077:a487:7365::/64 in router advertisement messages sent out on Ethernet interface 3/1 with a valid lifetime of 1000 seconds, a preferred lifetime of 800 seconds, and the Onlink and Autoconfig flags set, enter the following commands.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 nd prefix-advertisement 2001:e077:a487:7365::/64 1000 800 onlink autoconfig
```

**Syntax:**
```
[no] ipv6 nd prefix-advertisement ipv6-prefix / prefix-length valid-lifetime preferred-lifetime [autoconfig] [onlink]
```

- You must specify the `ipv6-prefix` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.
- The valid lifetime and preferred lifetime is a numerical value between 0 – 4294967295 seconds. The default valid lifetime is 2592000 seconds (30 days), while the default preferred lifetime is 604800 seconds (7 days).
- To remove a prefix from the router advertisement messages sent from a particular interface, use the `no` form of this command.
Setting flags in IPv6 router advertisement messages

An IPv6 router advertisement message can include the following flags:

- **Managed Address Configuration**—This flag indicates to hosts on a local link if they should use the stateful autoconfiguration feature to get IPv6 addresses for their interfaces. If the flag is set, the hosts use stateful autoconfiguration to get addresses as well as non-IPv6-address information. If the flag is not set, the hosts do not use stateful autoconfiguration to get addresses and if the hosts can get non-IPv6-address information from stateful autoconfiguration is determined by the setting of the Other Stateful Configuration flag.

- **Other Stateful Configuration**—This flag indicates to hosts on a local link if they can get non-IPv6 address autoconfiguration information. If the flag is set, the hosts can use stateful autoconfiguration to get non-IPv6-address information.

**NOTE**
When determining if hosts can use stateful autoconfiguration to get non-IPv6-address information, a set Managed Address Configuration flag overrides an unset Other Stateful Configuration flag. In this situation, the hosts can obtain nonaddress information. However, if the Managed Address Configuration flag is not set and the Other Stateful Configuration flag is set, then the setting of the Other Stateful Configuration flag is used.

By default, the Managed Address Configuration and Other Stateful Configuration flags are not set in router advertisement messages. For example, to set these flags in router advertisement messages sent from Ethernet interface 3/1, enter the following commands.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 nd managed-config-flag
FastIron(config-if-e1000-3/1)# ipv6 nd other-config-flag
```

**Syntax:**
```
[no] ipv6 nd managed-config-flag
[no] ipv6 nd other-config-flag
```

To remove either flag from router advertisement messages sent on an interface, use the `no` form of the respective command.

Enabling and disabling IPv6 router advertisements

If IPv6 unicast routing is enabled on an Ethernet interface, by default, this interface sends IPv6 router advertisement messages. However, by default, non-LAN interface types, for example, tunnel interfaces, do not send router advertisement messages.

To disable the sending of router advertisement messages on an Ethernet interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 nd suppress-ra
```

To enable the sending of router advertisement messages on a tunnel interface, enter commands such as the following.

```
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# no ipv6 nd suppress-ra
```

**Syntax:**
```
[no] ipv6 nd suppress-ra
```
Configuring reachable time for remote IPv6 nodes

You can configure the duration (in seconds) that a router considers a remote IPv6 node reachable. By default, a router interface uses the value of 30 seconds.

The router advertisement messages sent by a router interface include the amount of time specified by the `ipv6 nd reachable-time` command so that nodes on a link use the same reachable time duration. By default, the messages include a default value of 0.

Brocade does not recommend configuring a short reachable time duration, because a short duration causes the IPv6 network devices to process the information at a greater frequency.

For example, to configure the reachable time of 40 seconds for Ethernet interface 3/1, enter the following commands.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 nd reachable-time 40
```

**Syntax:** `[no] ipv6 nd reachable-time seconds`

For the `seconds` parameter, specify a number from 0 – 3600 seconds. To restore the default time, use the `no` form of this command.

**NOTE**
The actual reachable time will be from .5 to 1.5 times the configured or default value.

---

Changing the IPv6 MTU

The IPv6 MTU is the maximum length of an IPv6 packet that can be transmitted on a particular interface. If an IPv6 packet is longer than an MTU, the host that originated the packet fragments the packet and transmits its contents in multiple packets that are shorter than the configured MTU.

You can configure the MTU on individual interfaces. Per RFC 2460, the minimum IPv6 MTU for any interface is 1280 bytes.

For example, to configure the MTU on Ethernet interface 3/1 as 1280 bytes, enter the following commands.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e1000-3/1)# ipv6 mtu 1280
```

**Syntax:** `[no] ipv6 mtu bytes`

You can specify between 1280 – 1500 bytes. If a nondefault value is configured for an interface, router advertisements include an MTU option.

You can configure an IPv6 MTU greater than 1500 bytes, although the default remains at 1500 bytes. The value of the MTU you can define depends on the following:

- For a physical port, the maximum value of the MTU is the equal to the maximum frame size of the port minus 18 (Layer 2 MAC header + CRC).
- For a virtual routing interface, the maximum value of the MTU is the maximum frame size configured for the VLAN to which it is associated, minus 18 (Layer 2 MAC header + CRC). If a maximum frame size for a VLAN is not configured, then configure the MTU based on the smallest maximum frame size of all the ports of the VLAN that corresponds to the virtual routing interface, minus 18 (Layer 2 MAC header + CRC).

To define IPv6 MTU globally, enter the following command.
FastIron(config)# ipv6 mtu 1300

To define IPv6 MTU on an interface, enter the following command.

FastIron(config-if-e1000-2/1)# ipv6 mtu

Syntax: ipv6 mtu value

NOTE
If a the size of a jumbo packet received on a port is equal to the maximum frame size – 18 (Layer 2 MAC header + CRC) and if this value is greater than the outgoing port IPv4/IPv6 MTU, then it will be forwarded in the CPU.

Configuring static neighbor entries

In some special cases, a neighbor cannot be reached using the neighbor discovery feature. In this situation, you can add a static entry to the IPv6 neighbor discovery cache, which causes a neighbor to be reachable at all times without using neighbor discovery. (A static entry in the IPv6 neighbor discovery cache functions like a static ARP entry in IPv4.)

NOTE
A port that has a statically assigned IPv6 entry cannot be added to a VLAN.

NOTE
Static neighbor configurations will be cleared on secondary ports when a trunk is formed.

For example, to add a static entry for a neighbor with the IPv6 address 3001:ffe0:2678:47b and link-layer address 0004.6a2b.8641 that is reachable through Ethernet interface 3/1, enter the following command.

FastIron(config)# ipv6 neighbor 3001:ffe0:2678:47b ethernet 3/1 0004.6a2b.8641

Syntax: [no] ipv6 neighbor ipv6-address ethernet port | ve ve-number [ ethernet port ]

link-layer-address

The ipv6-address parameter specifies the address of the neighbor.

The ethernet | ve parameters specify the interface through which to reach a neighbor. If you specify an Ethernet interface, specify the port number of the Ethernet interface. If you specify a VE, specify the VE number and then the Ethernet port numbers associated with the VE. The link-layer address is a 48-bit hardware address of the neighbor.

If you attempt to add an entry that already exists in the neighbor discovery cache, the software changes the already existing entry to a static entry.

To remove a static IPv6 entry from the IPv6 neighbor discovery cache, use the no form of this command.

Limiting the number of hops an IPv6 packet can traverse

By default, the maximum number of hops an IPv6 packet can traverse is 64. You can change this value to between 0 – 255 hops. For example, to change the maximum number of hops to 70, enter the following command.
FastIron(config)# ipv6 hop-limit 70

**Syntax:** \[no\] ipv6 hop-limit *number*

- Use the **no** form of the command to restore the default value.
- **hop-limit 0** will transmit packets with default (64) hop limit.
- **number** can be from 0 – 255.

### Clearing global IPv6 information

You can clear the following global IPv6 information:

- Entries from the IPv6 cache.
- Entries from the IPv6 neighbor table.
- IPv6 routes from the IPv6 route table.
- IPv6 traffic statistics.

### Clearing the IPv6 cache

You can remove all entries from the IPv6 cache or specify an entry based on the following:

- IPv6 prefix.
- IPv6 address.
- Interface type.

For example, to remove entries for IPv6 address 2000:e0ff::1, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

```
FastIron# clear ipv6 cache 2000:e0ff::1
```

**Syntax:** clear ipv6 cache [ipv6-prefix / prefix-length | ipv6-address | ethernet port | tunnel number | ve number]

You must specify the **ipv6-prefix** parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the **prefix-length** parameter as a decimal value. A slash mark (/) must follow the **ipv6-prefix** parameter and precede the **prefix-length** parameter.

You must specify the **ipv6-address** parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

The **ethernet** | **tunnel** | **ve** parameters specify the interfaces for which you can remove cache entries. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE or tunnel interface, also specify the VE or tunnel number, respectively.

### Clearing IPv6 neighbor information

You can remove all entries from the IPv6 neighbor table or specify an entry based on the following:

- IPv6 prefix
- IPv6 address
- Interface type
Displaying global IPv6 information

For example, to remove entries for Ethernet interface 3/1, enter the following command at the Privileged EXEC level or any of the CONFIG levels of the CLI.

FastIron# clear ipv6 neighbor ethernet 3/1

Syntax: clear ipv6 neighbor [ ipv6-prefix / prefix-length | ipv6-address | ethernet port | ve number ]

• You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

• You must specify the ipv6-address parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

• The ethernet | ve parameters specify the interfaces for which you can remove cache entries. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE, also specify the VE number.

Clearing IPv6 routes from the IPv6 route table

You can clear all IPv6 routes or only those routes associated with a particular IPv6 prefix from the IPv6 route table and reset the routes.

For example, to clear IPv6 routes associated with the prefix 2000:7838::/32, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

FastIron# clear ipv6 route 2000:7838::/32

Syntax: clear ipv6 route [ ipv6-prefix/> prefix-length> ]

• The ipv6-prefix / prefix-length parameter clears routes associated with a particular IPv6 prefix. You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

Clearing IPv6 traffic statistics

To clear all IPv6 traffic statistics (reset all fields to zero), enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

FastIron(config)# clear ipv6 traffic

Syntax: clear ipv6 traffic

Displaying global IPv6 information

You can display output for the following global IPv6 parameters:

• IPv6 cache
• IPv6 interfaces
• IPv6 neighbors
• IPv6 route table
Displaying global IPv6 information

• Local IPv6 routers
• IPv6 TCP connections and the status of individual connections
• IPv6 traffic statistics

Displaying IPv6 cache information

The IPv6 cache contains an IPv6 host table that has indices to the next hop gateway and the router interface on which the route was learned.

To display IPv6 cache information, enter the following command at any CLI level.

FastIron# show ipv6 cache
Total number of cache entries: 10
IPv6 Address                       Next Hop                      Port
1   5000:2::2                          LOCAL                         tunnel 2
2   2000:4::106                        LOCAL                         ethe 3/2
3   2000:4::110                        LOCAL                         ethe 3/2
4   2002:c0a8:46a::1                   LOCAL                         ethe 3/2
5   5005::2e0:52ff:fe99:9737           LOCAL                         ethe 3/2
6   5005::ffff:ffff:feff:ffff           LOCAL                         loopback 2
7   5005::c0a8:46a                      LOCAL                         tunnel 2
8   5005::c0a8:46a                      LOCAL                         tunnel 6
9   2999::1                            LOCAL                         loopback 2
10  5005::2e0:52ff:fe99:9700           LOCAL                         ethe 3/1

Syntax: show ipv6 cache [ index-number | ipv6-prefix / prefix-length | ipv6-address | ethernet port | ve number | tunnel number ]

• The index-number parameter restricts the display to the entry for the specified index number and subsequent entries.
• The ipv6-prefix>/ prefix-length parameter restricts the display to the entries for the specified IPv6 prefix. You must specify the ipv6-prefix> parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.
• The ethernet | ve | tunnel parameters restrict the display to the entries for the specified interface. The ipv6-address parameter restricts the display to the entries for the specified IPv6 address. You must specify this parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.
• If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE interface, also specify the VE number. If you specify a tunnel interface, also specify the tunnel number.

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 59 IPv6 cache information fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>Total number of cache entries</td>
</tr>
<tr>
<td>IPv6 Address</td>
</tr>
</tbody>
</table>
Displaying IPv6 interface information

To display IPv6 interface information, enter the following command at any CLI level.

```
FastIron# show ipv6 interface
Routing Protocols : R - RIP O - OSPF
Interface Status Routing Global Unicast Address
Ethernet 3/3 up/up R 2017::c017:101/64
Ethernet 3/5 up/up 2019::c019:101/64
Ethernet 3/17 down/down 2017::c017:101/64
Ethernet 3/19 down/down 2019::c019:101/64
VE 4 up/up ::1/128
VE 14 up/up 2024::c060:101/64
Loopback 1 up/up ::1/128
Loopback 2 up/up 2005::303:303/128
Loopback 3 up/up
```

Syntax: `show ipv6 interface [ interface [ port-number | number ] ]`

- The `interface` parameter displays detailed information for a specified interface. For the `interface`, you can specify the Ethernet, loopback, tunnel, or VE keywords. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a loopback, tunnel, or VE interface, also specify the number associated with the interface.

This display shows the following information.

### TABLE 60  General IPv6 interface information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing protocols</td>
<td>A one-letter code that represents a routing protocol that can be enabled on an interface.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface type, and the port number or number of the interface.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the interface. The entry in the Status field will be either “up/up” or “down/down”.</td>
</tr>
<tr>
<td>Routing</td>
<td>The routing protocols enabled on the interface.</td>
</tr>
<tr>
<td>Global Unicast Address</td>
<td>The global unicast address of the interface.</td>
</tr>
</tbody>
</table>

To display detailed information for a specific interface, enter a command such as the following at any CLI level.
FastIron# show ipv6 interface ethernet 3/1
Interface Ethernet 3/1 is up, line protocol is up
   IPv6 is enabled, link-local address is fe80::2e0:52ff:fe99:97
Global unicast address(es):
    ff02::9
    ff02::1::ff99:9700
    ff02::2
    ff02::1
MTU is 1500 bytes
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 3
ND reachable time is 30 seconds
ND advertised reachable time is 0 seconds
ND retransmit interval is 1 seconds
ND advertised retransmit interval is 0 seconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
No Inbound Access List Set
No Outbound Access List Set
RIP enabled

This display shows the following information.

**TABLE 61**  Detailed IPv6 interface information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface/line protocol status</td>
<td>The status of interface and line protocol. If you have disabled the interface with the disable command, the status will be “administratively down”. Otherwise, the status is either “up” or “down”.</td>
</tr>
<tr>
<td>IPv6 status/link-local address</td>
<td>The status of IPv6. The status is either “enabled” or “disabled”. Displays the link-local address, if one is configured for the interface.</td>
</tr>
<tr>
<td>Global unicast address(es)</td>
<td>Displays the global unicast address(es), if one or more are configured for the interface.</td>
</tr>
<tr>
<td>Joined group address(es)</td>
<td>The multicast address(es) that a router interface listens for and recognizes.</td>
</tr>
<tr>
<td>MTU</td>
<td>The setting of the maximum transmission unit (MTU) configured for the IPv6 interface. The MTU is the maximum length an IPv6 packet can have to be transmitted on the interface. If an IPv6 packet is longer than an MTU, the host that originated the packet fragments the packet and transmits its contents in multiple packets that are shorter than the configured MTU.</td>
</tr>
<tr>
<td>ICMP</td>
<td>The setting of the ICMP redirect parameter for the interface.</td>
</tr>
<tr>
<td>ND</td>
<td>The setting of the various neighbor discovery parameters for the interface.</td>
</tr>
<tr>
<td>Access List</td>
<td>The inbound and outbound access control lists applied to the interface.</td>
</tr>
<tr>
<td>Routing protocols</td>
<td>The routing protocols enabled on the interface.</td>
</tr>
</tbody>
</table>

**Displaying IPv6 neighbor information**

You can display the IPv6 neighbor table, which contains an entry for each IPv6 neighbor with which the router exchanges IPv6 packets.
To display the IPv6 neighbor table, enter the following command at any CLI level.

FastIron(config)# show ipv6 neighbor
Total number of Neighbor entries: 3
IPv6 Address LinkLayer-Addr State Age Port vlan
IsR 5555::55 0002.0002.0002 *REACH 0 e 3/11 - 0
2000::110 00e0.5291.bb37 REACH 20 e 3/1 5 1
fe80::2e0:52ff:fe91:bb37 00e0.5291.bb37 DELAY 1 e 3/2 4 1
fe80::2e0:52ff:fe91:bb40 00e0.5291.bb40 STALE 5930e 3/3 5 1

Syntax: show ipv6 neighbor [ipv6-prefix / prefix-length | ipv6-address | interface [ port | number ]]

- The ipv6-prefix / prefix-length parameters restrict the display to the entries for the specified IPv6 prefix. You must specify the ipv6-prefix parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the ipv6-prefix parameter and precede the prefix-length parameter.

- The ipv6-address parameter restricts the display to the entries for the specified IPv6 address. You must specify this parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

- The interface parameter restricts the display to the entries for the specified router interface. For this parameter, you can specify the Ethernet or VE keywords. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a VE interface, also specify the VE number.

This display shows the following information.

**TABLE 62 IPv6 neighbor information fields**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of neighbor entries</td>
<td>The total number of entries in the IPv6 neighbor table.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>The 128-bit IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>Link-Layer Address</td>
<td>The 48-bit interface ID of the neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The current state of the neighbor. Possible states are as follows:</td>
</tr>
<tr>
<td></td>
<td>• INCOMPLETE – Address resolution of the entry is being performed.</td>
</tr>
<tr>
<td></td>
<td>• *REACH – The static forward path to the neighbor is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>• REACH – The forward path to the neighbor is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>• STALE – This entry has remained unused for the maximum interval.</td>
</tr>
<tr>
<td></td>
<td>While stale, no action takes place until a packet is sent.</td>
</tr>
<tr>
<td></td>
<td>• DELAY – This entry has remained unused for the maximum interval,</td>
</tr>
<tr>
<td></td>
<td>and a packet was sent before another interval elapsed.</td>
</tr>
<tr>
<td></td>
<td>• PROBE – Neighbor solicitation are transmitted until a reachability</td>
</tr>
<tr>
<td></td>
<td>confirmation is received.</td>
</tr>
<tr>
<td>Age</td>
<td>The number of seconds the entry has remained unused. If this value</td>
</tr>
<tr>
<td></td>
<td>remains unused for the number of seconds specified by the ipv6 nd</td>
</tr>
<tr>
<td></td>
<td>reachable-time command (the default is 30 seconds), the entry is</td>
</tr>
<tr>
<td></td>
<td>removed from the table.</td>
</tr>
<tr>
<td>Port</td>
<td>The physical port on which the entry was learned.</td>
</tr>
</tbody>
</table>
Displaying global IPv6 information

To display the IPv6 route table, enter the following command at any CLI level.

```
FastIron# show ipv6 route
IPv6 Routing Table - 7 entries:
Type Codes: C - Connected, S - Static, R - RIP, O - OSPF, B - BGP
OSPF Sub Type Codes: O - Intra, O1 - Inter, O1 - Type1 external, O2 - Type2 external
Type IPv6 Prefix Next Hop Router Interface Dis/Metric
C 2000:4::/64 :: ethe 3/2 0/0
S 2002::/16 :: tunnel 6 1/1
S 2002:1234::/32 :: tunnel 6 1/1
C 2002:c0a8:46a::/64 :: ethe 3/2 0/0
C 2999::1/128 :: loopback 2 0/0
O 2999::2/128 fe80::2e0:52ff:fe91:bb37 ethe 3/2 110/1
C 5000:2::/64 :: tunnel 2 0/0
```

Syntax: `show ipv6 route [ipv6-address | ipv6-prefix / prefix-length | bgp | connect | ospf | rip | static | summary]`

- The `ipv6-address` parameter restricts the display to the entries for the specified IPv6 address. You must specify the `ipv6-address>` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.
- The `ipv6-prefix>/ prefix-length` parameters restrict the display to the entries for the specified IPv6 prefix. You must specify the `ipv6-prefix>` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `prefix-length` parameter as a decimal value. A slash mark (/) must follow the `ipv6-prefix` parameter and precede the `prefix-length` parameter.
- The `bgp` keyword restricts the display to entries for BGP4+ routes.
- The `connect` keyword restricts the display to entries for directly connected interface IPv6 routes.
- The `ospf` keyword restricts the display to entries for OSPFv3 routes.
- The `rip` keyword restricts the display to entries for RIPng routes.
- The `static` keyword restricts the display to entries for static IPv6 routes.
- The `summary` keyword displays a summary of the prefixes and different route types.

The following table lists the information displayed by the `show ipv6 route` command.
To display a summary of the IPv6 route table, enter the following command at any CLI level.

```
FastIron# show ipv6 route summary
IPv6 Routing Table - 7 entries:
 4 connected, 2 static, 0 RIP, 1 OSPF, 0 BGP
Number of prefixes:
 /16: 1 /32: 1 /64: 3 /128: 2
```

The following table lists the information displayed by the `show ipv6 route summary` command.

**TABLE 64  IPv6 route table summary fields**

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of entries</td>
<td>The number of entries in the IPv6 route table.</td>
</tr>
<tr>
<td>Number of route types</td>
<td>The number of entries for each route type.</td>
</tr>
<tr>
<td>Number of prefixes</td>
<td>A summary of prefixes in the IPv6 route table, sorted by prefix length.</td>
</tr>
</tbody>
</table>

### Displaying local IPv6 routers

The Brocade device can function as an IPv6 host, instead of an IPv6 router, if you configure IPv6 addresses on its interfaces but do not enable IPv6 routing using the `ipv6 unicast-routing` command.

From the IPv6 host, you can display information about IPv6 routers to which the host is connected. The host learns about the routers through their router advertisement messages. To display information about the IPv6 routers connected to an IPv6 host, enter the following command at any CLI level.

```
FastIron# show ipv6 router
Router fe80::2e0:80ff:fe46:3431 on Ethernet 50, last update 0 min
Hops 64, Lifetime 1800 sec
Reachable time 0 msec, Retransmit time 0 msec
```

**Syntax:** `show ipv6 router`
Displaying global IPv6 information

If you configure your Brocade device to function as an IPv6 router (you configure IPv6 addresses on its interfaces and enable IPv6 routing using the `ipv6 unicast-routing` command) and you enter the `show ipv6 router` command, you will receive the following output.

No IPv6 router in table

Meaningful output for this command is generated for Brocade devices configured to function as IPv6 hosts only.

This display shows the following information.

**TABLE 65** IPv6 local router information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router <code>ipv6 address</code> &gt; on <code>interface</code> &gt; <code>port</code> &gt;</td>
<td>The IPv6 address for a particular router interface.</td>
</tr>
<tr>
<td>Last update</td>
<td>The amount of elapsed time (in minutes) between the current and previous updates received from a router.</td>
</tr>
<tr>
<td>Hops</td>
<td>The default value that should be included in the Hop Count field of the IPv6 header for outgoing IPv6 packets. The hops value applies to the router for which you are displaying information and should be followed by IPv6 hosts attached to the router. A value of 0 indicates that the router leaves this field unspecified.</td>
</tr>
<tr>
<td>Lifetime</td>
<td>The amount of time (in seconds) that the router is useful as the default router.</td>
</tr>
<tr>
<td>Reachable time</td>
<td>The amount of time (in milliseconds) that a router assumes a neighbor is reachable after receiving a reachability confirmation. The reachable time value applies to the router for which you are displaying information and should be followed by IPv6 hosts attached to the router. A value of 0 indicates that the router leaves this field unspecified.</td>
</tr>
<tr>
<td>Retransmit time</td>
<td>The amount of time (in milliseconds) between retransmissions of neighbor solicitation messages. The retransmit time value applies to the router for which you are displaying information and should be followed by IPv6 hosts attached to the router. A value of 0 indicates that the router leaves this field unspecified.</td>
</tr>
</tbody>
</table>

**Displaying IPv6 TCP information**

You can display the following IPv6 TCP information:

- General information about each TCP connection on the router, including the percentage of free memory for each of the internal TCP buffers.
- Detailed information about a specified TCP connection.

To display general information about each TCP connection on the router, enter the following command at any CLI level.
FastIron\# show ipv6 tcp connections
Local IP address:port → Remote IP address:port TCP state
192.168.182.110:23 → 192.168.8.186:4933 ESTABLISHED
192.168.182.110:8218 → 192.168.182.106:179 ESTABLISHED
192.168.182.110:8039 → 192.168.2.119:179 SYN-SENT
192.168.182.110:8159 → 192.168.2.102:179 SYN-SENT
Total 5 TCP connections

TCP MEMORY USAGE PERCENTAGE
FREE TCP = 98 percent
FREE TCP QUEUE BUFFER = 99 percent
FREE TCP SEND BUFFER = 97 percent
FREE TCP RECEIVE BUFFER = 100 percent
FREE TCP OUT OF SEQUENCE BUFFER = 100 percent

Syntax: show ipv6 tcp connections
This display shows the following information.

**TABLE 66** General IPv6 TCP connection fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local IP address:port</td>
<td>The IPv4 or IPv6 address and port number of the local router interface over which the TCP connection occurs.</td>
</tr>
<tr>
<td>Remote IP address:port</td>
<td>The IPv4 or IPv6 address and port number of the remote router interface over which the TCP connection occurs.</td>
</tr>
<tr>
<td>TCP state</td>
<td>The state of the TCP connection. Possible states include the following:</td>
</tr>
<tr>
<td></td>
<td>• LISTEN – Waiting for a connection request.</td>
</tr>
<tr>
<td></td>
<td>• SYN-SENT – Waiting for a matching connection request after having sent a connection request.</td>
</tr>
<tr>
<td></td>
<td>• SYN-RECEIVED – Waiting for a confirming connection request acknowledgment after having both received and sent a connection request.</td>
</tr>
<tr>
<td></td>
<td>• ESTABLISHED – Data can be sent and received over the connection. This is the normal operational state of the connection.</td>
</tr>
<tr>
<td></td>
<td>• FIN-WAIT-1 – Waiting for a connection termination request from the remote TCP, or an acknowledgment of the connection termination request previously sent.</td>
</tr>
<tr>
<td></td>
<td>• FIN-WAIT-2 – Waiting for a connection termination request from the remote TCP.</td>
</tr>
<tr>
<td></td>
<td>• CLOSE-WAIT – Waiting for a connection termination request from the local user.</td>
</tr>
<tr>
<td></td>
<td>• CLOSING – Waiting for a connection termination request acknowledgment from the remote TCP.</td>
</tr>
<tr>
<td></td>
<td>• LAST-ACK – Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP (which includes an acknowledgment of its connection termination request).</td>
</tr>
<tr>
<td></td>
<td>• TIME-WAIT – Waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.</td>
</tr>
<tr>
<td></td>
<td>• CLOSED – There is no connection state.</td>
</tr>
</tbody>
</table>

FREE TCP = \text{percentage}\%

The percentage of free TCP control block (TCP) space.
To display detailed information about a specific TCP connection, enter a command such as the following at any CLI level.

```
FastIron# show ipv6 tcp status 2000:4::110 179 2000:4::106 8222
TCP: TCP = 0x217fc300
 Send: initial sequence number = 242365900
 Send: first unacknowledged sequence number = 242434080
 Send: current send pointer = 242434080
 Send: next sequence number to send = 242434080
 Send: remote received window = 16384
 Send: total unacknowledged sequence number = 0
 Send: total used buffers 0
 Receive: initial incoming sequence number = 740437769
 Receive: expected incoming sequence number = 740507227
 Receive: received window = 16384
 Receive: bytes in receive queue = 0
 Receive: congestion window = 1459
```

Syntax: `show ipv6 tcp status local-ip-address local-port-number remote-ip-address remote-port-number`

- The `local-ip-address` parameter can be the IPv4 or IPv6 address of the local interface over which the TCP connection is taking place.
- The `local-port-number` parameter is the local port number over which a TCP connection is taking place.
- The `remote-ip-address` parameter can be the IPv4 or IPv6 address of the remote interface over which the TCP connection is taking place.
- The `remote-port-number` parameter is the local port number over which a TCP connection is taking place.

This display shows the following information.

### TABLE 66  General IPv6 TCP connection fields (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE TCP QUEUE BUFFER = percentage&gt;</td>
<td>The percentage of free TCP queue buffer space.</td>
</tr>
<tr>
<td>FREE TCP SEND BUFFER = percentage&gt;</td>
<td>The percentage of free TCP send buffer space.</td>
</tr>
<tr>
<td>FREE TCP RECEIVE BUFFER = percentage&gt;</td>
<td>The percentage of free TCP receive buffer space.</td>
</tr>
<tr>
<td>FREE TCP OUT OF SEQUENCE BUFFER = percentage&gt;</td>
<td>The percentage of free TCP out of sequence buffer space.</td>
</tr>
</tbody>
</table>
### TABLE 67  Specific IPv6 TCP connection fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP = location&gt;</td>
<td>The location of the TCP.</td>
</tr>
</tbody>
</table>
| local-ip-address> local-port-number> remote-ip-address> remote-port-number> state> port> | This field provides a general summary of the following:  
- The local IPv4 or IPv6 address and port number.  
- The remote IPv4 or IPv6 address and port number.  
- The state of the TCP connection. For information on possible states, refer to Table 66 on page 256.  
- The port numbers of the local interface. |
| Send: initial sequence number = number> | The initial sequence number sent by the local router. |
| Send: first unacknowledged sequence number = number> | The first unacknowledged sequence number sent by the local router. |
| Send: current send pointer = number> | The current send pointer. |
| Send: next sequence number to send = number> | The next sequence number sent by the local router. |
| Send: remote received window = number> | The size of the remote received window. |
| Send: total unacknowledged sequence number = number> | The total number of unacknowledged sequence numbers sent by the local router. |
| Send: total used buffers number> | The total number of buffers used by the local router in setting up the TCP connection. |
| Receive: initial incoming sequence number = number> | The initial incoming sequence number received by the local router. |
| Receive: expected incoming sequence number = number> | The incoming sequence number expected by the local router. |
| Receive: received window = number> | The size of the local router receive window. |
| Receive: bytes in receive queue = number> | The number of bytes in the local router receive queue. |
| Receive: congestion window = number> | The size of the local router receive congestion window. |
Displaying IPv6 traffic statistics

To display IPv6 traffic statistics, enter the following command at any CLI level.

FastIron# show ipv6 traffic
IP6 Statistics
  36947 received, 66818 sent, 0 forwarded, 36867 delivered, 0 rawout
  0 bad vers, 23 bad scope, 0 bad options, 0 too many hdr
  0 no route, 0 can not forward, 0 redirect sent
  0 frag recv, 0 frag dropped, 0 frag timeout, 0 frag overflow
  0 reassembled, 0 fragmented, 0 ofragments, 0 can not frag
  0 too short, 0 too small, 11 not member
  0 no buffer, 66819 allocated, 21769 freed
  0 forward cache hit, 46 forward cache miss

ICMP6 Statistics
Received:
  0 dest unreach, 0 pkt too big, 0 time exceeded, 0 param prob
  2 echo req, 1 echo reply, 0 mem query, 0 mem report, 0 mem red
  0 router soli, 2393 router adv, 106 nei soli, 3700 nei adv, 0 redirect
  0 bad code, 0 too short, 0 bad checksum, 0 bad len
  0 reflect, 0 nd too many opt, 0 badhopcount
Sent:
  0 dest unreach, 0 pkt too big, 0 time exceeded, 0 param prob
  1 echo req, 2 echo reply, 0 mem query, 0 mem report, 0 mem red
  0 router soli, 2423 router adv, 3754 nei soli, 102 nei adv, 0 redirect
  0 error, 0 can not send error, 0 too freq
Sent Errors:
  0 unreach no route, 0 admin, 0 beyond scope, 0 address, 0 no port
  0 pkt too big, 0 time exceed transit, 0 time exceed reassembly
  0 param problem header, 0 nextheader, 0 option, 0 redirect, 0 unknown

UDP Statistics
  470 received, 7851 sent, 6 no port, 0 input errors

TCP Statistics
  57913 active opens, 0 passive opens, 57882 failed attempts
  159 active resets, 0 passive resets, 0 input errors
  565189 in segments, 618152 out segments, 171337 retransmission

Syntax:  show ipv6 traffic

This display shows the following information.

TABLE 68  IPv6 traffic statistics fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 statistics</td>
<td></td>
</tr>
<tr>
<td>received</td>
<td>The total number of IPv6 packets received by the router.</td>
</tr>
<tr>
<td>sent</td>
<td>The total number of IPv6 packets originated and sent by the router.</td>
</tr>
<tr>
<td>forwarded</td>
<td>The total number of IPv6 packets received by the router and forwarded to other routers.</td>
</tr>
<tr>
<td>delivered</td>
<td>The total number of IPv6 packets delivered to the upper layer protocol.</td>
</tr>
<tr>
<td>rawout</td>
<td>This information is used by Brocade Technical Support.</td>
</tr>
</tbody>
</table>
TABLE 68  IPv6 traffic statistics fields (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>bad vers</td>
<td>The number of IPv6 packets dropped by the router because the version number is not 6.</td>
</tr>
<tr>
<td>bad scope</td>
<td>The number of IPv6 packets dropped by the router because of a bad address scope.</td>
</tr>
<tr>
<td>bad options</td>
<td>The number of IPv6 packets dropped by the router because of bad options.</td>
</tr>
<tr>
<td>too many hdr</td>
<td>The number of IPv6 packets dropped by the router because the packets had too many headers.</td>
</tr>
<tr>
<td>no route</td>
<td>The number of IPv6 packets dropped by the router because there was no route.</td>
</tr>
<tr>
<td>can not forward</td>
<td>The number of IPv6 packets the router could not forward to another router.</td>
</tr>
<tr>
<td>redirect sent</td>
<td>This information is used by Brocade Technical Support.</td>
</tr>
<tr>
<td>frag recv</td>
<td>The number of fragments received by the router.</td>
</tr>
<tr>
<td>frag dropped</td>
<td>The number of fragments dropped by the router.</td>
</tr>
<tr>
<td>frag timeout</td>
<td>The number of fragment timeouts that occurred.</td>
</tr>
<tr>
<td>frag overflow</td>
<td>The number of fragment overflows that occurred.</td>
</tr>
<tr>
<td>reassembled</td>
<td>The number of fragmented IPv6 packets that the router reassembled.</td>
</tr>
<tr>
<td>fragmented</td>
<td>The number of IPv6 packets fragmented by the router to accommodate the MTU of this router or of another device.</td>
</tr>
<tr>
<td>ofragments</td>
<td>The number of output fragments generated by the router.</td>
</tr>
<tr>
<td>can not frag</td>
<td>The number of IPv6 packets the router could not fragment.</td>
</tr>
<tr>
<td>too short</td>
<td>The number of IPv6 packets dropped because they are too short.</td>
</tr>
<tr>
<td>too small</td>
<td>The number of IPv6 packets dropped because they do not have enough data.</td>
</tr>
<tr>
<td>not member</td>
<td>The number of IPv6 packets dropped because the recipient is not a member of a multicast group.</td>
</tr>
<tr>
<td>no buffer</td>
<td>The number of IPv6 packets dropped because there is no buffer available.</td>
</tr>
<tr>
<td>forward cache miss</td>
<td>The number of IPv6 packets received for which there is no corresponding cache entry.</td>
</tr>
</tbody>
</table>

ICMP6 statistics
Some ICMP statistics apply to both Received and Sent, some apply to Received only, some apply to Sent only, and some apply to Sent Errors only.

Applies to received and sent
dest unreach	The number of Destination Unreachable messages sent or received by the router.
pkt too big	The number of Packet Too Big messages sent or received by the router.
time exceeded	The number of Time Exceeded messages sent or received by the router.
param prob	The number of Parameter Problem messages sent or received by the router.
echo req	The number of Echo Request messages sent or received by the router.
echo reply	The number of Echo Reply messages sent or received by the router.
mem query	The number of Group Membership Query messages sent or received by the router.
### TABLE 68 IPv6 traffic statistics fields (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>mem report</td>
<td>The number of Membership Report messages sent or received by the router.</td>
</tr>
<tr>
<td>mem red</td>
<td>The number of Membership Reduction messages sent or received by the router.</td>
</tr>
<tr>
<td>router soli</td>
<td>The number of Router Solicitation messages sent or received by the router.</td>
</tr>
<tr>
<td>router adv</td>
<td>The number of Router Advertisement messages sent or received by the router.</td>
</tr>
<tr>
<td>nei soli</td>
<td>The number of Neighbor Solicitation messages sent or received by the router.</td>
</tr>
<tr>
<td>nei adv</td>
<td>The number of Router Advertisement messages sent or received by the router.</td>
</tr>
<tr>
<td>redirect</td>
<td>The number of redirect messages sent or received by the router.</td>
</tr>
<tr>
<td></td>
<td><strong>Applies to received only</strong></td>
</tr>
<tr>
<td>bad code</td>
<td>The number of Bad Code messages received by the router.</td>
</tr>
<tr>
<td>too short</td>
<td>The number of Too Short messages received by the router.</td>
</tr>
<tr>
<td>bad checksum</td>
<td>The number of Bad Checksum messages received by the router.</td>
</tr>
<tr>
<td>bad len</td>
<td>The number of Bad Length messages received by the router.</td>
</tr>
<tr>
<td>nd toomany opt</td>
<td>The number of Neighbor Discovery Too Many Options messages received by the router.</td>
</tr>
<tr>
<td>badhopcount</td>
<td>The number of Bad Hop Count messages received by the router.</td>
</tr>
<tr>
<td></td>
<td><strong>Applies to sent only</strong></td>
</tr>
<tr>
<td>error</td>
<td>The number of Error messages sent by the router.</td>
</tr>
<tr>
<td>can not send error</td>
<td>The number of times the node encountered errors in ICMP error messages.</td>
</tr>
<tr>
<td>too freq</td>
<td>The number of times the node has exceeded the frequency of sending error messages.</td>
</tr>
<tr>
<td></td>
<td><strong>Applies to sent errors only</strong></td>
</tr>
<tr>
<td>unreach no route</td>
<td>The number of Unreachable No Route errors sent by the router.</td>
</tr>
<tr>
<td>admin</td>
<td>The number of Admin errors sent by the router.</td>
</tr>
<tr>
<td>beyond scope</td>
<td>The number of Beyond Scope errors sent by the router.</td>
</tr>
<tr>
<td>address</td>
<td>The number of Address errors sent by the router.</td>
</tr>
<tr>
<td>no port</td>
<td>The number of No Port errors sent by the router.</td>
</tr>
<tr>
<td>pkt too big</td>
<td>The number of Packet Too Big errors sent by the router.</td>
</tr>
<tr>
<td>time exceed transit</td>
<td>The number of Time Exceed Transit errors sent by the router.</td>
</tr>
<tr>
<td>time exceed reassembly</td>
<td>The number of Time Exceed Reassembly errors sent by the router.</td>
</tr>
<tr>
<td>param problem header</td>
<td>The number of Parameter Problem Header errors sent by the router.</td>
</tr>
<tr>
<td>nextheader</td>
<td>The number of Next Header errors sent by the router.</td>
</tr>
<tr>
<td>option</td>
<td>The number of Option errors sent by the router.</td>
</tr>
<tr>
<td>redirect</td>
<td>The number of Redirect errors sent by the router.</td>
</tr>
<tr>
<td>unknown</td>
<td>The number of Unknown errors sent by the router.</td>
</tr>
<tr>
<td></td>
<td><strong>UDP statistics</strong></td>
</tr>
<tr>
<td>received</td>
<td>The number of UDP packets received by the router.</td>
</tr>
<tr>
<td>sent</td>
<td>The number of UDP packets sent by the router.</td>
</tr>
</tbody>
</table>
### Table 68 IPv6 Traffic Statistics Fields (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>no port</td>
<td>The number of UDP packets dropped because the packet did not contain a valid UDP port number.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Brocade Technical Support.</td>
</tr>
<tr>
<td><strong>TCP Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>active opens</td>
<td>The number of TCP connections opened by the router by sending a TCP SYN to another device.</td>
</tr>
<tr>
<td>passive opens</td>
<td>The number of TCP connections opened by the router in response to connection requests (TCP SYNs) received from other devices.</td>
</tr>
<tr>
<td>failed attempts</td>
<td>This information is used by Brocade Technical Support.</td>
</tr>
<tr>
<td>active resets</td>
<td>The number of TCP connections the router reset by sending a TCP RESET message to the device at the other end of the connection.</td>
</tr>
<tr>
<td>passive resets</td>
<td>The number of TCP connections the router reset because the device at the other end of the connection sent a TCP RESET message.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Brocade Technical Support.</td>
</tr>
<tr>
<td>in segments</td>
<td>The number of TCP segments received by the router.</td>
</tr>
<tr>
<td>out segments</td>
<td>The number of TCP segments sent by the router.</td>
</tr>
<tr>
<td>retransmission</td>
<td>The number of segments that the router retransmitted because the retransmission timer for the segment had expired before the device at the other end of the connection had acknowledged receipt of the segment.</td>
</tr>
</tbody>
</table>
Chapter 9

Configuring Spanning Tree Protocol (STP) Related Features

STP overview

The Spanning Tree Protocol (STP) eliminates Layer 2 loops in networks, by selectively blocking some ports and allowing other ports to forward traffic, based on global (bridge) and local (port) parameters you can configure.

STP related features, such as RSTP and PVST, extend the operation of standard STP, enabling you to fine-tune standard STP and avoid some of its limitations.

You can enable or disable STP on a global basis (for the entire device), a port-based VLAN basis (for the individual Layer 2 broadcast domain), or an individual port basis.

Configuration procedures are provided for the standard STP bridge and port parameters as well as Brocade features listed in Table 74.

Configuring standard STP parameters

Brocade Layer 2 Switches and Layer 3 Switches support standard STP as described in the IEEE 802.1D specification. STP is enabled by default on Layer 2 Switches but disabled by default on Layer 3 Switches.

By default, each port-based VLAN on a Brocade device runs a separate spanning tree (a separate instance of STP). A Brocade device has one port-based VLAN (VLAN 1) by default that contains all the device ports. Thus, by default each Brocade device has one spanning tree. However, if you configure additional port-based VLANs on a Brocade device, then each of those VLANs on which STP is enabled and VLAN 1 all run separate spanning trees.

If you configure a port-based VLAN on the device, the VLAN has the same STP state as the default STP state on the device. Thus, on Layer 2 Switches, new VLANs have STP enabled by default. On Layer 3 Switches, new VLANs have STP disabled by default. You can enable or disable STP in each VLAN separately. In addition, you can enable or disable STP on individual ports.

STP parameters and defaults

Table 69 lists the default STP states for Brocade devices.

<table>
<thead>
<tr>
<th>Device type</th>
<th>Default STP type</th>
<th>Default STP state</th>
<th>Default STP state of new VLANs¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Switch</td>
<td>MSTP²</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Layer 3 Switch</td>
<td>MSTP</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

1. When you create a port-based VLAN, the new VLAN STP state is the same as the default STP state on the device. The new VLAN does not inherit the STP state of the default VLAN.
2. MSTP stands for “Multiple Spanning Tree Protocol”. In this type of STP, each port-based VLAN, including the default VLAN, has its own spanning tree. References in this documentation to “STP” apply to MSTP. The Single Spanning Tree Protocol (SSTP) is another type of STP. SSTP includes all VLANs on which STP is enabled in a single spanning tree. Refer to “Single Spanning Tree (SSTP)” on page 323.

Table 70 lists the default STP bridge parameters. The bridge parameters affect the entire spanning tree. If you are using MSTP, the parameters affect the VLAN. If you are using SSTP, the parameters affect all VLANs that are members of the single spanning tree.

**TABLE 70** Default STP bridge parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default and valid values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Delay</td>
<td>The period of time spent by a port in the listening and learning state before moving on to the learning or forwarding state, respectively. The forward delay value is also used for the age time of dynamic entries in the filtering database, when a topology change occurs.</td>
<td>15 seconds Possible values: 4 – 30 seconds</td>
</tr>
<tr>
<td>Maximum Age</td>
<td>The interval a bridge will wait for a configuration BPDU from the root bridge before initiating a topology change.</td>
<td>20 seconds Possible values: 6 – 40 seconds</td>
</tr>
<tr>
<td>Hello Time</td>
<td>The interval of time between each configuration BPDU sent by the root bridge.</td>
<td>2 seconds Possible values: 1 – 10 seconds</td>
</tr>
<tr>
<td>Priority</td>
<td>A parameter used to identify the root bridge in a spanning tree (instance of STP). The bridge with the lowest value has the highest priority and is the root. A higher numerical value means a lower priority; thus, the highest priority is 0.</td>
<td>32768 Possible values: 0 – 65535</td>
</tr>
</tbody>
</table>

**NOTE**

If you plan to change STP bridge timers, Brocade recommends that you stay within the following ranges, from section 8.10.2 of the IEEE STP specification.

\[ 2 \times (\text{forward\_delay} - 1) \geq \text{max\_age} \]

\[ \text{max\_age} \geq 2 \times (\text{hello\_time} + 1) \]

Table 71 lists the default STP port parameters. The port parameters affect individual ports and are separately configurable on each port.
TABLE 71  Default STP port parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default and valid values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>The preference that STP gives this port relative to other ports for forwarding traffic out of the spanning tree. A higher numerical value means a lower priority.</td>
<td>128&lt;br&gt;Possible values in FastIron X Series pre-release 03.0.00, and in FGS pre-release 03.0.00: 8 – 252 (configurable in increments of 4)&lt;br&gt;Possible values in TurboIron X Series, and in FastIron X Series and FGS/FLS release 03.0.00 and later: 0 – 240 (configurable in increments of 16)</td>
</tr>
<tr>
<td>Path Cost</td>
<td>The cost of using the port to reach the root bridge. When selecting among multiple links to the root bridge, STP chooses the link with the lowest path cost and blocks the other paths. Each port type has its own default STP path cost.</td>
<td>10 Mbps – 100&lt;br&gt;100 Mbps – 19&lt;br&gt;Gbps – 4&lt;br&gt;10 Gbps – 2&lt;br&gt;Possible values are 0 – 65535</td>
</tr>
</tbody>
</table>

Enabling or disabling the Spanning Tree Protocol (STP)

STP is enabled by default on devices running Layer 2 code. STP is disabled by default on devices running Layer 3 code.

You can enable or disable STP on the following levels:

- **Globally** – Affects all ports and port-based VLANs on the device.
- **Port-based VLAN** – Affects all ports within the specified port-based VLAN. When you enable or disable STP within a port-based VLAN, the setting overrides the global setting. Thus, you can enable STP for the ports within a port-based VLAN even when STP is globally disabled, or disable the ports within a port-based VLAN when STP is globally enabled.
- **Individual port** – Affects only the individual port. However, if you change the STP state of the primary port in a trunk group, the change affects all ports in the trunk group.

**NOTE**
The CLI converts the STP groups into topology groups when you save the configuration. For backward compatibility, you can still use the STP group commands. However, the CLI converts the commands into the topology group syntax. Likewise, the `show stp-group` command displays STP topology groups.

**Enabling or disabling STP globally**

Use the following method to enable or disable STP on a device on which you have not configured port-based VLANs.

**NOTE**
When you configure a VLAN, the VLAN inherits the global STP settings. However, once you begin to define a VLAN, you can no longer configure standard STP parameters globally using the CLI. From that point on, you can configure STP only within individual VLANs.
To enable STP for all ports in all VLANs on a Brocade device, enter the following command.

FastIron(config)#spanning-tree

This command enables a separate spanning tree in each VLAN, including the default VLAN.

Syntax:  [no] spanning-tree

**Enabling or disabling STP in a port-based VLAN**

Use the following procedure to disable or enable STP on a device on which you have configured a port-based VLAN. Changing the STP state in a VLAN affects only that VLAN.

To enable STP for all ports in a port-based VLAN, enter commands such as the following.

FastIron(config)#vlan 10
FastIron(config-vlan-10)#spanning-tree

Syntax:  [no] spanning-tree

**Enabling or disabling STP on an individual port**

Use the following procedure to disable or enable STP on an individual port.

**NOTE**

If you change the STP state of the primary port in a trunk group, it affects all ports in the trunk group.

To enable STP on an individual port, enter commands such as the following.

FastIron(config)#interface 1/1
FastIron(config-if-e1000-1/1)#spanning-tree

Syntax:  [no] spanning-tree

**Changing STP bridge and port parameters**

Table 70 on page 264 and Table 71 on page 265 list the default STP parameters. If you need to change the default value for an STP parameter, use the following procedures.

**Changing STP bridge parameters**

**NOTE**

If you plan to change STP bridge timers, Brocade recommends that you stay within the following ranges, from section 8.10.2 of the IEEE STP specification.

\[
2 \times (\text{forward}\_\text{delay} - 1) \geq \text{max}\_\text{age}
\]

\[
\text{max}\_\text{age} \geq 2 \times (\text{hello}\_\text{time} + 1)
\]

To change a STP bridge priority on a Brocade device to the highest value to make the device the root bridge, enter the following command.

FastIron(config)#spanning-tree priority 0
The command in this example changes the priority on a device on which you have not configured port-based VLANs. The change applies to the default VLAN. If you have configured a port-based VLAN on the device, you can configure the parameters only at the configuration level for individual VLANs. Enter commands such as the following.

```
FastIron(config)#vlan 20
FastIron(config-vlan-20)#spanning-tree priority 0
```

To make this change in the default VLAN, enter the following commands.

```
FastIron(config)#vlan 1
FastIron(config-vlan-1)#spanning-tree priority 0
```

Syntax: `[no] spanning-tree [forward-delay <value>] | [hello-time <value>] | [maximum-age <value>] | [priority <value>]`

The `forward-delay <value>` parameter specifies the forward delay and can be a value from 4 – 30 seconds. The default is 15 seconds.

NOTE
You can configure a Brocade device for faster convergence (including a shorter forward delay) using Fast Span. Refer to “Configuring STP related features” on page 279.

The `hello-time <value>` parameter specifies the hello time and can be a value from 1 – 10 seconds. The default is 2 seconds.

NOTE
This parameter applies only when this device or VLAN is the root bridge for its spanning tree.

The `maximum-age <value>` parameter specifies the amount of time the device waits for receipt of a configuration BPDU from the root bridge before initiating a topology change. You can specify from 6 – 40 seconds. The default is 20 seconds.

The `priority <value>` parameter specifies the priority and can be a value from 0 – 65535. A higher numerical value means a lower priority. Thus, the highest priority is 0. The default is 32768.

You can specify some or all of these parameters on the same command line. If you specify more than one parameter, you must specify them in the order shown above, from left to right.

### Changing STP port parameters

To change the path and priority costs for a port, enter commands such as the following.

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)#spanning-tree ethernet 5 path-cost 15 priority 64
```

Syntax: `spanning-tree ethernet [stack-unit]<slotnum>/]<portnum> path-cost <value> | priority <value> | disable | enable`

The `<portnum>` parameter specifies the interface. If you are configuring a chassis device, specify the stack number as well as the port number (`<slotnum>/` `<portnum>`).

The `path-cost <value>` parameter specifies the port cost as a path to the spanning tree root bridge. STP prefers the path with the lowest cost. You can specify a value from 0 – 65535.

The default depends on the port type:

- 10 Mbps - 100
- 100 Mbps - 19
Configuring standard STP parameters

- Gbps – 4
- 10 Gbps – 2

The priority <value> parameter specifies the preference that STP gives this port relative to other ports for forwarding traffic out of the spanning tree. The value you can specify depends on the software version running on the device, as follows:

- In releases prior to 03.0.00, you can specify a value from 8 – 252, in increments of 4. If you enter a value that is not divisible by four the software rounds to the nearest value that is. The default is 128. A higher numerical value means a lower priority; thus, the highest priority is 8.
- Starting in software release 03.0.00, you can specify a value from 0 – 240, in increments of 16. If you enter a value that is not divisible by 16, the software returns an error message. The default value is 128. A higher numerical value means a lower priority; thus, the highest priority is 0.

**NOTE**

If you are upgrading a device that has a configuration saved under an earlier software release, and the configuration contains a value from 0 – 7 for a port STP priority, the software changes the priority to the default when you save the configuration while running the new release.

The disable | enable parameter disables or re-enables STP on the port. The STP state change affects only this VLAN. The port STP state in other VLANs is not changed.

**STP protection enhancement**

**Platform Support:**

- FESX devices running software release 02.1.01 and later
- FSX and FWSX devices running software release 02.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

STP protection provides the ability to prohibit an end station from initiating or participating in an STP topology change.

The 802.1W Spanning Tree Protocol (STP) detects and eliminates logical loops in a redundant network by selectively blocking some data paths (ports) and allowing only the best data paths to forward traffic.

In an STP environment, switches, end stations, and other Layer 2 devices use Bridge Protocol Data Units (BPDUs) to exchange information that STP will use to determine the best path for data flow. When a Layer 2 device is powered ON and connected to the network, or when a Layer 2 device goes down, it sends out an STP BPDU, triggering an STP topology change.

In some instances, it is unnecessary for a connected device, such as an end station, to initiate or participate in an STP topology change. In this case, you can enable the STP Protection feature on the Brocade port to which the end station is connected. STP Protection disables the connected device ability to initiate or participate in an STP topology change, by dropping all BPDUs received from the connected device.

**Enabling STP protection**

You can enable STP Protection on a per-port basis.
To prevent an end station from initiating or participating in STP topology changes, enter the following command at the Interface level of the CLI.

```
FastIron#(config) interface e 2
FastIron#(config-if-e1000-2)#stp-protect
```

This command causes the port to drop STP BPDUs sent from the device on the other end of the link.

**Syntax:** `[no] stp-protect`


The `slotnum` parameter is required on chassis devices and on FastIron GS devices.

The `portnum` parameter is a valid port number.

Enter the **no** form of the command to disable STP protection on the port.

### Clearing BPDU drop counters

For each port that has STP Protection enabled, the Brocade device counts and records the number of dropped BPDUs. You can use CLI commands to clear the BPDU drop counters for all ports on the device, or for a specific port on the device.

To clear the BPDU drop counters for all ports on the device that have STP Protection enabled, enter the following command at the Global CONFIG level of the CLI.

```
FastIron(config)#clear stp-protect-statistics
```

To clear the BPDU drop counter for a specific port that has STP Protection enabled, enter the following command at the Global CONFIG level of the CLI.

```
FastIron#clear stp-protect-statistics e 2
```

**Syntax:** `clear stp-protect-statistics [ethernet [<stack-unit><slotnum>/]<port-num>] | [ethernet [<stack-unit><slotnum>/]portnum>]`


The `slotnum` parameter is required on chassis devices and on FastIron GS devices.

The `portnum` parameter is a valid port number.

### Viewing the STP Protection Configuration

You can view the STP Protection configuration for all ports on a device, or for a specific port only.

The `show stp-protect` command output shows the port number on which STP Protection is enabled, and the number of BPDUs dropped by each port.

To view the STP Protection configuration for all ports on the device, enter the following command at any level of the CLI.

```
FastIron#show stp-protect
```

<table>
<thead>
<tr>
<th>Port ID</th>
<th>BPDU Drop Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>478</td>
</tr>
<tr>
<td>5</td>
<td>213</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
</tr>
</tbody>
</table>
Configuring standard STP parameters

To view STP Protection configuration for a specific port, enter the following command at any level of the CLI.

```bash
FastIron#show stp-protect e 3
STP-protect is enabled on port 3. BPDU drop count is 478
```

If you enter the `show stp-protect` command for a port that does not have STP protection enabled, the following message displays on the console.

```bash
FastIron#show stp-protect e 4
STP-protect is not enabled on port 4.
```

**Syntax: show stp-protect [ethernet <stack-unit> | slotnum> | <portnum>]

**Displaying STP information**

You can display the following STP information:

- All the global and interface STP settings
- CPU utilization statistics (FastIron devices only)
- Detailed STP information for each interface
- STP state information for a port-based VLAN
- STP state information for an individual interface
Displaying STP information for an entire device

To display STP information, enter the following command at any level of the CLI.

FastIron#show span

VLAN 1 BPDU cam_index is 3 and the Master DMA Are(HEX)
STP instance owned by VLAN 1

Global STP (IEEE 802.1D) Parameters:

<table>
<thead>
<tr>
<th>VLAN Root ID</th>
<th>Root Root Prio Max He- Ho- Fwd Last Chg Bridge</th>
<th>VLAN 1 BPDU cam_index 3 and the Master DMA Are(HEX)</th>
<th>STP instance owned by VLAN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Port STP Parameters:

<table>
<thead>
<tr>
<th>Port</th>
<th>Prio</th>
<th>Path State</th>
<th>Fwd Design</th>
<th>Designated Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>FORWARDING</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>DISABLED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>DISABLED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>DISABLED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>FORWARDING</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>BLOCKING</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>DISABLED</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Syntax: show span [vlan <vlan-id>] | [pvst-mode] | [num] | [detail] [vlan <vlan-id> [ethernet <stack-unit><slotnum>/]<portnum>]] | [num]]

The vlan <vlan-id> parameter displays STP information for the specified port-based VLAN.

The pvst-mode parameter displays STP information for the device Per VLAN Spanning Tree (PVST+) compatibility configuration. Refer to “PVST/PVST+ compatibility” on page 329


The slotnum parameter is required on chassis devices and on FastIron GS devices.

The portnum parameter is a valid port number.

The <num> parameter displays only the entries after the number you specify. For example, on a device with three port-based VLANs, if you enter 1, then information for the second and third VLANs is displayed, but information for the first VLAN is not displayed. Information is displayed according to VLAN number, in ascending order. The entry number is not the same as the VLAN number. For example, if you have port-based VLANs 1, 10, and 2048, then the command output has three STP entries. To display information for VLANs 10 and 2024 only, enter show span 1.

The detail parameter and its additional optional parameters display detailed information for individual ports. Refer to “Displaying detailed STP information for each interface” on page 275.

The show span command shows the following information.
### TABLE 72 CLI display of STP information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Global STP parameters</strong></td>
<td></td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The port-based VLAN that contains this spanning tree (instance of STP). VLAN 1 is the default VLAN. If you have not configured port-based VLANs on this device, all STP information is for VLAN 1.</td>
</tr>
<tr>
<td>Root ID</td>
<td>The ID assigned by STP to the root bridge for this spanning tree.</td>
</tr>
<tr>
<td>Root Cost</td>
<td>The cumulative cost from this bridge to the root bridge. If this device is the root bridge, then the root cost is 0.</td>
</tr>
<tr>
<td>Root Port</td>
<td>The port on this device that connects to the root bridge. If this device is the root bridge, then the value is “Root” instead of a port number.</td>
</tr>
<tr>
<td>Priority Hex</td>
<td>This device or VLAN STP priority. The value is shown in hexadecimal format. <strong>NOTE:</strong> If you configure this value, specify it in decimal format. Refer to “Changing STP bridge parameters” on page 266.</td>
</tr>
<tr>
<td>Max age sec</td>
<td>The number of seconds this device or VLAN waits for a configuration BPDU from the root bridge before deciding the root has become unavailable and performing a reconvergence.</td>
</tr>
<tr>
<td>Hello sec</td>
<td>The interval between each configuration BPDU sent by the root bridge.</td>
</tr>
<tr>
<td>Hold sec</td>
<td>The minimum number of seconds that must elapse between transmissions of consecutive Configuration BPDUs on a port.</td>
</tr>
<tr>
<td>Fwd dly sec</td>
<td>The number of seconds this device or VLAN waits following a topology change and consequent reconvergence.</td>
</tr>
<tr>
<td>Last Chang sec</td>
<td>The number of seconds since the last time a topology change occurred.</td>
</tr>
<tr>
<td>Chg cnt</td>
<td>The number of times the topology has changed since this device was reloaded.</td>
</tr>
<tr>
<td>Bridge Address</td>
<td>The STP address of this device or VLAN. <strong>NOTE:</strong> If this address is the same as the Root ID, then this device or VLAN is the root bridge for its spanning tree.</td>
</tr>
<tr>
<td><strong>Port STP parameters</strong></td>
<td></td>
</tr>
<tr>
<td>Port Num</td>
<td>The port number.</td>
</tr>
<tr>
<td>Priority Hex</td>
<td>The port STP priority, in hexadecimal format. <strong>NOTE:</strong> If you configure this value, specify it in decimal format. Refer to “Changing STP port parameters” on page 267.</td>
</tr>
<tr>
<td>Path Cost</td>
<td>The port STP path cost.</td>
</tr>
</tbody>
</table>
Configuring standard STP parameters

### Displaying CPU utilization statistics

**NOTE**

CPU utilization statistics are not supported on TurboIron X Series devices.

You can display CPU utilization statistics for STP and the IP protocols.

To display CPU utilization statistics for STP for the previous one-second, one-minute, five-minute, and fifteen-minute intervals, enter the following command at any level of the CLI.

```
FastIron#show process cpu
```

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.03</td>
<td>0.09</td>
<td>0.22</td>
<td>9</td>
</tr>
<tr>
<td>BGP</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.14</td>
<td>13</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.03</td>
<td>0.04</td>
<td>0.07</td>
<td>4</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

If the software has been running less than 15 minutes (the maximum interval for utilization statistics), the command indicates how long the software has been running. Here is an example.
To display utilization statistics for a specific number of seconds, enter a command such as the following:

```
FastIron#show process cpu 2
Statistics for last 1 sec and 80 ms
```

<table>
<thead>
<tr>
<th>Process Name</th>
<th>Sec(%)</th>
<th>Time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

When you specify how many seconds’ worth of statistics you want to display, the software selects the sample that most closely matches the number of seconds you specified. In this example, statistics are requested for the previous two seconds. The closest sample available is actually for the previous 1 second plus 80 milliseconds.

**Syntax:** `show process cpu [<num>]`

The `<num>` parameter specifies the number of seconds and can be from 1 – 900. If you use this parameter, the command lists the usage statistics only for the specified number of seconds. If you do not use this parameter, the command lists the usage statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals.

### Displaying the STP state of a port-based VLAN

When you display information for a port-based VLAN, that information includes the STP state of the VLAN.

To display information for a port-based VLAN, enter a command such as the following at any level of the CLI. The STP state is shown in bold type in this example.
Configuring standard STP parameters

FastIron#show vlans
Total PORT-VLAN entries: 2
Maximum PORT-VLAN entries: 16

legend: [S=Slot]

PORT-VLAN 1, Name DEFAULT-VLAN, Priority level0, Spanning tree On
  Untagged Ports: (S3) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
  Untagged Ports: (S3) 17 18 19 20 21 22 23 24
  Untagged Ports: (S4) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
  Untagged Ports: (S4) 18 19 20 21 22 23 24
  Tagged Ports: None
  Uplink Ports: None

PORT-VLAN 2, Name greenwell, Priority level0, Spanning tree Off
  Untagged Ports: (S1) 1 2 3 4 5 6 7 8
  Untagged Ports: (S4) 1
  Tagged Ports: None
  Uplink Ports: None

NOTE
The Uplink Ports field in the above output applies to FastIron devices only. Uplink ports are not supported on TurboIron X Series devices.

Syntax: show vlan [<vlan-id> | ethernet [<stack-unit> | <slotnum> | <portnum>]]

The <vlan-id> parameter specifies a VLAN for which you want to display the configuration information.

The <portnum> parameter specifies a port. If you use this parameter, the command lists all the VLAN memberships for the port. If you use this command on a chassis device, specify the slot number as well as the port number (<slotnum>/<portnum>).

Displaying detailed STP information for each interface

To display the detailed STP information, enter the following command at any level of the CLI.

FastIron#show span detail

VLAN 1 - MULTIPLE SPANNING TREE (MSTP) ACTIVE

Bridge identifier - 0x800000e0804d4a00
Active global timers - Hello: 0

Port 1/1 is FORWARDING
  Port - Path cost: 19, Priority: 128, Root: 0x800000e052a9bb00
  Designated - Bridge: 0x800000e052a9bb00, Interface: 1, Path cost: 0
  Active Timers - None
  BPDUs - Sent: 11, Received: 0

Port 1/2 is DISABLED
Port 1/3 is DISABLED
Port 1/4 is DISABLED

<lines for remaining ports excluded for brevity>
Configuring standard STP parameters

If a port is disabled, the only information shown by this command is “DISABLED”. If a port is enabled, this display shows the following information.

Syntax: show span detail [vlan <vlan-id> [ethernet [<stack-unit>/<slotnum>/<portnum> | <num>]]]

The vlan <vlan-id> parameter specifies a VLAN.

The <portnum> parameter specifies an individual port within the VLAN (if specified). If you use the command on a chassis device, specify the slot number as well as the port number (<slotnum>/<portnum>).

The <stack-unit> parameter is required on FastIron GS and LS devices running software release 02.5.00 or later, and FastIron GS-STK and FastIron LS-STK devices running software release 05.0.00 and later.

The <slotnum> parameter is required on chassis devices and on FastIron GS devices running software release 02.5.00 or later.

The <portnum> parameter is a valid port number.

The <num> parameter specifies the number of VLANs you want the CLI to skip before displaying detailed STP information. For example, if the device has six VLANs configured (VLAN IDs 1, 2, 3, 99, 128, and 256) and you enter the command show span detail 4, detailed STP information is displayed for VLANs 128 and 256 only.

NOTE
If the configuration includes VLAN groups, the show span detail command displays the master VLANs of each group but not the member VLANs within the groups. However, the command does indicate that the VLAN is a master VLAN. The show span detail vlan <vlan-id> command displays the information for the VLAN even if it is a member VLAN. To list all the member VLANs within a VLAN group, enter the show vlan-group [<group-id>] command.

The show span detail command shows the following information.

<table>
<thead>
<tr>
<th>TABLE 73</th>
<th>CLI display of detailed STP information for ports</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>This field...</strong></td>
<td><strong>Displays...</strong></td>
</tr>
</tbody>
</table>
| Active Spanning Tree protocol | The VLAN that contains the listed ports and the active Spanning Tree protocol. The STP type can be one of the following:  
• MULTIPLE SPANNING TREE (MSTP)  
• GLOBAL SINGLE SPANNING TREE (SSTP)  
NOTE: If STP is disabled on a VLAN, the command displays the following message instead: “Spanning-tree of port-vlan <vlan-id> is disabled.” |
| Bridge identifier | The STP identity of this device. |
| Active global timers | The global STP timers that are currently active, and their current values. The following timers can be listed:  
• Hello – The interval between Hello packets. This timer applies only to the root bridge.  
• Topology Change (TC) – The amount of time during which the topology change flag in Hello packets will be marked, indicating a topology change. This timer applies only to the root bridge.  
• Topology Change Notification (TCN) – The interval between Topology Change Notification packets sent by a non-root bridge toward the root bridge. This timer applies only to non-root bridges. |
Configuring standard STP parameters

### TABLE 73 CLI display of detailed STP information for ports (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| Port number and STP state | The internal port number and the port STP state. The internal port number is one of the following:  
- The port interface number, if the port is the designated port for the LAN.  
- The interface number of the designated port from the received BPDU, if the interface is not the designated port for the LAN.  
The state can be one of the following:  
- **BLOCKING** – STP has blocked Layer 2 traffic on this port to prevent a loop. The device or VLAN can reach the root bridge using another port, whose state is FORWARDING. When a port is in this state, the port does not transmit or receive user frames, but the port does continue to receive STP BPDUs.  
- **DISABLED** – The port is not participating in STP. This can occur when the port is disconnected or STP is administratively disabled on the port.  
- **FORWARDING** – STP is allowing the port to send and receive frames.  
- **LISTENING** – STP is responding to a topology change and this port is listening for a BPDU from neighboring bridges in order to determine the new topology. No user frames are transmitted or received during this state.  
- **LEARNING** – The port has passed through the LISTENING state and will change to the BLOCKING or FORWARDING state, depending on the results of STP reconvergence. The port does not transmit or receive user frames during this state. However, the device can learn the MAC addresses of frames that the port receives during this state and make corresponding entries in the MAC table.  
**NOTE:** If the state is DISABLED, no further STP information is displayed for the port.  |
| Port Path cost | The STP path cost for the port. |
| Port Priority | This STP priority for the port. The value is shown as a hexadecimal number. |
| Root | The ID assigned by STP to the root bridge for this spanning tree. |
| Designated Bridge | The MAC address of the designated bridge to which this port is connected. The designated bridge is the device that connects the network segment on the port to the root bridge. |
| Designated Port | The port number sent from the designated bridge. |
| Designated Path Cost | The cost to the root bridge as advertised by the designated bridge that is connected to this port. If the bridge is the root bridge itself, then the cost is 0. The identity of the designated bridge is shown in the Designated Bridge field. |
| Active Timers | The current values for the following timers, if active:  
- **Message age** – The number of seconds this port has been waiting for a hello message from the root bridge.  
- **Forward delay** – The number of seconds that have passed since the last topology change and consequent reconvergence.  
- **Hold time** – The number of seconds that have elapsed since transmission of the last Configuration BPDU. |
| BPDUs Sent and Received | The number of BPDUs sent and received on this port since the software was reloaded. |

### Displaying detailed STP information for a single port in a specific VLAN

Enter a command such as the following to display STP information for an individual port in a specific VLAN.

---

*Fastiron and Turbolron 24X Configuration Guide*  
53-1001719-01  
277
Configuring standard STP parameters

Syntax: show span detail vlan <vlan-id> [ethernet [stack-unit] | [slotnum] | [portnum] | [num]]

Displaying STP state information for an individual interface

To display STP state information for an individual port, you can use the methods in “Displaying STP information for an entire device” on page 271 or “Displaying detailed STP information for each interface” on page 275. You also can display STP state information for a specific port using the following method.

To display information for a specific port, enter a command such as the following at any level of the CLI.

FastIron#show span detail vlan 1 ethernet 7/1
Port 7/1 is FORWARDING
Port - Path cost: 19, Priority: 128, Root: 0x800000e052abbb00
Designated - Bridge: 0x800000e052abbb00, Interface: 7, Path cost: 0
Active Timers - None
BPDUs - Sent: 29, Received: 0

Syntax: show span detail [vlan <vlan-id>] [ethernet [stack-unit] | [slotnum] | [portnum] | [num]]

Displaying STP state information for an individual interface

To display STP state information for an individual port, you can use the methods in “Displaying STP information for an entire device” on page 271 or “Displaying detailed STP information for each interface” on page 275. You also can display STP state information for a specific port using the following method.

To display information for a specific port, enter a command such as the following at any level of the CLI.

FastIron#show interface ethernet 3/11
FastEthernet3/11 is up, line protocol is up
Hardware is FastEthernet, address is 00e0.52a9.bb49 (bia 00e0.52a9.bb49)
Configured speed auto, actual 100Mbit, configured duplex fdx, actual fdx
Member of L2 VLAN ID 1, port is untagged, port state is FORWARDING
STP configured to ON, priority is level0, flow control enabled
mirror disabled, monitor disabled
Not member of any active trunks
Not member of any configured trunks
No port name
MTU 1518 bytes, encapsulation ethernet
5 minute input rate: 352 bits/sec, 0 packets/sec, 0.00% utilization
5 minute output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
1238 packets input, 79232 bytes, 0 no buffer
Received 686 broadcasts, 0 runts, 0 giants
0 input errors, 0 CRC, 0 frame, 0 ignored
529 multicast
918 packets output, 63766 bytes, 0 underruns
0 output errors, 0 collisions

The STP information is shown in bold type in this example.

Syntax: show interfaces [ethernet [stack-unit] | [slotnum] | [portnum]] | [loopback <num>] | [brief]

The <stack-unit> option is required on FGS and FLS devices running software release 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

You also can display the STP states of all ports by entering a command such as the following, which uses the brief parameter.

FastIron#show interface ethernet 3/11
FastEthernet3/11 is up, line protocol is up
Hardware is FastEthernet, address is 00e0.52a9.bb49 (bia 00e0.52a9.bb49)
Configured speed auto, actual 100Mbit, configured duplex fdx, actual fdx
Member of L2 VLAN ID 1, port is untagged, port state is FORWARDING
STP configured to ON, priority is level0, flow control enabled
mirror disabled, monitor disabled
Not member of any active trunks
Not member of any configured trunks
No port name
MTU 1518 bytes, encapsulation ethernet
5 minute input rate: 352 bits/sec, 0 packets/sec, 0.00% utilization
5 minute output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
1238 packets input, 79232 bytes, 0 no buffer
Received 686 broadcasts, 0 runts, 0 giants
0 input errors, 0 CRC, 0 frame, 0 ignored
529 multicast
918 packets output, 63766 bytes, 0 underruns
0 output errors, 0 collisions

The STP information is shown in bold type in this example.

Syntax: show interfaces [ethernet [stack-unit] | [slotnum] | [portnum]] | [loopback <num>] | [brief]

The <stack-unit> option is required on FGS and FLS devices running software release 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

You also can display the STP states of all ports by entering a command such as the following, which uses the brief parameter.

FastIron#show interface ethernet 3/11
FastEthernet3/11 is up, line protocol is up
Hardware is FastEthernet, address is 00e0.52a9.bb49 (bia 00e0.52a9.bb49)
Configured speed auto, actual 100Mbit, configured duplex fdx, actual fdx
Member of L2 VLAN ID 1, port is untagged, port state is FORWARDING
STP configured to ON, priority is level0, flow control enabled
mirror disabled, monitor disabled
Not member of any active trunks
Not member of any configured trunks
No port name
MTU 1518 bytes, encapsulation ethernet
5 minute input rate: 352 bits/sec, 0 packets/sec, 0.00% utilization
5 minute output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
1238 packets input, 79232 bytes, 0 no buffer
Received 686 broadcasts, 0 runts, 0 giants
0 input errors, 0 CRC, 0 frame, 0 ignored
529 multicast
918 packets output, 63766 bytes, 0 underruns
0 output errors, 0 collisions

The STP information is shown in bold type in this example.

Syntax: show interfaces [ethernet [stack-unit] | [slotnum] | [portnum]] | [loopback <num>] | [brief]

The <stack-unit> option is required on FGS and FLS devices running software release 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

You also can display the STP states of all ports by entering a command such as the following, which uses the brief parameter.
In the example above, only one port, 3/11, is forwarding traffic toward the root bridge.

### Configuring STP related features

STP features extend the operation of standard STP, enabling you to fine tune standard STP and avoid some of its limitations.

This section describes how to configure these parameters on Brocade Layer 3 Switches using the CLI.

#### Fast port span

**Platform Support:**
- FCX-S devices running software release 06.0.00 and later

When STP is running on a device, message forwarding is delayed during the spanning tree recalculation period following a topology change. The STP forward delay parameter specifies the period of time a bridge waits before forwarding data packets. The forward delay controls the listening and learning periods of STP reconvergence. You can configure the forward delay to a value from 4 – 30 seconds. The default is 15 seconds. Thus, using the standard forward delay, convergence requires 30 seconds (15 seconds for listening and an additional 15 seconds for learning) when the default value is used.

This slow convergence is undesirable and unnecessary in some circumstances. The Fast Port Span feature allows certain ports to enter the forwarding state in four seconds. Specifically, Fast Port Span allows faster convergence on ports that are attached to end stations and thus do not present the potential to cause Layer 2 forwarding loops. Because the end stations cannot cause forwarding loops, they can safely go through the STP state changes (blocking to listening to learning to forwarding) more quickly than is allowed by the standard STP convergence time. Fast Port Span performs the convergence on these ports in four seconds (two seconds for learning and two seconds for learning).
In addition, Fast Port Span enhances overall network performance in the following ways:

- **Fast Port Span reduces the number of STP topology change notifications on the network.** When an end station attached to a Fast Span port comes up or down, the Brocade device does not generate a topology change notification for the port. In this situation, the notification is unnecessary since a change in the state of the host does not affect the network topology.

- **Fast Port Span eliminates unnecessary MAC cache aging that can be caused by topology change notifications.** Bridging devices age out the learned MAC addresses in their MAC caches if the addresses are unrefreshed for a given period of time, sometimes called the MAC aging interval. When STP sends a topology change notification, devices that receive the notification use the value of the STP forward delay to quickly age out their MAC caches. For example, if a device normal MAC aging interval is 5 minutes, the aging interval changes temporarily to the value of the forward delay (for example, 15 seconds) in response to an STP topology change. In normal STP, the accelerated cache aging occurs even when a single host goes up or down. Because Fast Port Span does not send a topology change notification when a host on a Fast Port Span port goes up or down, the unnecessary cache aging that can occur in these circumstances under normal STP is eliminated.

Fast Port Span is a system-wide parameter and is enabled by default. Thus, when you boot a device, all the ports that are attached only to end stations run Fast Port Span. For ports that are not eligible for Fast Port Span, such as ports connected to other networking devices, the device automatically uses the normal STP settings. If a port matches any of the following criteria, the port is ineligible for Fast Port Span and uses normal STP instead:

- The port is 802.1Q tagged
- The port is a member of a trunk group
- The port has learned more than one active MAC address
- An STP Configuration BPDU has been received on the port, thus indicating the presence of another bridge on the port.

You also can explicitly exclude individual ports from Fast Port Span if needed. For example, if the only uplink ports for a wiring closet switch are Gbps ports, you can exclude the ports from Fast Port Span.

**Disabling and re-enabling fast port span**

Fast Port Span is a system-wide parameter and is enabled by default. Thus all ports that are eligible for Fast Port Span use it.

To disable or re-enable Fast Port Span, enter the following commands.

```
FastIron(config)#no fast port-span
FastIron(config)#write memory
```

**Syntax:** `[no] fast port-span`

**NOTE**
The `fast port-span` command has additional parameters that let you exclude specific ports. These parameters are shown in the following section.

To re-enable Fast Port Span, enter the following commands.

```
FastIron(config)#fast port-span
FastIron(config)#write memory
```
**Excluding specific ports from fast port span**

To exclude a port from Fast Port Span while leaving Fast Port Span enabled globally, enter commands such as the following.

```
FastIron(config)#fast port-span exclude ethernet 1
FastIron(config)#write memory
```

To exclude a set of ports from Fast Port Span, enter commands such as the following.

```
FastIron(config)#fast port-span exclude ethernet 1 ethernet 2 ethernet 3
FastIron(config)#write memory
```

To exclude a contiguous (unbroken) range of ports from Fast Span, enter commands such as the following.

```
FastIron(config)#fast port-span exclude ethernet 1 to 24
FastIron(config)#write memory
```

**Syntax:** `[no] fast port-span [exclude ethernet [<stack-unit>/]<slotnum>/<portnum> | ethernet [<slotnum>/<portnum> | to [<slotnum>/<portnum>]]`

To re-enable Fast Port Span on a port, enter a command such as the following.

```
FastIron(config)#no fast port-span exclude ethernet 1
FastIron(config)#write memory
```

This command re-enables Fast Port Span on port 1 only and does not re-enable Fast Port Span on other excluded ports. You also can re-enable Fast Port Span on a list or range of ports using the syntax shown above this example.

To re-enable Fast Port Span on all excluded ports, disable and then re-enable Fast Port Span by entering the following commands.

```
FastIron(config)#no fast port-span
FastIron(config)#fast port-span
FastIron(config)#write memory
```

Disabling and then re-enabling Fast Port Span clears the exclude settings and thus enables Fast Port Span on all eligible ports. To make sure Fast Port Span remains enabled on the ports following a system reset, save the configuration changes to the startup-config file after you re-enable Fast Port Span. Otherwise, when the system resets, those ports will again be excluded from Fast Port Span.

**802.1W Rapid Spanning Tree (RSTP)**

Earlier implementation by Brocade of Rapid Spanning Tree Protocol (RSTP), which was 802.1W Draft 3, provided only a subset of the IEEE 802.1W standard; whereas the 802.1W RSTP feature provides the full standard. The implementation of the 802.1W Draft 3 is referred to as RSTP Draft 3.

RSTP Draft 3 will continue to be supported on Brocade devices for backward compatibility. However, customers who are currently using RSTP Draft 3 should migrate to 802.1W.

The 802.1W feature provides rapid traffic reconvergence for point-to-point links within a few milliseconds (0 – 500 milliseconds), following the failure of a bridge or bridge port. This reconvergence occurs more rapidly than the reconvergence provided by the 802.1D Spanning Tree Protocol (STP)) or by RSTP Draft 3.
NOTE
This rapid convergence will not occur on ports connected to shared media devices, such as hubs. To take advantage of the rapid convergence provided by 802.1W, make sure to explicitly configure all point-to-point links in a topology.

The convergence provided by the standard 802.1W protocol occurs more rapidly than the convergence provided by previous spanning tree protocols because of the following:

- Classic or legacy 802.1D STP protocol requires a newly selected Root port to go through listening and learning stages before traffic convergence can be achieved. The 802.1D traffic convergence time is calculated using the following formula.

  \[ 2 \times \text{FORWARD\_DELAY} + \text{BRIDGE\_MAX\_AGE} \]

  If default values are used in the parameter configuration, convergence can take up to 50 seconds. (In this document STP will be referred to as 802.1D.)

- RSTP Draft 3 works only on bridges that have Alternate ports, which are the precalculated “next best root port”. (Alternate ports provide back up paths to the root bridge.) Although convergence occurs from 0 – 500 milliseconds in RSTP Draft 3, the spanning tree topology reverts to the 802.1D convergence if an Alternate port is not found.

- Convergence in 802.1w bridge is not based on any timer values. Rather, it is based on the explicit handshakes between Designated ports and their connected Root ports to achieve convergence in less than 500 milliseconds.

**Bridges and bridge port roles**

A bridge in an 802.1W rapid spanning tree topology is assigned as the root bridge if it has the highest priority (lowest bridge identifier) in the topology. Other bridges are referred to as non-root bridges.

Unique roles are assigned to ports on the root and non-root bridges. Role assignments are based on the following information contained in the Rapid Spanning Tree Bridge Packet Data Unit (RST BPDU):

- Root bridge ID
- Path cost value
- Transmitting bridge ID
- Designated port ID

The 802.1W algorithm uses this information to determine if the RST BPDU received by a port is superior to the RST BPDU that the port transmits. The two values are compared in the order as given above, starting with the Root bridge ID. The RST BPDU with a lower value is considered superior. The superiority and inferiority of the RST BPDU is used to assign a role to a port.

If the value of the received RST BPDU is the same as that of the transmitted RST BPDU, then the port ID in the RST BPDUs are compared. The RST BPDU with the lower port ID is superior. Port roles are then calculated appropriately.

The port role is included in the BPDU that it transmits. The BPDU transmitted by an 802.1W port is referred to as an RST BPDU, while it is operating in 802.1W mode.

Ports can have one of the following roles:

- **Root** – Provides the lowest cost path to the root bridge from a specific bridge
Configuring STP related features

- **Designated** – Provides the lowest cost path to the root bridge from a LAN to which it is connected
- **Alternate** – Provides an alternate path to the root bridge when the root port goes down
- **Backup** – Provides a backup to the LAN when the Designated port goes down
- **Disabled** – Has no role in the topology

**Assignment of port roles**

At system start-up, all 802.1W-enabled bridge ports assume a Designated role. Once start-up is complete, the 802.1W algorithm calculates the superiority or inferiority of the RST BPDU that is received and transmitted on a port.

On a root bridge, each port is assigned a **Designated port** role, except for ports on the same bridge that are physically connected together. In these type of ports, the port that receives the superior RST BPDU becomes the **Backup port**, while the other port becomes the **Designated port**.

On non-root bridges, ports are assigned as follows:

- The port that receives the RST BPDU with the lowest path cost from the root bridge becomes the **Root port**.
- If two ports on the same bridge are physically connected, the port that receives the superior RST BPDU becomes the **Backup port**, while the other port becomes the **Designated port**.
- If a non-root bridge already has a Root port, then the port that receives an RST BPDU that is superior to those it can transmit becomes the **Alternate port**.
- If the RST BPDU that a port receives is inferior to the RST BPDUs it transmits, then the port becomes a **Designated port**.
- If the port is down or if 802.1W is disabled on the port, that port is given the role of **Disabled port**. Disabled ports have no role in the topology. However, if 802.1W is enabled on a port with a link down and the link of that port comes up, then that port assumes one of the following port roles: Root, Designated, Alternate, or Backup.

The following example (Figure 17) explains role assignments in a simple RSTP topology.

**NOTE**

All examples in this document assume that all ports in the illustrated topologies are point-to-point links and are homogeneous (they have the same path cost value) unless otherwise specified.
The topology in Figure 17 contains four bridges. Switch 1 is the root bridge since it has the lowest bridge priority. Switch 2 through Switch 4 are non-root bridges.

**FIGURE 17 Simple 802.1W topology**

**Ports on Switch 1**
All ports on Switch 1, the root bridge, are assigned Designated port roles.

**Ports on Switch 2**
Port 2 on Switch 2 directly connects to the root bridge; therefore, Port 2 is the Root port.

The bridge priority value on Switch 2 is superior to that of Switch 3 and Switch 4; therefore, the ports on Switch 2 that connect to Switch 3 and Switch 4 are given the Designated port role.

Furthermore, Port 7 and Port 8 on Switch 2 are physically connected. The RST BPDUs transmitted by Port 7 are superior to those Port 8 transmits. Therefore, Port 8 is the Backup port and Port 7 is the Designated port.

**Ports on Switch 3**
Port 2 on Switch 3 directly connects to the Designated port on the root bridge; therefore, it assumes the Root port role.

The root path cost of the RST BPDUs received on Port 4/Switch 3 is inferior to the RST BPDUs transmitted by the port; therefore, Port 4/Switch 3 becomes the Designated port.

Similarly Switch 3 has a bridge priority value inferior to Switch 2. Port 3 on Switch 3 connects to Port 3 on Switch 2. This port will be given the Alternate port role, since a Root port is already established on this bridge.

**Ports Switch 4**
Switch 4 is not directly connected to the root bridge. It has two ports with superior incoming RST BPDUs from two separate LANs: Port 3 and Port 4. The RST BPDUs received on Port 3 are superior to the RST BPDUs received on port 4; therefore, Port 3 becomes the Root port and Port 4 becomes the Alternate port.
**Edge ports and edge port roles**

The Brocade implementation of 802.1W allows ports that are configured as Edge ports to be present in an 802.1W topology. (Figure 18). Edge ports are ports of a bridge that connect to workstations or computers. Edge ports do not register any incoming BPDU activities.

Edge ports assume Designated port roles. Port flapping does not cause any topology change events on Edge ports since 802.1W does not consider Edge ports in the spanning tree calculations.

**FIGURE 18** Topology with edge ports

![Topology with edge ports](image)

However, if any incoming RST BPDU is received from a previously configured Edge port, 802.1W automatically makes the port as a non-edge port. This is extremely important to ensure a loop free Layer 2 operation since a non-edge port is part of the active RSTP topology.

The 802.1W protocol can auto-detect an Edge port and a non-edge port. An administrator can also configure a port to be an Edge port using the CLI. It is recommended that Edge ports are configured explicitly to take advantage of the Edge port feature, instead of allowing the protocol to auto-detect them.

**Point-to-point ports**

To take advantage of the 802.1W features, ports on an 802.1W topology should be explicitly configured as point-to-point links using the CLI. Shared media should not be configured as point-to-point links.
Configuring STP related features

**NOTE**
Configuring shared media or non-point-to-point links as point-to-point links could lead to Layer 2 loops.

The topology in Figure 19 is an example of shared media that should not be configured as point-to-point links. In Figure 19, a port on a bridge communicates or is connected to at least two ports.

**FIGURE 19** Example of shared media

---

**Bridge port states**

Ports roles can have one of the following states:

- **Forwarding** – 802.1W is allowing the port to send and receive all packets.
- **Discarding** – 802.1W has blocked data traffic on this port to prevent a loop. The device or VLAN can reach the root bridge using another port, whose state is forwarding. When a port is in this state, the port does not transmit or receive data frames, but the port does continue to receive RST BPDUs. This state corresponds to the listening and blocking states of 802.1D.
- **Learning** – 802.1W is allowing MAC entries to be added to the filtering database but does not permit forwarding of data frames. The device can learn the MAC addresses of frames that the port receives during this state and make corresponding entries in the MAC table.
- **Disabled** – The port is not participating in 802.1W. This can occur when the port is disconnected or 802.1W is administratively disabled on the port.

A port on a non-root bridge with the role of Root port is always in a forwarding state. If another port on that bridge assumes the Root port role, then the old Root port moves into a discarding state as it assumes another port role.

A port on a non-root bridge with a Designated role starts in the discarding state. When that port becomes elected to the Root port role, 802.1W quickly places it into a forwarding state. However, if the Designated port is an Edge port, then the port starts and stays in a forwarding state and it cannot be elected as a Root port.

A port with an Alternate or Backup role is always in a discarding state. If the port role changes to Designated, then the port changes into a forwarding state.

If a port on one bridge has a Designated role and that port is connected to a port on another bridge that has an Alternate or Backup role, the port with a Designated role cannot be given a Root port role until two instances of the forward delay timer expires on that port.
**Edge port and non-edge port states**

As soon as a port is configured as an Edge port using the CLI, it goes into a forwarding state instantly (in less than 100 msec).

When the link to a port comes up and 802.1W detects that the port is an Edge port, that port instantly goes into a forwarding state.

If 802.1W detects that port as a non-edge port, the port state is changed as determined by the result of processing the received RST BPDU. The port state change occurs within four seconds of link up or after two hello timer expires on the port.

**Changes to port roles and states**

To achieve convergence in a topology, a port role and state changes as it receives and transmits new RST BPDUs. Changes in a port role and state constitute a topology change. Besides the superiority and inferiority of the RST BPDU, bridge-wide and per-port state machines are used to determine a port role as well as a port state. Port state machines also determine when port role and state changes occur.

**State machines**

The bridge uses the Port Role Selection state machine to determine if port role changes are required on the bridge. This state machine performs a computation when one of the following events occur:

- New information is received on any port on the bridge
- The timer expires for the current information on a port on the bridge

Each port uses the following state machines:

- **Port Information** – This state machine keeps track of spanning-tree information currently used by the port. It records the origin of the information and ages out any information that was derived from an incoming BPDU.

- **Port Role Transition** – This state machine keeps track of the current port role and transitions the port to the appropriate role when required. It moves the Root port and the Designated port into forwarding states and moves the Alternate and Backup ports into discarding states.

- **Port Transmit** – This state machine is responsible for BPDU transmission. It checks to ensure only the maximum number of BPDUs per hello interval are sent every second. Based on what mode it is operating in, it sends out either legacy BPDUs or RST BPDUs. In this document legacy BPDUs are also referred to as STP BPDUs.

- **Port Protocol Migration** – This state machine deals with compatibility with 802.1D bridges. When a legacy BPDU is detected on a port, this state machine configures the port to transmit and receive legacy BPDUs and operate in the legacy mode.

- **Topology Change** – This state machine detects, generates, and propagates topology change notifications. It acknowledges Topology Change Notice (TCN) messages when operating in 802.1D mode. It also flushes the MAC table when a topology change event takes place.

- **Port State Transition** – This state machine transitions the port to a discarding, learning, or forwarding state and performs any necessary processing associated with the state changes.

- **Port Timers** – This state machine is responsible for triggering any of the state machines described above, based on expiration of specific port timers.
In contrast to the 802.1D standard, the 802.1W standard does not have any bridge specific timers. All timers in the CLI are applied on a per-port basis, even though they are configured under bridge parameters.

802.1W state machines attempt to quickly place the ports into either a forwarding or discarding state. Root ports are quickly placed in forwarding state when both of the following events occur:

- It is assigned to be the Root port.
- It receives an RST BPDU with a proposal flag from a Designated port. The proposal flag is sent by ports with a Designated role when they are ready to move into a forwarding state.

When a the role of Root port is given to another port, the old Root port is instructed to reroot. The old Root port goes into a discarding state and negotiates with its peer port for a new role and a new state. A peer port is the port on the other bridge to which the port is connected. For example, in Figure 20, Port1 of Switch 200 is the peer port of Port2 of Switch 100.

A port with a Designated role is quickly placed into a forwarding state if one of the following occurs:

- The Designated port receives an RST BPDU that contains an agreement flag from a Root port
- The Designated port is an Edge port

However, a Designated port that is attached to an Alternate port or a Backup port must wait until the forward delay timer expires twice on that port while it is still in a Designated role, before it can proceed to the forwarding state.

Backup ports are quickly placed into discarding states.

Alternate ports are quickly placed into discarding states.

A port operating in 802.1W mode may enter a learning state to allow MAC entries to be added to the filtering database; however, this state is transient and lasts only a few milliseconds, if the port is operating in 802.1W mode and if the port meets the conditions for rapid transition.

**Handshake mechanisms**

To rapidly transition a Designated or Root port into a forwarding state, the Port Role Transition state machine uses handshake mechanisms to ensure loop free operations. It uses one type of handshake if no Root port has been assigned on a bridge, and another type if a Root port has already been assigned.

**Handshake when no root port is elected**

If a Root port has not been assigned on a bridge, 802.1W uses the **Proposing -> Proposed -> Sync -> Synced -> Agreed handshake:**

- **Proposing** – The Designated port on the root bridge sends an RST BPDU packet to its peer port that contains a proposal flag. The proposal flag is a signal that indicates that the Designated port is ready to put itself in a forwarding state (Figure 20). The Designated port continues to send this flag in its RST BPDU until it is placed in a forwarding state (Figure 23) or is forced to operate in 802.1D mode. (Refer to “Compatibility of 802.1W with 802.1D” on page 309).
- **Proposed** – When a port receives an RST BPDU with a proposal flag from the Designated port on its point-to-point link, it asserts the Proposed signal and one of the following occurs (Figure 20):
  - If the RST BPDU that the port receives is superior to what it can transmit, the port assumes the role of a Root port. (Refer to the section on “Bridges and bridge port roles” on page 282.)
  - If the RST BPDU that the port receives is inferior to what it can transmit, then the port is given the role of Designated port.
NOTE
Proposed will never be asserted if the port is connected on a shared media link.

In Figure 20, Port3/Switch 200 is elected as the Root port.

FIGURE 20  Proposing and proposed stage
• **Sync** – Once the Root port is elected, it sets a sync signal on all the ports on the bridge. The signal tells the ports to synchronize their roles and states (Figure 21). Ports that are non-edge ports with a role of Designated port change into a discarding state. These ports have to negotiate with their peer ports to establish their new roles and states.

**FIGURE 21** Sync stage
• **Synced** – Once the Designated port changes into a discarding state, it asserts a synced signal. Immediately, Alternate ports and Backup ports are synced. The Root port monitors the synced signals from all the bridge ports. Once all bridge ports asserts a synced signal, the Root port asserts its own synced signal (Figure 22).

**FIGURE 22**  Synced stage
Configuring STP related features

- **Agreed** – The Root port sends back an RST BPDU containing an agreed flag to its peer Designated port and moves into the forwarding state. When the peer Designated port receives the RST BPDU, it rapidly transitions into a forwarding state.

**FIGURE 23** Agree stage

At this point, the handshake mechanism is complete between Switch 100, the root bridge, and Switch 200.

Switch 200 updates the information on the Switch 200 Designated ports (Port2 and Port3) and identifies the new root bridge. The Designated ports send RST BPDUs, containing proposal flags, to their downstream bridges, without waiting for the hello timers to expire on them. This process starts the handshake with the downstream bridges.

For example, Port2/Switch 200 sends an RST BPDU to Port2/Switch 300 that contains a proposal flag. Port2/Switch 300 asserts a proposed signal. Ports in Switch 300 then set sync signals on the ports to synchronize and negotiate their roles and states. Then the ports assert a synced signal and when the Root port in Switch 300 asserts its synced signal, it sends an RST BPDU to Switch 200 with an agreed flag.

This handshake is repeated between Switch 200 and Switch 400 until all Designated and Root ports are in forwarding states.
Handshake when a root port has been elected

If a non-root bridge already has a Root port, 802.1W uses a different type of handshake. For example, in Figure 24, a new root bridge is added to the topology.

**FIGURE 24**  Addition of a new root bridge

The handshake that occurs between Switch 60 and Switch 100 follows the one described in the previous section ("Handshake when no root port is elected" on page 288). The former root bridge becomes a non-root bridge and establishes a Root port (Figure 25).

However, since Switch 200 already had a Root port in a forwarding state, 802.1W uses the Proposing -> Proposed -> Sync and Reroot -> Sync and Rerooted -> Rerooted and Synced -> Agreed handshake:
• **Proposing and Proposed** - The Designated port on the new root bridge (Port4/Switch 60) sends an RST BPDU that contains a proposing signal to Port4/Switch 200 to inform the port that it is ready to put itself in a forwarding state (Figure 25). 802.1W algorithm determines that the RST BPDU that Port4/Switch 200 received is superior to what it can generate, so Port4/Switch 200 assumes a Root port role.

**FIGURE 25** New root bridge sending a proposal flag
• **Sync and Reroot** – The Root port then asserts a sync and a reroot signal on all the ports on the bridge. The signal tells the ports that a new Root port has been assigned and they are to renegotiate their new roles and states. The other ports on the bridge assert their sync and reroot signals. Information about the old Root port is discarded from all ports. Designated ports change into discarding states (Figure 26).

**FIGURE 26** Sync and reroot

![Sync and Reroot Diagram]

- Indicates a signal
• **Sync and Rerooted** – When the ports on Switch 200 have completed the reroot phase, they assert their rerooted signals and continue to assert their sync signals as they continue in their discarding states. They also continue to negotiate their roles and states with their peer ports (Figure 27).

**FIGURE 27**  Sync and rerooted

- Indicates an 802.1W signal controlled by the current Root port
• **Synced and Agree** – When all the ports on the bridge assert their synced signals, the new Root port asserts its own synced signal and sends an RST BPDU to Port4/Switch 60 that contains an agreed flag (Figure 27). The Root port also moves into a forwarding state.

**FIGURE 28** Rerooted, synced, and agreed

The old Root port on Switch 200 becomes an Alternate Port (Figure 29). Other ports on that bridge are elected to appropriate roles.
The Designated port on Switch 60 goes into a forwarding state once it receives the RST BPDU with the agreed flag.

**FIGURE 29** Handshake completed after election of new root port

Recall that Switch 200 sent the agreed flag to Port4/Switch 60 and not to Port1/Switch 100 (the port that connects Switch 100 to Switch 200). Therefore, Port1/Switch 100 does not go into forwarding state instantly. It waits until two instances of the forward delay timer expires on the port before it goes into forwarding state.

At this point the handshake between the Switch 60 and Switch 200 is complete.

The remaining bridges (Switch 300 and Switch 400) may have to go through the reroot handshake if a new Root port needs to be assigned.

**Convergence in a simple topology**

The examples in this section illustrate how 802.1W convergence occurs in a simple Layer 2 topology at start-up.

**NOTE**
The remaining examples assume that the appropriate handshake mechanisms occur as port roles and states change.
Convergence at start up

In Figure 30, two bridges Switch 2 and Switch 3 are powered up. There are point-to-point connections between Port3/Switch 2 and Port3/Switch 3.

**FIGURE 30  Convergence between two bridges**

At power up, all ports on Switch 2 and Switch 3 assume Designated port roles and are at discarding states before they receive any RST BPDU.

Port3/Switch 2, with a Designated role, transmits an RST BPDU with a proposal flag to Port3/Switch 3. A ports with a Designated role sends the proposal flag in its RST BPDU when they are ready to move to a forwarding state.

Port3/Switch 3, which starts with a role of Designated port, receives the RST BPDU and finds that it is superior to what it can transmit; therefore, Port3/Switch 3 assumes a new port role, that of a Root port. Port3/Switch 3 transmits an RST BPDU with an agreed flag back to Switch 2 and immediately goes into a forwarding state.

Port3/Switch 2 receives the RST BPDU from Port3/Switch 3 and immediately goes into a forwarding state.

Now 802.1W has fully converged between the two bridges, with Port3/Switch 3 as an operational root port in forwarding state and Port3/Switch 2 as an operational Designated port in forwarding state.
Next, Switch 1 is powered up (Figure 31).

**FIGURE 31** Simple Layer 2 topology

The point-to-point connections between the three bridges are as follows:

- Port2/Switch 1 and Port2/Switch 2
- Port4/Switch 1 and Port4/Switch 3
- Port3/Switch 2 and Port3/Switch 3

Ports 3 and 5 on Switch 1 are physically connected together.

At start up, the ports on Switch 1 assume Designated port roles, which are in discarding state. They begin sending RST BPDUs with proposal flags to move into a forwarding state.

When Port4/Switch 3 receives these RST BPDUs 802.1W algorithm determines that they are better than the RST BPDUs that were previously received on Port3/Switch 3. Port4/Switch 3 is now selected as Root port. This new assignment signals Port3/Switch 3 to begin entering the discarding state and to assume an Alternate port role. As it goes through the transition, Port3/Switch 3 negotiates a new role and state with its peer port, Port3/Switch 2.

Port4/Switch 3 sends an RST BPDU with an agreed flag to Port4/Switch 1. Both ports go into forwarding states.

Port2/Switch 2 receives an RST BPDU. The 802.1W algorithm determines that these RST BPDUs that are superior to any that any port on Switch 2 can transmit; therefore, Port2/Switch 2 assumes the role of a Root port.

The new Root port then signals all ports on the bridge to start synchronization. Since none of the ports are Edge ports, they all enter the discarding state and assume the role of Designated ports. Port3/Switch 2, which previously had a Designated role with a forwarding state, starts the discarding state. They also negotiate port roles and states with their peer ports. Port3/Switch 2 also sends an RST BPU to Port3/Switch 3 with a proposal flag to request permission go into a forwarding state.
The Port2/Switch 2 bridge also sends an RST BPDU with an agreed flag Port2/Switch 1 that Port2 is the new Root port. Both ports go into forwarding states.

Now, Port3/Switch 3 is currently in a discarding state and is negotiating a port role. It received RST BPDUs from Port3/Switch 2. The 802.1W algorithm determines that the RST BPDUs Port3/Switch 3 received are superior to those it can transmit; however, they are not superior to those that are currently being received by the current Root port (Port4). Therefore, Port3 retains the role of Alternate port.

Ports 3/Switch 1 and Port5/Switch 1 are physically connected. Port5/Switch 1 received RST BPDUs that are superior to those received on Port3/Switch 1; therefore, Port5/Switch 1 is given the Backup port role while Port3 is given the Designated port role. Port3/Switch 1, does not go directly into a forwarding state. It waits until the forward delay time expires twice on that port before it can proceed to the forwarding state.

Once convergence is achieved, the active Layer 2 forwarding path converges as shown in Figure 32.

**FIGURE 32** Active Layer 2 path

**Convergence after a link failure**

What happens if a link in the 802.1W topology fails?
For example, Port2/Switch, which is the port that connects Switch 2 to the root bridge (Switch 1), fails. Both Switch 2 and Switch 1 notice the topology change (Figure 33).

**FIGURE 33**  Link failure in the topology

Switch 1 sets its Port2 into a discarding state.

At the same time, Switch 2 assumes the role of a root bridge since its root port failed and it has no operational Alternate port. Port3/Switch 2, which currently has a Designated port role, sends an RST BPDU to Switch 3. The RST BPDU contains a proposal flag and a bridge ID of Switch 2 as its root bridge ID.

When Port3/Switch 3 receives the RST BPDU, 802.1W algorithm determines that they are inferior to those that the port can transmit. Therefore, Port3/Switch 3 is given a new role, that of a Designated port. Port3/Switch 3 then sends an RST BPDU with a proposal flag to Switch 2, along with the new role information. However, the root bridge ID transmitted in the RST BPDU is still Switch 1.

When Port3/Switch 2 receives the RST BPDU, 802.1W algorithm determines that it is superior to the RST BPDU that it can transmit; therefore, Port3/Switch 2 receives a new role; that of a Root port. Port3/Switch 2 then sends an RST BPDU with an agreed flag to Port3/Switch 3. Port3/Switch 2 goes into a forwarding state.

When Port3/Switch 3 receives the RST BPDU that Port3/Switch 2 sent, Port3/Switch 3 changes into a forwarding state, which then completes the full convergence of the topology.

**Convergence at link restoration**

When Port2/Switch 2 is restored, both Switch 2 and Switch 1 recognize the change. Port2/Switch 1 starts assuming the role of a Designated port and sends an RST BPDU containing a proposal flag to Port2/Switch 2.
When Port2/Switch 2 receives the RST BPDUs, 802.1W algorithm determines that the RST BPDUs the port received are better than those received on Port3/Switch 3; therefore, Port2/Switch 2 is given the role of a Root port. All the ports on Switch 2 are informed that a new Root port has been assigned which then signals all the ports to synchronize their roles and states. Port3/Switch 2, which was the previous Root port, enters a discarding state and negotiates with other ports on the bridge to establish its new role and state, until it finally assumes the role of a Designated port.

Next, the following happens:

- Port3/Switch 2, the Designated port, sends an RST BPDU, with a proposal flag to Port3/Switch 3.
- Port2/Switch 2 also sends an RST BPDU with an agreed flag to Port2/Switch 1 and then places itself into a forwarding state.

When Port2/Switch 1 receives the RST BPDU with an agreed flag sent by Port2/Switch 2, it puts that port into a forwarding state. The topology is now fully converged.

When Port3/Switch 3 receives the RST BPDU that Port3/Switch 2 sent, 802.1W algorithm determines that these RST BPDUs are superior to those that Port3/Switch 3 can transmit. Therefore, Port3/Switch 3 is given a new role, that of an Alternate port. Port3/Switch 3 immediately enters a discarding state.

Now Port3/Switch 2 does not go into a forwarding state instantly like the Root port. It waits until the forward delay timer expires twice on that port while it is still in a Designated role, before it can proceed to the forwarding state. The wait, however, does not cause a denial of service, since the essential connectivity in the topology has already been established.

When fully restored, the topology is the same as that shown on Figure 31.
Convergence in a complex 802.1W topology

The following is an example of a complex 802.1W topology.

**FIGURE 34** Complex 802.1W topology

In Figure 34, Switch 5 is selected as the root bridge since it is the bridge with the highest priority. Lines in the figure show the point-to-point connection to the bridges in the topology.

Switch 5 sends an RST BPDU that contains a proposal flag to Port5/Switch 2. When handshakes are completed in Switch 5, Port5/Switch 2 is selected as the Root port on Switch 2. All other ports on Switch 2 are given Designated port role with discarding states.

Port5/Switch 2 then sends an RST BPDU with an agreed flag to Switch 5 to confirm that it is the new Root port and the port enters a forwarding state. Port7 and Port8 are informed of the identity of the new Root port. 802.1W algorithm selects Port7 as the Designated port while Port8 becomes the Backup port.

Port3/Switch 5 sends an RST BPDU to Port3/Switch 6 with a proposal flag. When Port3/Switch 5 receives the RST BPDU, handshake mechanisms select Port3 as the Root port of Switch 6. All other ports on Switch 2 are given a Designated port role with discarding states. Port3/Switch 6 then sends an RST BPDU with an agreed flag to Port3/Switch 5 to confirm that it is the Root port. The Root port then goes into a forwarding state.

Now, Port4/Switch 6 receives RST BPDUs that are superior to what it can transmit; therefore, it is given the Alternate port role. The port remains in discarding state.

Port5/Switch 6 receives RST BPDUs that are inferior to what it can transmit. The port is then given a Designated port role.
Next Switch 2 sends RST BPDUs with a proposal flag to Port3/Switch 4. Port3 becomes the Root port for the bridge; all other ports are given a Designated port role with discarding states. Port3/Switch 4 sends an RST BPDU with an agreed flag to Switch 2 to confirm that it is the new Root port. The port then goes into a forwarding state.

Now Port4/Switch 4 receives an RST BPDU that is superior to what it can transmit. The port is then given an Alternate port role, and remains in discarding state.

Likewise, Port5/Switch 4 receives an RST BPDU that is superior to what it can transmit. The port is also given an Alternate port role, and remains in discarding state.

Port2/Switch 2 transmits an RST BPDU with a proposal flag to Port2/Switch 1. Port2/Switch 1 becomes the Root port. All other ports on Switch 1 are given Designated port roles with discarding states.

Port2/Switch 1 sends an RST BPDU with an agreed flag to Port2/Switch 2 and Port2/Switch 1 goes into a forwarding state.

Port3/Switch 1 receives an RST BPDUs that is inferior to what it can transmit; therefore, the port retains its Designated port role and goes into forwarding state only after the forward delay timer expires twice on that port while it is still in a Designated role.

Port3/Switch 2 sends an RST BPDU to Port3/Switch 3 that contains a proposal flag. Port3/Switch 3 becomes the Root port, while all other ports on Switch 3 are given Designated port roles and go into discarding states. Port3/Switch 3 sends an RST BPDU with an agreed flag to Port3/Switch 2 and Port3/Switch 3 goes into a forwarding state.

Now, Port2/Switch 3 receives an RST BPDUs that is superior to what it can transmit so that port is given an Alternate port state.

Port4/Switch 3 receives an RST BPDU that is inferior to what it can transmit; therefore, the port retains its Designated port role.

Ports on all the bridges in the topology with Designated port roles that received RST BPDUs with agreed flags go into forwarding states instantly. However, Designated ports that did not receive RST BPDUs with agreed flags must wait until the forward delay timer expires twice on those port. Only then will these port move into forwarding states.

The entire 802.1W topology converges in less than 300 msec and the essential connectivity is established between the designated ports and their connected root ports.
After convergence is complete, Figure 35 shows the active Layer 2 path of the topology in Figure 34.

**FIGURE 35  Active Layer 2 path in complex topology**

![Complex Topology Diagram](image)

**Propagation of topology change**

The Topology Change state machine generates and propagates the topology change notification messages on each port. When a Root port or a Designated port goes into a forwarding state, the Topology Change state machine on those ports send a topology change notice (TCN) to all the bridges in the topology to propagate the topology change.

**NOTE**

Edge ports, Alternate ports, or Backup ports do not need to propagate a topology change.

The TCN is sent in the RST BPDU that a port sends. Ports on other bridges in the topology then acknowledge the topology change once they receive the RST BPDU, and send the TCN to other bridges until all the bridges are informed of the topology change.
For example, Port3/Switch 2 in Figure 36, fails. Port4/Switch 3 becomes the new Root port. Port4/Switch 3 sends an RST BPDU with a TCN to Port4/Switch 4. To propagate the topology change, Port4/Switch 4 then starts a TCN timer on itself, on the bridge Root port, and on other ports on that bridge with a Designated role. Then Port3/Switch 4 sends RST BPDU with the TCN to Port4/Switch 2. (Note the new active Layer 2 path in Figure 36.)

**FIGURE 36  Beginning of topology change notice**

Switch 2 then starts the TCN timer on the Designated ports and sends RST BPDUs that contain the TCN as follows (Figure 37):

- Port5/Switch 2 sends the TCN to Port2/Switch 5
- Port4/Switch 2 sends the TCN to Port4/Switch 6
- Port2/Switch 2 sends the TCN to Port2/Switch 1

**FIGURE 37  Sending TCN to bridges connected to Switch 2**

Indicates the active Layer 2 path

Indicates direction of TCN
Then Switch 1, Switch 5, and Switch 6 send RST BPDUs that contain the TCN to Switch 3 and Switch 4 to complete the TCN propagation (Figure 38).

**FIGURE 38  Completing the TCN propagation**

Compatibility of 802.1W with 802.1D

802.1W-enabled bridges are backward compatible with IEEE 802.1D bridges. This compatibility is managed on a per-port basis by the Port Migration state machine. However, intermixing the two types of bridges in the network topology is not advisable if you want to take advantage of the rapid convergence feature.

Compatibility with 802.1D means that an 802.1W-enabled port can send BPDUs in the STP or 802.1D format when one of the following events occur:

- The port receives a legacy BPDU. A legacy BPDU is an STP BPDU or a BPDU in an 802.1D format. The port that receives the legacy BPDU automatically configures itself to behave like a legacy port. It sends and receives legacy BPDUs only.
- The entire bridge is configured to operate in an 802.1D mode when an administrator sets the bridge parameter to zero at the CLI, forcing all ports on the bridge to send legacy BPDUs only.

Once a port operates in the 802.1D mode, 802.1D convergence times are used and rapid convergence is not realized.
For example, in Figure 39, Switch 10 and Switch 30 receive legacy BPDUs from Switch 20. Ports on Switch 10 and Switch 30 begin sending BPDUs in STP format to allow them to operate transparently with Switch 20.

**FIGURE 39  802.1W bridges with an 802.1D bridge**

![Diagram of 802.1W bridges with an 802.1D bridge](image)

Once Switch 20 is removed from the LAN, Switch 10 and Switch 30 receive and transmit BPDUs in the STP format to and from each other. This state will continue until the administrator enables the `force-migration-check` command to force the bridge to send RSTP BPDU during a migrate time period. If ports on the bridges continue to hear only STP BPDUs after this migrate time period, those ports will return to sending STP BPDUs. However, when the ports receive RST BPDUs during the migrate time period, the ports begin sending RST BPDUs. The migrate time period is non-configurable. It has a value of three seconds.

**NOTE**
The IEEE standards state that 802.1W bridges need to interoperate with 802.1D bridges. IEEE standards set the path cost of 802.1W bridges to be between 1 and 200,000,000; whereas path cost of 802.1D bridges are set between 1 and 65,535. In order for the two bridge types to be able to interoperate in the same topology, the administrator needs to configure the bridge path cost appropriately. Path costs for either 802.1W bridges or 802.1D bridges need to be changed; in most cases, path costs for 802.1W bridges need to be changed.

**Configuring 802.1W parameters on a Brocade device**

The remaining 802.1W sections explain how to configure the 802.1W protocol in a Brocade device.

**NOTE**
With RSTP running, enabling static trunk on ports that are members of VLAN 4000 will keep the system busy for 20 to 25 seconds.

Brocade devices are shipped from the factory with 802.1W disabled. Use the following methods to enable or disable 802.1W. You can enable or disable 802.1W at the following levels:

- **Port-based VLAN** – Affects all ports within the specified port-based VLAN. When you enable or disable 802.1W within a port-based VLAN, the setting overrides the global setting. Thus, you can enable 802.1W for the ports within a port-based VLAN even when 802.1W is globally disabled, or disable the ports within a port-based VLAN when 802.1W is globally enabled.
- **Individual port** – Affects only the individual port. However, if you change the 802.1W state of the primary port in a trunk group, the change affects all ports in the trunk group.

**Enabling or disabling 802.1W in a port-based VLAN**

Use the following procedure to disable or enable 802.1W on a device on which you have configured a port-based VLAN. Changing the 802.1W state in a VLAN affects only that VLAN.
To enable 802.1W for all ports in a port-based VLAN, enter commands such as the following.

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)#spanning-tree 802-1w
```

**Syntax:** `[no] spanning-tree 802-1w`

**Note regarding pasting 802.1W settings into the running configuration**

If you paste 802.1W settings into the running configuration, and the pasted configuration includes ports that are already up, the ports will initially operate in STP legacy mode before operating in 802.1W RSTP mode. For example, the following pasted configuration will cause ports e 1 and e 2 to temporarily operate in STP legacy mode, because these ports are already up and running.

```
conf t
vlan 120
tag e 1 to e 2
spanning-tree 802-1w
spanning-tree 802-1w priority 1001
end
```

To avoid this issue, 802.1W commands/settings that are pasted into the configuration should be in the following order.

1. Ports that are not yet connected
2. 802.1W RSTP settings
3. Ports that are already up

**Example**

```
conf t
vlan 120
untag e 3
spanning-tree 802-1w
spanning-tree 802-1w priority 1001
tag e 1 to 2
end
```

In the above configuration, untagged port e3 is added to VLAN 120 before the 802.1W RSTP settings, and ports e1 and e2 are added after the 802.1W RSTP settings. When these commands are pasted into the running configuration, the ports will properly operate in 802.1W RSTP mode.

**Enabling or disabling 802.1W on a single spanning tree**

To enable 802.1W for all ports of a single spanning tree, enter a command such as the following.

```
FastIron(config-vlan-10)#spanning-tree single 802-1w
```

**Syntax:** `[no] spanning-tree single 802-1w`

**Disabling or enabling 802.1W on an individual port**

The `spanning-tree 802-1w` or `spanning-tree single 802-1w` command must be used to initially enable 802.1W on ports. Both commands enable 802.1W on all ports that belong to the VLAN or to the single spanning tree.

Once 802.1W is enabled on a port, it can be disabled on individual ports. 802.1W that have been disabled on individual ports can then be enabled as required.
NOTE
If you change the 802.1W state of the primary port in a trunk group, the change affects all ports in that trunk group.

To disable or enable 802.1W on an individual port, enter commands such as the following.

FastIron(config)#interface e 1
FastIron(config-if-e1000-1)#no spanning-tree

Syntax: [no] spanning-tree

Changing 802.1W bridge parameters
When you make changes to 802.1W bridge parameters, the changes are applied to individual ports on the bridge. To change 802.1W bridge parameters, use the following methods.

To designate a priority for a bridge, enter a command such as the following.

FastIron(config)#spanning-tree 802-1w priority 10

The command in this example changes the priority on a device on which you have not configured port-based VLANs. The change applies to the default VLAN. If you have configured a port-based VLAN on the device, you can configure the parameters only at the configuration level for individual VLANs. Enter commands such as the following.

FastIron(config)#vlan 20
FastIron(config-vlan-20)#spanning-tree 802-1w priority 0

To make this change in the default VLAN, enter the following commands.

FastIron(config)#vlan 1
FastIron(config-vlan-1)#spanning-tree 802-1w priority 0

Syntax: spanning-tree 802-1w [forward-delay <value>] | [hello-time <value>] | [max-age <time>] | [force-version <value>] | [priority <value>]

The forward-delay <value> parameter specifies how long a port waits before it forwards an RST BPDU after a topology change. This can be a value from 4 – 30 seconds. The default is 15 seconds.

The hello-time <value> parameter specifies the interval between two hello packets. This parameter can have a value from 1 – 10 seconds. The default is 2 seconds.

The max-age <value> parameter specifies the amount of time the device waits to receive a hello packet before it initiates a topology change. You can specify a value from 6 – 40 seconds. The default is 20 seconds.

The value of max-age must be greater than the value of forward-delay to ensure that the downstream bridges do not age out faster than the upstream bridges (those bridges that are closer to the root bridge).

The force-version <value> parameter forces the bridge to send BPDUs in a specific format. You can specify one of the following values:

- 0 – The STP compatibility mode. Only STP (or legacy) BPDUs will be sent.
- 2 – The default. RST BPDUs will be sent unless a legacy bridge is detected. If a legacy bridge is detected, STP BPDUs will be sent instead.

The default is 2.
The **priority** `<value>` parameter specifies the priority of the bridge. You can enter a value from 0 – 65535. A lower numerical value means the bridge has a higher priority. Thus, the highest priority is 0. The default is 32768.

You can specify some or all of these parameters on the same command line. If you specify more than one parameter, you must specify them in the order shown above, from left to right.

**Changing port parameters**

The 802.1W port commands can be enabled on individual ports or on multiple ports, such as all ports that belong to a VLAN.

The 802.1W port parameters are preconfigured with default values. If the default parameters meet your network requirements, no other action is required.

You can change the following 802.1W port parameters using the following method.

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)#spanning-tree 802-1w ethernet 5 path-cost 15 priority 64
```

**Syntax:** `spanning-tree 802-1w ethernet [<stack-unit>/]<slotnum/>[<portnum>] path-cost <value> | priority <value> | [admin-edge-port] | [admin-pt2pt-mac] | [force-migration-check]`

The `<portnum>` parameter specifies the interface used. If you are configuring a chassis device, specify the slot number as well as the port number (`<slotnum>/` `<portnum>`).

The **path-cost** `<value>` parameter specifies the cost of the port path to the root bridge. 802.1W prefers the path with the lowest cost. You can specify a value from 1 – 20,000,000. Table 74 shows the recommended path cost values from the IEEE standards.

**TABLE 74** Recommended path cost values of 802.1W

<table>
<thead>
<tr>
<th>Link speed</th>
<th>Recommended (Default) 802.1W path cost values</th>
<th>Recommended 802.1W patch cost range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 100 kilobits per second</td>
<td>200,000,000</td>
<td>20,000,000 – 200,000,000</td>
</tr>
<tr>
<td>1 Megabit per second</td>
<td>20,000,000</td>
<td>2,000,000 – 200,000,000</td>
</tr>
<tr>
<td>10 Megabits per second</td>
<td>2,000,000</td>
<td>200,000 – 200,000,000</td>
</tr>
<tr>
<td>100 Megabits per second</td>
<td>200,000</td>
<td>20,000 – 200,000,000</td>
</tr>
<tr>
<td>1 Gbps per second</td>
<td>20,000</td>
<td>2,000 – 200,000,000</td>
</tr>
<tr>
<td>10 Gbps per second</td>
<td>2,000</td>
<td>200 – 20,000</td>
</tr>
<tr>
<td>100 Gbps per second</td>
<td>200</td>
<td>20 – 2,000</td>
</tr>
<tr>
<td>1 Terabits per second</td>
<td>20</td>
<td>2 – 200</td>
</tr>
<tr>
<td>10 Terabits per second</td>
<td>2</td>
<td>1 – 20</td>
</tr>
</tbody>
</table>

The **priority** `<value>` parameter specifies the preference that 802.1W gives to this port relative to other ports for forwarding traffic out of the topology. Y

- In releases prior to 03.0.00, you can specify a value from 8 – 252, in increments of 4. If you enter a value that is not divisible by four the software rounds to the nearest value that is. The default is 128. A higher numerical value means a lower priority; thus, the highest priority is 8.
- Starting in software release 03.0.00, you can specify a value from 0 – 240, in increments of 16. If you enter a value that is not divisible by 16, the software returns an error message. The default value is 128. A higher numerical value means a lower priority; thus, the highest priority is 0.
Set the **admin-edge-port** to enabled or disabled. If set to enabled, then the port becomes an edge port in the domain.

Set the **admin-pt2pt-mac** to enabled or disabled. If set to enabled, then a port is connected to another port through a point-to-point link. The point-to-point link increases the speed of convergence. This parameter, however, does not auto-detect whether or not the link is a physical point-to-point link.

The **force-migration-check** parameter forces the specified port to sent one RST BPDU. If only STP BPDUs are received in response to the sent RST BPDU, then the port will go return to sending STP BPDUs.

**Example**

Suppose you want to enable 802.1W on a system with no active port-based VLANs and change the hello-time from the default value of 2 to 8 seconds. Additionally, suppose you want to change the path and priority costs for port 5 only. To do so, enter the following commands.

```
FastIron(config)#spanning-tree 802-1w hello-time 8
FastIron(config)#spanning-tree 802-1w ethernet 5 path-cost 15 priority 64
```

**Displaying information about 802-1W**

To display a summary of 802-1W, use the following command.

```
FastIron#show 802-1w
```

```
--- VLAN 1 [STP Instance owned by VLAN 1] ----------------------------
VLAN 1 BPDU cam_index is 2 and the IGC and DMA master Are(HEX) 0 1 2 3
Bridge IEEE 802.1W Parameters:
 Bridge Identifier MaxAge Hello FwdDly Version Hold
 hex sec sec sec cnt
 800000e080541700 20 2 15 Default 3

RootBridge Identifier Cost dge Identifier Port Age Dly lo
 hex hex sec sec sec
 800000e0804c9c00 200000 800000e0804c9c00 1 20 15 2

Port IEEE 802.1W Parameters:
 Port Pri PortPath P2P Edge Role State Designated
 Num Cost Mac Port Designated
ted cost bridge
 1 128 200000 F F ROOT FORWARDING 0 800000e0804c9c00
 2 128 200000 F F DESIGNATED FORWARDING 200000 800000e080541700
 3 128 200000 F F DESIGNATED FORWARDING 200000 800000e080541700
 4 128 200000 F F BACKUP DISCARDING 200000 800000e080541700

Syntax: show 802-1w [vlan <vlan-id>]

The **vlan** *<vlan-id>* parameter displays 802.1W information for the specified port-based VLAN.

The **show 802.1w** command shows the information listed in Table 75.
TABLE 75 CLI display of 802.1W summary

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>The port-based VLAN that owns the STP instance. VLAN 1 is the default VLAN. If you have not configured port-based VLANs on this device, all 802.1W information is for VLAN 1.</td>
</tr>
<tr>
<td>Bridge IEEE 802.1W parameters</td>
<td></td>
</tr>
<tr>
<td>Bridge Identifier</td>
<td>The ID of the bridge.</td>
</tr>
<tr>
<td>Bridge Max Age</td>
<td>The configured max age for this bridge. The default is 20.</td>
</tr>
<tr>
<td>Bridge Hello</td>
<td>The configured hello time for this bridge. The default is 2.</td>
</tr>
<tr>
<td>Bridge FwdDly</td>
<td>The configured forward delay time for this bridge. The default is 15.</td>
</tr>
<tr>
<td>Force-Version</td>
<td>The configured force version value. One of the following values is displayed:</td>
</tr>
<tr>
<td></td>
<td>• 0 – The bridge has been forced to operate in an STP compatibility mode.</td>
</tr>
<tr>
<td></td>
<td>• 2 – The bridge has been forced to operate in an 802.1W mode. (This is the default.)</td>
</tr>
<tr>
<td>txHoldCnt</td>
<td>The number of BPDUs that can be transmitted per Hello Interval. The default is 3.</td>
</tr>
<tr>
<td>Root Bridge Identifier</td>
<td>ID of the Root bridge that is associated with this bridge</td>
</tr>
<tr>
<td>Root Path Cost</td>
<td>The cost to reach the root bridge from this bridge. If the bridge is the root bridge, then this parameter shows a value of zero.</td>
</tr>
<tr>
<td>Designated Bridge Identifier</td>
<td>The bridge from where the root information was received. It can be from the root bridge itself, but it could also be from another bridge.</td>
</tr>
<tr>
<td>Root Port</td>
<td>The port on which the root information was received. This is the port that is connected to the Designated Bridge.</td>
</tr>
<tr>
<td>Max Age</td>
<td>The max age is derived from the Root port. An 802.1W-enabled bridge uses this value, along with the hello and message age parameters to compute the effective age of an RST BPDU. The message age parameter is generated by the Designated port and transmitted in the RST BPDU. RST BPDU transmitted by a Designated port of the root bridge contains a message value of zero. Effective age is the amount of time the Root port, Alternate port, or Backup port retains the information it received from its peer Designated port. Effective age is reset every time a port receives an RST BPDU from its Designated port. If a Root port does not receive an RST BPDU from its peer Designated port for a duration more than the effective age, the Root port ages out the existing information and recomputes the topology. If the port is operating in 802.1D compatible mode, then max age functionality is the same as in 802.1D (STP).</td>
</tr>
</tbody>
</table>
To display detailed information about 802.1W, using the following command.

```text
To display detailed information about 802-1W, using the following command.
```
Syntax: `show 802-1w detail [vlan <vlan-id>]`

The `vlan <vlan-id>` parameter displays 802.1W information for the specified port-based VLAN.

The `show spanning-tree 802.1W` command shows the following information.

TABLE 76 CLI display of show spanning-tree 802.1W

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>ID of the VLAN that owns the instance of 802.1W and whether or not it is active.</td>
</tr>
<tr>
<td>Bridge ID</td>
<td>ID of the bridge.</td>
</tr>
<tr>
<td>forceVersion</td>
<td>the configured version of the bridge:</td>
</tr>
<tr>
<td></td>
<td>• 0 - The bridge has been forced to operate in an STP compatible mode.</td>
</tr>
<tr>
<td></td>
<td>• 2 - The bridge has been forced to operate in an 802.1W mode.</td>
</tr>
<tr>
<td>txHoldCount</td>
<td>The number of BPDUs that can be transmitted per Hello Interval. The default is 3.</td>
</tr>
<tr>
<td>Port</td>
<td>ID of the port in slot#/port# format.</td>
</tr>
<tr>
<td>Role</td>
<td>The current role of the port:</td>
</tr>
<tr>
<td></td>
<td>• Root</td>
</tr>
<tr>
<td></td>
<td>• Designated</td>
</tr>
<tr>
<td></td>
<td>• Alternate</td>
</tr>
<tr>
<td></td>
<td>• Backup</td>
</tr>
<tr>
<td></td>
<td>• Disabled</td>
</tr>
</tbody>
</table>

Refer to “Bridges and bridge port roles” on page 282 for definitions of the roles.
Configuring STP related features

TABLE 76 CLI display of show spanning-tree 802.1W (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>The port current 802.1W state. A port can have one of the following states:</td>
</tr>
<tr>
<td></td>
<td>- Forwarding</td>
</tr>
<tr>
<td></td>
<td>- Discarding</td>
</tr>
<tr>
<td></td>
<td>- Learning</td>
</tr>
<tr>
<td></td>
<td>- Disabled</td>
</tr>
<tr>
<td></td>
<td>Refer to “Bridge port states” on page 286 and “Edge port and non-edge port states” on page 287.</td>
</tr>
<tr>
<td>Path Cost</td>
<td>The configured path cost on a link connected to this port.</td>
</tr>
<tr>
<td>Priority</td>
<td>The configured priority of the port. The default is 128 or 0x80.</td>
</tr>
<tr>
<td>AdminOperEdge</td>
<td>Indicates if the port is an operational Edge port. Edge ports may either be auto-detected or configured (forced) to be Edge ports using the CLI:</td>
</tr>
<tr>
<td></td>
<td>- T – The port is an Edge port.</td>
</tr>
<tr>
<td></td>
<td>- F – The port is not an Edge port. This is the default.</td>
</tr>
<tr>
<td>AdminP2PMac</td>
<td>Indicates if the point-to-point-mac parameter is configured to be a point-to-point link:</td>
</tr>
<tr>
<td></td>
<td>- T – The link is a point-to-point link</td>
</tr>
<tr>
<td></td>
<td>- F – The link is not a point-to-point link. This is the default.</td>
</tr>
<tr>
<td>DesignatedPriority</td>
<td>Shows the following:</td>
</tr>
<tr>
<td></td>
<td>- Root – Shows the ID of the root bridge for this bridge.</td>
</tr>
<tr>
<td></td>
<td>- Bridge – Shows the ID of the Designated bridge that is associated with this port.</td>
</tr>
<tr>
<td>ActiveTimers</td>
<td>Shows what timers are currently active on this port and the number of seconds they have before they expire:</td>
</tr>
<tr>
<td></td>
<td>- rrWhile – Recent root timer. A non-zero value means that the port has recently been a Root port.</td>
</tr>
<tr>
<td></td>
<td>- rcvdInfoWhile – Received information timer. Shows the time remaining before the information held by this port expires (ages out). This timer is initialized with the effective age parameter.</td>
</tr>
<tr>
<td></td>
<td>(Refer to “Max Age” on page 315.)</td>
</tr>
<tr>
<td></td>
<td>- rbWhile – Recent backup timer. A non-zero value means that the port has recently been a Backup port.</td>
</tr>
<tr>
<td></td>
<td>- helloWhen – Hello period timer. The value shown is the amount of time between hello messages.</td>
</tr>
<tr>
<td></td>
<td>- tcWhile – Topology change timer. The value shown is the interval when topology change notices can be propagated on this port.</td>
</tr>
<tr>
<td></td>
<td>- fdWhile – Forward delay timer.</td>
</tr>
<tr>
<td></td>
<td>- mdelayWhile – Migration delay timer. The amount of time that a bridge on the same LAN has to synchronize its migration state with this port before another BPDU type can cause this port to change the BPDU that it transmits.</td>
</tr>
</tbody>
</table>
As an alternative to full 802.1W, you can configure 802.1W Draft 3. 802.1W Draft 3 provides a subset of the RSTP capabilities described in the 802.1W STP specification.

802.1W Draft 3 support is disabled by default. When the feature is enabled, if a root port on a Brocade device that is not the root bridge becomes unavailable, the device can automatically Switch over to an alternate root port, without reconvergence delays. 802.1W Draft 3 does not apply to the root bridge, since all the root bridge ports are always in the forwarding state.

Figure 40 shows an example of an optimal STP topology. In this topology, all the non-root bridges have at least two paths to the root bridge (Switch 1 in this example). One of the paths is through the root port. The other path is a backup and is through the alternate port. While the root port is in the forwarding state, the alternate port is in the blocking state.

FIGURE 40 802.1W Draft 3 RSTP ready for failover

TABLE 76 CLI display of show spanning-tree 802.1W (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine States</td>
<td>The current states of the various state machines on the port:</td>
</tr>
<tr>
<td></td>
<td>• PIM – State of the Port Information state machine.</td>
</tr>
<tr>
<td></td>
<td>• PRT – State of the Port Role Transition state machine.</td>
</tr>
<tr>
<td></td>
<td>• PST – State of the Port State Transition state machine.</td>
</tr>
<tr>
<td></td>
<td>• TCM – State of the Topology Change state machine.</td>
</tr>
<tr>
<td></td>
<td>• PPM – State of the Port Protocol Migration.</td>
</tr>
<tr>
<td></td>
<td>• PTX – State of the Port Transmit state machine.</td>
</tr>
<tr>
<td></td>
<td>Refer to the section "State machines" on page 287 for details on state machines.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received</td>
<td>Shows the number of BPDU types the port has received:</td>
</tr>
<tr>
<td></td>
<td>• RST BPDU – BPDU in 802.1W format.</td>
</tr>
<tr>
<td></td>
<td>• Config BPDU – Legacy configuration BPDU (802.1D format).</td>
</tr>
<tr>
<td></td>
<td>• TCN BPDU – Legacy topology change BPDU (802.1D format).</td>
</tr>
</tbody>
</table>
If the root port on a Switch becomes unavailable, 802.1W Draft 3 immediately fails over to the alternate port, as shown in Figure 41.

FIGURE 41 802.1W Draft 3 RSTP failover to alternate root port
In this example, port 3/3 on Switch 3 has become unavailable. In standard STP (802.1D), if the root port becomes unavailable, the Switch must go through the listening and learning stages on the alternate port to reconverge with the spanning tree. Thus, port 3/4 must go through the listening and learning states before entering the forwarding state and thus reconverging with the spanning tree.

802.1W Draft 3 avoids the reconvergence delay by calculating an alternate root port, and immediately failing over to the alternate port if the root port becomes unavailable. The alternate port is in the blocking state as long as the root port is in the forwarding state, but moves immediately to the active state if the root port becomes unavailable. Thus, using 802.1W Draft 3, Switch 3 immediately fails over to port 3/4, without the delays caused by the listening and learning states.

802.1W Draft 3 selects the port with the next-best cost to the root bridge. For example, on Switch 3, port 3/3 has the best cost to the root bridge and thus is selected by STP as the root port. Port 3/4 has the next-best cost to the root bridge, and thus is selected by 802.1W Draft 3 as the alternate path to the root bridge.
Once a failover occurs, the Switch no longer has an alternate root port. If the port that was an alternate port but became the root port fails, standard STP is used to reconverge with the network. You can minimize the reconvergence delay in this case by setting the forwarding delay on the root bridge to a lower value. For example, if the forwarding delay is set to 15 seconds (the default), change the forwarding delay to a value from 3 – 10 seconds.

During failover, 802.1W Draft 3 flushes the MAC addresses leaned on the unavailable root port, selects the alternate port as the new root port, and places that port in the forwarding state. If traffic is flowing in both directions on the new root port, addresses are flushed (moved) in the rest of the spanning tree automatically.

Reconvergence time

Spanning tree reconvergence using 802.1W Draft 3 can occur within one second.

After the spanning tree reconverges following the topology change, traffic also must reconverge on all the bridges attached to the spanning tree. This is true regardless of whether 802.1W Draft 3 or standard STP is used to reconverge the spanning tree.

Traffic reconvergence happens after the spanning tree reconvergence, and is achieved by flushing the Layer 2 information on the bridges:

- Following 802.1W Draft 3 reconvergence of the spanning tree, traffic reconvergence occurs in the time it takes for the bridge to detect the link changes plus the STP maximum age set on the bridge.
- If standard STP reconvergence occurs instead, traffic reconvergence takes two times the forward delay plus the maximum age.

NOTE

802.1W Draft 3 does not apply when a failed root port comes back up. When this happens, standard STP is used.

Configuration considerations

802.1W Draft 3 is disabled by default. To ensure optimal performance of the feature before you enable it, do the following:

- Configure the bridge priorities so that the root bridge is one that supports 802.1W Draft 3. (Use a Brocade device or third-party device that supports 802.1W Draft 3.)
- Change the forwarding delay on the root bridge to a value lower than the default 15 seconds. Brocade recommends a value from 3 – 10 seconds. The lower forwarding delay helps reduce reconvergence delays in cases where 802.1W Draft 3 is not applicable, such as when a failed root port comes back up.
- Configure the bridge priorities and root port costs so that each device has an active path to the root bridge if its root port becomes unavailable. For example, port 3/4 is connected to port 2/4 on Switch 2, which has the second most favorable bridge priority in the spanning tree.

NOTE

If reconvergence involves changing the state of a root port on a bridge that supports 802.1D STP but not 802.1W Draft 3, then reconvergence still requires the amount of time it takes for the ports on the 802.1D bridge to change state to forwarding (as needed), and receive BPDUs from the root bridge for the new topology.
Enabling 802.1W Draft 3

802.1W Draft 3 is disabled by default. The procedure for enabling the feature differs depending on whether single STP is enabled on the device.

NOTE
STP must be enabled before you can enable 802.1W Draft 3.

Enabling 802.1W Draft 3 when single STP is not enabled

By default, each port-based VLAN on the device has its own spanning tree. To enable 802.1W Draft 3 in a port-based VLAN, enter commands such as the following.

FastIron(config)#vlan 10
FastIron(config-vlan-10)#spanning-tree rstp

Syntax: [no] spanning-tree rstp

This command enables 802.1W Draft 3. You must enter the command separately in each port-based VLAN in which you want to run 802.1W Draft 3.

NOTE
This command does not also enable STP. To enable STP, first enter the spanning-tree command without the rstp parameter. After you enable STP, enter the spanning-tree rstp command to enable 802.1W Draft 3.

To disable 802.1W Draft 3, enter the following command.

FastIron(config-vlan-10)#no spanning-tree rstp

Enabling 802.1W Draft 3 when single STP is enabled

To enable 802.1W Draft 3 on a device that is running single STP, enter the following command at the global CONFIG level of the CLI.

FastIron(config)#spanning-tree single rstp

Syntax: [no] spanning-tree single rstp

This command enables 802.1W Draft 3 on the whole device.

NOTE
This command does not also enable single STP. To enable single STP, first enter the spanning-tree single command without the rstp parameter. After you enable single STP, enter the spanning-tree single rstp command to enable 802.1W Draft 3.

To disable 802.1W Draft 3 on a device that is running single STP, enter the following command.

FastIron(config)#no spanning-tree single rstp

Single Spanning Tree (SSTP)

By default, each port-based VLAN on a Brocade device runs a separate spanning tree, which you can enable or disable on an individual VLAN basis.
Alternatively, you can configure a Brocade device to run a single spanning tree across all ports and VLANs on the device. The Single STP feature (SSTP) is especially useful for connecting a Brocade device to third-party devices that run a single spanning tree in accordance with the 802.1Q specification.

SSTP uses the same parameters, with the same value ranges and defaults, as the default STP support on Brocade devices. Refer to “STP parameters and defaults” on page 263.

SSTP defaults

SSTP is disabled by default. When you enable the feature, all VLANs on which STP is enabled become members of a single spanning tree. All VLANs on which STP is disabled are excluded from the single spanning tree.

To add a VLAN to the single spanning tree, enable STP on that VLAN. To remove a VLAN from the single spanning tree, disable STP on that VLAN.

When you enable SSTP, all the ports that are in port-based VLANs with STP enabled become members of a single spanning tree domain. Thus, the ports share a single BPDU broadcast domain. The Brocade device places all the ports in a non-configurable VLAN, 4094, to implement the SSTP domain. However, this VLAN does not affect port membership in the port-based VLANs you have configured. Other broadcast traffic is still contained within the individual port-based VLANs. Therefore, you can use SSTP while still using your existing VLAN configurations without changing your network. In addition, SSTP does not affect 802.1Q tagging. Tagged and untagged ports alike can be members of the single spanning tree domain.

NOTE

When SSTP is enabled, the BPDUs on tagged ports go out untagged.

If you disable SSTP, all VLANs that were members of the single spanning tree run MSTP instead. In MSTP, each VLAN has its own spanning tree. VLANs that were not members of the single spanning tree were not enabled for STP. Therefore, STP remains disabled on those VLANs.

Enabling SSTP

To enable SSTP, use one of the following methods.

NOTE

If the device has only one port-based VLAN (the default VLAN), then the device is already running a single instance of STP. In this case, you do not need to enable SSTP. You need to enable SSTP only if the device contains more than one port-based VLAN and you want all the ports to be in the same STP broadcast domain.

To change a global STP parameter, enter a command such as the following at the global CONFIG level.

```
FastIron(config)#spanning-tree single
```

NOTE

If the device has only one port-based VLAN, the CLI command for enabling SSTP is not listed in the CLI. The command is listed only if you have configured a port-based VLAN.
Configuring STP related features

FastIron(config) spanning-tree single priority 2
This command changes the STP priority for all ports to 2.

To change an STP parameter for a specific port, enter commands such as the following.

FastIron(config) spanning-tree single ethernet 1 priority 10
The commands shown above override the global setting for STP priority and set the priority to 10 for port 1/1.

Here is the syntax for the global STP parameters.

Syntax: [no] spanning-tree single [forward-delay <value>] [hello-time <value>] | [maximum-age <time>] | [priority <value>]

Here is the syntax for the STP port parameters.

Syntax: [no] spanning-tree single [ethernet [<stack-unit>/<slotnum>/]portnum] path-cost <value> | priority <value>

NOTE
Both commands listed above are entered at the global CONFIG level.

Displaying SSTP information

To verify that SSTP is in effect, enter the following commands at any level of the CLI.

FastIron#show span

Syntax: show span [vlan <vlan-id>] | [pvst-mode] | [<num>] | [detail [vlan <vlan-id> [ethernet [<stack-unit>/<slotnum>/]portnum] | <num>]]

The vlan <vlan-id> parameter displays STP information for the specified port-based VLAN.

The pvst-mode parameter displays STP information for the device Per VLAN Spanning Tree (PVST+) compatibility configuration. Refer to “PVST/PVST+ compatibility” on page 329.

The <num> parameter displays only the entries after the number you specify. For example, on a device with three port-based VLANs, if you enter 1, then information for the second and third VLANs is displayed, but information for the first VLAN is not displayed. Information is displayed according to VLAN number, in ascending order. The entry number is not the same as the VLAN number. For example, if you have port-based VLANs 1, 10, and 2024, then the command output has three STP entries. To display information for VLANs 10 and 2024 only, enter show span 1.

The detail parameter and its additional optional parameters display detailed information for individual ports. Refer to “Displaying detailed STP information for each interface” on page 275.

STP per VLAN group

NOTE
This feature is not supported on TurboIron X Series devices.

STP per VLAN group is an STP enhancement that provides scalability while overcoming the limitations of the following scalability alternatives:

- **Standard STP** – You can configure up to 254 instances of standard STP on a Brocade device. It is possible to need more instances of STP than this in large configurations. Using STP per VLAN group, you can aggregate STP instances.
• **Single STP** – Single STP allows all the VLANs to run STP, but each VLAN runs the same instance of STP, resulting in numerous blocked ports that do not pass any Layer 2 traffic. STP per VLAN group uses all available links by load balancing traffic for different instances of STP on different ports. A port that blocks traffic for one spanning tree forwards traffic for another spanning tree.

STP per VLAN group allows you to group VLANs and apply the same STP parameter settings to all the VLANs in the group. **Figure 42** shows an example of a STP per VLAN group implementation.

STP load balancing

Notice that the STP groups each have different STP priorities. In configurations that use the STP groups on multiple devices, you can use the STP priorities to load balance the STP traffic. By setting the STP priorities for the same STP group to different values on each device, you can cause each of the devices to be the root bridge for a different STP group. This type of configuration distributes the traffic evenly across the devices and also ensures that ports that are blocked in one STP group spanning tree are used by another STP group spanning tree for forwarding. Refer to “Configuration example for STP load sharing” on page 328 for an example using STP load sharing.

Configuring STP per VLAN group

To configure STP per VLAN group, do the following:

- Configure the member VLANs.
- Optionally, configure master VLANs to contain the member VLANs. This is useful when you have a lot of member VLANs and you do not want to individually configure STP on each one. Each of the member VLANs in the STP group uses the STP settings of the master VLAN.
- Configure the STP groups. Each STP group runs a separate instance of STP.
Here are the CLI commands for implementing the STP per VLAN group configuration shown in Figure 42. The following commands configure the member VLANs (3, 4, 13, and 14) and the master VLANs (2 and 12). Notice that changes to STP parameters are made in the master VLANs only, not in the member VLANs.

```plaintext
FastIron(config)#vlan 2  
FastIron(config-vlan-2)#spanning-tree priority 1  
FastIron(config-vlan-2)#tagged ethernet 1/1 to 1/4  
FastIron(config-vlan-2)#vlan 3  
FastIron(config-vlan-3)#tagged ethernet 1/1 to 1/4  
FastIron(config-vlan-3)#vlan 4  
FastIron(config-vlan-4)#tagged ethernet 1/1 to 1/4  
FastIron(config-vlan-4)#vlan 12  
FastIron(config-vlan-12)#spanning-tree priority 2  
FastIron(config-vlan-12)#tagged ethernet 1/1 to 1/4  
FastIron(config-vlan-12)#vlan 13  
FastIron(config-vlan-13)#tagged ethernet 1/1 to 1/4  
FastIron(config-vlan-13)#vlan 14  
FastIron(config-vlan-14)#tagged ethernet 1/1 to 1/4  
FastIron(config-vlan-14)#exit
```

The following commands configure the STP groups.

```plaintext
FastIron(config)#stp-group 1  
FastIron(config-stp-group-1)#master-vlan 2  
FastIron(config-stp-group-1)#member-vlan 3 to 4  
FastIron(config-stp-group-1)#exit  
FastIron(config)#stp-group 2  
FastIron(config-stp-group-2)#master-vlan 12  
FastIron(config-stp-group-2)#member-vlan 13 to 14
```

Syntax: [no] stp-group <num>

This command changes the CLI to the STP group configuration level. The following commands are valid at this level. The `<num>` parameter specifies the STP group ID and can be from 1 – 32.

Syntax: [no] master-vlan <num>

This command adds a master VLAN to the STP group. The master VLAN contains the STP settings for all the VLANs in the STP per VLAN group. The `<num>` parameter specifies the VLAN ID. An STP group can contain one master VLAN.

NOTE

If you delete the master VLAN from an STP group, the software automatically assigns the first member VLAN in the group to be the new master VLAN for the group.

Syntax: [no] member-vlan <num> [to <num>]

This command adds additional VLANs to the STP group. These VLANs also inherit the STP settings of the master VLAN in the group.

Syntax: [no] member-group <num>

This command adds a member group (a VLAN group) to the STP group. All the VLANs in the member group inherit the STP settings of the master VLAN in the group. The `<num>` parameter specifies the VLAN group ID.

NOTE

This command is optional and is not used in the example above. For an example of this command, refer to “Configuration example for STP load sharing”.

Configuration example for STP load sharing

Figure 43 shows another example of a STP per VLAN group implementation.

FIGURE 43 More complex STP per VLAN group example

In this example, each of the devices in the core is configured with a common set of master VLANs, each of which contains one or more member VLANs. Each of the member VLANs in an STP group runs the same instance of STP and uses the STP parameters configured for the master VLAN.

The STP group ID identifies the STP instance. All VLANs within an STP group run the same instance of STP. The master VLAN specifies the bridge STP parameters for the STP group, including the bridge priority. In this example, each of the devices in the core is configured to be the default root bridge for a different master VLAN. This configuration ensures that each link can be used for forwarding some traffic. For example, all the ports on the root bridge for master VLAN 1 are configured to forward BPDUs for master VLAN spanning tree. Ports on the other devices block or forward VLAN 1 traffic based on STP convergence. All the ports on the root bridge for VLAN 2 forward VLAN 2 traffic, and so on.

All the ports are tagged. The ports must be tagged so that they can be in both a member VLAN and the member's master VLAN. For example, port 1/1 - and ports 5/1, 5/2, and 5/3 are in member VLAN 2 and master VLAN 1 (since master VLAN a contains member VLAN 2).

Here are the commands for configuring the root bridge for master VLAN 1 in figure Figure 42 for STP per VLAN group. The first group of commands configures the master VLANs. Notice that the STP priority is set to a different value for each VLAN. In addition, the same VLAN has a different STP priority on each device. This provides load balancing by making each of the devices a root bridge for a different spanning tree.

```
FastIron(config)#vlan 1
FastIron(config-vlan-1)#spanning-tree priority 1
FastIron(config-vlan-1)#tag ethernet 1/1 ethernet 5/1 to 5/3
FastIron(config-vlan-1)#vlan 201
FastIron(config-vlan-201)#spanning-tree priority 2
```
PVST/PVST+ compatibility

The FastIron and TurboIron family of switches support Cisco's Per VLAN Spanning Tree plus (PVST+), by allowing the device to run multiple spanning trees (MSTP) while also interoperating with IEEE 802.1Q devices.¹
NOTE
Brocade ports automatically detect PVST+ BPDUs and enable support for the BPDUs once detected. You do not need to perform any configuration steps to enable PVST+ support. However, to support the IEEE 802.1Q BPDUs, you might need to enable dual-mode support.

Support for Cisco’s Per VLAN Spanning Tree plus (PVST+), allows a Brocade device to run multiple spanning trees (MSTP) while also interoperating with IEEE 802.1Q devices. Brocade ports automatically detect PVST+ BPDUs and enable support for the BPDUs once detected. The enhancement allows a port that is in PVST+ compatibility mode due to auto-detection to revert to the default MSTP mode when one of the following events occurs:

- The link is disconnected or broken
- The link is administratively disabled
- The link is disabled by interaction with the link-keepalive protocol

This enhancement allows a port that was originally interoperating with PVST+ to revert to MSTP when connected to a Brocade device.

Overview of PVST and PVST+

Per VLAN Spanning Tree (PVST) is a Cisco proprietary protocol that allows a Cisco device to have multiple spanning trees. The Cisco device can interoperate with spanning trees on other PVST devices but cannot interoperate with IEEE 802.1Q devices. An IEEE 802.1Q device has all its ports running a single spanning tree. **PVST+** is an extension of PVST that allows a Cisco device to also interoperate with devices that are running a single spanning tree (IEEE 802.1Q).

Enhanced PVST+ support allows a Brocade device to interoperate with PVST spanning trees and the IEEE 802.1Q spanning tree at the same time.

IEEE 802.1Q and PVST regions cannot interoperate directly but can interoperate indirectly through PVST+ regions. PVST BPDUs are tunneled through 802.1Q regions, while PVST BPDUs for VLAN 1 (the IEEE 802.1Q VLAN) are processed by PVST+ regions. Figure 44 shows the interaction of IEEE 802.1Q, PVST, and PVST+ regions.

FIGURE 44 Interaction of IEEE 802.1Q, PVST, and PVST+ regions

1. Cisco user documentation for PVST/PVST+ refers to the IEEE 802.1Q spanning tree as the Common Spanning Tree (CST).
VLAN tags and dual mode

The **dual-mode** feature enables a port to send and receive both tagged and untagged frames. When the dual-mode feature is enabled on a port, the port is an untagged member of one of its VLANs and is at the same time a tagged member of all its other VLANs. The untagged frames are supported on the port **Port Native VLAN**.

The dual-mode feature must be enabled on a Brocade port in order to interoperate with another vendor device. Some vendors use VLAN 1 by default to support the IEEE 802.1Q-based standard spanning tree protocols, such as 802.1d and 802.1w for sending untagged frames on VLAN 1. On Brocade switches, by default, the **Port Native VLAN** is the same as the **Default VLAN**, which is VLAN 1. Thus, to support IEEE 802.1Q in a typical configuration, a port must be able to send and receive untagged frames for VLAN 1 and tagged frames for the other VLANs, and interoperate with other vendor devices using VLAN 1.

If you want to use tagged frames on VLAN 1, you can change the default VLAN ID to an ID other than 1. You also can specify the VLAN on which you want the port to send and receive untagged frames (the Port Native VLAN). The Port Native VLAN ID does not need to be the same as the default VLAN. Make sure that the untagged (native) VLAN is also changed on the interoperating vendor side to match that on the Brocade side.

To support the IEEE 802.1Q with non-standard proprietary protocols such as PVST and PVST+, a port must always send and receive untagged frames on VLAN 1 on both sides. In this case, enable the dual-mode 1 feature to allow untagged BPDUs on VLAN 1 and use Native VLAN 1 on the interoperating vendor side. You should not use VLAN 1 for tagged frames in this case.
Configuring PVST+ support

PVST+ support is automatically enabled when the port receives a PVST BPDU. You can manually enable the support at any time or disable the support if desired.

If you want a tagged port to also support IEEE 802.1Q BPDUs, you need to enable the dual-mode feature on the port. The dual-mode feature is disabled by default and must be enabled manually.

A port that is in PVST+ compatibility mode due to auto-detection reverts to the default MSTP mode when one of the following events occurs:

- The link is disconnected or broken
- The link is administratively disabled
- The link is disabled by interaction with the link-keepalive protocol

This allows a port that was originally interoperating with PVST+ to revert to MSTP when connected to a Brocade device.

Enabling PVST+ support manually

To immediately enable PVST+ support on a port, enter commands such as the following.

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#pvst-mode
```

Syntax: `[no] pvst-mode`

NOTE

If you disable PVST+ support, the software still automatically enables PVST+ support if the port receives a BPDU with PVST+ format.

NOTE

If 802.1W and pvst-mode (either by auto-detection or by explicit configuration) are enabled on a tagged VLAN port, 802.1W will treat the PVST BPDUs as legacy 802.1D BPDUs.

Enabling dual-mode support

To enable the dual-mode feature on a port, enter the following command at the interface configuration level for the port.

```
FastIron(config-if-1/1)#dual-mode
```

Syntax: `[no] dual-mode [<vlan-id>]`

The `<vlan-id>` specifies the port Port Native VLAN. This is the VLAN on which the port will support untagged frames. By default, the Port Native VLAN is the same as the default VLAN (which is VLAN 1 by default).

For more information about the dual-mode feature, refer to “Dual-mode VLAN ports” on page 535.

Displaying PVST+ support information

To display PVST+ information for ports on a Brocade device, enter the following command at any level of the CLI.
Syntax: show span pvst-mode

This command displays the following information.

TABLE 77 CLI display of PVST+ information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The Brocade port number.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The command lists information only for the ports on which PVST+ support is enabled.</td>
</tr>
<tr>
<td>Method</td>
<td>The method by which PVST+ support was enabled on the port. The method can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Set by configuration – You enabled the support.</td>
</tr>
<tr>
<td></td>
<td>• Set by auto-detect – The support was enabled automatically when the port received a PVST+ BPDU.</td>
</tr>
</tbody>
</table>

Configuration examples

The following examples show configuration examples for two common configurations:

- Untagged IEEE 802.1Q BPDUs on VLAN 1 and tagged PVST+ BPDUs on other VLANs
- Tagged IEEE 802.1Q BPDUs on VLAN 1 and untagged BPDUs on another VLAN

Tagged port using default VLAN 1 as its port native VLAN

Figure 45 shows an example of a PVST+ configuration that uses VLAN 1 as the untagged default VLAN and VLANs 2, 3, and 4 as tagged VLANs.

FIGURE 45 Default VLAN 1 for untagged BPDU

To implement this configuration, enter the following commands.
PVST/PVST+ compatibility

Commands on the Brocade Device

FastIron(config)#vlan-group 1 vlan 2 to 4
FastIron(config-vlan-group-1)#tagged ethernet 1/1
FastIron(config-vlan-group-1)#exit
FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#dual-mode
FastIron(config-if-1/1)#pvst-mode

These commands configure a VLAN group containing VLANs 2, 3, and 4, add port 1/1 as a tagged port to the VLANs, and enable the dual-mode feature and PVST+ support on the port. The dual-mode feature allows the port to send and receive untagged frames for the default VLAN (VLAN 1 in this case) in addition to tagged frames for VLANs 2, 3, and 4. Enabling the PVST+ support ensures that the port is ready to send and receive PVST+ BPDUs. If you do not manually enable PVST+ support, the support is not enabled until the port receives a PVST+ BPDU.

The configuration leaves the default VLAN and the port Port Native VLAN unchanged. The default VLAN is 1 and the port Port Native VLAN also is 1. The dual-mode feature supports untagged frames on the default VLAN only. Thus, port 1/1 can send and receive untagged BPDUs for VLAN 1 and can send and receive tagged BPDUs for the other VLANs.

Port 1/1 will process BPDUs as follows:

- Process IEEE 802.1Q BPDUs for VLAN 1.
- Process tagged PVST BPDUs for VLANs 2, 3, and 4.
- Drop untagged PVST BPDUs for VLAN 1.

Untagged port using VLAN 2 as port native VLAN

Figure 46 shows an example in which a port Port Native VLAN is not VLAN 1. In this case, VLAN 1 uses tagged frames and VLAN 2 uses untagged frames.

FIGURE 46 Port Native VLAN 2 for Untagged BPDUs

To implement this configuration, enter the following commands.

Commands on the Brocade Device

FastIron(config)#default-vlan-id 4000
FastIron(config)#vlan 1
FastIron(config-vlan-1)#tagged ethernet 1/1
FastIron(config-vlan-1)#exit
FastIron(config)#vlan 2
FastIron(config-vlan-2)#tagged ethernet 1/1
FastIron(config-vlan-2)#exit
FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#dual-mode 2
FastIron(config-if-1/1)#pvst-mode
FastIron(config-if-1/1)#exit
These commands change the default VLAN ID, configure port 1/1 as a tagged member of VLANs 1 and 2, and enable the dual-mode feature and PVST+ support on port 1/1. Since VLAN 1 is tagged in this configuration, the default VLAN ID must be changed from VLAN 1 to another VLAN ID. Changing the default VLAN ID from 1 allows the port to process tagged frames for VLAN 1. VLAN 2 is specified with the dual-mode command, which makes VLAN 2 the port Port Native VLAN. As a result, the port processes untagged frames and untagged PVST BPDUs on VLAN 2.

NOTE
Although VLAN 2 becomes the port untagged VLAN, the CLI still requires that you add the port to the VLAN as a tagged port, since the port is a member of more than one VLAN.

Port 1/1 will process BPDUs as follows:

- Process IEEE 802.1Q BPDUs for VLAN 1.
- Process untagged PVST BPDUs for VLAN 2.
- Drop tagged PVST BPDUs for VLAN 1.

Note that when VLAN 1 is not the default VLAN, the ports must have the dual-mode feature enabled in order to process IEEE 802.1Q BPDUs.

For example, the following configuration is incorrect.

```
FastIron(config)#default-vlan-id 1000
FastIron(config)#vlan 1
FastIron(config-vlan-1)#tagged ethernet 1/1 to 1/2
FastIron(config-vlan-1)#exit
FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#pvst-mode
FastIron(config-if-1/1)#exit
FastIron(config)#interface ethernet 1/2
FastIron(config-if-1/2)#pvst-mode
FastIron(config-if-1/2)#exit
```

In the configuration above, all PVST BPDUs associated with VLAN 1 would be discarded. Since IEEE BPDUs associated with VLAN 1 are untagged, they are discarded because the ports in VLAN 1 are tagged. Effectively, the BPDUs are never processed by the Spanning Tree Protocol. STP assumes that there is no better bridge on the network and sets the ports to FORWARDING. This could cause a Layer 2 loop.

The following configuration is correct.

```
FastIron(config)#default-vlan-id 1000
FastIron(config)#vlan 1
FastIron(config-vlan-1)#tagged ethernet 1/1 to 1/2
FastIron(config-vlan-1)#exit
FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#pvst-mode
FastIron(config-if-1/1)#dual-mode
FastIron(config-if-1/1)#exit
FastIron(config)#interface ethernet 1/2
FastIron(config-if-1/2)#pvst-mode
FastIron(config-if-1/2)#dual-mode
FastIron(config-if-1/2)#exit
```

Setting the ports as dual-mode ensures that the untagged IEEE 802.1Q BPDUs reach the VLAN 1 instance.
PVRST compatibility

Platform Support:
- FastIron X Series devices running software release 02.5.00 and later
- FGS and FLS devices running software release 02.5.00 and later
- TurboIron X Series devices running software release 04.1.00 and later

PVRST, the "rapid" version of per-VLAN spanning tree (PVST), is a Cisco proprietary protocol. PVRST corresponds to the Brocade full implementation of IEEE 802.1w (RSTP). Likewise, PVST, also a Cisco proprietary protocol, corresponds to the Brocade implementation of IEEE 802.1D (STP).

The following apply to FastIron devices:
- In releases prior to 02.5.00, when a Brocade device receives a PVRST packet on a port running 802.1w, the 802.1w state machines for that port falls back to the classic or legacy, 802.1D compatibility mode. Once moved to the legacy 802.1D mode, the Brocade device works in the standard STP mode and the rapid convergence advantage of 802.1w is no longer available.
- Software release 02.5.00 implements compatibility with PVRST on FastIron X Series and FastIron GS devices. When a Brocade device receives PVRST BPDUs on a port configured to run 802.1w, it recognizes and processes these BPDUs and continues to operate in 802.1w mode.

TurboIron X Series devices also support PVRST compatibility. When it receives PVRST BPDUs on a port configured to run 802.1w, it recognizes and processes these BPDUs and continues to operate in 802.1w mode.

PVRST compatibility is automatically enabled in software release 02.5.00 and later when a port receives a PVRST BPU.

BPDU guard

Platform Support:
- FastIron X Series devices running software release 03.2.00 and later
- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

In an STP environment, switches, end stations, and other Layer 2 devices use Bridge Protocol Data Units (BPDUs) to exchange information that STP will use to determine the best path for data flow.

The BPDU guard, an enhancement to STP, removes a node that reflects BPDUs back in the network. It enforces the STP domain borders and keeps the active topology predictable by not allowing any network devices behind a BPDU guard-enabled port to participate in STP.

In some instances, it is unnecessary for a connected device, such as an end station, to initiate or participate in an STP topology change. In this case, you can enable the STP BPDU guard feature on the Brocade port to which the end station is connected. STP BPDU guard shuts down the port and puts it into an errdisable state. This disables the connected device’s ability to initiate or participate...
in an STP topology. A log message is then generated for a BPDU guard violation, and a CLI message is displayed to warn the network administrator of a severe invalid configuration. The BPDU guard feature provides a secure response to invalid configurations because the administrator must manually put the interface back in service if errdisable recovery is not enabled.

Enabling BPDU protection by port

You enable STP BPDU guard on individual interfaces. The feature is disabled by default.

To enable STP BPDU guard on a specific port, enter commands such as the following.

```
FastIron(config) interface ethe 2/1
FastIron(config-if-e1000-2/1)#stp-bpdu-guard
```

or

```
FGS624P Switch(config) interface ethe 0/1/2
FGS624P Switch(config-if-e1000-0/1/2)#stp-bpdu-guard
```

Syntax: `[no] stp-bpdu-guard`

The `no` parameter disables the BPDU guard on this interface.

You can also use the multiple interface command to enable this feature on multiple ports at once.

Example

```
FastIron(config)#interface ethernet 1/1 to 1/9
FastIron(config-mif-1/1-1/9)#stp-bpdu-guard
```

or

```
FGS624P Switch(config)#interface ethernet 0/1/1 to 0/1/9
FGS624P Switch(config-mif-0/1/1-0/1/9)#stp-bpdu-guard
```

This will enable stp-bpdu-guard on ports 0/1/1 to 0/1/9

Re-enabling ports disabled by BPDU guard

When a BPSU Guard-enabled port is disabled by BPSU Guard, the Brocade device will place the port in errdisable state and display a message on the console indicating that the port is errdisabled (refer to “Example console messages” on page 339). In addition, the `show interface` command output will indicate that the port is errdisabled.

Example

```
FastIron#show int e 2
Gigabit Ethernet2 is ERR-DISABLED (bpduguard), line protocol is down
```

To re-enable a port that is in errdisable state, you must first disable the port then re-enable it. Enter commands such as the following.

```
FastIron(config)#int e 2
FastIron(config-if-e1000-2)#disable
FastIron(config-if-e1000-2)#enable
```

If you attempt to enable an errdisabled port without first disabling it, the following error message will appear on the console.
BPDU guard

FastIron(config-if-e1000-2)#enable
Port 2 is errdisabled, do disable first and then enable to enable it

Displaying the BPDU guard status

To display the BPDU guard state, enter the `show running configuration` or the `show stp-bpdu-guard` command.

For FastIron X Series devices, enter the following commands.

FastIron#show stp-bpdu-guard
BPDU Guard Enabled on:
Interface Violation
Port 1 No
Port 2 No
Port 3 No
Port 4 No
Port 5 No
Port 6 No
Port 7 No
Port 8 No
Port 9 No
Port 10 No
Port 11 No
Port 12 Yes
Port 13 No

For FGS and FLS, and FGS-STK and FLS-STK devices, enter the following commands.

FGS624P Switch#show stp-bpdu-guard
BPDU Guard Enabled on:
Ports: (Stk0/S1) 2 3 4 5 9 10 11 12 13 14 15 16
Ports: (Stk0/S1) 17 18 19 20 21 22 23 24

Syntax: show stp-bpdu-guard

Example configurations

Example

The following example shows how to configure BPDU guard at the interface level and to verify the configuration by issuing the `show stp-bpdu-guard` and the `show interface` commands.

FastIron Router(config)#interface ethernet 1
FastIron Router(config-if-e1000-1)#stp-bpdu-guard
FastIron Router(config-if-e1000-1)#
FastIron Router(config-if-e1000-1)#show stp-bpdu-guard
BPDU Guard Enabled on:
Port
1
FastIron(config-if-e1000-1)#
FastIron(config-if-e1000-1)#show interfaces ethernet 1
GigabitEthernet1 is up, line protocol is up
Hardware is GigabitEthernet, address is 000c.dba0.7100 (bia 000c.dba0.7100)
Configured speed auto, actual 100Mbit, configured duplex fdx, actual fdx
Configured mdi mode AUTO, actual MDI
Member of L2 VLAN ID 2, port is untagged, port state is FORWARDING
BPDU guard is Enabled, ROOT protect is Disabled
STP configured to ON, priority is level0, flow control enabled
mirror disabled, monitor disabled
BPDU guard

FastIron and TurboIron 24X Configuration Guide

For FGS and FLS devices running software release 03.0.00, enter the following commands.

FGS624P Switch(config)#interface ethernet 0/1/1
FGS624P Switch(config-if-e1000-0/1/1)#stp-bpdu-guard
FGS624P Switch(config-if-e1000-0/1/1)#exit

FGS624P Switch#show stp-bpdu-guard
BPDU Guard Enabled on:
Ports: (Stk0/S1) 1

FGS624P Switch#show interfaces ethernet 0/1/1
GigabitEthernet0/1/1 is down, line protocol is down
 Hardware is GigabitEthernet, address is 00e0.5204.4000 (bia 00e0.5204.4000)
 Configured speed auto, actual unknown, configured duplex fdx, actual unknown
 Configured mdi mode AUTO, actual unknown
 Member of L2 VLAN ID 1, port is untagged, port state is BLOCKING
 BPDU Guard is enabled, Root Protect is disabled
 STP configured to ON, priority is level0
 Flow Control is config enabled, oper disabled, negotiation disabled
 Mirror disabled, Monitor disabled
 Not member of any active trunks
 Not member of any configured trunks
 No port name
 Inter-Packet Gap (IPG) is 96 bit times
 300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
 300 second output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
 0 packets input, 0 bytes, 0 no buffer
 Received 0 broadcasts, 0 multicasts, 0 unicasts
 0 input errors, 0 CRC, 0 frame, 0 ignored
 0 runts, 0 giants
 0 packets output, 0 bytes, 0 underruns
 Transmitted 0 broadcasts, 0 multicasts, 0 unicasts
 0 output errors, 0 collisions

Example console messages

A console message such as the following is generated after a BPDU guard violation occurs on a system that is running MSTP.

FastIron(config-if-e1000-23)#MSTP: Received BPDU on BPDU guard enabled Port 23, errdisable Port 23

A console message such as the following is generated after a BPDU guard violation occurs on a system that is running STP.
Root guard

Platform Support:
- FastIron X Series devices running software release 03.2.00 and later
- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

The standard STP (802.1D), RSTP (802.1W) or 802.1S does not provide any way for a network administrator to securely enforce the topology of a switched layer 2 network. The forwarding topology of a switched network is calculated based on the root bridge position, along with other parameters. This means any switch can be the root bridge in a network as long as it has the lowest bridge ID. The administrator cannot enforce the position of the root bridge. A better forwarding topology comes with the requirement to place the root bridge at a specific predetermined location. Root Guard can be used to predetermine a root bridge location and prevent rogue or unwanted switches from becoming the root bridge.

When root guard is enabled on a port, it keeps the port in a designated role. If the port receives a superior STP Bridge Protocol Data Units (BPDU), it puts the port into a ROOT-INCONSISTANT state and triggers a log message and an SNMP trap. The ROOT-INCONSISTANT state is equivalent to the BLOCKING state in 802.1D and to the DISCARDING state in 802.1W. No further traffic is forwarded on this port. This allows the bridge to prevent traffic from being forwarded on ports connected to rogue or misconfigured STP bridges.

Once the port stops receiving superior BPDUs, root guard automatically sets the port back to learning, and eventually to a forwarding state through the spanning-tree algorithm.

Configure root guard on all ports where the root bridge should not appear. This establishes a protective network perimeter around the core bridged network, cutting it off from the user network.

NOTE
Root guard may prevent network connectivity if it is improperly configured. Root guard must be configured on the perimeter of the network rather than the core.

NOTE
Root guard is not supported when MSTP is enabled.

Enabling STP root guard

An STP root guard is configured on an interface by entering commands similar to the following.
FastIron(config)#interface ethernet 5/5
FastIron(config-if-e10000-5/5)spanning-tree root-protect

Syntax: [no] spanning-tree root-protect
Enter the no form of the command to disable STP root guard on the port.

Displaying the STP root guard

To display the STP root guard state, enter the show running configuration or the show spanning-tree root-protect command.

FastIron#show spanning-tree root-protect
Root Protection Enabled on:
Port 1

Syntax: show spanning-tree root-protect

Displaying the root guard by VLAN

You can display root guard information for all VLANs or for a specific VLAN. For example, to display root guard violation information for VLAN 7.

Syntax: show spanning-tree [vlan-id]

If you do not specify a vlan-id, information for all VLANs is displayed. For example, to display root guard violation information for VLAN 7.

FastIron#show spanning-tree vlan 7
STP instance owned by VLAN 7
Global STP (IEEE 802.1D) Parameters:
VLAN Root Root Root Prio Max He- Ho- Fwd Last Chg Bridge
ID ID Cost Port rity Age 11o 1d dly Chang cnt Address
Hex sec sec sec sec sec
7 a000000011112220 0 Root a000 20 1 15 4 4 00001112220
Port STP Parameters:
Port Prio Path State Fwd Design Designated Designated
Num rity Cost Trans Cost Root Bridge
Hex
1 80 19 ROOT-INCONS 2 0 a000000011112220 a000000011112220

Error disable recovery

Platform Support:
- FCX-S devices running software release 06.0.00 and later

In case a BPDU guard violation occurs, a port is placed into an errdisable state which is functionally equivalent to a Disable state. Once in an errdisable state, it remains in that state until one of the following methods is used to return the port to an Enabled state.

1. Manually disabling and enabling that interface
2. Automatically, through the errdisable recovery mechanism

The errdisable recovery interval command is used to configure a time-out for ports in errdisable state, after which the ports are re-enabled automatically.
When BPDU guard puts a port into errdisabled state, the port remains in errdisabled state unless it is enabled manually by issuing a `disable` command and then the `enable` command on the associated interface or you have errdisable recovery turned on. The `errdisable` command allows you to choose the type of error that automatically reenables the port after a specified amount of time.

Enabling error disable recovery

To enable errdisable recovery for BPDU Guard, enter a command such as the following.

```plaintext
FastIron(config)#errdisable recovery cause bpduguard
```

To enable error disable recovery for any reason, enter a command such as the following.

```plaintext
FastIron(config)#errdisable recovery cause all
```

Syntax: `errdisable recovery [cause < bpduguard I all >]`

The `cause` is the reason why the port is in the errdisabled state. Valid values are `bpduguard` and `all`.

Use the `bpduguard` parameter to allow the port to recover from the errdisabled state, if the state was caused by a BPDU Guard violation.

The `all` parameter allows ports to recover from an errdisabled state, if the state was caused by any reason other than a BPDU Guard violation.

Setting the recovery interval

The `errdisable recovery interval` command allows you to configure a timeout for ports in errdisabled state, after which the ports are reenabled automatically. To set the errdisable recovery time-out interval, enter a command such as the following.

```plaintext
FastIron(config)#errdisable recovery interval 20
```

Syntax: `[no] errdisable recovery interval <seconds>`

The `seconds` parameter allows you to set the timeout value for the recovery mechanism when the port is in an errdisabled state. Once this timeout value expires, the ports are automatically re-enabled. Valid values are from 10 to 65535 seconds (10 seconds to 24 hours).

Displaying the error disable recovery state by interface

The port status of errdisabled displays in the output of the `show interface` and the `show interface brief` commands. In this example, errdisable is enabled on interface ethernet 1 and errdisable is enabled because of a BPDU guard violation.

```plaintext
FastIron#show interfaces ethernet 1
GigabitEthernet1 is ERR-DISABLED (bpduguard), line protocol is down
BPDU guard is Enabled, ROOT protect is Disabled
Hardware is GigabitEthernet, address is 000c.dba0.7100 (bia 000c.dba0.7100)
Configured speed auto, actual unknown, configured duplex fdx, actual unknown
Configured mdi mode AUTO, actual unknown
Member of L2 VLAN ID 2, port is untagged, port state is DISABLED
STP configured to ON, priority is level0, flow control enabled
mirror disabled, monitor disabled
Not member of any active trunks
Not member of any configured trunks
No port name
```
IPG MII 96 bits-time, IPG GMII 96 bits-time
IP MTU 1500 bytes
300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
300 second output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
145 packets input, 23561 bytes, 0 no buffer
Received 124 broadcasts, 21 multicasts, 0 unicast
1 input errors, 0 CRC, 0 frame, 0 ignored
0 runts, 0 giants
5067 packets output, 330420 bytes, 0 underruns
Transmitted 90 broadcasts, 4977 multicasts, 0 unicast
0 output errors, 0 collisions

Displaying the recovery state for all conditions

Use the `show errdisable recovery` command to display all the default error disable recovery state for all possible conditions. In this example, port 6 is undergoing a recovery.

```
FastIron#show errdisable recovery
ErrDisable Reason Timer Status
--------------------------------------
all reason Disabled
bpduguard Enabled
Timeout Value: 300 seconds
Interface that will be enabled at the next timeout:
Interface Errdisable reason Time left (sec)
----------------- ----------------- ---------------
Port 6 bpduguard 297
```

Syntax: `show errdisable recovery`

Displaying the recovery state by port number and cause

To see which ports are under an errdisabled state, use the `show errdisable summary` command. This command not only shows the port number, but also displays the reason why the port is in an errdisable state and the method used to recover the port. In this example, port 6 is errdisabled for a BPDU guard violation.

```
FastIron#show errdisable summary
Port 6 ERR_DISABLED for bpduguard
```

Syntax: `show errdisable summary`

Errdisable Syslog messages

When the system places a port into an errdisabled state for BPDU guard, a log message is generated. When the errdisable recovery timer expires, a log message is also generated.

A Syslog message such as the following is generated after a port is placed into an errdisable state for BPDU guard.

```
STP: VLAN 50 BPDU-guard port 3 detect (Received BPDU), putting into err-disable state
```

A Syslog message such as the following is generated after the recovery timer expires.

```
ERR_DISABLED: Interface ethernet 3, err-disable recovery timeout
```
802.1s Multiple Spanning Tree Protocol

Platform Support:

- FastIron X Series devices running software release 03.2.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- Turbolon X Series devices running software release 04.1.00 and later

Multiple Spanning Tree Protocol (MSTP), as defined in IEEE 802.1s, allows multiple VLANs to be managed by a single STP instance and supports per-VLAN STP. As a result, several VLANs can be mapped to a reduced number of spanning-tree instances. This ensures loop-free topology for one or more VLANs that have the similar layer-2 topology. The Brocade implementation supports up to 16 spanning tree instances in an MSTP enabled bridge which means that it can support up to 16 different Layer 2 topologies. The spanning tree algorithm used by MSTP is RSTP which provides quick convergence.

Multiple spanning-tree regions

Using MSTP, the entire network runs a common instance of RSTP. Within that common instance, one or more VLANs can be individually configured into distinct regions. The entire network runs the common spanning tree instance (CST) and the regions run a local instance. The local instance is known as Internal Spanning Tree (IST). The CST treats each instance of IST as a single bridge. Consequently, ports are blocked to prevent loops that might occur within an IST and also throughout the CST. With the exception of the provisions for multiple instances, MSTP operates exactly like RSTP.

For example, in Figure 47 a network is configured with two regions: Region 1 and Region 2. The entire network is running an instance of CST. Each of the regions is running an instance of IST. In addition, this network contains Switch 1 running MSTP that is not configured in a region and consequently is running in the CIST instance. In this configuration, the regions are each regarded as a single bridge to the rest of the network, as is Switch 1. The CST prevents loops from occurring across the network. Consequently, a port is blocked at port 1/2 of switch 4.

Additionally, loops must be prevented in each of the IST instances. Within the IST Region 1, a port is blocked at port 1/2 of switch 4 to prevent a loop in that region. Within Region 2, a port is blocked at port 3/2 of switch 3 to prevent a loop in that region.

FIGURE 47 MSTP configured network
The following definitions describe the STP instances that define an MSTP configuration.

Common Spanning (CST) – CST is defined in 802.1q and assumes one spanning-tree instance for the entire bridged network regardless of the number of VLANs. In MSTP, an MSTP region appears as a virtual bridge that runs CST.

Internal Spanning Tree (IST) – IST is a new terminology introduced in 802.1s. An MSTP bridge must handle at least these two instances: one IST and one or more MSTIs (Multiple Spanning Tree Instances). Within each MST region, the MSTP maintains multiple spanning-tree instances. Instance 0 is a special instance known as IST, which extends CST inside the MST region. IST always exists if the switch runs MSTP. Besides IST, this implementation supports up to 15 MSTIs, numbered from 1 to 4094.

Common and Internal Spanning Trees (CIST) – CIST is a collection of the ISTs in each MST region and the CST that interconnects the MST regions and single spanning trees.

Multiple Spanning Tree Instance (MSTI) – The MSTI is identified by an MST identifier (MSTid) value between 1 and 4094.

MSTP Region – These are clusters of bridges that run multiple instances of the MSTP protocol. Multiple bridges detect that they are in the same region by exchanging their configuration (instance to VLAN mapping), name, and revision-level. Therefore, if you need to have two bridges in the same region, the two bridges must have identical configurations, names, and revision-levels. Also, one or more VLANs can be mapped to one MSTP instance (IST or MSTI) but a VLAN cannot be mapped to multiple MSTP instances.

NOTE
One or more VLANs can be mapped to one MSTP instance (IST or MSTI) but a VLAN cannot be mapped to multiple MSTP instances.
Configuration notes

When configuring MSTP, note the following:

- With MSTP running, enabling static trunk on ports that are members of many VLANs (4000 or more VLANs) will keep the system busy for 20 to 25 seconds.

Configuring MSTP mode and scope

With the introduction of MSTP, a system can be either under MSTP mode or not under MSTP mode. The default state is to not be under MSTP mode. MSTP configuration can only be performed in a system under MSTP mode.

With a system configured under MSTP mode, there is a concept called MSTP scope. MSTP scope defines the VLANs that are under direct MSTP control. You cannot run 802.1D or 802.1w on any VLAN (even outside of MSTP scope) and you cannot create topology groups when a system is under MSTP mode. While a VLAN group will still be supported when a system is under MSTP mode, the member VLAN should either be all in the MSTP scope or all out of the MSTP scope.

When a system is configured from non-MSTP mode to MSTP mode, the following changes are made to the system configuration:

- All 802.1D and 802.1w STP instances are deleted regardless of whether the VLAN is inside the MSTP scope or not
- All topology groups are deleted
- Any GVRP configuration is deleted
- Any VSRP configuration is deleted
- Single-span (if configured) is deleted
- MRP running on a VLAN inside MSTP scope is deleted
- The CIST is created and all VLANS inside the MSTP scope are attached with the CIST

Make sure that no physical layer-2 loops exist prior to switching from non-MSTP mode to MSTP mode. If, for example, you have an L2 loop topology configured as a redundancy mechanism before you perform the switch, a Layer 2 storm should be expected.

To configure a system into MSTP mode, use the following command at the Global Configuration level.

```
FastIron(config)#mstp scope all
```

Syntax: `[no] mstp scope all`

NOTE
MSTP is not operational however until the `mstp start` command is issued as described in “Activating MSTP on a switch” on page 353.

Once the system is configured into MSTP mode, CIST (sometimes referred to as “instance 0”) is created and all existing VLANs inside the MSTP scope are controlled by CIST. In addition, whenever you create a new VLAN inside MSTP scope, it is put under CIST control by default. In the Brocade MSTP implementation however, a VLAN ID can be pre-mapped to another MSTI as described in “Configuring an MSTP instance” on page 350. A VLAN whose ID is pre-mapped, will attach to the specified MSTI instead of to the CIST when created.
NOTE
Once under MSTP mode, CIST always controls all ports in the system. If you do not want a port to run MSTP, configure the `no spanning-tree` command under the specified interface configuration.

Using the `[no]` option on a system that is configured for MSTP mode changes the system to non-MSTP mode. When this switch is made, all MSTP instances are deleted together with all MSTP configurations. ALL VLANs inside the original MSTP scope will not run any Layer-2 protocols after the switch.

Reduced occurrences of MSTP reconvergence

Platform Support:
- FastIron X Series devices running software release FSX 04.2.00b and later

In releases prior to FSX 04.2.00b, reconvergence of MSTP occurs whenever a VLAN is created or deleted. Reconvergence is triggered when the VLAN to MSTI mapping for a newly created VLAN is added to the running configuration, and when an existing VLAN to MSTI mapping is deleted from the running configuration.

Starting with release FSX 04.2.00b, when a VLAN is deleted, the Brocade device retains the associated VLAN to MSTI mapping instead of deleting it from the configuration. This way, a VLAN can be pre-mapped to an MSTI and MSTP reconvergence may not be necessary when a VLAN is added to or deleted from the configuration. As long as the VLAN being created or deleted is pre-mapped to an MSTI, and the VLAN to MSTI mapping has not changed, MSTP reconvergence will not occur.

NOTE
MSTP reconvergence occurs when the VLAN to MSTI mapping is changed using the `mstp instance` command.

You can optionally remove VLAN to MSTI mappings from the configuration. Refer to “Deleting a VLAN to MSTI mapping” on page 348.

The following shows an example application.

Example application

The following example shows the running configuration file before and after deleting a VLAN from the configuration. In releases FSX 04.2.00b and later, as shown below, the VLAN to MSTI mapping is retained in the running configuration, even after the VLAN is deleted.
Deleting a VLAN to MSTI mapping

You can optionally remove a VLAN to MSTI mapping using the `no mstp instance` command. To do so, enter a command such as the following.

```
FastIron(config)#no mstp instance 7 vlan 4 to 7
```

This command deletes the VLAN to MSTI mapping from the running configuration and triggers an MSTP reconvergence.

Syntax: `no mstp instance <instance-number> vlan <vlan-id> | vlan-group <group-id>`
The `instance` parameter defines the number for the instance of MSTP that you are deleting.

The `vlan` parameter identifies one or more VLANs or a range of VLANs to the instance defined in this command.

The `vlan-group` parameter identifies one or more VLAN groups to the instance defined in this command.

Viewing the MSTP configuration digest

The MSTP Configuration Digest indicates the occurrence of an MSTP reconvergence. The Configuration Digest is recalculated whenever an MSTP reconvergence occurs. To view the Configuration Digest, use the `show mstp config` command. The following shows an example output.

```
SW-FESX624F+2XG Switch(config-vlan-20)#show mstp config
MSTP CONFIGURATION
------------------
Scope : all system
Name : 
Revision : 0
Version : 3 (MSTP mode)
Config Digest: 0x9bbda9c70d91f633e1e145fbcbf8d321
Status : Started

Instance VLANs
-------- ------------------------------------------------------
0        1                                           
1        10 20
```

Syntax: `show mstp config`

Configuring additional MSTP parameters

To configure a switch for MSTP, you could configure the name and the revision on each switch that is being configured for MSTP. You must then create an MSTP Instance and assign an ID. VLANs are then assigned to MSTP instances. These instances must be configured on all switches that interoperate with the same VLAN assignments. Port cost, priority and global parameters can then be configured for individual ports and instances. In addition, operational edge ports and point-to-point links can be created and MSTP can be disabled on individual ports.

Each of the commands used to configure and operate MSTP are described in the following:

- “Setting the MSTP name”
- “Setting the MSTP revision number”
- “Configuring an MSTP instance”
- “Configuring bridge priority for an MSTP instance”
- “Setting the MSTP global parameters”
- “Setting ports to be operational edge ports”
- “Setting automatic operational edge ports”
- “Setting point-to-point link”
- “Disabling MSTP on a port”
- “Forcing ports to transmit an MSTP BPDU”
- “Activating MSTP on a switch”

Setting the MSTP name

Each switch that is running MSTP is configured with a name. It applies to the switch which can have many different VLANs that can belong to many different MSTP regions.

To configure an MSTP name, use a command such as the following at the Global Configuration level.

```
FastIron(config)#mstp name Brocade
```

Syntax: `[no] mstp name <name>`

The `name` parameter defines an ASCII name for the MSTP configuration. The default name is for the name variable to be blank.

Setting the MSTP revision number

Each switch that is running MSTP is configured with a revision number. It applies to the switch which can have many different VLANs that can belong to many different MSTP regions.

To configure an MSTP revision number, use a command such as the following at the Global Configuration level.

```
FastIron(config)#mstp revision 4
```

Syntax: `[no] mstp revision <revision-number>`

The `revision` parameter specifies the revision level for MSTP that you are configuring on the switch. It can be a number from 0 and 65535. The default revision number is 0.

Configuring an MSTP instance

An MSTP instance is configured with an MSTP ID for each region. Each region can contain one or more VLANs. The Brocade implementation of MSTP allows you to assign VLANs or ranges of VLANs to an MSTP instance before or after they have been defined. If pre-defined, a VLAN will be placed in the MSTI that it was assigned to immediately when the VLAN is created. Otherwise, the default operation is to condition of assign all new VLANs to the CIST. VLANs assigned to the CIST by default can be moved later to a specified MSTI.

To configure an MSTP instance and map one or more VLANs to that MSTI, use a command such as the following at the Global Configuration level.

```
FastIron(config)#mstp instance 7 vlan 4 to 7
```

Syntax: `[no] mstp instance <instance-number> [vlan <vlan-id> | vlan-group <group-id>]`

The `instance` parameter defines the number for the instance of MSTP that you are configuring. The value 0 (which identifies the CIST) cannot be used. You can have up to 15 instances, number 1 – 4094.

The `vlan` parameter assigns one or more VLANs or a range of VLANs to the instance defined in this command.

The `vlan-group` parameter assigns one or more VLAN groups to the instance defined in this command.
The **no** option moves a VLAN or VLAN group from its assigned MSTI back into the CIST.

NOTE
The system does not allow an MSTI without any VLANs mapped to it. Consequently, removing all VLANs from an MSTI, deletes the MSTI from the system. The CIST by contrast will exist regardless of whether or not any VLANs are assigned to it or not. Consequently, if all VLANs are moved out of a CIST, the CIST will still exist and functional.

Configuring bridge priority for an MSTP instance

Priority can be configured for a specified instance. To configure priority for an MSTP instance, use a command such as the following at the Global Configuration level.

FastIron(config)#mstp instance 1 priority 8192

Syntax:

```
[no] mstp instance <instance-number> priority <priority-value>
```

The `<instance-number>` variable is the number for the instance of MSTP that you are configuring.

You can set a **priority** to the instance that gives it forwarding preference over lower priority instances within a VLAN or on the switch. A higher number for the priority variable means a lower forwarding priority. Acceptable values are 0 - 61440 in increments of 4096. The default value is 32768.

Setting the MSTP global parameters

MSTP has many of the options available in RSTP as well as some unique options. To configure MSTP Global parameters for all instances on a switch.

FastIron(config)#mstp force-version 0 forward-delay 10 hello-time 4 max-age 12 max-hops 9

Syntax:

```
[no] mstp force-version <mode-number> forward-delay <value> hello-time <value> max-age <value> max-hops <value>
```

The **force-version** parameter forces the bridge to send BPDUs in a specific format. You can specify one of the following `<mode-number>` values:

- **0** – The STP compatibility mode. Only STP BPDUs will be sent. This is equivalent to single STP.
- **2** – The RSTP compatibility mode. Only RSTP BPDUs will be sent. This is equivalent to single STP.
- **3** – MSTP mode. In this default mode, only MSTP BPDUs will be sent.

The **forward-delay** `<value>` specifies how long a port waits before it forwards an RST BPDU after a topology change. This can be a value from 4 – 30 seconds. The default is 15 seconds.

The **hello-time** `<value>` parameter specifies the interval between two hello packets. The parameter can have a value from 1 – 10 seconds. The default is 2 seconds.

The **max-age** `<value>` parameter specifies the amount of time the device waits to receive a hello packet before it initiates a topology change. You can specify a value from 6 – 40 seconds, where the value adheres to the following formula.

max age equal to or greater than 2 x (hello-time + 1) AND max age equal to or greater than 2 x (forward-delay - 1)

The default max-age is 20 seconds.
The `max-hops <value>` parameter specifies the maximum hop count. You can specify a value from 1 – 40 hops. The default value is 20 hops.

Setting ports to be operational edge ports

You can define specific ports as edge ports for the region in which they are configured to connect to devices (such as a host) that are not running STP, RSTP, or MSTP. If a port is connected to an end device such as a PC, the port can be configured as an edge port. To configure ports as operational edge ports enter a command such as the following.

```
FastIron(config)#mstp admin-edge-port ethernet 3/1
```

Syntax: `[no] mstp admin-edge-port ethernet <stack-unit/slotnum/portnum>

The `<stack-unit>` parameter is required on FGS and FLS devices running software version 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

The `<slotnum/portnum>` parameter specifies a port or range of ports as edge ports in the instance in which they are configured.

Setting automatic operational edge ports

You can configure a Layer 3 switch to automatically set a port as an operational edge port if the port does not receive any BPDUs since link-up. If the port receives a BPDU later, it is automatically reset to become an operational non-edge port. This feature is set globally to apply to all ports on a router where it is configured. This feature is configured as shown in the following.

```
FastIron(config)#mstp edge-port-auto-detect
```

Syntax: `[no] mstp edge-port-auto-detect

NOTE

If this feature is enabled, it takes the port about 3 seconds longer to come to the enable state.

Setting point-to-point link

You can set a point-to-point link between ports to increase the speed of convergence. To create a point-to-point link between ports, use a command such as the following at the Global Configuration level.

```
FastIron(config)#mstp admin-pt2pt-mac ethernet 2/5 ethernet 4/5
```

Syntax: `[no] mstp admin-pt2pt-mac ethernet <stack-unit/slotnum/portnum>

The `<stack-unit>` parameter is required on FGS and FLS devices running software version 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

The `<slotnum/portnum>` parameter specifies a port or range of ports as edge ports in the instance in which they are configured.

Disabling MSTP on a port

To disable MSTP on a specific port, use a command such as the following at the Global Configuration level.

```
FastIron(config)#mstp disable ethernet 2/1
```
Syntax: [no] mstp disable ethernet <stack-unit/slotnum/portnum>

The <stack-unit> parameter is required on FGS and FLS devices running software version 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

The <slotnum/portnum> variable specifies the location of the port for which you want to disable MSTP.

NOTE
When a port is disabled for MSTP, it behaves as blocking for all the VLAN traffic that is controlled by MSTIs and the CIST.

Forcing ports to transmit an MSTP BPDU

To force a port to transmit an MSTP BPDU, use a command such as the following at the Global Configuration level.

FastIron(config)#mstp force-migration-check ethernet 3/1

Syntax: [no] mstp force-migration-check ethernet <stack-unit/slotnum/portnum>

The <stack-unit> parameter is required on FGS and FLS devices running software version 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

The <slotnum/portnum> variable specifies the port or ports from which you want to transmit an MSTP BPDU.

Activating MSTP on a switch

MSTP scope must be enabled on the switch as described in “Configuring MSTP mode and scope” on page 346 before MSTP can be enabled.

To enable MSTP on your switch, use the following at the Global Configuration level.

FastIron(config)#mstp start

Syntax: [no] mstp start

The [no] option disables MSTP from operating on a switch.
Example

In Figure 48 four Brocade device routers are configured in two regions. There are four VLANs in four instances in Region 2. Region 1 is in the CIST.

FIGURE 48 Sample MSTP configuration

RTR1 configuration

FastIron(config-vlan-4093)#tagged ethernet 10/1 to 10/2
FastIron(config-vlan-4093)#exit
FastIron(config)#mstp scope all
FastIron(config)#mstp name Reg1
FastIron(config)#mstp revision 1
FastIron(config)#mstp admin-pt2pt-mac ethernet 10/1 to 10/2
FastIron(config)#mstp start
FastIron(config)#hostname RTR1

Core 1 configuration

FastIron(config)#trunk ethernet 2/9 to 2/12 ethernet 2/13 to 2/14
FastIron(config-vlan-1)#name DEFAULT-VLAN by port
FastIron(config-vlan-1)#exit
FastIron(config)#vlan 20 by port
FastIron(config-vlan-20)#tagged ethernet 2/9 to 2/14 ethernet 2/16
FastIron(config-vlan-20)#exit
FastIron(config-vlan-21)#tagged ethernet 2/9 to 2/14 ethernet 2/16
FastIron(config-vlan-21)#exit
FastIron(config-vlan-22)#tagged ethernet 2/9 to 2/14 ethernet 2/16
FastIron(config-vlan-22)#exit
FastIron(config)#vlan 23 by port
FastIron(config)#mstp scope all
FastIron(config)#mstp name HR
FastIron(config)#mstp revision 2
FastIron(config)#mstp instance 20 vlan 20
FastIron(config)#mstp instance 21 vlan 21
FastIron(config)#mstp instance 22 vlan 22
FastIron(config)#mstp instance 0 priority 8192
FastIron(config)#mstp admin-pt2pt-mac ethernet 2/9 to 2/14
FastIron(config)#mstp admin-pt2pt-mac ethernet 2/16
FastIron(config)#mstp disable ethernet 2/240.
FastIron(config)#mstp start
FastIron(config)#hostname CORE1

Core2 configuration
FastIron(config)#trunk ethernet 3/5 to 3/6 ethernet 3/17 to 3/20
FastIron(config)#vlan 1 name DEFAULT-VLAN by port
FastIron(config-vlan-1)#exit
FastIron(config)#vlan 20 by port
FastIron(config-vlan-20)#tagged ethernet 3/5 to 3/6 ethernet 3/17 to 3/20
FastIron(config-vlan-20)#exit
FastIron(config)#vlan 21 by port
FastIron(config-vlan-21)#tagged ethernet 3/5 to 3/6 ethernet 3/17 to 3/20
FastIron(config-vlan-21)#exit
FastIron(config)#vlan 22 by port
FastIron(config-vlan-22)#tagged ethernet 3/5 to 3/6 ethernet 3/17 to 3/20
FastIron(config-vlan-22)#exit
FastIron(config)#mstp scope all
FastIron(config)#mstp name HR
FastIron(config)#mstp revision 2
FastIron(config)#mstp instance 20 vlan 20
FastIron(config)#mstp instance 21 vlan 21
FastIron(config)#mstp instance 22 vlan 22
FastIron(config)#mstp admin-pt2pt-mac ethernet 3/10
FastIron(config)#mstp disable ethernet 3/7 ethernet 3/24
FastIron(config)#mstp start
FastIron(config)#hostname CORE2

LAN 4 configuration
FastIron(config)#trunk ethernet 3/5 to 3/6 ethernet 3/1 to 3/2
FastIron(config)#vlan 1 name DEFAULT-VLAN by port
FastIron(config-vlan-1)#exit
FastIron(config)#vlan 20 by port
FastIron(config-vlan-20)#tagged ethernet 3/1 to 3/2 ethernet 3/5 to 3/6
FastIron(config)#exit
FastIron(config)#vlan 21 by port
FastIron(config-vlan-21)#tagged ethernet 3/1 to 3/2 ethernet 3/5 to 3/6
FastIron(config)#exit
FastIron(config)#vlan 22 by port
FastIron(config-vlan-22)#tagged ethernet 3/1 to 3/2 ethernet 3/5 to 3/6
FastIron(config)#mstp scope all
FastIron(config)#mstp config name HR
FastIron(config)#mstp revision 2
FastIron(config)#mstp instance 20 vlan 20
FastIron(config)#mstp instance 21 vlan 21
FastIron(config)#mstp instance 22 vlan 22
FastIron(config)#mstp admin-pt2pt-mac ethernet 3/5 to 3/6 ethernet 3/1 to 3/2
FastIron(config)#mstp start
FastIron(config)#hostname LAN4

Displaying MSTP statistics

MSTP statistics can be displayed using the commands shown below.

To display all general MSTP information, enter the following command.
Syntax: show mstp <instance-number>

The <instance-number> variable specifies the MSTP instance that you want to display information for.

TABLE 78 Output from Show MSTP

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTP Instance</td>
<td>The ID of the MSTP instance whose statistics are being displayed. For the CIST, this number is 0.</td>
</tr>
<tr>
<td>VLANs</td>
<td>The number of VLANs that are included in this instance of MSTP. For the CIST this number will always be 1.</td>
</tr>
<tr>
<td>Bridge Identifier</td>
<td>The MAC address of the bridge.</td>
</tr>
<tr>
<td>Bridge MaxAge sec</td>
<td>Displays configured Max Age.</td>
</tr>
<tr>
<td>Bridge Hello sec</td>
<td>Displays configured Hello variable.</td>
</tr>
<tr>
<td>Bridge FwdDly sec</td>
<td>Displays configured FwdDly variable.</td>
</tr>
<tr>
<td>Bridge Hop cnt</td>
<td>Displays configured Max Hop count variable.</td>
</tr>
<tr>
<td>Root MaxAge sec</td>
<td>Max Age configured on the root bridge.</td>
</tr>
<tr>
<td>Root Hello sec</td>
<td>Hello interval configured on the root bridge.</td>
</tr>
<tr>
<td>Root FwdDly sec</td>
<td>FwdDly interval configured on the root bridge.</td>
</tr>
<tr>
<td>Root Hop Cnt</td>
<td>Current hop count from the root bridge.</td>
</tr>
<tr>
<td>Root Bridge</td>
<td>Bridge identifier of the root bridge.</td>
</tr>
</tbody>
</table>
TABLE 78 Output from Show MSTP (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtPath Cost</td>
<td>The configured path cost on a link connected to this port to an external MSTP region.</td>
</tr>
<tr>
<td>Regional Root Bridge</td>
<td>The Regional Root Bridge is the MAC address of the Root Bridge for the local region.</td>
</tr>
<tr>
<td>IntPath Cost</td>
<td>The configured path cost on a link connected to this port within the internal MSTP region.</td>
</tr>
<tr>
<td>Designated Bridge</td>
<td>The MAC address of the bridge that sent the best BPDU that was received on this port.</td>
</tr>
<tr>
<td>Root Port</td>
<td>Port indicating shortest path to root. Set to "Root" if this bridge is the root bridge.</td>
</tr>
<tr>
<td>Port Num</td>
<td>The port number of the interface.</td>
</tr>
<tr>
<td>Pri</td>
<td>The configured priority of the port. The default is 128.</td>
</tr>
<tr>
<td>PortPath Cost</td>
<td>Configured or auto detected path cost for port.</td>
</tr>
<tr>
<td>P2P Mac</td>
<td>Indicates if the port is configured with a point-to-point link:</td>
</tr>
<tr>
<td></td>
<td>• T – The port is configured in a point-to-point link</td>
</tr>
<tr>
<td></td>
<td>• F – The port is not configured in a point-to-point link</td>
</tr>
<tr>
<td>Edge</td>
<td>Indicates if the port is configured as an operational edge port:</td>
</tr>
<tr>
<td></td>
<td>• T – indicates that the port is defined as an edge port.</td>
</tr>
<tr>
<td></td>
<td>• F – indicates that the port is not defined as an edge port</td>
</tr>
<tr>
<td>Role</td>
<td>The current role of the port:</td>
</tr>
<tr>
<td></td>
<td>• Master</td>
</tr>
<tr>
<td></td>
<td>• Root</td>
</tr>
<tr>
<td></td>
<td>• Designated</td>
</tr>
<tr>
<td></td>
<td>• Alternate</td>
</tr>
<tr>
<td></td>
<td>• Backup</td>
</tr>
<tr>
<td></td>
<td>• Disabled</td>
</tr>
<tr>
<td>State</td>
<td>The port current spanning tree state. A port can have one of the following states:</td>
</tr>
<tr>
<td></td>
<td>• Forwarding</td>
</tr>
<tr>
<td></td>
<td>• Discarding</td>
</tr>
<tr>
<td></td>
<td>• Learning</td>
</tr>
<tr>
<td></td>
<td>• Disabled</td>
</tr>
<tr>
<td>Designated Cost</td>
<td>Port path cost to the root bridge.</td>
</tr>
<tr>
<td>Max Hop cnt</td>
<td>The maximum hop count configured for this instance.</td>
</tr>
<tr>
<td>Root Hop cnt</td>
<td>Hop count from the root bridge.</td>
</tr>
</tbody>
</table>

Displaying MSTP information for a specified instance

The following example displays MSTP information specified for an MSTP instance.
FastIron#show mstp 1
MSTP Instance 1 - VLANs: 2
--
Bridge Identifier Max RegionalRoot IntPath Designated Root Root
hex cnt hex hex cnt
8001000cdb80af01 20 8001000cd02b0af01 0 8001000cdb80af01 Root 20

Port Pri PortPath Role State Designated cost Designated
Num Cost Mac Port cost bridge
3/1 128 2000 T F ROOT FORWARDING 0 8001000cd80af01

Refer to Table 78 for details about the display parameters.

Displaying MSTP information for CIST instance 0

Instance 0 is the Common and Internal Spanning Tree Instance (CIST). When you display information for this instance there are some differences with displaying other instances. The following example displays MSTP information for CIST Instance 0.

FastIron#show mstp 0
MSTP Instance 0 (CIST) - VLANs: 1
--
Bridge Identifier Bridge Bridge Bridge Bridge Root Root Root Root
hex MaxAge Hello FwdDly Hop MaxAge Hello FwdDly Hop
8000000cd80af01 20 2 15 20 20 2 15 19
Root ExtPath RegionalRoot IntPath Designated Root
Bridge Cost Bridge Cost Bridge Port
hex hex
8000000480bb9876 2000 8000000cd80af01 0 8000000480bb9876 3/1
Port Pri PortPath P2P Edge Role State Designated cost Designated
Num Cost Mac Port Cost Bridge
3/1 128 2000 T F ROOT FORWARDING 0 8000000480bb9876

To display details about the MSTP configuration, enter the following command.

FastIron#show mstp conf
MSTP CONFIGURATION
Name : Regl
Revision : 1
Version : 3 (MSTP mode)
Status : Started

Instance VLANs
----------- ----------------------------------
0 4093

To display details about the MSTP that is configured on the device, enter the following command.
FastIron#show mstp detail
MSTP Instance 0 (CIST) - VLANs: 4093
--
Bridge: 800000b000c00000 [Priority 32768, SysId 0, Mac 00b00c00000]
FwdDelay 15, HelloTime 2, MaxHops 20, TxHoldCount 6
Port 6/54 - Role: DESIGNATED - State: FORWARDING
PathCost 20000, Priority 128, OperEdge T, OperPt2PtMac F, Boundary T
Designated - Root 800000b000c00000, RegionalRoot 800000b000c00000,
Bridge 800000b000c00000, ExtCost 0, IntCost 0
ActiveTimers - helloWhen 1
MachineState - PRX-DISCARD, PTX-IDLE, PPM-SENDING_RSTP, PIM-CURRENT
PRT-ACTIVE_PORT, PST-FORWARDING, TCM-INACTIVE
BPDUs - Rcvd MST 0, RST 0, Config 0, TCN 0
Sent MST 6, RST 0, Config 0, TCN 0

Refer to Table 78 for explanation about the parameters in the output.

Syntax: show mstp [<mstp-id>] | configuration | detail] [| begin <string> | exclude <string> |
include <string>]

Enter an MSTP ID for <mstp-id>.
802.1s Multiple Spanning Tree Protocol
The procedures in this chapter describe how to configure basic Layer 2 parameters.

Brocade devices are configured at the factory with default parameters that allow you to begin using the basic features of the system immediately. However, many of the advanced features such as VLANs or routing protocols for the device must first be enabled at the system (global) level before they can be configured. If you use the Command Line Interface (CLI) to configure system parameters, you can find these system level parameters at the Global CONFIG level of the CLI.

NOTES:

- Before assigning or modifying any router parameters, you must assign the IP subnet (interface) addresses for each port.
- For information about configuring IP addresses, DNS resolver, DHCP assist, and other IP-related parameters, refer to Chapter 30, “Configuring IP”.
- For information about the Syslog buffer and messages, refer to Chapter 50, “Using Syslog”.

About port regions

Ports on the FastIron X Series devices are grouped into regions. For a few features, you will need to know the region to which a port belongs. However, for most features, a port region does not affect configuration or operation of the feature.

NOTE
Port regions do not apply to TurboIron Series devices or to trunk group configurations on the FastIron X Series devices. However, port regions do apply to port monitoring and unknown unicast configurations on FastIron X Series devices.

FastIron Edge Switch X424 and X424HF, and FastIron Workgroup Switch X424:
- Ports 1 – 12
- Ports 13 – 24
- Port 25
- Port 26

FastIron Edge Switch X448 and FastIron Workgroup Switch X448:
- Ports 1 – 12
- Ports 13 – 24
- Port 25 – 36
- Port 37 – 48
- Port 49
- Port 50
Enabling or disabling the Spanning Tree Protocol (STP)

STP (IEEE 802.1D bridge protocol) is supported on all Brocade devices. STP detects and eliminates logical loops in the network. STP also ensures that the least cost path is taken when multiple paths exist between ports or VLANs. If the selected path fails, STP searches for and then establishes an alternate path to prevent or limit retransmission of data.

NOTE
This section provides instructions for enabling and disabling STP. For configuration procedures and more information about STP, refer to Chapter 9, “Configuring Spanning Tree Protocol (STP) Related Features” in this guide.

STP must be enabled at the system level to allow assignment of this capability on the VLAN level. On devices running Layer 2 code, STP is enabled by default. On devices running Layer 3 code, STP is disabled by default.

To enable STP for all ports on a Brocade device, enter the following command.

```
FastIron(config)#spanning tree
```

Syntax: `[no] spanning-tree`

You can also enable and disable spanning tree on a port-based VLAN and on an individual port basis, and enable advanced STP features. Refer to Chapter 9, “Configuring Spanning Tree Protocol (STP) Related Features”.

Modifying STP bridge and port parameters

You can modify the following STP Parameters:

- Bridge parameters – forward delay, maximum age, hello time, and priority
- Port parameters – priority and path cost

For configuration details, refer to “Changing STP bridge and port parameters” on page 266.
Management MAC address for stackable devices

Platform Support:
• FGS-STK and FLS-STK devices running software release 05.0.00 and later

In an IronStack consisting of FGS-STK and FLS-STK devices, the management MAC address of the Active Controller is always used as the STP bridge ID. The Active Controller management MAC address is always used for control protocols for the following reasons:
• Unlike standalone devices, each stack member has a different range of MAC addresses
• In a stack, the management MAC address is software generated, and is always the MAC address of the Active Controller first port. This ensures consistency across the stack during resets, assuming that the Active Controller is always the same unit.
• This helps avoid the disruption of frequent topology changes in the stack.

MAC learning rate control

Platform Support:
• FGS and FLS devices running software version 03.0.00 and later

FGS software release 03.0.00 adds support for a new CLI command that allows users to set a rate limit to control CPU address updating. The range for this rate limit is 200 - 50,000 per second. The MAC learning rate limit applies to each packet processor, which means that for a system with two packet processors, each processor can send address messages to the CPU at the established rate limit.

Syntax: [no] cpu-limit addr-msgs <msgsRateLimit>

NOTE
Actual rates in hardware may have a variance of +200 or -100.

Changing the MAC age time and disabling MAC address learning

To change the MAC address age timer, enter a command such as the following.

FastIron(config)#mac-age-time 60

Syntax: [no] mac-age-time <secs>

<secs> specifies the number of seconds. Possible values differ depending on the version of software running on your device, as follows:
• On FastIron X Series devices running pre-release 02.5.00 software, and on FastIron GS, LS, and WS and FCX devices, learned MAC address entries do not age out until they are unused for 300 – 600 seconds. If necessary, you can change the MAC address age timer to 0 or a value from 60 – 600 (seconds), in 60-second intervals. For example, you can specify 60 or 120, but not 100. If you set the MAC age time to 0, aging is disabled.
On FastIron X Series devices running software release 02.5.00 through 03.1.00x, you can configure 0 or a value from 10 – 14000 (seconds), in 10-second intervals. For example, you can specify 10, 20, or 14000, but not 122. If you set the MAC age time to 0, aging is disabled.

On FastIron X Series devices running software FSX release 03.2.00 or later, you can configure 0 or a value from 10 – 86,400 (seconds), in 10-second intervals. If you set the MAC age time to 0, aging is disabled.

On TurboIron X Series devices, you can configure 0 or a value from 10 – 86,400 (seconds), in 1-second intervals. If you set the MAC age time to 0, aging is disabled.

NOTES: Usually, the actual MAC age time is from one to two times the configured value. For example, if you set the MAC age timer to 60 seconds, learned MAC entries age out after remaining unused for between 60 – 120 seconds. However, if all of the following conditions are met, then the MAC entries age out after a longer than expected duration:

- The MAC age timer is greater than 630 seconds.
- The number of MAC entries is over 6000.
- All MAC entries are learned from the same packet processor.
- All MAC entries age out at the same time.

Disabling the automatic learning of MAC addresses

Platform Support:
- FastIron X Series devices running software release 03.2.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

By default, when a packet with an unknown Source MAC address is received on a port, the Brocade device learns this MAC address on the port.

You can prevent a physical port from learning MAC addresses by entering the following command.

```
FastIron(config)#interface ethernet 3/1
FastIron(config-if-e1000-3/1)#mac-learn-disable
```

Syntax: `[no] mac-learn disable`

Use the no form of the command to allow a physical port to learn MAC addresses.

Configuration notes and feature limitations

- This command is not available on virtual routing interfaces. Also, if this command is configured on the primary port of a trunk, MAC address learning will be disabled on all the ports in the trunk.

- Entering the `mac-learn-disable` command on tagged ports disables MAC learning for that port in all VLANs to which that port is a member. For example, if tagged port 3/1 is a member of VLAN 10, 20, and 30 and you issue the `mac-learn-disable` command on port 3/1, port 3/1 will not learn MAC addresses, even if it is a member of VLAN 10, 20, and 30.
Displaying the MAC address table

To display the MAC table, enter the following command.

```
FastIron#show mac-address
Total active entries from all ports = 3
Total static entries from all ports = 1

<table>
<thead>
<tr>
<th>MAC-Address</th>
<th>Port</th>
<th>Type</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234.1234.1234</td>
<td>15</td>
<td>Static</td>
<td>1</td>
</tr>
<tr>
<td>0004.8038.2f24</td>
<td>14</td>
<td>Dynamic</td>
<td>1</td>
</tr>
<tr>
<td>0004.8038.2f00</td>
<td>13</td>
<td>Dynamic</td>
<td>1</td>
</tr>
<tr>
<td>0010.5a86.b159</td>
<td>10</td>
<td>Dynamic</td>
<td>1</td>
</tr>
</tbody>
</table>
```

In the output of the `show mac-address` command, the **Type** column indicates whether the MAC entry is static or dynamic. A static entry is one you create using the `static-mac-address` command. A dynamic entry is one that is learned by the software from network traffic.

The output of the `show mac-address` command on TIX, FESX, FSX, and FWSX devices include an **Index** column which indicates the index where the entry exists in the hardware MAC table.

NOTE
The `show mac-address` command output does not include MAC addresses for management ports, since these ports do not support typical MAC learning and MAC-based forwarding.

Configuring static MAC entries

Static MAC addresses can be assigned to Brocade devices.

NOTE
Brocade devices running Layer 3 code also support the assignment of static IP Routes, static ARP, and static RARP entries. For details on configuring these types of static entries, refer to “Configuring static routes” on page 1015 and “Creating static ARP entries” on page 1009.

NOTE
TurboIron X Series devices support static MAC entries with unicast addresses only. This differs from FastIron devices, which support static MAC entries with unicast and multicast addresses.

You can manually input the MAC address of a device to prevent it from being aged out of the system address table.

This option can be used to prevent traffic for a specific device, such as a server, from flooding the network with traffic when it is down. Additionally, the static MAC address entry is used to assign higher priorities to specific MAC addresses.

You can specify traffic priority (QoS) and VLAN membership (VLAN ID) for the MAC Address as well as specify the device type of either router or host.

The default and maximum configurable MAC table sizes can differ depending on the device. To determine the default and maximum MAC table sizes for your device, display the system parameter values. Refer to “Displaying and modifying system parameter default settings” on page 380.
Multi-port static MAC address

Platform Support:
- FGS and FLS devices running software release 04.1.00 and later
- FWS devices running software release 04.3.00 or later
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

Many applications, such as Microsoft NLB, Juniper IPS, and Netscreen Firewall, use the same MAC address to announce load-balancing services. As a result, a switch must be able to learn the same MAC address on several ports. Multi-port static MAC allows you to statically configure a MAC address on multiple ports using a single command.

Configuration notes

- On TurboIron X Series devices, this feature can be used to configure unicast MAC addresses on one or more ports; Multicast addresses are not supported.
- On FastIron X Series devices, starting in software release FSX 04.2.00, this feature can be used to configure unicast as well as IPv4 and IPv6 multicast MAC addresses on one or more ports. However, when a multicast MAC address is configured, the corresponding MAC address entry cannot be used for IGMP snooping. In releases prior to FSX 04.2.00, this feature can be used to configure unicast MAC addresses on one or more ports. For IPv4 multicast addresses (range 0100.5e00.000 to 0100.5e7f.ffff) and IPv6 multicast addresses (range 3333.0000.0000 to 3333.ffff.ffff), use IGMP/MLD snooping. Other multicast addresses can also be configured on the ports using this feature.
- The FastIron GS and LS, and GS-STK and LS-STK support a maximum of 7 multi-port static MAC addresses.
- Hosts or physical interfaces normally join multicast groups dynamically, but you can also statically configure a host or an interface to join a multicast group.
- The following limitations apply to FastIron GS and LS, and GS-STK and LS-STK devices, TurboIron X Series devices, FastIron X Series devices running pre-release FSX 04.2.00 software, and FastIron X Series devices running release FSX 04.2.00 or later that have the source_port_group_suppression_enable flag enabled:
 - This feature is not supported on ports that are already deployed on a trunk. If attempted, the system will return a port overlap error.
 - External trunks cannot be created and deployed on ports on which static MAC addresses are configured.
 - This feature is not supported on a set of ports that overlap with a set of ports on which static MAC entries are configured, unless the port list in both sets is identical

NOTE
For more information about source port group suppression, refer to “Configuring a multi-port static MAC address with source port group suppression” on page 367.
Configuring a multi-port static MAC address

For example, to add a static entry for a server with a MAC address of 0045.5563.67ff and a priority of 7, enter the following command.

```
FastIron(config)#static-mac-address 0045.5563.67ff ethernet 4/2 ethernet 4/3 ethernet 4/4 priority 7
```

To specify a range of ports, enter the following command.

```
FastIron(config)#static-mac-address 0045.5563.67ff ethernet 4/2 to 4/6 priority 7
```

Syntax: `[no] static-mac-address <mac-addr> ethernet [<slotnum>]/<portnum> ethernet [<slotnum>]/<portnum> ethernet [<slotnum>]/<portnum> ... [priority <num>]`

or

Syntax: `[no] static-mac-address <mac-addr> ethernet [<slotnum>]/<portnum> to ethernet [<slotnum>]/<portnum> [priority <num>]`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The priority `<num>` is optional and can be a value from 0 – 7 (0 is lowest priority and 7 is highest priority). The default priority is 0.

NOTE

The location of the `static-mac-address` command in the CLI depends on whether you configure port-based VLANs on the device. If the device does not have more than one port-based VLAN (VLAN 1, which is the default VLAN that contains all the ports), the `static-mac-address` command is at the global CONFIG level of the CLI. If the device has more than one port-based VLAN, then the `static-mac-address` command is not available at the global CONFIG level. In this case, the command is available at the configuration level for each port-based VLAN.

Configuring a multi-port static MAC address with source port group suppression

Platform Support:

- FastIron X Series devices running software release 04.2.00 and later – L2, BL3, L3

In releases prior to FSX 04.2.00, multi-port static MAC entries are not supported on ports that are part of a trunk group. This is because the Brocade device creates an internal trunk to bundle the ports together for the multi-port static MAC configuration. Since a switch port can be a member of only one trunk at a time, trunking is not supported with multi-port static MAC entries.

Starting in software release 04.2.00, by default, multi-port static MAC entries are supported on ports that are part of a trunk group. If desired, you can configure the device to work as in pre-release FSX 04.2.00, by enabling source port group suppression. When enabled, packets coming in through one of the specified ports with a destination MAC address equal to the configured static MAC address, will not be forwarded back to these set of ports.

When source port group suppression is enabled, the following limitations apply:

- Multi-port static MAC address entries are not supported on ports that are already deployed in a trunk. If configuration is attempted, the system will return a port overlap error.
- External trunks cannot be created and deployed on ports on which static MAC addresses with source port group suppression is enabled.
• Multi-port static MAC address entries are not supported on a set of ports that overlap with a set of ports on which static MAC entries are configured, unless the port list in both sets is identical.

To add a static entry for a server with a MAC address of 0045.5563.67ff and enable source port group suppression, enter a command such as the following.

```
FastIron(config)#static-mac-address 0045.5563.67ff ethernet 4/2 to 4/6
source_port_group_suppression_enable priority 7
```

Syntax: `[no] static-mac-address <mac-addr> ethernet [<slotnum>][<portnum>] ethernet ...

`[source_port_group_suppression_enable] [priority <num>]`

or

Syntax: `[no] static-mac-address <mac-addr> ethernet [<slotnum>][<portnum>] to ethernet ...

`[source_port_group_suppression_enable] [priority <num>]`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The `source_port_group_suppression_enable` parameter is optional. This creates an internal trunk for the specified ports.

The priority `<num>` is optional and can be a value from 0 – 7 (0 is lowest priority and 7 is highest priority). The default priority is 0.

NOTE
The location of the static-mac-address command in the CLI depends on whether you configure port-based VLANs on the device. If the device does not have more than one port-based VLAN (VLAN 1, which is the default VLAN that contains all the ports), the static-mac-address command is at the global CONFIG level of the CLI. If the device has more than one port-based VLAN, then the static-mac-address command is not available at the global CONFIG level. In this case, the command is available at the configuration level for each port-based VLAN.

Configuring VLAN-based static MAC entries

Platform Support:

- FastIron X Series devices running software release 04.0.00 and later – L2, BL3, and L3
- FGS and FLS devices running software release 04.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later

You can configure a VLAN to drop packets that have a particular source or destination MAC address.

You can configure a maximum of 2048 static MAC address drop entries on a Brocade device.

Use the CLI command `show running-config` to view the static MAC address drop entries currently configured on the device.
Clearing MAC address entries

You can remove learned MAC address entries from the MAC address table. The types of MAC address can be removed as follows:

- All MAC address entries
- All MAC address entries for a specified Ethernet port
- All MAC address entries for a specified VLAN
- All specified MAC address entry in all VLANs

For example, to remove entries for the MAC address 000d.cd80.00d0 in all VLANs, enter the following command at the Privilege EXEC level of the CLI.

```
FastIron#clear mac-address 000d.cd80.00d0
```

Syntax: `clear mac-address <mac-address> | ethernet <port-num> | vlan <vlan-num>`

If you enter `clear mac-address` without any parameter, the software removes all MAC address entries.

Use the `<mac-address>` parameter to remove a specific MAC address from all VLANs. Specify the MAC address in the following format: HHHH.HHHH.HHHH.

Use the `ethernet <port-num>` parameter to remove all MAC addresses for a specific Ethernet port.

Use the `vlan <num>` parameter to remove all MAC addresses for a specific VLAN.

Flow-based MAC address learning

This section describes flow-based MAC address learning and how to enable it on a FastIron switch.

Platform Support:

- FESX, FSX and SX devices running software release FSX 05.1.00 and later

Feature overview

With regular MAC address learning, when a new MAC address is learned, it is programmed in the same location (hardware index) in all packet processors in a FastIron Layer 2 or Layer 3 switch. There are multiple packet processors (one per port region) in a compact switch, and in each module in a chassis-based switch. With regular MAC address learning, MAC addresses are **global**, meaning the hardware MAC table is identical across all packet processors.
With the introduction of **flow-based MAC address learning**, when a new source MAC address is learned, it is programmed only in the source packet processor (the processor that received the packet). The destination MAC address gets added to other packet processors on demand, whenever a traffic flow that needs it is detected. With flow-based MAC address learning, the MAC address is programmed in different hardware locations and the hardware MAC table is different across all packet processors.

The benefits of flow-based learning

With global MAC address learning, all MAC addresses are programmed in all packet processors, even though they may not be required and are never used by all packet processors. Global MAC address learning wastes some space in the hardware MAC table and limits the number of supported MAC addresses to 16K.

With flow-based MAC address learning, MAC addresses are learned and programmed selectively, only in the packet processors that need them. Since the MAC addresses are distributed across several packet processors, flow-based learning frees up space in the hardware MAC table and increases the number of supported MAC addresses from 16K to 32K.

How flow-based learning works

When a packet processor, let call it PP 1, receives an incoming packet with source MAC address X, it sends a new address message to the CPU. The system learns MAC address X by adding it to the software MAC table in the CPU, then programming it in the hardware MAC table in the source packet processor, in this case PP 1. If the MAC address is learned on a trunk port, the MAC address is also programmed on all of the packet processors that have ports in the same trunk group.

When another packet processor, let call it PP 2, receives an incoming packet and the packet destination MAC address matches source MAC address X, it floods the packet in hardware as an unknown unicast packet and copies the packet to the CPU. The system locates the MAC address in the software MAC table, then programs the MAC address in the hardware MAC table in PP 2. If the MAC address is learned on a trunk port, the MAC address is also programmed on all of the packet processors that have ports in the same trunk group. Once the MAC address is programmed in hardware, subsequent packets with this destination MAC are forwarded as known unicast packets and are not copied to the CPU.

Flow-based MAC addresses are aged out by the source packet processor according to the MAC age time learned on the local port. Furthermore, when a flow-based MAC address is aged out from the source packet processor, it is also aged out from all other packet processors on which the address is programmed. In the above example, when MAC address X is aged out from PP 1, it is also aged out from PP2.

NOTE

Even when flow-based MAC address learning is enabled, some MAC addresses, including but not limited to control MACs, static MACs, multicast MACs, and MAC addresses resolved through ARP, will continue to be global MAC addresses. These MAC addresses are always programmed in all packet processors in a Layer 2 or Layer 3 switch.
NOTE
Global MAC addresses have priority over dynamic flow-based MAC addresses. To ensure that global MAC addresses are in sync across all packet processors, flow-based MAC addresses may be overwritten in one or more packet processors. The MAC addresses will be relearned and reprogrammed using the flow-based method as needed by incoming traffic flows.

Configuration considerations
When configuring flow-based MAC learning, consider the rules and limitations in this section.

- Flow-based MAC learning is not supported with the following features:
 - Disabling the automatic learning of MAC addresses (CLI command `mac-learn-disable`).
 - Globally disabling Layer 2 switching (CLI command `route-only`).
- When flow-based MAC learning is enabled, unknown unicast packets are copied to the CPU. Therefore, flow-based MAC learning should not be enabled if a continuous high rate of unknown unicast packet flooding is expected, as this will cause high CPU utilization.
- Unknown unicast flooding can occur for a known destination MAC address, if the system fails to program that destination MAC address because the hardware MAC table or hash bucket is full. This condition can also lead to high CPU utilization.
- A source MAC address is learned only on the ingress (source) packet processor. The MAC address is added to other packet processors as needed by their incoming traffic flows. During a brief period until the destination MAC address is successfully added to the hardware MAC table, unknown unicast flooding is expected on the VLAN.
- When a flow-based MAC address moves, it is deleted from all of the packet processors, then relearned on each packet processor individually, as needed by incoming traffic flows.
- The software MAC address table in the CPU uses a hashing algorithm. Because hash collisions can occur and may consume software resources, the FastIron may not be able to support up to 32K MAC addresses.
- The system can scale up to 32K MAC addresses, however, each packet processor is limited to a maximum of 16K MAC addresses. This limit still applies, as this is a hardware limitation.

Configuring flow-based MAC address learning
To configure flow-based MAC address learning, simply enable it globally. If necessary, increase the capacity of the MAC address table as well.

Enabling flow-based MAC address learning
To enable flow-based MAC address learning, enter the following command at the Global CONFIG level of the CLI.

```plaintext
FastIron(config)#mac-learning-flow-based
```
This command enables flow-based MAC address learning. All dynamically-learned MAC addresses are flushed from the hardware and software MAC tables and are subsequently learned using flow-based MAC address learning.

```plaintext
[no] mac-learning-flow-based
```
Flow-based MAC address learning

Use the **no** form of the command to disable flow-based MAC address learning. When disabled, all dynamically-learned MAC addresses are flushed from the hardware and software MAC tables and are subsequently learned using global MAC address learning.

Increasing the capacity of the MAC address table (optional)

After enabling support for flow-based MACs, you can increase the capacity of the MAC address table of up to 32K MAC addresses. By default, up to 16K MAC addresses are supported.

NOTE

The system can scale up to 32K MAC addresses when flow-based MAC address learning is enabled. If flow-based learning is disabled, the system cannot scale more than 16K MAC addresses.

To increase the capacity of the MAC table, enter commands such as the following.

```plaintext
FastIron(config)#system-max mac 32768
FastIron(config)#write memory
FastIron(config)#exit
FastIron#reload
```

NOTE

You must save the configuration and reload the software to place the **system-max mac** change into effect.

Syntax:
`system-max mac <max-flow-MACs>`

The `<max-flow-MACs>` parameter specifies the maximum number of MAC addresses in the MAC table. For flow-based MACs, the minimum value is 16K and the maximum value is 32K. The default is 16K.

Use the command **show default values** to display the default, maximum, and currently configured values for the MAC address table.

Displaying information about flow-based MACs

The **show mac-address** command includes information related to flow-based MAC address learning. The following shows an example **show mac** output.

```plaintext
FastIron# show mac
Total active entries from all ports = 15
MAC-Address     Port     Type     Index
0000.0000.0001  1/1      Dynamic  NA
0000.0000.0002  1/1      Dynamic  NA
```

In the above example, since both MAC address entries are flow-based and are located on different packet processors (hardware index), the **Index** field displays **NA** (not applicable).

Syntax: **show mac**

To display all of the packet processors that have a particular flow-based MAC address, use the **show mac-address vlan** command.

```plaintext
FastIron#show mac-address vlan 1 0000.0000.0001
Total active entries from all ports = 16
MAC-Address     Port     Type     Index
0000.0000.0001  1/1      Dynamic  NA
```
Present in following devices (at hw index) :-

0 (8196) 4 (8196)

In the above example, the MAC address 0000.0000.0001 is programmed in packet processors 0 and 4, and the hardware index is 8196.

Syntax: show mac-address vlan <vlan-num> <mac address>

Clearing flow-based MAC address entries

To remove dynamically-learned MAC addresses from the MAC table, use the CLI command clear mac. This command clears all dynamically-learned MACs from the hardware and software MAC tables.

Enabling port-based VLANs

When using the CLI, port and protocol-based VLANs are created by entering one of the following commands at the global CONFIG level of the CLI.

To create a port-based VLAN, enter commands such as the following.

```
FastIron(config)#vlan 222 by port
FastIron(config)#vlan 222 name Mktg
```

Syntax: vlan <num> by port

Syntax: vlan <num> name <string>

The <num> parameter specifies the VLAN ID. The valid range for VLAN IDs starts at 1 on all systems but the upper limit of the range differs depending on the device. In addition, you can change the upper limit on some devices using the system max-vlans... command.

The <string> parameter is the VLAN name and can be a string up to 32 characters. You can use blank spaces in the name if you enclose the name in double quotes (for example, “Product Marketing”).

You can configure up to 4063 port-based VLANs on a device running Layer 2 code or 4061 port-based VLANs on a device running Layer 3 code. Each port-based VLAN can contain either tagged or untagged ports. A port cannot be a member of more than one port-based VLAN unless the port is tagged. On both device types, valid VLAN IDs are 1 – 4095. You can configure up to the maximum number of VLANs within that ID range.

NOTE

VLAN IDs 4087, 4090, and 4093 are reserved for Brocade internal use only. VLAN 4094 is reserved for use by Single STP. Also, in releases prior to 04.0.00, VLAN IDs 4091 and 4092 are reserved for Brocade internal use only. Starting in release 04.0.00, if you want to use VLANs 4091 and 4092 as configurable VLANs, you can assign them to different VLAN IDs. For more information, refer to “Assigning different VLAN IDs to reserved VLANs 4091 and 4092” on page 483.

NOTE

The second command is optional and also creates the VLAN if the VLAN does not already exist. You can enter the first command after you enter the second command if you first exit to the global CONFIG level of the CLI.
Assigning IEEE 802.1Q tagging to a port

When a port is tagged, it allows communication among the different VLANs to which it is assigned. A common use for this might be to place an email server that multiple groups may need access to on a tagged port, which in turn, is resident in all VLANs that need access to the server.

NOTE
Tagging does not apply to the default VLAN.

When using the CLI, ports are defined as either tagged or untagged at the VLAN level.

Command syntax

Suppose you want to make port 5 a member of port-based VLAN 4, a tagged port. To do so, enter the following.

```
FastIron(config)#vlan 4
FastIron(config-vlan-4)#tagged e 5
```

Syntax: `tagged ethernet [[<slotnum>/]<portnum>] [to [[<slotnum>/]<portnum>] [ethernet [[<slotnum>/]<portnum>]...]]`

The `<slotnum>` parameter is required on chassis devices.

Defining MAC address filters

MAC layer filtering enables you to build access lists based on MAC layer headers in the Ethernet/IEEE 802.3 frame. You can filter on the source and destination MAC addresses. The filters apply to incoming traffic only.

You configure MAC filters globally, then apply them to individual interfaces. To apply MAC filters to an interface, you add the filters to that interface MAC filter group.

NOTE
FastIron GS-STK and FastIron LS-STK devices do not support the configuration of both global DoS attack and MAC filters.

The device takes the action associated with the first matching filter. If the packet does not match any of the filters in the access list, the default action is to drop the packet. If you want the system to permit traffic by default, you must specifically indicate this by making the last entry in the access list a permit filter. An example is given below.

Syntax: `mac filter <last-index-number> permit any`.

For devices running Layer 3 code, the MAC filter is applied to all inbound Ethernet packets, including routed traffic. This includes those port associated with a virtual routing interface. However, the filter is not applied to the virtual routing interface. It is applied to the physical port.

When you create a MAC filter, it takes effect immediately. You do not need to reset the system. However, you do need to save the configuration to flash memory to retain the filters across system resets.
Configuration notes and limitations

- MAC filtering on FastIron devices is performed in hardware.
- MAC filtering on FastIron devices differ from other Brocade devices in that you can only filter on source and destination MAC addresses. Other Brocade devices allow you to also filter on the encapsulation type and frame type.
- MAC filtering differs from the FES and BigIron in that MAC filtering applies to all traffic, including management traffic. To exclude management traffic from being filtered, configure a MAC filter that explicitly permits all traffic headed to the management MAC (destination) address. The MAC address for management traffic is always the MAC address of port 1.
- MAC filters that have a global deny statement can cause the device to block all BPDUs. In this case, include exception statements for control protocols in the MAC filter configuration. On TurboIron X Series devices, BPDUs are not blocked by MAC filters.

The following configuration notes apply to Brocade Layer 3 devices:

- MAC filters apply to both switched and routed traffic. If a routing protocol (for example, OSPF) is configured on an interface, the configuration must include a MAC filter rule that allows the routing protocol MAC and the neighbor system MAC address.
- You cannot use Layer 2 filters to filter Layer 4 information.
- Starting in software release FSX 05.1.00 for FESX, FSX, and SX devices, MAC Layer 2 filters are supported on tagged ports in the base layer 3 and full Layer 3 images. In software releases prior to FSX 05.1.00, and on devices other than the FESX, FSX, and SX, MAC filters are not supported on tagged ports in the base Layer 3 and full Layer 3 images.

Command syntax

To configure and apply a MAC filter, enter commands such as the following.

```
FastIron(config)#mac filter 1 deny 3565.3475.3676 ffff.0000.0000
FastIron(config)#mac filter 1024 permit any any
FastIron(config)#int e 1
FastIron(config-if-e1000-1)#mac filter-group 1 1024
```

These commands configure a filter to deny traffic with a source MAC address that begins with “3565” to any destination. The second filter permits all traffic that is not denied by another filter.

NOTE

Once you apply a MAC filter to a port, the device drops all Ethernet traffic on the port that does not match a MAC permit filter on the port.

Syntax: `[no] mac filter <filter-num> permit | deny <src-mac> <mask> | any <dest-mac> <mask> | any

The **permit | deny** argument determines the action the software takes when a match occurs.

The `<src-mac> <mask> | any` parameter specifies the source MAC address. You can enter a specific address value and a comparison mask or the keyword any to filter on all MAC addresses. Specify the mask using (ones) and zeros. For example, to match on the first two bytes of the address aabb.ccdd.eeff, use the mask ffff.0000.0000. In this case, the filter matches on all MAC addresses that contain "aabb" as the first two bytes. The filter accepts any value for the remaining bytes of the MAC address. If you specify any, do not specify a mask. In this case, the filter matches on all MAC addresses.
Defining MAC address filters

The \(<\text{dest-mac}\>\ <\text{mask}\>\ |\ \text{any}\) parameter specifies the destination MAC address. The syntax rules are the same as those for the \(<\text{src-mac}\>\ <\text{mask}\>\ |\ \text{any}\) parameter.

Syntax: \([\text{no}]\ \text{mac filter log-enable}\)

Globally enables logging for filtered packets.

Syntax: \([\text{no}]\ \text{mac filter-group log-enable}\)

Enables logging for filtered packets on a specific port.

Syntax: \([\text{no}]\ \text{mac filter-group}\ <\text{filter-list}\>

Applies MAC filters to a port.

On TurboIron devices running software release 04.2.00 and later, you can filter packets based on the Ethernet type using the new \text{etype} optional keyword.

Syntax: \([\text{no}]\ \text{mac filter}\ <\text{filter-num}\>\ \text{permit} | \text{deny}\ <\text{src-mac}\>\ <\text{mask}\>\ |\ \text{any}\ <\text{dest-mac}\>\ <\text{mask}\>\ |\ \text{any}\ \text{[etype}\ <\text{eq} | \text{gt} | \text{lt} | \text{neq}>\ <\text{type}\>\]}\)

- \text{eq}\ - Matches packet with a given Ethernet type
- \text{gt}\ - Matches packet with a greater Ethernet type
- \text{lt}\ - Matches packet with a lower Ethernet type
- \text{neq}\ - Matches packet not with a given Ethernet type

NOTE
The filters must be applied as a group. For example, if you want to apply four filters to an interface, they must all appear on the same command line.

NOTE
You cannot add or remove individual filters in the group. To add or remove a filter on an interface, apply the filter group again containing all the filters you want to apply to the port.

NOTE
If you apply a filter group to a port that already has a filter group applied, the older filter group is replaced by the new filter group.

When a MAC filter is applied to or removed from an interface, a Syslog message such as the following is generated.

SYSLOG: <14>Jan 1 00:00:00 10.44.9.11 MAC Filter applied to port 0/1/2 by tester from telnet session (filter id=5).
SYSLOG: <14>Jan 1 00:00:00 10.44.9.11 MAC Filter removed from port 0/1/2 by tester from telnet session (filter id=5).

The Syslog messages indicate that a MAC filter was applied to the specified port by the specified user during the specified session type. Session type can be Console, Telnet, SSH, Web, SNMP, or others. The filter IDs that were added or removed are listed.
Enabling logging of management traffic permitted by MAC filters

You can configure the Brocade device to generate Syslog entries and SNMP traps for management traffic that is permitted by MAC filters. Management traffic applies to packets that are destined for the CPU, such as control packets. You can enable logging of permitted management traffic on a global basis or an individual port basis.

The first time an entry in a MAC filter permits a management packet and logging is enabled for that entry, the software generates a Syslog message and an SNMP trap. Messages for management packets permitted by MAC filters are at the warning level of the Syslog.

When the first Syslog entry for a management packet permitted by a MAC filter is generated, the software starts a five-minute timer. After this, the software sends Syslog messages every five minutes. The messages list the number of management packets permitted by each MAC filter during the previous five-minute interval. If a MAC filter does not permit any packets during the five-minute interval, the software does not generate a Syslog entry for that MAC filter.

NOTE

For a MAC filter to be eligible to generate a Syslog entry for permitted management packets, logging must be enabled for the filter. The Syslog contains entries only for the MAC filters that permit packets and have logging enabled.

When the software places the first entry in the log, the software also starts the five-minute timer for subsequent log entries. Thus, five minutes after the first log entry, the software generates another log entry and SNMP trap for permitted management packets.

Configuration notes

MAC filter logging is supported in the following FastIron configurations:

- FESX devices running software release 02.1.01 or later
- All FSX devices and associated software releases
- All FWSX devices and associated software releases
- All TIX devices and associated software releases

These releases support MAC filter logging of management traffic only.

Command syntax

To configure MAC filter logging globally, enter the following CLI commands at the global CONFIG level.

```
FastIron(config)#mac filter log-enable
FastIron(config)#write memory
```

Syntax: `[no] mac filter log-enable`

To configure MAC filter logging for MAC filters applied to ports 1 and 3, enter the following CLI commands.
Defining MAC address filters

```
FastIron(config)#int ethernet 1
FastIron(config-if-e1000-1)#mac filter-group log-enable
FastIron(config-if-e1000-1)#int ethernet 3
FastIron(config-if-e1000-3)#mac filter-group log-enable
FastIron(config-if-e1000-3)#write memory
```

Syntax: [no] mac filter-group log-enable

MAC filter override for 802.1X-enabled ports

Platform Support:

- FastIron X Series devices running software release 03.1.00a and later
- FGS and FLS devices running software release 4.1 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later

The MAC filtering feature on an 802.1X-enabled port allows 802.1X and non-802.1X devices to share the same physical port. For example, this feature enables you to connect a PC and a non-802.1X device, such as a Voice Over IP (VOIP) phone, to the same 802.1X-enabled port on the Brocade device. The IP phone will bypass 802.1X authentication and the PC will require 802.1X authentication.

To enable this feature, first create a MAC filter, then bind it to an interface on which 802.1X is enabled. The MAC filter includes a mask that can match on any number of bytes in the MAC address. The mask can eliminate the need to enter MAC addresses for all non-802.1X devices connected to the Brocade device, and the ports to which these devices are connected.

Configuration notes

- This feature is supported on untagged, tagged, and dual-mode ports.
- You can configure this feature on ports that have ACLs and MAC filters defined.
- This feature is not supported on TurboIron X Series devices.

Configuration syntax

To configure MAC filtering on an 802.1X-enabled port, enter commands such as the following.

```
FastIron#(config)#mac filter 1 permit 0050.04ab.9429 ffff.ffff.0000 any
FastIron#(config)#int e1/2
FastIron#(config-if-e1000-1/2)#dot1x auth-filter 1 3 to 5 10
```

The first line defines a MAC filter that matches on the first four bytes (ffff.ffff.0000) of the source MAC address 0050.04ab.9429, and any destination MAC address. The permit action creates an 802.1X session in the FORCE AUTHORIZE state, meaning that the device is placed unconditionally in the authorized state, bypassing 802.1X authentication and allowing all traffic from the specified MAC address. If no match is found, the implicit action is to authenticate the client.

The last line binds MAC filters 1, 3, 4, 5, and 10 to interface 2.

Syntax: mac filter <filter-num> permit | deny <src-mac> <mask> | any <dest-mac> <mask> | any

Syntax: dot1x auth-filter <filter-list>
The `permit` | `deny` argument determines the action the software takes when a match occurs. In the previous example, the `permit` action creates an 802.1X session in the FORCE AUTHORIZE state, meaning that the device is placed unconditionally in the authorized state, bypassing 802.1X authentication and allowing all traffic from the specified MAC address. The `deny` action creates an 802.1X session in the FORCE UNAUTHORIZE state, meaning that the device will never be authorized, even if it has the appropriate credentials.

The `<src-mac> | any` parameter specifies the source MAC address. You can enter a specific address value and a comparison mask, or the keyword `any` to filter on all MAC addresses. Specify the mask using f (ones) and zeros. For example, to match on the first two bytes of the address aabb.ccdd.eeff, use the mask ffff.0000.0000. The filter matches on all MAC addresses that contain aabb as the first two bytes and accepts any value for the remaining bytes of the MAC address. If you specify `any`, do not specify a mask. In this case, the filter matches on all MAC addresses. If no match is found, the implicit action is to authenticate the client.

The `<dest-mac> | any` parameter specifies the destination MAC address. The syntax rules are the same as those for the `<src-mac> | any` parameter. Note that the 802.1X Authentication filter (dot1x auth-filter) does not use the destination MAC address in the MAC filter.

The `<filter-num>` command identifies the MAC filter. The maximum number of supported MAC filters is determined by the `mac-filter-sys` default or configured value.

The `dot1x auth-filter <filter-list>` command binds MAC filters to a port.

The following rules apply when using the `dot1x auth-filter` command:

- When you add filters to or modify the `dot1x auth-filter`, the system clears all 802.1X sessions on the port. Consequently, all users that are logged in will need to be re-authenticated.
- The maximum number of filters that can be bound to a port is limited by the `mac-filter-port` default or configured value.
- The filters must be applied as a group. For example, if you want to apply four filters to an interface, they must all appear on the same command line.
- You cannot add or remove individual filters in the group. To add or remove a filter on an interface, apply the filter group again containing all the filters you want to apply to the port.

If you apply a filter group to a port that already has a filter group applied, the older filter group is replaced by the new filter group.

Locking a port to restrict addresses

NOTE
This feature is not supported on TurboIron devices.

Address-lock filters allow you to limit the number of devices that have access to a specific port. Access violations are reported as SNMP traps. This feature is disabled by default. A maximum of 2048 entries can be specified for access. The default address count is eight.

Configuration notes

- Static trunk ports and link-aggregation configured ports do not support the lock-address option.
Displaying and modifying system parameter default settings

• The MAC port security feature is a more robust version of this feature. Refer to Chapter 43, “Using the MAC Port Security Feature”.
• This feature is not supported on TurboIron X Series devices.

Command syntax

To enable address locking for port 2 and place a limit of 15 entries, enter a command such as the following.

FastIron(config)# lock e 2 addr 15

Syntax: lock-address ethernet [stack-unit]/<slotnum>/<portnum> [addr-count <num>]

The slotnum parameter is required on chassis devices and on FastIron GS devices.

The portnum parameter is a valid port number.

The <num> parameter is a value from 1 – 2048.

Displaying and modifying system parameter default settings

Brocade devices have default table sizes for the system parameters shown in the following display outputs. The table sizes determine the maximum number of entries the tables can hold. You can adjust individual table sizes to accommodate your configuration needs.

The tables you can configure, as well as the default values and valid ranges for each table, differ depending on the Brocade device you are configuring. To display the adjustable tables on your Brocade device, use the show default values command. The following shows example outputs.

Configuration considerations

• Changing the table size for a parameter reconfigures the device memory. Whenever you reconfigure the memory on a Brocade device, you must save the change to the startup-config file, then reload the software to place the change into effect.
• Configurable tables and their defaults and maximum values differ on Brocade IPv4 devices versus IPv6-capable devices.
• For more information about Layer 3 system parameter limits, refer to “Modifying and displaying layer 3 system parameter limits” on page 713.

Displaying system parameter default values

To display the configurable tables and their defaults and maximum values, enter the show default values command at any level of the CLI.

The following shows an example output of the show default values command on a FastIron Layer 2 device.
Displaying and modifying system parameter default settings

```
FastIron# show default values
sys log buffers:50     mac age time:300 sec     telnet sessions:5
System Parameters    Default    Maximum    Current
igmp-max-group-addr  255        1024       255
l3-vlan              32         1024        32
mac                  16000      16000      16000
vlan                 64         4095       4095
spanning-tree        32         255        32
mac-filter-port      32         256        32
mac-filter-sys       64         512        64
view                 10         65535      10
rmon-entries         1024       32768      1024
mld-max-group-addr   8192       32768      8192
igmp-snoop-mcache    512        2048       512
mld-snoop-mcache     512        8192       512
```

TurboIron# show default values

```
Minimum    Maximum  Current
multicast-route  1024       2048       1024
pim-mcache      1024       4096       1024
igmp-max-group-addr  4096       8192       4096
igmp-snoop-mcache  512        2048       512
msdp-sa-cache    1024       4096       1024
```

The following shows an example output on a TurboIron device.

The following shows an example output on a FastIron IPV4 device running Layer 3 software.
Displaying and modifying system parameter default settings

FastIron#show default values
sys log buffers: 50 mac age time: 300 sec telnet sessions: 5
ip arp age: 10 min bootp relay max hops: 4 ip ttl: 64 hops
ip addr per intf: 24

when multicast enabled:
igmp group memb.: 140 sec igmp query: 60 sec

when ospf enabled:
ospf dead: 40 sec ospf hello: 10 sec ospf retrans: 5 sec
ospf transit delay: 1 sec

when bgp enabled:
bgp local pref.: 100 bgp keep alive: 60 sec bgp hold: 180 sec
bgp metric: 10 bgp local as: 1 bgp cluster id: 0
bgp ext. distance: 20 bgp int. distance: 200 bgp local distance: 200

<table>
<thead>
<tr>
<th>System Parameters</th>
<th>Default</th>
<th>Maximum</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-arp</td>
<td>4000</td>
<td>64000</td>
<td>4000</td>
</tr>
<tr>
<td>ip-static-arp</td>
<td>512</td>
<td>1024</td>
<td>512</td>
</tr>
<tr>
<td>atalk-route</td>
<td>1024</td>
<td>1536</td>
<td>1024</td>
</tr>
<tr>
<td>atalk-zone-port</td>
<td>64</td>
<td>255</td>
<td>64</td>
</tr>
<tr>
<td>atalk-zone-sys</td>
<td>768</td>
<td>2048</td>
<td>768</td>
</tr>
<tr>
<td>multicast-route</td>
<td>64</td>
<td>8192</td>
<td>64</td>
</tr>
<tr>
<td>dvmrp-route</td>
<td>2048</td>
<td>32000</td>
<td>2048</td>
</tr>
<tr>
<td>dvmrp-mpcache</td>
<td>512</td>
<td>4096</td>
<td>512</td>
</tr>
<tr>
<td>pim-mpcache</td>
<td>1024</td>
<td>4096</td>
<td>1024</td>
</tr>
<tr>
<td>ip-cache</td>
<td>80000</td>
<td>400000</td>
<td>80000</td>
</tr>
<tr>
<td>ip-filter-port</td>
<td>1015</td>
<td>1015</td>
<td>1015</td>
</tr>
<tr>
<td>ip-filter-sys</td>
<td>2048</td>
<td>8192</td>
<td>2048</td>
</tr>
<tr>
<td>ipx-forward-filter</td>
<td>32</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>ipx-rip-entry</td>
<td>2048</td>
<td>8192</td>
<td>2048</td>
</tr>
<tr>
<td>ipx-rip-filter</td>
<td>32</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>ipx-sap-entry</td>
<td>4096</td>
<td>8192</td>
<td>4096</td>
</tr>
<tr>
<td>ipx-sap-filter</td>
<td>32</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>13-vlan</td>
<td>32</td>
<td>1024</td>
<td>32</td>
</tr>
<tr>
<td>ip-qos-session</td>
<td>1024</td>
<td>16000</td>
<td>1024</td>
</tr>
<tr>
<td>mac</td>
<td>16384</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>ip-route</td>
<td>80000</td>
<td>262144</td>
<td>80000</td>
</tr>
<tr>
<td>ip-static-route</td>
<td>64</td>
<td>1024</td>
<td>64</td>
</tr>
<tr>
<td>vlan</td>
<td>64</td>
<td>4095</td>
<td>64</td>
</tr>
<tr>
<td>spanning-tree</td>
<td>32</td>
<td>255</td>
<td>32</td>
</tr>
<tr>
<td>mac-filter-port</td>
<td>16</td>
<td>256</td>
<td>16</td>
</tr>
<tr>
<td>mac-filter-sys</td>
<td>32</td>
<td>512</td>
<td>32</td>
</tr>
<tr>
<td>ip-subnet-port</td>
<td>24</td>
<td>128</td>
<td>24</td>
</tr>
<tr>
<td>session-limit</td>
<td>65536</td>
<td>160000</td>
<td>65536</td>
</tr>
<tr>
<td>view</td>
<td>10</td>
<td>65535</td>
<td>10</td>
</tr>
<tr>
<td>virtual-interface</td>
<td>255</td>
<td>512</td>
<td>255</td>
</tr>
<tr>
<td>hw-ip-next-hop</td>
<td>2048</td>
<td>6144</td>
<td>2048</td>
</tr>
<tr>
<td>hw-logical-interface</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>hw-ip-mpcast-ml1</td>
<td>1024</td>
<td>4096</td>
<td>1024</td>
</tr>
<tr>
<td>hw-traffic-condition</td>
<td>50</td>
<td>1024</td>
<td>50</td>
</tr>
<tr>
<td>rmon-entries</td>
<td>2048</td>
<td>32768</td>
<td>2048</td>
</tr>
</tbody>
</table>

cont’d on next page...

telnet@SXR16(config)#
Displaying and modifying system parameter default settings

The following shows an example output on a FastIron IPv6 device running Layer 3 software. The lines in bold type indicate system parameter values that are different for IPv6 devices versus IPv4 devices.

```
FastIron#show default values
sys log buffers:50        mac age time:300 sec        telnet sessions:5
ip arp age:10 min        bootp relay max hops:4       ip ttl:64 hops
ip addr per intf:24
when multicast enabled :
  igmp group memb.:140 sec   igmp query:60 sec
when ospf enabled :
  ospf dead:40 sec          ospf hello:10 sec          ospf retrans:5 sec
  ospf transit delay:1 sec
when bgp enabled :
  bgp local pref.:100        bgp keep alive:60 sec       bgp hold:180 sec
  bgp metric:10              bgp local as:1              bgp cluster id:0
  bgp ext. distance:20       bgp local distance:200

System Parameters    Default    Maximum    Current
ip-arp               4000       64000      4000
ip-static-arp        512        1024       512
atalk-route          1024       1536       1024
atalk-zone-port      64         255        64
atalk-zone-sys       768        2048       768
multicast-route      64         8192       64
dvmrp-route          2048       32000      2048
dvmrp-mcache         512        4096       512
pim-mcache           1024       4096       1024
ip-cache             10000      256000     10000
ip-filter-port       1015       1015       1015
ip-filter-sys        2048       4096       2048
ipx-forward-filter   32         128        32
ipx-rip-entry        2048       8192       2048
ipx-rip-filter       32         128        32
ipx-sap-entry        4096       8192       4096
ipx-sap-filter       32         128        32
l3-vlan              32         1024       32
ip-gos-session       1024       16000      1024
mac                  16384      16384      16384
ip-route             80000      262144     80000
ip-static-route      64         2048       64
vlan                 64         4095       64
spanning-tree        32         255        32
mac-filter-port      16         256        16
mac-filter-sys       32         512        32
ip-subnet-port       24         128        24
session-limit        65536      160000     65536
view                 10         65535      10
```

cont’d on next page...
Table 79 defines the system parameters in the `show default values` command output.

TABLE 79 System parameters in show default values command

<table>
<thead>
<tr>
<th>This system parameter...</th>
<th>Defines the maximum number of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>atalk-route</td>
<td>Appletalk routes</td>
</tr>
<tr>
<td>atalk-zone-port</td>
<td>Appletalk zones per port</td>
</tr>
<tr>
<td>atalk-zone-sys</td>
<td>Appletalk zones per system</td>
</tr>
<tr>
<td>dvmrp-mcache</td>
<td>PIM and DVMRP multicast cache flows stored in CAM</td>
</tr>
<tr>
<td>dvmrp-route</td>
<td>DVMRP routes</td>
</tr>
<tr>
<td>hw-ip-mcast-ml</td>
<td>Multicast output interfaces (clients)</td>
</tr>
<tr>
<td>hw-ip-next-hop</td>
<td>IP next hops and routes, including unicast next hops and multicast route entries</td>
</tr>
<tr>
<td>hw-logical-interface</td>
<td>Hardware logical interface pairs (physical port and VLAN pairs)</td>
</tr>
<tr>
<td>hw-traffic-conditioner</td>
<td>Traffic policies</td>
</tr>
<tr>
<td>ip-arp</td>
<td>ARP entries</td>
</tr>
<tr>
<td>ip-cache</td>
<td>IP forwarding cache entries</td>
</tr>
<tr>
<td>ip-filter-port</td>
<td>IP ACL entries per port</td>
</tr>
<tr>
<td>ip-filter-sys</td>
<td>IP ACL entries per system</td>
</tr>
<tr>
<td>ip-qos-session</td>
<td>Layer 4 session table entries</td>
</tr>
<tr>
<td>ip-route</td>
<td>Learned IP routes</td>
</tr>
<tr>
<td>ip-static-arp</td>
<td>Static IP ARP entries</td>
</tr>
<tr>
<td>ip-static-route</td>
<td>Static IP routes</td>
</tr>
<tr>
<td>ip-subnet-port</td>
<td>IP subnets per port</td>
</tr>
<tr>
<td>ipx-forward-filter</td>
<td>IPX forward filter entries</td>
</tr>
<tr>
<td>ipx-rip-entry</td>
<td>IPX RIP entries</td>
</tr>
<tr>
<td>ipx-rip-filter</td>
<td>IPX RIP filter entries</td>
</tr>
<tr>
<td>ipx-sap-entry</td>
<td>IPX SAP entries</td>
</tr>
<tr>
<td>ipx-sap-filter</td>
<td>IPX SAP filter entries</td>
</tr>
<tr>
<td>l3-vlan</td>
<td>Layer 3 VLANs</td>
</tr>
<tr>
<td>mac</td>
<td>MAC entries</td>
</tr>
<tr>
<td>mac-filter-port</td>
<td>MAC filter entries per port</td>
</tr>
<tr>
<td>mac-filter-sys</td>
<td>MAC filter entries per system</td>
</tr>
</tbody>
</table>

cont’d...

virtual-interface	255	512	255
hw-ip-next-hop	6144	6144	6144
hw-ip-mcast-ml	3072	3072	3072
hw-traffic-condition	50	1024	50
rmon-entries	2048	32768	2048
mld-max-group-addr	8192	32768	8192
igmp-snoop-mcache	512	8192	512
mld-snoop-mcache	512	8192	512
Displaying and modifying system parameter default settings

Modifying system parameter default values

Information for the configurable tables appears under the columns that are shown in bold type in the above examples. To simplify configuration, the command parameter you enter to configure the table is used for the table name. For example, to increase the capacity of the IP route table, enter the following commands.

```
FastIron(config)#system-max ip-route 120000
FastIron(config)#write memory
FastIron(config)#exit
FastIron#reload
```

Syntax: system-max ip-route <num>

The `<num>` parameter specifies the maximum number of routes in the IP route table. The minimum value is 4096. The maximum value is 524288 starting in software release FSX 04.1.00. In releases prior to FSX 04.1.00, the maximum value is 262144 or 128000, depending on the software version. The default is 80000 IP routes.

NOTE

If you accidentally enter a value that is not within the valid range of values, the CLI will display the valid range for you.

To increase the number of IP subnet interfaces you can configure on each port on a device running Layer 3 code from 24 to 64, then increase the total number of IP interfaces you can configure on the device from 256 to 512, enter the following commands.

```
FastIron(config)#system-max subnet-per-interface 64
FastIron(config)#write memory
FastIron(config)#exit
FastIron#reload
```

Syntax: system-max subnet-per-interface <num>

The `<num>` parameter specifies the maximum number of subnet addresses per port and can be from 1 – 64. The default is 24.
Dynamic buffer allocation for QoS priorities for FastIron X Series devices

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later

NOTE
This section does not apply to TurboIron X Series devices or FGS, FLS, FWS, FGS-STK, FLS-STK, and FCX devices. To configure dynamic buffer limits on the TurboIron X Series, refer to “Egress buffer thresholds for QoS priorities” on page 393. To configure dynamic buffer limits on FGS, FLS, FWS, FGS-STK, FLS-STK, and FCX devices, see “Dynamic buffer allocation for FGS, FLS, FWS, and FCX stackable and standalone devices” on page 389.

By default, Brocade Ironware software allocates a certain number of buffers to the outbound transmit queue for each port, based on QoS priority (traffic class). The buffers control the total number of packets permitted in the outbound transmit queue of the port. For each port, the Brocade device defines the maximum outbound transmit buffers, also called queue depth limits, as follows:

- **Total Transmit Queue Depth Limit** – The total maximum number of transmit buffers allocated for all outbound packets on a port. Packets are added to the outbound queue for the port as long as the number of buffers currently being used is less than the total transmit queue depth limit. When this limit is reached, any new packets attempting to enter the port transmit queue will be dropped until at least one buffer is freed.

- **Transmit Queue Depth Limit for a Given Traffic Class** – The maximum number of transmit buffers allocated for packets with a given traffic class (0 – 7) on a port. Packets with the specified traffic class are added to the port outbound queue as long as the number of buffers currently being used for that traffic class is less than the transmit queue depth limit for the traffic class. When this limit is reached, any new packets with the specified traffic class attempting to enter the port transmit queue will be dropped.

In releases prior to 02.4.00 for the FastIron X Series, the above queue depth limits are fixed and cannot be modified.
Starting with release 02.4.00 for the FastIron X Series, you can increase or decrease both of these queue depth limits per port. This feature is useful in situations where applications have intermittent bursts of oversubscription. For example, by increasing the buffers on the egress port, the Brocade device will be able to forward oversubscribed packets instead of dropping them.

Brocade devices use the default maximum queue depths listed in Table 80.

Default queue depth limits for FastIron X Series devices

Table 80 defines the default maximum queue depth values per port, per traffic class. The Brocade device drops the packets that cause the port to exceed these limits.

<table>
<thead>
<tr>
<th>Port type</th>
<th>Maximum queue depth per port, per priority 0 – 6</th>
<th>Maximum queue depth per port, per priority 7</th>
<th>Total maximum queue depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gbps port</td>
<td>96</td>
<td>224</td>
<td>896</td>
</tr>
<tr>
<td>10 Gbps port without jumbo enabled</td>
<td>400</td>
<td>1104</td>
<td>3904</td>
</tr>
<tr>
<td>10 Gbps port with jumbo enabled</td>
<td>352</td>
<td>640</td>
<td>3104</td>
</tr>
</tbody>
</table>

Configuring the total transmit queue depth limit for FastIron X Series devices

To set the total transmit queue depth limit on a port, enter a command such as the following.

```
FastIron(config)#qd 2 2049
```

This command sets the queue depth limit on port 2 to 2049. Packets are added to the port's outbound queue as long as the packets do not cause the port to exceed 2048 buffers. If the port reaches its queue depth limit of 2049, any new packets attempting to enter the port transmit queue will be dropped until at least one buffer is freed.

Syntax: $qd\ [<\text{slotnum}>]/<\text{portnum}> <\text{limit}>$

The $<\text{slotnum}>$ parameter is required on chassis devices.

The $<\text{portnum}>$ parameter specifies on which port to apply the queue depth limit.

The $<\text{limit}>$ parameter can be a value from 0 – 4095. Table 80 lists the default values.

Configuring the transmit queue depth limit for a given traffic class on FastIron X Series devices

To set the transmit queue depth limit on a port for a given traffic class, first enter the transmit queue depth limit for the traffic class, then specify the traffic class.

Example

```
FastIron(config)#qd 2 200 7
```

This command sets the queue depth limit on port 2 to 200 for packets with a traffic class of 7. Packets with priority 7 are added to port 2 outbound queue as long as the packets do not exceed 199 buffers. When the port reaches its queue depth limit of 200, packets with the given traffic class will be dropped.
Dynamic buffer allocation for QoS priorities for FastIron X Series devices

Syntax: qd [<slotnum>/]<portnum> <limit> <traffic-class>

The <slotnum> parameter is required on chassis devices.

The <portnum> parameter specifies on which port to apply the queue depth limit.

The <limit> parameter can be a value from 0 – 4095 and cannot exceed the total transmit queue depth limit configured for the port. Table 80 lists the default values.

The sum of the queue depth limits for individual traffic classes on a port does not need to equal the total queue depth limit for the port:

- If the sum of the individual traffic class queue depth limits exceeds the total port limit and the total port limit is reached, any buffer that gets released can be used by any traffic class queue that has not reached its individual limit.
- If the sum of the individual traffic class queue depth limits is less than the total port limit, the remaining buffers can be used only by packets with a priority of 7.

The <traffic-class> parameter can be a value from 0 – 7, where 7 is the highest priority queue.

Removing buffer allocation limits on FastIron X Series devices

Platform Support:

- FastIron X Series devices running software release 03.2.00 and later

You can remove buffer allocation limits on all ports and all Traffic Classes globally. This permits all available buffers in a port region to be used in a first-come-first-serve basis by any of its ports, regardless of priority. This can be done using the following command.

FastIron(config)#buffer-sharing-full

Syntax: [no] buffer-sharing-full

Entering this command sets the Total Transmit Queue Depth Limit as well as the Transmit Queue Depth Limits for each Traffic Class to 4095 for all ports of the device. The command overrides any existing individually configured queue depth limits.

NOTE
This command should be used carefully! By entering this command, there is no limit on the number of buffers a port or a specific priority on a port can use. So one port could potentially use up all the available buffers of its port region and cause starvation on other ports of the port region.

Generic buffer profiles for FastIron X Series devices

Platform Support:

- FCX-S devices running software release 06.0.00 and later

Default buffer settings are currently optimized for 1GE-to-1GE traffic. This feature adds buffer profiles for 1GE-to-100Mbit traffic, simplifying configuration and improving performance.

This feature allows users to configure a pre-defined set of buffers and descriptors for priority 0 and 7. The buffer profile supports VoIP traffic that uses priority 7, with 10/100 uplink ports and 1000 downlink ports.
NOTE
In previous versions, users could manually configure buffers and descriptors using QD commands. This feature cannot co-exist with QD commands. You may use one or the other, but not both types at the same time.

Configuring buffer profiles

To configure predefined buffers, enter a command similar to the following.

```
FastIron#buffer-profile port-region 0 voip downlink 100 uplink 1000
```

Syntax: `[no] buffer-profile port-region <num> voip downlink 100 uplink 1000`

NOTE
The port-region num can be either 0 (ports 0/1/1 to 0/1/24) or 1 (ports 0/1/25 to 0/1/48).

Deleting buffer profiles

To delete an existing buffer profile configuration, use the `[no]` form of the command.

```
FastIron#no buffer-profile port-region 0 voip downlink 100 uplink 1000
```

Dynamic buffer allocation for FGS, FLS, FWS, and FCX stackable and standalone devices

Platform Support:

- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later

The devices listed above all operate using the FGS architecture, which by default allocates fixed buffers on a per-priority-queue per packet-processor basis. Where the FastIron X Series devices configure buffers on a per-port basis, FGS architecture devices configures buffers on a per-device basis, and applies the configuration to all ports on the device. In instances of heavy traffic bursts to aggregation links, such as in stacking configurations or mixed speed environments, momentary oversubscription of buffers and descriptors may occur. This can lead to dropped packets during egress queuing.

Brocade FastIron stackable devices a capable of allocating additional egress buffering and descriptors to handle momentary burst traffic periods, especially when other priority queues may not be in use, or may not be experiencing heavy levels of traffic. This allows users to allocate and fine tune the depth of priority buffer queues for each packet processor. The CLI commands for this feature are `qd descriptor` and `qd-buffer`. A descriptor points to one or more packet buffers.

The 48-port Brocade stackable switch has 2 packet processors. The 24-port Brocade stackable switch has a single packet processor. In an IronStack, each stack unit has the possibility of two packet processors, but the second processor for a 24-port stack unit cannot be configured. The number of actual available packet processors depends on the type and number of switches in the stack.
For example, for an 8-unit stack of 48 ports, the packet processor numbering scheme is as follows:

Stack unit 1 - packet processors 0 and 1
Stack unit 2 - packet processors 2 and 3
Stack unit 3 - packet processors 4 and 5
Stack unit 4 - packet processors 6 and 7
Stack unit 5 - packet processors 8 and 9
Stack unit 6 - packet processors 10 and 11
Stack unit 7 - packet processors 12 and 13
Stack unit 8 - packet processors 14 and 15

In this configuration, if stack unit 3 and stack unit 7 are 24-port devices, the odd-numbered packet processors 5 and 13 cannot be configured, and do not exist, although they are reserved.

Configuring dynamic buffer allocation for FGS, FLS, FWS, and FCX stackable and standalone devices

The buffer and descriptor allocation process occurs in four sequential steps:

1. **Configure the allowable port descriptors by entering a command similar to the following:**

   ```
   FastIron648S Switch#qd-descriptor 1 2 76
   Syntax: qd-descriptor <DeviceNum> <PortTypeVal> <NumDescriptors>
   "DeviceNum: 1-x
   "PortTypeVal : 1 for 1Gbps, 2 for 10Gbps
   "NumDescriptors : Number of descriptors to allocate (minimum 1, maximum 4095)
   ```

 NOTE
 FWS, FGS, FLS, and FGS-STK and FLS-STK devices support a maximum of 4095 descriptors. FCX devices support a maximum of 8192 descriptors.

2. **Configure the port descriptors for the queue by entering a command similar to the following:**

   ```
   FastIron648S Switch#qd-descriptor 1 2 76 2
   Syntax: qd-descriptor <DeviceNum> <PortTypeVal> <NumDescriptors> <PriorityQueue>
   "DeviceNum: 1-x
   "PortTypeVal : 1 for 1Gbps, 2 for 10Gbps
   "NumDescriptors : Number of descriptors to allocate (minimum 1, maximum 4095)
   "PriorityQueue: Designates a specific queue (0 to 7)
   ```

3. **Configure the allowable packet buffers by entering a command similar to the following:**

   ```
   FastIron648S Switch#qd-buffer 1 2 76
   Syntax: qd-buffer <DeviceNum> <PortTypeVal> <NumBuffers>
   "DeviceNum: 1-x
   "PortTypeVal : 1 for 1Gbps, 2 for 10Gbps
   "NumBuffers : Number of descriptors to allocate (minimum 1, maximum 4095)
   ```

4. **Configure the allowable packet buffers for the queue by entering a command similar to the following:**

   ```
   FastIron648S Switch#qd-buffer 1 2 76 2
   Syntax: qd-buffer <DeviceNum> <PortTypeVal> <NumBuffers> <PriorityQueue>
   "DeviceNum: 0-x
   "PortTypeVal: 1 for 1 Gbps or 2 for 10 Gbps
   ```
Dynamic buffer allocation for FGS, FLS, FWS, and FCX stackable and standalone devices

"NumBuffers: Number of buffers to allocate (minimum 1, maximum 4095)
"PriorityQueue: Designates a specific queue (0 to 7).

Sample Configuration

This sample configuration assumes a four-unit stack with the following topology. Note that there is no packet processor number 3 or 7, because stack units 2 and 4 are 24-port devices.

Stack unit 1, 48 ports - packet processor numbers 0 and 1
Stack unit 2, 24 ports - packet processor number 2
Stack unit 3, 48 ports - packet processors 4 and 5
Stack unit 4, 24 ports - packet processor number 6

Configuration Command Example

The following commands allocate available buffers to be used by priority 0 queues in the four-unit stack:

```
qd-descriptor 0 1 4095
qd-descriptor 1 1 4095
qd-descriptor 2 1 4095
qd-descriptor 4 1 4095
qd-descriptor 5 1 4095
qd-descriptor 6 1 4095
qd-descriptor 0 2 4095
qd-descriptor 1 2 4095
qd-descriptor 2 2 4095
qd-descriptor 4 2 4095
qd-descriptor 5 2 4095
qd-descriptor 6 2 4095
qd-descriptor 0 1 4095 0
qd-descriptor 1 1 4095 0
qd-descriptor 2 1 4095 0
qd-descriptor 4 1 4095 0
qd-descriptor 5 1 4095 0
qd-descriptor 6 1 4095 0
qd-descriptor 0 2 4095 0
qd-descriptor 1 2 4095 0
qd-descriptor 2 2 4095 0
qd-descriptor 4 2 4095 0
qd-descriptor 5 2 4095 0
qd-descriptor 6 2 4095 0
qd-buffer 0 1 4095
qd-buffer 1 1 4095
qd-buffer 2 1 4095
qd-buffer 4 1 4095
qd-buffer 5 1 4095
qd-buffer 6 1 4095
qd-buffer 0 2 4095
qd-buffer 1 2 4095
qd-buffer 2 2 4095
qd-buffer 4 2 4095
qd-buffer 5 2 4095
qd-buffer 6 2 4095
qd-buffer 0 1 4095 0
qd-buffer 1 1 4095 0
qd-buffer 2 1 4095 0
qd-buffer 4 1 4095 0
```
Removing buffer allocation limits on FGS, FLS, FWS, and FCX stackable and standalone devices

Platform Support:
- FGS and FLS devices running software release 04.1.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later

You can remove buffer allocation limits on all ports and all Traffic Classes globally. This permits all available buffers in a port region to be used in a first-come-first-serve basis by any of its ports, regardless of priority. This can be done using the following command.

```
FastIron(config)#buffer-sharing-full
```

Syntax: `[no] buffer-sharing-full`

Entering this command sets the Total Transmit Queue Depth Limit as well as the Transmit Queue Depth Limits for each Traffic Class to 4095 for all ports of the device. The command overrides any existing individually configured queue depth limits.

NOTE
This command should be used carefully! By entering this command, there is no limit on the number of buffers a port or a specific priority on a port can use. So one port could potentially use up all the available buffers of its port region and cause starvation on other ports of the port region.

Generic buffer profiles for FGS, FLS, FWS, and FCX stackable and standalone devices

Platform Support:
- FGS and FLS devices running software release 04.1.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later

Default buffer settings are currently optimized for 1GE-to-1GE traffic. This feature adds buffer profiles for 1GE-to-100Mbit traffic, simplifying configuration and improving performance.

This feature allows users to configure a pre-defined set of buffers and descriptors for priority 0 and 7. The buffer profile supports VoIP traffic that uses priority 7, with 10/100 uplink ports and 1000 downlink ports.

```
qd-buffer 5 1 4095 0
qd-buffer 6 1 4095 0
qd-buffer 0 2 4095 0
qd-buffer 1 2 4095 0
qd-buffer 2 2 4095 0
qd-buffer 4 2 4095 0
qd-buffer 5 2 4095 0
qd-buffer 6 2 4095 0
```
NOTE
In previous versions, users could manually configure buffers and descriptors using QD commands. This feature cannot co-exist with QD commands. You may use one or the other, but not both types at the same time.

Configuring buffer profiles

To configure predefined buffers, enter a command similar to the following.

FastIron#buffer-profile port-region 0 voip downlink 100 uplink 1000

Syntax: [no] buffer-profile port-region <num> voip downlink 100 uplink 1000

NOTE
The port-region num can be either 0 (ports 0/1/1 to 0/1/24) or 1 (ports 0/1/25 to 0/1/48).

Deleting buffer profiles

To delete an existing buffer profile configuration, use the [no] form of the command.

FastIron#no buffer-profile port-region 0 voip downlink 100 uplink 1000

Egress buffer thresholds for QoS priorities

Platform Support:

- TurboIron X Series devices running software release 04.1.00 and later

NOTES:

- The terms QoS priority and traffic class are used interchangeably in this section and mean the same thing.
- Buffer threshold level-3 to maximum does not change the buffering behavior of the device in release 04.2.00 and later.

The TurboIron switch uses egress buffer threshold levels to dynamically adjust each port egress queue (outbound transmit queue) based on QoS priority (traffic class) and jumbo frame support. When the egress queue is full, any new packets destined for the egress queue will be dropped.

The following egress buffer thresholds can be adjusted by an administrator:

- **Egress Buffer Threshold for all Traffic Classes for a port** – When this is configured, the specified egress buffer threshold will be applied to all traffic classes (0 – 7) on a port.
- **Egress Buffer Threshold for a given Traffic Class for a port** – When this is configured, the specified egress buffer threshold will be applied to a specific traffic class (0 – 7) on a port.

The egress buffer thresholds can be modified to various levels. The default settings are described in the section “Default settings for egress buffer thresholds” on page 394. Note that based on the egress buffer threshold assigned, the system will dynamically control the egress CoS queue size for a port based on the current buffer usage information from the system.
FIGURE 49 shows the egress buffer thresholds.

FIGURE 49 Egress buffer thresholds on TurboIron devices

<table>
<thead>
<tr>
<th>Egress Buffer Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Level 6</td>
</tr>
<tr>
<td>Level 5</td>
</tr>
<tr>
<td>Level 4</td>
</tr>
<tr>
<td>Level 3</td>
</tr>
<tr>
<td>Level 2</td>
</tr>
<tr>
<td>Level 1</td>
</tr>
<tr>
<td>Minimum</td>
</tr>
</tbody>
</table>

Manually increasing buffer thresholds may be useful in situations where applications have intermittent bursts of oversubscription. For example, by increasing a port egress buffer threshold, the TurboIron will be able to forward oversubscribed packets instead of dropping them.

Cut-Through Switching Support on TurboIron 24X Series Switches

The TurboIron X Series operates in cut-through switching mode, meaning it starts forwarding a frame even before the whole frame has been received. However, if there is any oversubscription on the egress port, either due to speed mismatch (10-Gbps to 1-Gbps) or network topology (traffic from two 10-Gig ports going out of one 10-Gig port), the switch will buffer the packets and the forwarding behavior will be similar to store-and-forward mode.

Cut-Through Switching Mode and CRC Error Packet Handling

In the cut-through switching mode, if a packet is detected with a CRC error, the whole packet will be dropped if the packet size is less than or equal to 384 bytes. If the packet size is larger than 384 bytes, the last few bytes will be trimmed off the frames.

Default settings for egress buffer thresholds

Figure 49 illustrates the egress buffer threshold levels. For both non-jumbo and jumbo frame forwarding, the default egress buffer threshold is level-4 for all QoS priorities.

The TurboIron X Series is automatically configured to use the default thresholds for egress buffers. If you want to change the default threshold values, you must first disable the default values. The next section shows how.
Disabling and re-enabling the default settings for egress buffer thresholds

To disable the device from using the default settings for egress buffer thresholds, enter the following command.

```
TurboIron 24X(config)#no enable egress-buffer-default
```

This command disables the default values for all traffic classes on all ports. Once disabled, you can configure new threshold values as instructed in “Setting the egress buffer threshold for all QoS priorities on a port or group of ports” on page 395 and “Setting the egress buffer threshold for a specific QoS priority on a port or group of ports” on page 396.

Syntax: no enable egress-buffer-default

To re-enable the default settings for egress buffer thresholds once they have been disabled, enter the following command.

```
TurboIron 24X(config)#enable egress-buffer-default
```

The TurboIron X Series will revert to using the default values for all traffic classes on all ports, as described in “Default settings for egress buffer thresholds” on page 394.

Syntax: enable egress-buffer-default

Setting the egress buffer threshold for all QoS priorities on a port or group of ports

NOTE

Be sure to disable the default settings before performing the tasks in this section. Refer to “Disabling and re-enabling the default settings for egress buffer thresholds”.

To set the egress buffer threshold for all QoS priorities (0 – 7) on a port, enter commands such as the following.

```
TurboIron 24X(config)#int e 3
TurboIron 24X(conf-if-e10000-3)#egress-buffer-threshold min
```

To set the egress buffer threshold for all QoS priorities on multiple ports, enter commands such as the following.

```
TurboIron 24X(config)#int e 4 to 5
TurboIron 24X(config-mif-e10000-4-5)#egress-buffer-threshold min
```

These commands set the egress buffer threshold for all QoS priorities on ports e 1/3, and ports e 1/4 and 1/5, to the minimum (min) threshold.

Syntax: [no] egress-buffer-threshold min|level-1|level-2|level-3|level-4|level-5|level-6|max

Use the no form of the command to revert back to the default values for all QoS priorities on the port. For the default values, refer to “Default settings for egress buffer thresholds” on page 394.
Setting the egress buffer threshold for a specific QoS priority on a port or group of ports

NOTE
Be sure to disable the default settings before performing the tasks in this section. Refer to “Disabling and re-enabling the default settings for egress buffer thresholds”.

To set the egress buffer threshold for a specific QoS priority on a port, enter commands such as the following.

```
TurboIron 24X(config)#int e 3
TurboIron 24X(conf-if-e10000-3)#egress-buffer-threshold level-6 6
```

These commands set the egress buffer threshold for packets with QoS priority 6 to the **level-6** threshold.

To set the egress buffer threshold for a specific QoS priority on multiple ports, enter commands such as the following.

```
TurboIron 24X(config)#int e 4 to 5
TurboIron 24X(config-mif-4-5)#egress-buffer-threshold high 6
```

These commands set the egress buffer threshold for packets with QoS priority 6 to the **high** threshold.

Syntax: `[no] egress-buffer-threshold` `min|level-1|level-2|level-3|level-4|level-5|level-6|max` `<QoS-priority>`

For `<QoS-priority>`, enter a specific QoS priority (0 – 7).

Use the `no` form of the command to revert back to the default value for the QoS priority. For the default values, refer to “Default settings for egress buffer thresholds” on page 394.

Remote Fault Notification (RFN) on 1G fiber connections

Platform Support:
- FGS and FLS devices running software release 02.6.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FastIron X Series devices – all software releases
- FCX-S devices running software release 06.0.00 and later

NOTE
This feature is only available for Gbps Ethernet Fiber ports. It is not available for 10/100 ports and Gbps Ethernet Copper ports.

NOTE
This feature is not supported on TurboIron X Series devices.

For fiber-optic connections, you can optionally configure a transmit port to notify the receive port on the remote device whenever the transmit port becomes disabled.
When you enable this feature, the transmit port notifies the remote port whenever the fiber cable is either physically disconnected or has failed. When this occurs and the feature is enabled, the device disables the link and turns OFF both LEDs associated with the ports.

By default, RFN is enabled.

You can configure RFN as follows:

- Globally, on the entire device
- On a trunk group
- On an individual interface

Enabling and disabling remote fault notification

RFN is ON by default. To disable RFN, use the following command.

```plaintext
FastIron(config)#interface e 0/1/1
FastIron(config-if-e1000-0/1/1)#gig-default neg-off
```

To re-enable RFN, use the following command.

```plaintext
FastIron(config)#interface e 0/1/1
FastIron(config-if-e1000-0/1/1)#gig-default auto-on
```

Link Fault Signaling (LFS) for 10G

Platform Support:

- FGS and FLS devices running software release 02.6.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FastIron X Series devices - all software releases
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

Link Fault Signaling (LFS) is a physical layer protocol that enables communication on a link between two 10 Gbps Ethernet devices. When configured on a Brocade 10 Gbps Ethernet port, the port can detect and report fault conditions on transmit and receive ports. Brocade recommends enabling LFS on both ends of a link.

NOTE

LFS is always enabled on TurboIron X Series devices and cannot be disabled. The TurboIron devices support LFS only with other TurboIron devices.

When LFS is enabled on an interface, the following Syslog messages are generated when the link goes up or down, or when the TX or RX fiber is removed from one or both sides of the link that has LFS enabled.

```plaintext
Interface ethernet1/1, state down - link down
Interface ethernet1/1, state up
```

When a link fault occurs, the Link and Activity LEDs turn OFF.
The Link and Activity LEDs turn ON when there is traffic traversing the link after the fiber is installed.

Enabling LFS

To enable LFS between two 10 Gbps Ethernet devices, enter commands such as the following on both ends of the link.

```
FastIron(config)#interface e 1/1
FastIron(config-if-e1000-1/1)#link-fault-signal
```

Syntax: `[no] link-fault-signal`

Use the `no` form of the command to disable LFS.

NOTE
The `no` form of the command is not supported on TurboIron X Series devices.

LFS is OFF by default.

Viewing the status of LFS-enabled links

Platform Support:
- FastIron X Series devices running software release 04.2.00 and later

The status of an LFS-enabled link is shown in the output of the `show interface` and `show interface brief` commands, as shown in the following examples.

```
FastIron#show interface e 10/1
10GigabitEthernet10/1 is down (remote fault), line protocol is down
  Hardware is 10GigabitEthernet, address is 0012.f227.79d8 (bia 0012.f227.79d8)
  Configured speed 10Gbit, actual unknown, configured duplex fdx, actual unknown
  Member of L2 VLAN ID 1, port is untagged, port state is BLOCKING
  BPDU guard is Disabled, ROOT protect is Disabled
  Link Fault Signaling is Enabled, Link Error Dampening is Disabled
  STP configured to ON, priority is level0
  Flow Control is disabled
  mirror disabled, monitor disabled

some lines omitted for brevity...
```

The bold text in the above output shows that the LFS-enabled link (port 10/1) is down because of an error on the remote port, as indicated by `remote fault`.

Syntax: `show interface ethernet [<slotnum>/]<portnum>`

The `<slotnum>` parameter is required on chassis devices.

```
FastIron#show interfaces brief
Port Link State Dupl Speed Trunk Tag Pvid Pri MAC Name
10/1 Err-LFS None None None None No 1 0 0012.f227.79d8
```

The bold text in the above output indicates that there is an error on the LFS-enabled link on port 10/1 and the link is down.

Syntax: `show interfaces brief`
Jumbo frame support

Ethernet traffic moves in units called frames. The maximum size of frames is called the Maximum Transmission Unit (MTU). When a network device receives a frame larger than its MTU, the data is either fragmented or dropped. Historically, Ethernet has a maximum frame size of 1500 bytes, so most devices use 1500 as their default MTU.

Jumbo frames are Ethernet frames with more than 1,500 bytes MTU. Conventionally, jumbo frames can carry up to 9,000 bytes MTU. Brocade FastIron devices support Layer 2 jumbo frames on 10/100, 100/100/1000, and 10GbE ports. Brocade devices also support jumbo frames per VLAN.
Jumbo frame support
Chapter 11

Configuring Metro Features

Topology groups

A topology group is a named set of VLANs that share a Layer 2 topology. Topology groups simplify configuration and enhance scalability of Layer 2 protocols by allowing you to run a single instance of a Layer 2 protocol on multiple VLANs.

You can use topology groups with the following Layer 2 protocols:

- STP
- MRP
- VSRP
- 802.1W

Topology groups simplify Layer 2 configuration and provide scalability by enabling you to use the same instance of a Layer 2 protocol for multiple VLANs. For example, if a Brocade device is deployed in a Metro network and provides forwarding for two MRP rings that each contain 128 VLANs, you can configure a topology group for each ring. If a link failure in a ring causes a topology change, the change is applied to all the VLANs in the ring topology group. Without topology groups, you would need to configure a separate ring for each VLAN.

NOTE
If you plan to use a configuration saved under an earlier software release and the configuration contains STP groups, the CLI converts the STP groups into topology groups when you save the configuration. For backward compatibility, you can still use the STP group commands. However, the CLI converts the commands into the topology group syntax. Likewise, the `show stp-group` command displays STP topology groups.

Master VLAN and member VLANs

Each topology group contains a master VLAN and can contain one or more member VLANs and VLAN groups:

- **Master VLAN** – The master VLAN contains the configuration information for the Layer 2 protocol. For example, if you plan to use the topology group for MRP, the topology group master VLAN contains the ring configuration information.

- **Member VLANs** – The member VLANs are additional VLANs that share ports with the master VLAN. The Layer 2 protocol settings for the ports in the master VLAN apply to the same ports in the member VLANs. A change to the master VLAN Layer 2 protocol configuration or Layer 2 topology affects all the member VLANs. Member VLANs do not independently run a Layer 2 protocol.

- **Member VLAN groups** – A VLAN group is a named set of VLANs. The VLANs within a VLAN group have the same ports and use the same values for other VLAN parameters.
When a Layer 2 topology change occurs on a port in the master VLAN, the same change is applied to that port in all the member VLANs that contain the port. For example, if you configure a topology group whose master VLAN contains ports 1/1 and 1/2, a Layer 2 state change on port 1/1 applies to port 1/1 in all the member VLANs that contain that port. However, the state change does not affect port 1/1 in VLANs that are not members of the topology group.

Control ports and free ports

A port that is in a topology group can be a control port or a free port:

- **Control port** – A control port is a port in the master VLAN, and is therefore controlled by the Layer 2 protocol configured in the master VLAN. The same port in all the member VLANs is controlled by the master VLAN Layer 2 protocol. Each member VLAN must contain all of the control ports and can contain additional ports.

- **Free port** – A free port is not controlled by the master VLAN Layer 2 protocol. The master VLAN can contain free ports. (In this case, the Layer 2 protocol is disabled on those ports.) In addition, any ports in the member VLANs that are not also in the master VLAN are free ports.

NOTE
Since free ports are not controlled by the master port Layer 2 protocol, they are assumed to always be in the Forwarding state.

Configuration considerations

- Topology groups are supported on all FESX, FSX, FWSX devices and associated software releases.
- Topology groups are supported on FCX devices running software release 06.0.00 and later.
- Topology groups are supported on TurboIron X Series devices running software release 04.2.00 and later.
- You must configure the master VLAN and member VLANs or member VLAN groups before you configure the topology group.
- You can configure up to 256 topology groups. Each group can control up to 4096 VLANs. A VLAN cannot be controlled by more than one topology group.
- The topology group must contain a master VLAN and can also contain individual member VLANs, VLAN groups, or a combination of individual member VLANs and VLAN groups.
- Once you add a VLAN as a member of a topology group, all the Layer 2 protocol information on the VLAN is deleted.

Configuring a topology group

To configure a topology group, enter commands such as the following.

```
FastIron(config)# topology-group 2
FastIron(config-topo-group-2)# master-vlan 2
FastIron(config-topo-group-2)# member-vlan 3
FastIron(config-topo-group-2)# member-vlan 4
FastIron(config-topo-group-2)# member-vlan 5
FastIron(config-topo-group-2)# member-group 2
```

These commands create topology group 2 and add the following:
Topology groups

- Master VLAN 2
- Member VLANs 2, 3, and 4
- Member VLAN group 2

Syntax: `[no] topology-group <group-id>`

The `<group-id>` parameter specifies the topology group ID and can be from 1 – 256.

Syntax: `[no] master-vlan <vlan-id>`

This command adds the master VLAN. The VLAN must already be configured. Make sure all the Layer 2 protocol settings in the VLAN are correct for your configuration before you add the VLAN to the topology group. A topology group can have only one master VLAN.

NOTE
If you remove the master VLAN (by entering `no master-vlan <vlan-id>`), the software selects the new master VLAN from member VLANs. For example, if you remove master VLAN 2 from the example above, the CLI converts member VLAN 3 into the new master VLAN. The new master VLAN inherits the Layer 2 protocol settings of the older master VLAN.

NOTE
If you add a new master VLAN to a topology group that already has a master VLAN, the new master VLAN replaces the older master VLAN. All member VLANs and VLAN groups follow the Layer 2 protocol settings of the new master VLAN.

Syntax: `[no] member-vlan <vlan-id>`

The `<vlan-id>` parameter specifies a VLAN ID. The VLAN must already be configured.

Syntax: `[no] member-group <num>`

The `<num>` specifies a VLAN group ID. The VLAN group must already be configured.

NOTE
Once you add a VLAN or VLAN group as a member of a topology group, all the Layer 2 protocol configuration information for the VLAN or group is deleted. For example, if STP is configured on a VLAN and you add the VLAN to a topology group, the STP configuration is removed from the VLAN. Once you add the VLAN to a topology group, the VLAN uses the Layer 2 protocol settings of the master VLAN.

If you remove a member VLAN or VLAN group from a topology group, you will need to reconfigure the Layer 2 protocol information in the VLAN or VLAN group.

Displaying topology group information

The following sections show how to display STP information and topology group information for VLANs.

Displaying STP information

To display STP information for a VLAN, enter a command such as the following.
Displaying topology group information

To display topology group information, enter the following command.

FastIron# show topology-group

Syntax: show topology-group [<group-id>]

This display shows the following information.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>master-vlan</td>
<td>The master VLAN for the topology group. The settings for STP, MRP, or VSRP on the control ports in the master VLAN apply to all control ports in the member VLANs within the topology group.</td>
</tr>
<tr>
<td>member-vlan</td>
<td>The member VLANs in the topology group.</td>
</tr>
<tr>
<td>Common control ports</td>
<td>The master VLAN ports that are configured with Layer 2 protocol information. The Layer 2 protocol configuration and state of these ports in the master VLAN applies to the same port numbers in all the member VLANs.</td>
</tr>
<tr>
<td>L2 protocol</td>
<td>The Layer 2 protocol configured on the control ports. The Layer 2 protocol can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• MRP</td>
</tr>
<tr>
<td></td>
<td>• STP</td>
</tr>
<tr>
<td></td>
<td>• VSRP</td>
</tr>
<tr>
<td>Per vlan free ports</td>
<td>The ports that are not controlled by the Layer 2 protocol information in the master VLAN.</td>
</tr>
</tbody>
</table>
Metro Ring Protocol (MRP)

Metro Ring Protocol (MRP) was introduced in two phases:

- **MRP Phase 1** is supported in all software releases and on all Brocade FastIron X Series and FGS, FWS, and FLS, and FCX devices, and TurboIron X Series devices running software release 04.2.00 and later. Refer to “MRP rings without shared interfaces (MRP Phase 1)” on page 407.

- **MRP Phase 2** is supported in all software releases starting with 4.3.00 for all Brocade FastIron X Series, and on all FGS, FWS, and FLS, and FCX devices, and TurboIron X Series devices running software release 04.2.00 and later. Refer to “MRP rings with shared interfaces (MRP Phase 2)” on page 408.

MRP is a Brocade proprietary protocol that prevents Layer 2 loops and provides fast reconvergence in Layer 2 ring topologies. It is an alternative to STP and is especially useful in Metropolitan Area Networks (MANs) where using STP has the following drawbacks:

- STP allows a maximum of seven nodes. Metro rings can easily contain more nodes than this.
- STP has a slow reconvergence time, taking many seconds or even minutes. MRP can detect and heal a break in the ring in sub-second time.
Figure 50 shows an example of an MRP metro ring.

FIGURE 50 Metro ring – normal state

The ring in this example consists of four MRP nodes (Brocade switches). Each node has two interfaces with the ring. Each node also is connected to a separate customer network. The nodes forward Layer 2 traffic to and from the customer networks through the ring. The ring interfaces are all in one port-based VLAN. Each customer interface can be in the same VLAN as the ring or in a separate VLAN.

One node is configured as the master node of the MRP ring. One of the two interfaces on the master node is configured as the primary interface; the other is the secondary interface. The primary interface originates Ring Health Packets (RHPs), which are used to monitor the health of the ring. An RHP is forwarded on the ring to the next interface until it reaches the secondary interface of the master node. The secondary interface blocks the packet to prevent a Layer 2 loops. When the master node transmits or receives RHPs, the CPU goes high on the master node.
Configuration notes

- When you configure MRP, Brocade recommends that you disable one of the ring interfaces before beginning the ring configuration. Disabling an interface prevents a Layer 2 loop from occurring while you are configuring MRP on the ring nodes. Once MRP is configured and enabled on all the nodes, you can re-enable the interface.
- MRP 2 support was added in release 04.3.00 for the FastIron X Series devices.
- MRP 1 and MRP 2 support are added in release 04.2.00 for the TurboIron X Series devices.
- The above configurations can be configured as MRP masters or MRP members (for different rings).
- Due to hardware limitations on FGS, FGS-STK, FLS, FLS-STK, and FCX platforms, configuring 40 or more MRP instances may cause errors.
- On TurboIron platforms running software release 04.2.00 and later, you can configure maximum of 32 metro rings.

MRP rings without shared interfaces (MRP Phase 1)

MRP Phase 1 allows you to configure multiple MRP rings, as shown in Figure 51, but the rings cannot share the same link. For example, you cannot configure ring 1 and ring 2 to each have interfaces 1/1 and 1/2.

Also, when you configure an MRP ring, any node on the ring can be designated as the master node for the ring. A master node can be the master node of more than one ring. (Refer to Figure 51.) Each ring is an independent ring and RHP packets are processed within each ring.

FIGURE 51 Metro ring – multiple rings
In this example, two nodes are each configured with two MRP rings. Any node in a ring can be the master for its ring. A node also can be the master for more than one ring.

MRP rings with shared interfaces (MRP Phase 2)

Platform Support:
- FastIron X Series devices running software release 03.0.00 and later, in Layer 3 router code and in Layer 2 switch code
- FastIron GS, LS, and WS devices running software release 04.3.01 and later
- FCX-S devices running software release 06.0.00 and later
- TurboIron X Series devices running software release 04.2.00 and later

With MRP Phase 2, MRP rings can be configured to share the same interfaces as long as the interfaces belong to the same VLAN. Figure 52 shows examples of multiple MRP rings that share the same interface.

FIGURE 52 Examples of multiple rings sharing the same interface - MRP Phase 2
On each node that will participate in the ring, you specify the ring ID and the interfaces that will be used for ring traffic. In a multiple ring configuration, a ring ID determines its priority. The lower the ring ID, the higher priority of a ring.

A ring ID is also used to identify the interfaces that belong to a ring.

FIGURE 53 Interface IDs and types

For example, in Figure 53, the ID of all interfaces on all nodes on Ring 1 is 1 and all interfaces on all nodes on Ring 2 is 2. Port 1/1 on node S1 and Port 2/2 on S2 have the IDs of 1 and 2 since the interfaces are shared by Rings 1 and 2.
The ring ID is also used to determine an interface priority. Generally, a ring ID is also the ring priority and the priority of all interfaces on that ring. However, if the interface is shared by two or more rings, then the highest priority (lowest ID) becomes the priority of the interface. For example, in Figure 53, all interfaces on Ring 1, except for Port 1/1 on node S1 and Port 2/2 on node S2 have a priority of 1. Likewise, all interfaces on Ring 2, except for Port 1/1 on node S1 and Port 2/2 on node S2 have a priority of 2. Port 1/1 on S1 and Port 2/2 on S2 have a priority of 1 since 1 is the highest priority (lowest ID) of the rings that share the interface.

If a node has interfaces that have different IDs, the interfaces that belong to the ring with the highest priority become regular ports. Those interfaces that do not belong to the ring with the highest priority become tunnel ports. In Figure 53, nodes S1 and S2 have interfaces that belong to Rings 1 and 2. Those interfaces with a priority of 1 are regular ports. The interfaces with a priority of 2 are the tunnel ports since they belong to Ring 2, which has a lower priority than Ring 1.

Selection of master node

Allowing MRP rings to share interfaces limits the nodes that can be designated as the master node. Any node on an MRP ring that does not have a shared interface can be designated as the ring master node. However, if all nodes on the ring have shared interfaces, nodes that do not have tunnel ports can be designated as the master node of that ring. If none of the nodes meet these criteria, you must change the rings’ priorities by reconfiguring the rings’ ID.

In Figure 53, any of the nodes on Ring 1, even S1 or S2, can be a master node since none of its interfaces are tunnel ports. However in Ring 2, neither S1 nor S2 can be a master node since these nodes contain tunnel ports.

Ring initialization

The ring shown in Figure 50 shows the port states in a fully initialized ring without any broken links. Figure 54 shows the initial state of the ring, when MRP is first enabled on the ring switches. All ring interfaces on the master node and member nodes begin in the Preforwarding state (PF).

FIGURE 54 Metro ring – initial state
MRP uses Ring Health Packets (RHPs) to monitor the health of the ring. An RHP is an MRP protocol packet. The source address is the MAC address of the master node and the destination MAC address is a protocol address for MRP. The master node generates RHPs and sends them on the ring. The state of a ring port depends on the RHPs.

RHP processing in MRP Phase 1

A ring interface can have one of the following MRP states:

- **Preforwarding (PF)** – The interface can forward RHPs but cannot forward data. All ring ports begin in this state when you enable MRP.
• **Forwarding (F)** – The interface can forward data as well as RHPs. An interface changes from Preforwarding to Forwarding when the port preforwarding time expires. This occurs if the port does not receive an RHP from the master, or if the forwarding bit in the RHPs received by the port is off. This indicates a break in the ring. The port heals the ring by changing its state to Forwarding. The preforwarding time is the number of milliseconds the port will remain in the Preforwarding state before changing to the Forwarding state, even without receiving an RHP.

• **Blocking (B)** – The interface cannot forward data. Only the secondary interface on the master node can be Blocking.

When MRP is enabled, all ports begin in the Preforwarding state. The primary interface on the master node, although it is in the Preforwarding state like the other ports, immediately sends an RHP onto the ring. The secondary port on the master node listens for the RHP.

• If the secondary port receives the RHP, all links in the ring are up and the port changes its state to Blocking. The primary port then sends another MRP with its forwarding bit set on. As each of the member ports receives the RHP, the ports changes their state to Forwarding. Typically, this occurs in sub-second time. The ring very quickly enters the fully initialized state.

• If the secondary port does not receive the RHP by the time the preforwarding time expires, a break has occurred in the ring. The port changes its state to Forwarding. The member ports also change their states from Preforwarding to Forwarding as their preforwarding timers expire. The ring is not intact, but data can still travel among the nodes using the links that are up.

Figure 55 shows an example.

FIGURE 55 Metro ring – from preforwarding to forwarding
Each RHP also has a sequence number. MRP can use the sequence number to determine the round-trip time for RHPs in the ring. Refer to “Using MRP diagnostics” on page 422.

RHP processing in MRP Phase 2

Figure 56 shows an example of how RHP packets are processed normally in MRP rings with shared interfaces.

FIGURE 56 Flow of RHP packets on MRP rings with shared interfaces
Port 2/1 on Ring 1 master node is the primary interface of the master node. The primary interface forwards an RHP packet on the ring. Since all the interfaces on Ring 1 are regular ports, the RHP packet is forwarded to all the interfaces until it reaches Port 2/2, the secondary interface of the master node. Port 2/2 then blocks the packet to complete the process.

On Ring 2, Port 3/1, is the primary interface of the master node. It sends an RHP packet on the ring. Since all ports on S4 are regular ports, the RHP packet is forwarded on those interfaces. When the packet reaches S2, the receiving interface is a tunnel port. The port compares the packet priority to its priority. Since the packet priority is the same as the tunnel port priority, the packet is forwarded up the link shared by Rings 1 and 2.

When the RHP packet reaches the interface on node S2 shared by Rings 1 and 2, the packet is forwarded since its priority is less than the interface priority. The packet continues to be forwarded to node S1 until it reaches the tunnel port on S1. That tunnel port determines that the RHP packet priority is equal to the port priority and forwards the packet. The RHP packet is forwarded to the remaining interfaces on Ring 2 until it reaches port 3/2, the secondary interface of the master node. Port 3/2 then blocks the packet to prevent a loop.

When the RHP packet from Ring 2 reached S2, it was also forwarded from S2 to S3 on Ring 1 since the port on S2 has a higher priority than the RHP packet. The packets is forwarded around Ring 1 until it reaches port 2/2, Ring 1 the secondary port. The RHP packet is then blocked by that port.

How ring breaks are detected and healed

Figure 57 shows ring interface states following a link break. MRP quickly heals the ring and preserves connectivity among the customer networks.

FIGURE 57 Metro ring – ring break
If a break in the ring occurs, MRP heals the ring by changing the states of some of the ring interfaces:

- **Blocking interface** – The Blocking interface on the master node has a dead timer. If the dead time expires before the interface receives one of its ring RHPs, the interface changes state to Preforwarding. Once the secondary interface changes state to Preforwarding:

 - If the interface receives an RHP, the interface changes back to the Blocking state and resets the dead timer.

 - If the interface does not receive an RHP for its ring before the Preforwarding time expires, the interface changes to the Forwarding state, as shown in Figure 57.

- **Forwarding interfaces** – Each member interface remains in the Forwarding state.
When the broken link is repaired, the link interfaces come up in the Preforwarding state, which allows RHPs to travel through the restored interfaces and reach the secondary interface on the master node:

- If an RHP reaches the master node secondary interface, the ring is intact. The secondary interface changes to Blocking. The master node sets the forwarding bit on in the next RHP. When the restored interfaces receive this RHP, they immediately change state to Forwarding.
- If an RHP does not reach the master node secondary interface, the ring is still broken. The master node does not send an RHP with the forwarding bit on. In this case, the restored interfaces remain in the Preforwarding state until the preforwarding timer expires, then change to the Forwarding state.

If the link between shared interfaces breaks (Figure 58), the secondary interface on Ring 1 master node changes to a preforwarding state. The RHP packet sent by port 3/1 on Ring 2 is forwarded through the interfaces on S4, then to S2. The packet is then forwarded through S2 to S3, but not from S2 to S1 since the link between the two nodes is not available. When the packet reaches Ring 1 master node, the packet is forwarded through the secondary interface since it is currently in a preforwarding state. A secondary interface in preforwarding mode ignores any RHP packet that is not from its ring. The secondary interface changes to blocking mode only when the RHP packet forwarded by its primary interface is returned.

The packet then continues around Ring 1, through the interfaces on S1 to Ring 2 until it reaches Ring 2 master node. Port 3/2, the secondary interface on Ring 2 changes to blocking mode since it received its own packet, then blocks the packet to prevent a loop.

FIGURE 58 Flow of RHP packets when a link for shared interfaces breaks

RHP packets follow this flow until the link is restored; then the RHP packet returns to its normal flow as shown in Figure 56.
Alarm RHP

Previously, detection of MRP ring breaks was completely timer based. An absence of Ring Health Packets (RHP) for a period of 3 "hello times" indicated to the MRP master that the ring is broken. This initiated the transition to a topology change as described in the previous section. The convergence time associated with such an event could take several hundreds of milliseconds.

Now, each MRP node is made a more active participant in detecting link failures. When a link is detected to be down by its "downstream" neighbor, a special packet (called the Alarm RHP packet) is sent to the MRP master, indicating that the link is down.

This MRP packet is sent from the MRP member to the MRP master only when the secondary link goes down and it is sent on the primary link. The destination MAC address in the packet is the ring MAC address. This allows the packet to be hardware forwarded all the way to the MRP master. When the Master switch in the ring receives this packet, it is notified of a break in the ring. At that point, the secondary interface is immediately transitioned from "Blocked" to "Forwarding".

NOTE
The Alarm RHP packet is only sent by the secondary link owner ring to prevent multiple MRP masters going into forward where shared rings are configured.

Operation of the MRP alarm RHP is as follows.

When the link between Switch B and Switch C fails, the "downstream" neighbor (Switch C) detects the failure of the link and triggers corrective action. The following is the complete sequence of events that occurs.

- The downstream neighbor (Switch C) detects a link down event of the link between Switch B and Switch C.
- Switch C sends a single RHP packet with a special Alarm bit set. The RHP packet is sent in the same direction of flow as that of the normal RHP packets (i.e. on the link to Switch D)
- Switch A receives the special RHP packet (on the secondary interface) that was sent by Switch C. It is now aware that the ring is broken even though the dead_interval may not have expired.
- Switch A immediately transitions its secondary interface (previously in Blocked state) to the Forwarding state.
- RHP packets continue to be sent on the primary interface by Switch A to detect if the ring has been healed.

From a user perspective, there is no difference in the behavior of the ring. The only noticeable difference is a rapid convergence in the event of ring failure. There is no CLI command required to enable this feature.

FIGURE 59 A MRP ring under normal operation (A) and after detection of a failure in the ring (B)
Master VLANs and customer VLANs

All the ring ports must be in the same VLAN. Placing the ring ports in the same VLAN provides Layer 2 connectivity for a given customer across the ring. Figure 60 shows an example.

Figure 60 Metro ring – ring VLAN and customer VLANs
Notice that each customer has their own VLAN. Customer A has VLAN 30 and Customer B has VLAN 40. Customer A host attached to Switch D can reach the Customer A host attached to Switch B at Layer 2 through the ring. Since Customer A and Customer B are on different VLANs, they will not receive each other traffic.

You can configure MRP separately on each customer VLAN. However, this is impractical if you have many customers. To simplify configuration when you have a lot of customers (and therefore a lot of VLANs), you can use a topology group.

A topology group enables you to control forwarding in multiple VLANs using a single instance of a Layer 2 protocol such as MRP. A topology group contains a master VLAN and member VLANs. The master VLAN contains all the configuration parameters for the Layer 2 protocol (STP, MRP, or VSRP). The member VLANs use the Layer 2 configuration of the master VLAN.
In Figure 60, VLAN 2 is the master VLAN and contains the MRP configuration parameters for ring 1. VLAN 30 and VLAN 40, the customer VLANs, are member VLANs in the topology group. Since a topology group is used, a single instance of MRP provides redundancy and loop prevention for both the customer VLANs.

If you use a topology group:

- The master VLAN must contain the ring interfaces. The ports must be tagged, since they will be shared by multiple VLANs.
- The member VLAN for a customer must contain the two ring interfaces and the interfaces for the customer. Since these interfaces are shared with the master VLAN, they must be tagged. Do not add another customer interfaces to the VLAN.

For more information about topology groups, refer to “Topology groups” on page 401.

Refer to “MRP CLI example” on page 426 for the configuration commands required to implement the MRP configuration shown in Figure 60.

Configuring MRP

To configure MRP, perform the following tasks. You need to perform the first task on only one of the nodes. Perform the remaining tasks on all the nodes.

NOTE
There are no new commands or parameters to configure MRP with shared interfaces (MRP Phase 2).

- Disable one of the ring interfaces. This prevents a Layer 2 loop from occurring while you are configuring the devices for MRP.
- Add an MRP ring to a port-based VLAN. When you add a ring, the CLI changes to the configuration level for the ring, where you can perform the following tasks.
 - Optionally, specify a name for the ring.
 - On the master node only, enable the device to be the master for the ring. Each ring can have only one master node.
 - Specify the MRP interfaces. Each device has two interfaces to an MRP ring.
 - Optionally, change the hello time and the preforwarding time. These parameters control how quickly failover occurs following a change in the state of a link in the ring.
 - Enable the ring.
- Optionally, add the ring VLAN to a topology group to add more VLANs to the ring. If you use a topology group, make sure you configure MRP on the group master VLAN. Refer to “Topology groups” on page 401.
- Re-enable the interface you disabled to prevent a Layer 2 loop. Once MRP is enabled, MRP will prevent the Layer 2 loop.
- On FGS and FLS devices running software release 4.3 and later, and on FCX devices running software version 06.0.00 and later, when configuring MRP 1 or MRP 2 ring on a VLAN, using the `metro-rings` command in addition to the `metro-ring` command is highly recommended. Since these devices do not support mac-range filtering, the `metro-rings` command greatly reduces the number of FDB entries.

Adding an MRP ring to a VLAN

To add an MRP ring to a VLAN, enter commands such as the following.
NOTE
If you plan to use a topology group to add VLANs to the ring, make sure you configure MRP on the topology group master VLAN.

FastIron(config)# vlan 2
FastIron(config-vlan-2)# metro-ring 1
FastIron(config-vlan-2-mrp-1)# name CustomerA
FastIron(config-vlan-2-mrp-1)# master
FastIron(config-vlan-2-mrp-1)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-1)# enable

These commands configure an MRP ring on VLAN 2. The ring ID is 1, the ring name is CustomerA, and this node (this Brocade device) is the master for the ring. The ring interfaces are 1/1 and 1/2. Interface 1/1 is the primary interface and 1/2 is the secondary interface. The primary interface will initiate RHPs by default. The ring takes effect in VLAN 2.

FastIron(config)# vlan 2
FastIron(config-vlan-2)# metro-ring 1
FastIron(config-vlan-2-mrp-1)# name CustomerA
FastIron(config-vlan-2-mrp-1)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-1)# enable
FastIron(config-vlan-2-mrp-1)# metro-ring 2
FastIron(config-vlan-2-mrp-2)# name CustomerB
FastIron(config-vlan-2-mrp-2)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-2)# enable

Syntax: [no] metro-ring <ring id>

The <ring-id> parameter specifies the ring ID. In software releases prior to 03.0.00 and in the FGS, FWS, and FLS, the ring ID can be a value from 1 – 255. Starting in release 03.0.00, the <ring-id> can be from 1 – 1023; ID 256 is reserved for VSRP.

On FGS and FLS devices running software release 4.3 and later, and on FCX devices running software version 06.0.00 and later, enter the metro-rings in addition to the metro-ring command as shown below.

FastIron(config)# vlan 2
FastIron(config-vlan-2)# metro-rings 1 2
FastIron(config-vlan-2)# metro-ring 1
FastIron(config-vlan-2-mrp-1)# name CustomerA
FastIron(config-vlan-2-mrp-1)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-1)# enable
FastIron(config-vlan-2-mrp-1)# metro-ring 2
FastIron(config-vlan-2-mrp-2)# name CustomerB
FastIron(config-vlan-2-mrp-2)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-2)# enable

Syntax: [no] metro-rings <ring id> <ring id> . . .

The <ring id> variables identify the metro rings you want to configure on the VLAN.

Syntax: [no] name <string>

The <string> parameter specifies a name for the ring. The name is optional, but it can be up to 20 characters long and can include blank spaces. If you use a name that has blank spaces, enclose the name in double quotation marks (for example: "Customer A").

Syntax: [no] master

Configures this node as the master node for the ring. Enter this command only on one node in the ring. The node is a member (non-master) node by default.
Syntax: [no] ring-interface ethernet <primary-if> ethernet <secondary-if>

The ethernet <primary-if> parameter specifies the primary interface. On the master node, the primary interface is the one that originates RHPs. Ring control traffic and Layer 2 data traffic will flow in the outward direction from this interface by default. On member nodes, the direction of traffic flow depends on the traffic direction selected by the master node. Therefore, on a member node, the order in which you enter the interfaces does not matter.

The ethernet <secondary-if> parameter specifies the secondary interface.

NOTE
To take advantage of every interface in a Metro network, you can configure another MRP ring and either configure a different master node for the ring or reverse the configuration of the primary and secondary interfaces on the master node. Configuring multiple rings enables you to use all the ports in the ring. The same port can forward traffic one ring while blocking traffic for another ring.

Syntax: [no] enable

The enable command enables the ring.

Changing the hello and preforwarding times

You also can change the RHP hello time and preforwarding time. To do so, enter commands such as the following.

FastIron(config-vlan-2-mrp-1)# hello-time 200
FastIron(config-vlan-2-mrp-1)# preforwarding-time 400

These commands change the hello time to 200 ms and change the preforwarding time to 400 ms.

Syntax: [no] hello-time <ms>

Syntax: [no] preforwarding-time <ms>

The <ms> specifies the number of milliseconds. For the hello time, you can specify from 100 – 1000 (one second). The default hello time is 100 ms. The preforwarding time can be from 200 – 5000 ms, but must be at least twice the value of the hello time and must be a multiple of the hello time. The default preforwarding time is 300 ms. A change to the hello time or preforwarding time takes effect as soon as you enter the command.

Configuration notes

- The preforwarding time must be at least twice the value of the hello time and must be a multiple of the hello time.
- If UDLD is also enabled on the device, Brocade recommends that you set the MRP preforwarding time slightly higher than the default of 300 ms; for example, to 400 or 500 ms.
- You can use MRP ring diagnostics to determine whether you need to change the hello time and preforwarding time. Refer to “Using MRP diagnostics”.

Using MRP diagnostics

The MRP diagnostics feature calculates how long it takes for RHP packets to travel through the ring. When you enable MRP diagnostics, the software tracks RHP packets according to their sequence numbers and calculates how long it takes an RHP packet to travel one time through the entire ring. When you display the diagnostics, the CLI shows the average round-trip time for the RHP packets sent since you enabled diagnostics. The calculated results have a granularity of 1 microsecond.
Enabling MRP diagnostics

To enable MRP diagnostics for a ring, enter the following command on the master node, at the configuration level for the ring.

```
FastIron(config-vlan-2-mrp-1)# diagnostics
```

Syntax: `[no] diagnostics`

NOTE
This command is valid only on the master node.

Displaying MRP diagnostics

To display MRP diagnostics results, enter the following command on the master node.

```
FastIron# show metro 1 diag
```

```
Metro Ring 1 - CustomerA
---------------
diagnostics results

<table>
<thead>
<tr>
<th>Ring id</th>
<th>Diag state</th>
<th>RHP average time (microsec)</th>
<th>Recommended hello time (ms)</th>
<th>Recommended Prefwing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>enabled</td>
<td>125</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Diag frame sent: 1230  
Diag frame lost: 0
```

Syntax: `show metro <ring-id> diag`

This display shows the following information.

TABLE 82
CLI display of MRP ring diagnostic information

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring id</td>
<td>The ring ID.</td>
</tr>
<tr>
<td>Diag state</td>
<td>The state of ring diagnostics.</td>
</tr>
<tr>
<td>RHP average time</td>
<td>The average round-trip time for an RHP packet on the ring. The calculated time has a granularity of 1 microsecond.</td>
</tr>
<tr>
<td>Recommended hello time</td>
<td>The hello time recommended by the software based on the RHP average round-trip time.</td>
</tr>
<tr>
<td>Recommended Prefwing time</td>
<td>The preforwarding time recommended by the software based on the RHP average round-trip time.</td>
</tr>
<tr>
<td>Diag frame sent</td>
<td>The number of diagnostic RHPs sent for the test.</td>
</tr>
<tr>
<td>Diag frame lost</td>
<td>The number of diagnostic RHPs lost during the test.</td>
</tr>
</tbody>
</table>

If the recommended hello time and preforwarding time are different from the actual settings and you want to change them, refer to "Configuring MRP" on page 420.

Displaying MRP information

You can display the following MRP information:
Displaying topology group information

To display topology group information, enter the following command.

Syntax: `show topology-group [<group-id>]`

Refer to “Displaying topology group information” on page 403 for more information.

Displaying ring information

To display ring information, enter the following command.

FastIron# `show metro`

Metro Ring 1

```
+----------+----------+----------+----------+----------+----------+
<table>
<thead>
<tr>
<th>Ring id</th>
<th>State</th>
<th>Master</th>
<th>Topo</th>
<th>Hello</th>
<th>Prefwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>enabled</td>
<td>member</td>
<td>2</td>
<td>not conf</td>
<td>100</td>
</tr>
</tbody>
</table>
+----------+----------+----------+----------+----------+----------+

Ring interfaces

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Interface role</th>
<th>Forwarding state</th>
<th>Active interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet 1/1</td>
<td>primary</td>
<td>disabled</td>
<td>none</td>
</tr>
<tr>
<td>ethernet 1/2</td>
<td>secondary</td>
<td>forwarding</td>
<td>ethernet 2</td>
</tr>
</tbody>
</table>

RHPs sent: 3 RHPs rcvd: 0 TC RHPs rcvd: 0 State changes: 4
```

Syntax: `show metro <ring-id>`

This display shows the following information.

TABLE 83 CLI display of MRP ring information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring id</td>
<td>The ring ID</td>
</tr>
<tr>
<td>State</td>
<td>The state of MRP. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- enabled – MRP is enabled</td>
</tr>
<tr>
<td></td>
<td>- disabled – MRP is disabled</td>
</tr>
<tr>
<td>Ring role</td>
<td>Whether this node is the master for the ring. The role can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- master</td>
</tr>
<tr>
<td></td>
<td>- member</td>
</tr>
<tr>
<td>Master vlan</td>
<td>The ID of the master VLAN in the topology group used by this ring. If a topology group is used by MRP, the master VLAN controls the MRP settings for all VLANs in the topology group.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The topology group ID is 0 if the MRP VLAN is not the master VLAN in a topology group. Using a topology group for MRP configuration is optional.</td>
</tr>
<tr>
<td>Topo group</td>
<td>The topology group ID.</td>
</tr>
</tbody>
</table>
TABLE 83 CLI display of MRP ring information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello time</td>
<td>The interval, in milliseconds, at which the Forwarding port on the ring master node sends Ring hello Packets (RHPs).</td>
</tr>
<tr>
<td>Prefwing time</td>
<td>The number of milliseconds an MRP interface that has entered the Preforwarding state will wait before changing to the Forwarding state. If a member port in the Preforwarding state does not receive an RHP within the Preforwarding time (Prefwing time), the port assumes that a topology change has occurred and changes to the Forwarding state. The secondary port on the master node changes to Blocking if it receives an RHP, but changes to Forwarding if the port does not receive an RHP before the preforwarding time expires. NOTE: A member node Preforwarding interface also changes from Preforwarding to Forwarding if it receives an RHP whose forwarding bit is on.</td>
</tr>
<tr>
<td>Ring interfaces</td>
<td>The device two interfaces with the ring. NOTE: If the interfaces are trunk groups, only the primary ports of the groups are listed.</td>
</tr>
</tbody>
</table>
| Interface role | The interface role can be one of the following:
 • **primary**
 • Master node – The interface generates RHPs.
 • Member node – The interface forwards RHPs received on the other interface (the secondary interface).
 • **secondary** – The interface does not generate RHPs.
 • Master node – The interface listens for RHPs.
 • Member node – The interface receives RHPs. |
| Forwarding state | Whether MRP Forwarding is enabled on the interface. The forwarding state can be one of the following:
 • **blocking** – The interface is blocking Layer 2 data traffic and RHPs
 • **disabled** – The interface is down
 • **forwarding** – The interface is forwarding Layer 2 data traffic and RHPs
 • **preforwarding** – The interface is listening for RHPs but is blocking Layer 2 data traffic |
| Active interface | The physical interfaces that are sending and receiving RHPs. **NOTE:** If a port is disabled, its state is shown as “disabled”. **NOTE:** If an interface is a trunk group, only the primary port of the group is listed. |
| Interface Type | Shows if the interface is a regular port or a tunnel port. |
| RHPs sent | The number of RHPs sent on the interface. **NOTE:** This field applies only to the master node. On non-master nodes, this field contains 0. This is because the RHPs are forwarded in hardware on the non-master nodes. |
| RHPs rcvd | The number of RHPs received on the interface. **NOTE:** On most Brocade devices, this field applies only to the master node. On non-master nodes, this field contains 0. This is because the RHPs are forwarded in hardware on the non-master nodes. However, on the FastIron devices, the RHP received counter on non-master MRP nodes increment. This is because, on FastIron devices, the CPU receives a copy of the RHPs forwarded in hardware. |
MRP CLI example

The following examples show the CLI commands required to implement the MRP configuration shown in Figure 60 on page 418.

NOTE

For simplicity, the figure shows the VLANs on only two switches. The CLI examples implement the ring on all four switches.

Commands on Switch A (master node)

The following commands configure a VLAN for the ring. The ring VLAN must contain both of the node interfaces with the ring. Add these interfaces as tagged interfaces, since the interfaces also must be in each of the customer VLANs configured on the node.

```
FastIron(config)# vlan 2
FastIron(config-vlan-2)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-2)# metro-ring 1
FastIron(config-vlan-2)# name "Metro A"
FastIron(config-vlan-2-mrp-1)# master
FastIron(config-vlan-2-mrp-1)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-1)# enable
FastIron(config-vlan-2-mrp-1)# exit
FastIron(config-vlan-2)# exit
```

The following commands configure the customer VLANs. The customer VLANs must contain both the ring interfaces as well as the customer interfaces.

```
FastIron(config)# vlan 30
FastIron(config-vlan-30)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-30)# tag ethernet 2/1
FastIron(config-vlan-30)# exit
FastIron(config)# vlan 40
FastIron(config-vlan-40)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-40)# tag ethernet 4/1
FastIron(config-vlan-40)# exit
```

The following commands configure topology group 1 on VLAN 2. The master VLAN is the one that contains the MRP configuration. The member VLANs use the MRP parameters of the master VLAN. The control interfaces (the ones shared by the master VLAN and member VLAN) also share MRP state.

```
FastIron(config)# topology-group 1
FastIron(config-topo-group-1)# master-vlan 2
FastIron(config-topo-group-1)# member-vlan 30
FastIron(config-topo-group-1)# member-vlan 40
```
Commands on Switch B

The commands for configuring Switches B, C, and D are similar to the commands for configuring Switch A, with two differences: the nodes are not configured to be the ring master. Omitting the master command is required for non-master nodes.

FastIron(config)# vlan 2
FastIron(config-vlan-2)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-2)# metro-ring 1
FastIron(config-vlan-2-mrp-1)# name “Metro A”
FastIron(config-vlan-2-mrp-1)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-1)# enable
FastIron(config-vlan-2)# exit
FastIron(config)#vlan 30
FastIron(config-vlan-30)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-30)# tag ethernet 2/1
FastIron(config-vlan-30)# exit
FastIron(config)#vlan 40
FastIron(config-vlan-40)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-40)# tag ethernet 4/1
FastIron(config-vlan-40)# exit
FastIron(config)# topology-group 1
FastIron(config-topo-group-1)# master-vlan 2
FastIron(config-topo-group-1)# member-vlan 30
FastIron(config-topo-group-1)# member-vlan 40

Commands on Switch C

FastIron(config)# vlan 2
FastIron(config-vlan-2)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-2)# metro-ring 1
FastIron(config-vlan-2-mrp-1)# name “Metro A”
FastIron(config-vlan-2-mrp-1)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-1)# enable
FastIron(config-vlan-2)# exit
FastIron(config)#vlan 30
FastIron(config-vlan-30)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-30)# tag ethernet 2/1
FastIron(config-vlan-30)# exit
FastIron(config)#vlan 40
FastIron(config-vlan-40)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-40)# tag ethernet 4/1
FastIron(config-vlan-40)# exit
FastIron(config)# topology-group 1
FastIron(config-topo-group-1)# master-vlan 2
FastIron(config-topo-group-1)# member-vlan 30
FastIron(config-topo-group-1)# member-vlan 40

Commands on Switch D

FastIron(config)# vlan 2
FastIron(config-vlan-2)# tag ethernet 1/1 to 1/2
FastIron(config-vlan-2)# metro-ring 1
FastIron(config-vlan-2-mrp-1)# name “Metro A”
FastIron(config-vlan-2-mrp-1)# ring-interface ethernet 1/1 ethernet 1/2
FastIron(config-vlan-2-mrp-1)# enable
FastIron(config-vlan-2)# exit
Virtual Switch Redundancy Protocol (VSRP)

Virtual Switch Redundancy Protocol (VSRP) is a Brocade proprietary protocol that provides redundancy and sub-second failover in Layer 2 and Layer 3 mesh topologies. Based on the Brocade Virtual Router Redundancy Protocol Extended (VRRPE), VSRP provides one or more backups for a Layer 2 Switch or Layer 3 Switch. If the active Layer 2 Switch or Layer 3 Switch becomes unavailable, one of the backups takes over as the active device and continues forwarding traffic for the network.

The FastIron family of switches and TurboIron X Series devices running software release 04.2.00 and later support full VSRP and VSRP-awareness. A Brocade device that is not itself configured for VSRP, but is connected to a Brocade device that is configured for VSRP, is VSRP aware.

You can use VSRP for Layer 2, Layer 3, or for both layers. On Layer 3 Switches, Layer 2 and Layer 3 share the same VSRP configuration information. On Layer 2 Switches, VSRP applies only to Layer 2.

Figure 61 shows an example of a VSRP configuration.

FIGURE 61 VSRP mesh – redundant paths for Layer 2 and Layer 3 traffic
In this example, two Brocade devices are configured as redundant paths for VRID 1. On each of the devices, a Virtual Router ID (VRID) is configured on a port-based VLAN. Since VSRP is primarily a Layer 2 redundancy protocol, the VRID applies to the entire VLAN. However, you can selectively remove individual ports from the VRID if needed.

Following master election (described below), one of the Brocade devices becomes the master for the VRID and sets the state of all the VLAN ports to Forwarding. The other device is a backup and sets all the ports in its VRID VLAN to Blocking.

If a failover occurs, the backup becomes the new master and changes all its VRID ports to the Forwarding state.

Other Brocade devices can use the redundant paths provided by the VSRP devices. In this example, three Brocade devices use the redundant paths. A Brocade device that is not itself configured for VSRP but is connected to a Brocade device that is configured for VSRP, is VSRP aware. In this example, the three Brocade devices connected to the VSRP devices are VSRP aware. A Brocade device that is VSRP aware can failover its link to the new master in sub-second time, by changing the MAC address associated with the redundant path.

When you configure VSRP, make sure each of the non-VSRP Brocade devices connected to the VSRP devices has a separate link to each of the VSRP devices.

Configuration notes

- VSRP and 802.1Q-n-Q tagging are not supported together on the same device.
- VSRP and Super Aggregated VLANs are not supported together on the same device.
- VSRP does not work on a VLAN which has multicast enabled.
- Turbolon X Series devices running software release 04.1.00 and later support VSRP awareness, and VSRP-aware security features. Turbolon devices support VSRP in release 04.2.00.
Layer 2 and Layer 3 redundancy

You can configure VSRP to provide redundancy for Layer 2 only or also for Layer 3:

- **Layer 2 only** – The Layer 2 links are backed up but specific IP addresses are not backed up.
- **Layer 2 and Layer 3** – The Layer 2 links are backed up and a specific IP address is also backed up. Layer 3 VSRP is the same as VRRPE. However, using VSRP provides redundancy at both layers at the same time.

Layer 2 Switches support Layer 2 VSRP only. Layer 3 Switches support Layer 2 and Layer 3 redundancy. You can configure a Layer 3 Switch for either Layer 2 only or Layer 2 and Layer 3. To configure for Layer 3, specify the IP address you are backing up.

NOTE

If you want to provide Layer 3 redundancy only, disable VSRP and use VRRPE.

Master election and failover

Each VSRP device advertises its VSRP priority in hello messages. During master election, the VSRP device with the highest priority for a given VRID becomes the master for that VRID. After master election, the master sends hello messages at regular intervals to inform the backups that the master is healthy.

If there is a tie for highest VSRP priority, the tie is resolved as follows:

- **Layer 2 Switches** – The Layer 2 Switch with the higher management IP address becomes the master.
 - Switches with management IP addresses are preferred over switches without management IP addresses.
 - If neither of the switches has a management IP address, then the switch with the higher MAC address becomes the master. (VSRP compares the MAC addresses of the ports configured for the VRID, not the base MAC addresses of the switches.)
- **Layer 3 Switches** – The Layer 3 Switch whose virtual routing interface has a higher IP address becomes the master.

VSRP failover

Each backup listens for hello messages from the master. The hello messages indicate that the master is still available. If the backups stop receiving hello messages from the master, the election process occurs again and the backup with the highest priority becomes the new master.

Each backup waits for a specific period of time, the dead Interval, to receive a new hello message from the master. If the backup does not receive a hello message from the master by the time the dead interval expires, the backup sends a hello message of its own, which includes the backup's VSRP priority, to advertise the backup's intent to become the master. If there are multiple backups for the VRID, each backup sends a hello message.

When a backup sends a hello message announcing its intent to become the master, the backup also starts a hold-down timer. During the hold-down time, the backup listens for a hello message with a higher priority than its own.

- If the backup receives a hello message with a higher priority than its own, the backup resets its dead interval and returns to normal backup status.
If the backup does not receive a hello message with a higher priority than its own by the time the hold-down timer expires, the backup becomes the new master and starts forwarding Layer 2 traffic on all ports.

If you increase the timer scale value, each timer value is divided by the scale value. To achieve sub-second failover times, you can change the scale to a value up to 10. This shortens all the VSRP timers to 10 percent of their configured values.

VSRP priority calculation

Each VSRP device has a VSRP priority for each VRID and its VLAN. The VRID is used during master election for the VRID. By default, a device VSRP priority is the value configured on the device (which is 100 by default). However, to ensure that a backup with a high number of up ports for a given VRID is elected, the device reduces the priority if a port in the VRID VLAN goes down. For example, if two backups each have a configured priority of 100, and have three ports in VRID 1 in VLAN 10, each backup begins with an equal priority, 100. This is shown in Figure 62.

FIGURE 62 VSRP priority

![VSRP priority diagram](image)

However, if one of the VRID ports goes down on one of the backups, that backup priority is reduced. If the master priority is reduced enough to make the priority lower than a backup priority, the VRID fails over to the backup. Figure 63 shows an example.

FIGURE 63 VSRP priority recalculation

![VSRP priority recalculation diagram](image)
You can reduce the sensitivity of a VSRP device to failover by increasing its configured VSRP priority. For example, you can increase the configured priority of the VSRP device on the left in Figure 63 to 150. In this case, failure of a single link does not cause failover. The link failure caused the priority to be reduced to 100, which is still equal to the priority of the other device. This is shown in Figure 64.

FIGURE 64 VSRP priority bias

Track ports

Optionally, you can configure track ports to be included during VSRP priority calculation. In VSRP, a track port is a port that is not a member of the VRID VLAN, but whose state is nonetheless considered when the priority is calculated. Typically, a track port represents the exit side of traffic received on the VRID ports. By default, no track ports are configured.
When you configure a track port, you assign a priority value to the port. If the port goes down, VSRP subtracts the track port priority value from the configured VSRP priority. For example, if you configure a track port with priority 20 and the configured VSRP priority is 100, the software subtracts 20 from 100 if the track port goes down, resulting in a VSRP priority of 80. The new priority value is used when calculating the VSRP priority. Figure 65 shows an example.

FIGURE 65 Track port priority

![Diagram showing Track port priority](image)

In Figure 65, the track port is up. Since the port is up, the track priority does not affect the VSRP priority calculation. If the track port goes down, the track priority does affect VSRP priority calculation, as shown in Figure 66.

FIGURE 66 Track port priority subtracted during priority calculation

![Diagram showing Track port priority subtracted during priority calculation](image)
MAC address failover on VSRP-aware devices

VSRP-aware devices maintain a record of each VRID and its VLAN. When the device has received a hello message for a VRID in a given VLAN, the device creates a record for that VRID and VLAN and includes the port number in the record. Each subsequent time the device receives a hello message for the same VRID and VLAN, the device checks the port number:

- If the port number is the same as the port that previously received a hello message, the VSRP-aware device assumes that the message came from the same VSRP master that sent the previous message.
- If the port number does not match, the VSRP-aware device assumes that a VSRP failover has occurred to a new master, and moves the MAC addresses learned on the previous port to the new port.

The VRID records age out if unused. This can occur if the VSRP-aware device becomes disconnected from the master. The VSRP-aware device will wait for a hello message for the period of time equal to the following.

\[\text{VRID Age} = \text{Dead Interval} + \text{Hold-down Interval} + (3 \times \text{Hello Interval}) \]

The values for these timers are determined by the VSRP device sending the hello messages. If the master uses the default timer values, the age time for VRID records on the VSRP-aware devices is as follows.

\[3 + 2 + (3 \times 1) = 8 \text{ seconds} \]

In this case, if the VSRP-aware device does not receive a new hello message for a VRID in a given VLAN, on any port, the device assumes the connection to the master is unavailable and removes the VRID record.

VSRP-Aware security features

Platform Support:

- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

This feature protects against unauthorized VSRP hello packets by enabling you to configure VSRP-aware security parameters. Without VSRP-aware security, a VSRP-aware device passively learns the authentication method conveyed by the received VSRP hello packet. The VSRP-aware device then stores the authentication method until it ages out with the aware entry.

The VSRP-aware security feature enables you to perform the following:

- Define the specific authentication parameters that a VSRP-aware device will use on a VSRP backup switch. The authentication parameters that you define will not age out.
• Define a list of ports that have authentic VSRP backup switch connections. For ports included in the list, the VSRP-aware switch will process VSRP hello packets using the VSRP-aware security configuration. Conversely, for ports not included in the list, the VSRP-aware switch will not use the VSRP-aware security configuration.

If VSRP hello packets do not meet the acceptance criteria, the VSRP-aware device forwards the packets normally, without any VSRP-aware security processing.

To configure VSRP-Aware Security features, refer to “Configuring security features on a VSRP-aware device” on page 440.

VSRP parameters

Table 84 lists the VSRP parameters.

Parameter	Description	Default	See page...
Protocol	VSRP state	Enabled	page 438
Virtual Router ID (VRID)	The ID of the virtual switch you are creating by configuring multiple devices as redundant links. You must configure the same VRID on each device that you want to use to back up the links.	None	page 437
Timer scale	The value used by the software to calculate all VSRP timers. Increasing the timer scale value decreases the length of all the VSRP timers equally, without changing the ratio of one timer to another.	1	page 439

Interface parameters

<table>
<thead>
<tr>
<th>Authentication type</th>
<th>The type of authentication the VSRP devices use to validate VSRP packets. On Layer 3 Switches, the authentication type must match the authentication type the VRID port uses with other routing protocols such as OSPF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No authentication – The interfaces do not use authentication. This is the VRRP default.</td>
<td>No authentication</td>
</tr>
<tr>
<td>• Simple – The interface uses a simple text-string as a password in packets sent on the interface. If the interface uses simple password authentication, the VRID configured on the interface must use the same authentication type and the same password.</td>
<td></td>
</tr>
<tr>
<td>NOTE: MD5 is not supported.</td>
<td></td>
</tr>
</tbody>
</table>

VSRP-Aware Security Parameters

<table>
<thead>
<tr>
<th>VSRP-Aware Authentication type</th>
<th>The type of authentication the VSRP-aware devices will use on a VSRP backup switch:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No authentication – The device does not accept incoming packets that have authentication strings.</td>
<td>Not configured</td>
</tr>
<tr>
<td>• Simple – The device uses a simple text-string as the authentication string for accepting incoming packets.</td>
<td></td>
</tr>
</tbody>
</table>
Virtual Switch Redundancy Protocol (VSRP)

TABLE 84
VSRP parameters (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRID parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSRP device type</td>
<td>Whether the device is a VSRP backup for the VRID. All VSRP devices for a given VRID are backups.</td>
<td>Not configured</td>
<td>page 437</td>
</tr>
<tr>
<td>VSRP ports</td>
<td>The ports in the VRID VLAN that you want to use as VRID interfaces. You can selectively exclude individual ports from VSRP while allowing them to remain in the VLAN.</td>
<td>All ports in the VRID VLAN</td>
<td>page 441</td>
</tr>
<tr>
<td>VRID IP address</td>
<td>A gateway address you are backing up. Configuring an IP address provides VRRPE Layer 3 redundancy in addition to VSRP Layer 2 redundancy. The VRID IP address must be in the same subnet as a real IP address configured on the VSRP interface, but cannot be the same as a real IP address configured on the interface. NOTE: This parameter is valid only on Layer 3 Switches.</td>
<td>None</td>
<td>page 441</td>
</tr>
<tr>
<td>Backup priority</td>
<td>A numeric value that determines a backup preferability for becoming the master for the VRID. During negotiation, the device with the highest priority becomes the master. In VSRP, all devices are backups and have the same priority by default. If two or more backups are tied with the highest priority, the backup with the highest IP address becomes the master for the VRID.</td>
<td>100 for all backups</td>
<td>page 442</td>
</tr>
<tr>
<td>Preference of timer source</td>
<td>When you save a backup configuration, the software can save the configured VSRP timer values or the VSRP timer values received from the master. Saving the current timer values instead of the configured ones helps ensure consistent timer usage for all the VRID devices. NOTE: The backup always gets its timer scale value from the master.</td>
<td>Configured timer values are saved</td>
<td>page 443</td>
</tr>
<tr>
<td>Time-to-Live (TTL)</td>
<td>The maximum number of hops a VSRP hello packet can traverse before being dropped. You can specify from 1 – 255.</td>
<td>2</td>
<td>page 443</td>
</tr>
<tr>
<td>Hello interval</td>
<td>The amount of time between hello messages from the master to the backups for a given VRID. The interval can be from 1 – 84 seconds.</td>
<td>One second</td>
<td>page 444</td>
</tr>
<tr>
<td>Dead interval</td>
<td>The amount of time a backup waits for a hello message from the master for the VRID before determining that the master is no longer active. If the master does not send a hello message before the dead interval expires, the backups negotiate (compare priorities) to select a new master for the VRID.</td>
<td>Three times the hello interval</td>
<td>page 444</td>
</tr>
</tbody>
</table>
Virtual Switch Redundancy Protocol (VSRP)

TABLE 84 VSRP parameters (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backup hello state and interval</td>
<td>The amount of time between hello messages from a backup to the master. The message interval can be from 60 – 3600 seconds. You must enable the backup to send the messages. The messages are disabled by default on backups. The current master sends hello messages by default.</td>
<td>Disabled 60 seconds when enabled</td>
<td>page 444</td>
</tr>
<tr>
<td>Hold-down interval</td>
<td>The amount of time a backup that has sent a hello packet announcing its intent to become master waits before beginning to forward traffic for the VRID. The hold-down interval prevents Layer 2 loops from occurring during VSRP rapid failover. The interval can from 1 – 84 seconds.</td>
<td>2 seconds</td>
<td>page 445</td>
</tr>
<tr>
<td>Track priority</td>
<td>A VSRP priority value assigned to the tracked ports. If a tracked port link goes down, the VRID port VSRP priority is reduced by the amount of the tracked port priority.</td>
<td>5</td>
<td>page 445</td>
</tr>
<tr>
<td>Track port</td>
<td>A track port is a port or virtual routing interface that is outside the VRID but whose link state is tracked by the VRID. Typically, the tracked interface represents the other side of VRID traffic flow through the device. If the link for a tracked interface goes down, the VSRP priority of the VRID interface is changed, causing the devices to renegotiate for master.</td>
<td>None</td>
<td>page 445</td>
</tr>
<tr>
<td>Backup preempt mode</td>
<td>Prevents a backup with a higher VSRP priority from taking control of the VRID from another backup that has a lower priority but has already assumed control of the VRID.</td>
<td>Enabled</td>
<td>page 446</td>
</tr>
<tr>
<td>VRID active state</td>
<td>The active state of the VSRP VRID.</td>
<td>Disabled</td>
<td>page 437</td>
</tr>
<tr>
<td>RIP parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression of RIP advertisements</td>
<td>A Layer 3 Switch that is running RIP normally advertises routes to a backed up VRID even when the Layer 3 Switch is not currently the active Layer 3 Switch for the VRID. Suppression of these advertisements helps ensure that other Layer 3 Switches do not receive invalid route paths for the VRID. This parameter is valid only on Layer 3 Switches.</td>
<td>Disabled (routes are advertised)</td>
<td>page 446</td>
</tr>
</tbody>
</table>

NOTE
To configure VSRP, ensure that spanning tree is disabled on the VLAN.

Configuring basic VSRP parameters

To configure VSRP, perform the following required tasks:

- Configure a port-based VLAN containing the ports for which you want to provide VSRP service.
NOTE
If you already have a port-based VLAN but only want to use VSRP on a sub-set of the VLANs ports, you can selectively remove ports from VSRP service in the VLAN. Refer to “Removing a port from the VRID VLAN” on page 441.

• Configure a VRID:
 • Specify that the device is a backup. Since VSRP, like VRRPE, does not have an “owner”, all VSRP devices are backups. The active device for a VRID is elected based on the VRID priority, which is configurable.
 • Activate the VRID.

The following example shows a simple VSRP configuration.

```
FastIron(config)# vlan 200
FastIron(config-vlan-200)# tag ethernet 1/1 to 1/8
FastIron(config-vlan-200)# vsrp vrid 1
FastIron(config-vlan-200-vrid-1)# backup
FastIron(config-vlan-200-vrid-1)# activate
```

Syntax: `[no] vsrp vrid <num>`

The `<num>` parameter specifies the VRID and can be from 1 – 255.

Syntax: `[no] backup [priority <value>] [track-priority <value>]`

This command is required. In VSRP, all devices on which a VRID are configured are backups. The master is then elected based on the VSRP priority of each device. There is no “owner” device as there is in VRRP.

For information about the command optional parameters, refer to the following:

• “Changing the backup priority” on page 442
• “Changing the default track priority” on page 445

Syntax: `[no] activate`

or

Syntax: enable | disable

Configuring optional VSRP parameters

The following sections describe how to configure optional VSRP parameters.

Disabling or re-enabling VSRP

VSRP is enabled by default on Layer 2 Switches and Layer 3 Switches. On a Layer 3 Switch, if you want to use VRRP or VRRPE for Layer 3 redundancy instead of VSRP, you need to disable VSRP first. To do so, enter the following command at the global CONFIG level.

```
FastIron(config)# no router vsrp
router vsrp is disabled. All vsrp config data will be lost when writing to flash
```

To re-enable the protocol, enter the following command.

```
FastIron(config)# router vsrp
```

Syntax: `[no] router vsrp`
Since VRRP and VRRPE do not apply to Layer 2 Switches, there is no need to disable VSRP and there is no command to do so. The protocol is always enabled.

Timer scale

The VSRP hello interval, dead interval, backup hello interval, and hold-down interval timers are individually configurable. You also can easily change all the timers at the same time while preserving the ratios among their values. To do so, change the timer scale. The timer scale is a value used by the software to calculate the timers. The software divides a timer value by the timer scale value. By default, the scale is 1. This means the VSRP timer values are the same as the values in the configuration. For more information on timer scale parameters and how it affects the timers, refer to Table 84.

Changing the timer scale

To achieve sub-second failover times, you can shorten the duration of all scale timers for VSRP, VRRP, and VRRP-E by adjusting the timer scale. The **timer scale** is a value used by the software to calculate the timers. By default, the scale value is 1. If you increase the timer scale, each timer value is divided by the scale value. Using the timer scale to adjust timer values enables you to easily change all the timers while preserving the ratios among their values. Here is an example.

<table>
<thead>
<tr>
<th>Timer</th>
<th>Timer scale</th>
<th>Timer value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello interval</td>
<td>1</td>
<td>1 second</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.5 seconds</td>
</tr>
<tr>
<td>Dead interval</td>
<td>1</td>
<td>3 seconds</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>Backup Hello interval</td>
<td>1</td>
<td>60 seconds</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Hold-down interval</td>
<td>1</td>
<td>2 seconds</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1 second</td>
</tr>
</tbody>
</table>

If you configure the device to receive its timer values from the master, the backup also receives the timer scale value from the master.

NOTE

The backups always use the value of the timer scale received from the master, regardless of whether the timer values that are saved in the configuration are the values configured on the backup or the values received from the master.

To change the timer scale, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)# scale-timer 2
```

This command changes the scale to 2. All VSRP, VRRP, and VRRP-E timer values will be divided by 2.

Syntax: `[no] scale-timer <num>`

The `<num>` parameter specifies the multiplier. You can specify a timer scale from 1 – 10.
Configuring authentication

If the interfaces on which you configure the VRID use authentication, the VSRP packets on those interfaces also must use the same authentication. VSRP supports the following authentication types:

- **No authentication** – The interfaces do not use authentication. This is the default.
- **Simple** – The interfaces use a simple text-string as a password in packets sent on the interface. If the interfaces use simple password authentication, the VRID configured on the interfaces must use the same authentication type and the same password.

To configure a simple password, enter a command such as the following at the interface configuration level.

```
FastIron(config-if-1/6)# ip vsrp auth-type simple-text-auth ourpword
```

This command configures the simple text password “ourpword”.

Syntax: `[no] ip vsrp auth-type no-auth | simple-text-auth <auth-data>`

- The `auth-type no-auth` parameter indicates that the VRID and the interface it is configured on do not use authentication.
- The `auth-type simple-text-auth <auth-data>` parameter indicates that the VRID and the interface it is configured on use a simple text password for authentication. The `<auth-data>` value is the password. If you use this parameter, make sure all interfaces on all the devices supporting this VRID are configured for simple password authentication and use the same password.

Configuring security features on a VSRP-aware device

Platform Support:

- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

This section shows how to configure security features on a VSRP-aware device. For an overview of this feature, refer to “VSRP-Aware security features” on page 434.

Specifying an authentication string for VSRP hello packets

The following configuration defines `pri-key` as the authentication string for accepting incoming VSRP hello packets. In this example, the VSRP-aware device will accept all incoming packets that have this authorization string.

```
FastIron(config)# vlan 10
FastIron(config-vlan-10)# vsrp-aware vrid 3 simple-text-auth pri-key
```

Syntax: `vsrp-aware vrid <vrid number> simple text auth <string>`

Specifying no authentication for VSRP hello packets

The following configuration specifies no authentication as the preferred VSRP-aware security method. In this case, the VSRP device will not accept incoming packets that have authentication strings.
FastIron(config)# vlan 10
FastIron(config-vlan-10)# vsrp-aware vrid 2 no-auth

Syntax: vsrp-aware vrid <vrid number> no-auth

The following configuration specifies no authentication for VSRP hello packets received on ports 1/1, 1/2, 1/3, and 1/4 in VRID 4. For these ports, the VSRP device will not accept incoming packets that have authentication strings.

FastIron(config)# vlan 10
FastIron(config-vlan-10)# vsrp-aware vrid 4 no-auth port-list ethe 1/1 to 1/4

Syntax: vsrp-aware vrid <vrid number> no-auth port-list <port range>

ports listed retain their VLAN membership but their forwarding state is not controlled by VSRP. If you are configuring a chassis device, specify the slot number as well as the port number (<slotnum>/</portnum>).

Configuring a VRID IP address

If you are configuring a Layer 3 Switch for VSRP, you can specify an IP address to back up. When you specify an IP address, VSRP provides redundancy for the address. This is useful if you want to back up the gateway address used by hosts attached to the VSRP backups.

VSRP does not require you to specify an IP address. If you do not specify an address, VSRP provides Layer 2 redundancy. If you do specify an address, VSRP provides Layer 2 and Layer 3 redundancy.

The Layer 3 redundancy support is the same as VRRPE support. For information, refer to Chapter 37, “Configuring VRRP and VRRPE”.
Virtual Switch Redundancy Protocol (VSRP)

NOTE

The VRID IP address must be in the same subnet as a real IP address configured on the VSRP interface, but cannot be the same as a real IP address configured on the interface.

NOTE

Failover applies to both Layer 2 and Layer 3.

To specify an IP address to back up, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# ip-address 10.10.10.1
```

Syntax:

```
[ip-address <ip-addr>]
```

or

```
[no] ip address <ip-addr>
```

Changing the backup priority

When you enter the backup command to configure the device as a VSRP backup for the VRID, you also can change the backup priority and the track priority:

- The backup priority is used for election of the master. The VSRP backup with the highest priority value for the VRID is elected as the master for that VRID. The default priority is 100. If two or more backups are tied with the highest priority, the backup with the highest IP address becomes the master for the VRID.

- The track priority is used with the track port feature. Refer to "VSRP priority calculation" on page 431 and "Changing the default track priority" on page 445.

To change the backup priority, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# backup priority 75
```

Syntax:

```
backup [priority <value>] [track-priority <value>]
```

The **priority** parameter specifies the VRRP priority for this interface and VRID. You can specify a value from 3 – 254. The default is 100.

For a description of the **track-priority** parameter, refer to "Changing the default track priority" on page 445.

Example

Following is an example to configure a simple VSRP interface.

Enter the following commands to add tagged ports to a VLAN.

```
TurboIron(config)# vlan 30
TurboIron(config-vlan-30)# tag ethernet 28
```

Enter the following command to add the IP address.

```
TurboIron(config-vlan-30)# router-int ve 30
```

Enter the following command to change the VSRP interface state and initiate VRID state.

```
TurboIron(config-vlan-30)# interface ve 30
TurboIron(config-vlan-30)# ip address 30.0.0.2/24
```

Enter the following commands to change the VSRP interface state and initiate VRID state.

```
TurboIron(config-vlan-30)# vlan 30
```
Virtual Switch Redundancy Protocol (VSRP)

TurboIron(config-vlan-30)# vsrp vri 30
TurboIron(config-vlan-30-vrid-30)# backup
TurboIron(config-vlan-30-vrid-30)# ip-address 30.0.0.1
TurboIron(config-vlan-30-vrid-30)# enable

Saving the timer values received from the master

The hello messages sent by a VRID master contain the VRID values for the following VSRP timers:

- Hello interval
- Dead interval
- Backup hello interval
- Hold-down interval

By default, each backup saves the configured timer values to its startup-config file when you save the device configuration.

You can configure a backup to instead save the current timer values received from the master when you save the configuration. Saving the current timer values instead of the configured ones helps ensure consistent timer usage for all the VRID devices.

NOTE
The backups always use the value of the timer scale received from the master, regardless of whether the timer values that are saved in the configuration are the values configured on the backup or the values received from the master.

To configure a backup to save the VSRP timer values received from the master instead of the timer values configured on the backup, enter the following command.

```
FastIron(config-vlan-200-vrid-1)# save-current-values
```

Syntax: `[no] save-current-values`

Changing the Time-To-Live (TTL)

A VSRP hello packet TTL specifies how many hops the packet can traverse before being dropped. A hop can be a Layer 3 Switch or a Layer 2 Switch. You can specify from 1 – 255. The default TTL is 2. When a VSRP device (master or backup) sends a VSRP HEllO packet, the device subtracts one from the TTL. Thus, if the TTL is 2, the device that originates the hello packet sends it out with a TTL of 1. Each subsequent device that receives the packet also subtracts one from the packet TTL. When the packet has a TTL of 1, the receiving device subtracts 1 and then drops the packet because the TTL is zero.

NOTE
An MRP ring is considered to be a single hop, regardless of the number of nodes in the ring.

To change the TTL for a VRID, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# initial-ttl 5
```

Syntax: `[no] initial-ttl <num>`

The `<num>` parameter specifies the TTL and can be from 1 – 255. The default TTL is 2.
Changing the hello interval

The master periodically sends hello messages to the backups. To change the hello interval, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# hello-interval 10
```

Syntax: `[no] hello-interval <num>`

The `<num>` parameter specifies the interval and can be from 1 – 84 seconds. The default is 1 second.

NOTE

The default dead interval is three times the hello interval plus one-half second. Generally, if you change the hello interval, you also should change the dead interval on the backups.

NOTE

If you change the timer scale, the change affects the actual number of seconds.

Changing the dead interval

The dead interval is the number of seconds a backup waits for a hello message from the master before determining that the master is dead. The default is 3 seconds. This is three times the default hello interval.

To change the dead interval, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# dead-interval 30
```

Syntax: `[no] dead-interval <num>`

The `<num>` parameter specifies the interval and can be from 1 – 84 seconds. The default is 3 seconds.

NOTE

If you change the timer scale, the change affects the actual number of seconds.

Changing the backup hello state and interval

By default, backups do not send hello messages to advertise themselves to the master. You can enable these messages if desired and also change the message interval.

To enable a backup to send hello messages to the master, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# advertise backup
```

Syntax: `[no] advertise backup`

When a backup is enabled to send hello messages, the backup sends a hello message to the master every 60 seconds by default. You can change the interval to be up to 3600 seconds.

To change the backup hello interval, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# backup-hello-interval 180
```
Syntax: [no] backup-hello-interval <num>

The <num> parameter specifies the message interval and can be from 60 – 3600 seconds. The default is 60 seconds.

NOTE
If you change the timer scale, the change affects the actual number of seconds.

Changing the hold-down interval

The hold-down interval prevents Layer 2 loops from occurring during failover, by delaying the new master from forwarding traffic long enough to ensure that the failed master is really unavailable.

To change the Hold-down interval, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# hold-down-interval 4
```

Syntax: [no] hold-down-interval <num>

The <num> parameter specifies the hold-down interval and can be from 1 – 84 seconds. The default is 2 seconds.

NOTE
If you change the timer scale, the change affects the actual number of seconds.

Changing the default track priority

When you configure a VRID to track the link state of other interfaces, if one of the tracked interface goes down, the software changes the VSRP priority of the VRID interface.

The software reduces the VRID priority by the amount of the priority of the tracked interface that went down. For example, if the VSRP interface priority is 100 and a tracked interface with track priority 60 goes down, the software changes the VSRP interface priority to 40. If another tracked interface goes down, the software reduces the VRID priority again, by the amount of the tracked interface track priority.

The default track priority for all track ports is 1. You can change the default track priority or override the default for an individual track port.

- To change the default track priority, use the backup track-priority command, described below.
- To override the default track priority for a specific track port, use the track-port command. Refer to “Specifying a track port” on page 445.

To change the track priority, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# backup track-priority 2
```

Syntax: [no] backup [priority <value>] [track-priority <value>]

Specifying a track port

You can configure the VRID on one interface to track the link state of another interface on the device. This capability is useful for tracking the state of the exit interface for the path for which the VRID is providing redundancy. Refer to “VSRP priority calculation” on page 431.
To configure a VRID to track an interface, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# track-port e 2/4
```

Syntax: `[no] track-port ethernet `<slotnum>`/`<portnum>` | ve `<num>` [priority `<num>`]

The `priority `<num>` parameter changes the VSRP priority of the interface. If this interface goes down, the VRID VSRP priority is reduced by the amount of the track port priority you specify here.

NOTE
The priority `<num>` option changes the priority of the specified interface, overriding the default track port priority. To change the default track port priority, use the `backup track-priority `<num>`` command.

Disabling or re-enabling backup pre-emption

By default, a backup that has a higher priority than another backup that has become the master can preempt the master, and take over the role of master. If you want to prevent this behavior, disable preemption.

Preemption applies only to backups and takes effect only when the master has failed and a backup has assumed ownership of the VRID. The feature prevents a backup with a higher priority from taking over as master from another backup that has a lower priority but has already become the master of the VRID.

Preemption is especially useful for preventing flapping in situations where there are multiple backups and a backup with a lower priority than another backup has assumed ownership, because the backup with the higher priority was unavailable when ownership changed.

If you enable the non-preempt mode (thus disabling the preemption feature) on all the backups, the backup that becomes the master following the disappearance of the master continues to be the master. The new master is not preempted.

To disable preemption on a backup, enter a command such as the following at the configuration level for the VRID.

```
FastIron(config-vlan-200-vrid-1)# non-preempt-mode
```

Syntax: `[no] non-preempt-mode

Suppressing RIP advertisement from backups

Normally, for Layer 3 a VSRP backup includes route information for a backed up IP address in RIP advertisements. As a result, other Layer 3 Switches receive multiple paths for the backed up interface and might sometimes unsuccessfully use the path to the backup rather than the path to the master.

You can prevent the backups from advertising route information for the backed up interface by enabling suppression of the advertisements.

NOTE
This parameter applies only if you specified an IP address to back up and is valid only on Layer 3 Switches.

To suppress RIP advertisements, enter the following commands.
Router2(config)# router rip
Router2(config-rip-router)# use-vrrp-path

Syntax: [no] use-vrrp-path

VSRP-aware interoperability

The `vsrp-aware tc-vlan-flush` command should be used in network configurations in which the Brocade switch operates as the VSRP-Aware device connecting to a Brocade BigIron RX, NetIron XMR, or NetIron MLX configured as a VSRP master.

The command is available at the VLAN level, and is issued per a specific VRID, as shown here for VRID 11.

`FastIron(config-vlan-10)# vsrp-aware vrid 11 tc-vlan-flush`

Syntax: vsrp-aware vrid <num> tc-vlan-flush

When this command is enabled, MAC addresses will be flushed at the VLAN level, instead of at the port level. MAC addresses will be flushed for every topology change (TC) received on the VSRP-aware ports.

When this command is enabled, the results of the `show vsrp-aware vlan` command resemble the following.

```
FastIron(config-vlan-10)#vsrp-aware vrid 11 tc-vlan-flush
FastIron(config-vlan-10)#show vsrp aware vlan 10
Aware Port Listing
  VLAN ID  VRID  Last Port  Auth Type  Mac-Flush  Age
  10       11     N/A       no-auth    Configured  Enabled   00:00:00.0
```

Displaying VSRP information

You can display the following VSRP information:

- Configuration information and current parameter values for a VRID or VLAN
- The interfaces on a VSRP-aware device that are active for the VRID

Displaying VRID information

To display VSRP information, enter the following command.
FastIron# show vsrp vrid 1
Total number of VSRP routers defined: 2
VLAN 200
 auth-type no authentication
VRID 1
 State Administrative-status Advertise-backup Preempt-mode save-current
 standby enabled disabled true false

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configured</th>
<th>Current</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority</td>
<td>100</td>
<td>80</td>
<td>(100-0)*(4.0/5.0)</td>
</tr>
<tr>
<td>hello-interval</td>
<td>1</td>
<td>1</td>
<td>sec/1</td>
</tr>
<tr>
<td>dead-interval</td>
<td>3</td>
<td>3</td>
<td>sec/1</td>
</tr>
<tr>
<td>hold-interval</td>
<td>3</td>
<td>3</td>
<td>sec/1</td>
</tr>
<tr>
<td>initial-ttl</td>
<td>2</td>
<td>2</td>
<td>hops</td>
</tr>
</tbody>
</table>

next hello sent in 00:00:00.8
Member ports: ethe 1/1 to 1/5
Operational ports: ethe 1/1 to 1/4
Forwarding ports: ethe 1/1 to 1/4

Syntax: show vsrp [vrid <num> | vlan <vlan-id>]

This display shows the following information when you use the vrid <num> or vlan <vlan-id> parameter. For information about the display when you use the aware parameter, refer to “Displaying the active interfaces for a VRID” on page 450.

TABLE 85 CLI display of VSRP VRID or VLAN information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of VSRP</td>
<td>The total number of VRIDs configured on this device.</td>
</tr>
<tr>
<td>routers defined</td>
<td></td>
</tr>
<tr>
<td>VLAN</td>
<td>The VLAN on which VSRP is configured.</td>
</tr>
<tr>
<td>auth-type</td>
<td>The authentication type in effect on the ports in the VSRP VLAN.</td>
</tr>
<tr>
<td>VRID parameters</td>
<td></td>
</tr>
<tr>
<td>VRID</td>
<td>The VRID for which the following information is displayed.</td>
</tr>
<tr>
<td>state</td>
<td>This device VSRP state for the VRID. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• initialize – The VRID is not enabled (activated). If the state remains “initialize” after you activate the VRID, make sure that the VRID is also configured on the other routers and that the routers can communicate with each other.</td>
</tr>
<tr>
<td></td>
<td>• standby – This device is a backup for the VRID.</td>
</tr>
<tr>
<td></td>
<td>• master – This device is the master for the VRID.</td>
</tr>
<tr>
<td>Administrative-status</td>
<td>The administrative status of the VRID. The administrative status can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled – The VRID is configured on the interface but VSRP or VRRPE has not been activated on the interface.</td>
</tr>
<tr>
<td></td>
<td>• enabled – VSRP has been activated on the interface.</td>
</tr>
<tr>
<td>Advertise-backup</td>
<td>Whether the device is enabled to send VSRP hello messages when it is a backup. This field can have one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• disabled – The device does not send hello messages when it is a backup.</td>
</tr>
<tr>
<td></td>
<td>• enabled – The device does send hello messages when it is a backup.</td>
</tr>
</tbody>
</table>
TABLE 85 CLI display of VSRP VRID or VLAN information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| Preempt-mode | Whether the device can be pre-empted by a device with a higher VSRP priority after this device becomes the master. This field can have one of the following values:
• disabled – The device cannot be pre-empted.
• enabled – The device can be pre-empted. |
| save-current | The source of VSRP timer values preferred when you save the configuration. This field can have one of the following values:
• false – The timer values configured on this device are saved.
• true – The timer values most recently received from the master are saved instead of the locally configured values. |

NOTE: For the following fields:
• Configured – indicates the parameter value configured on this device.
• Current – indicates the parameter value received from the master.
• Unit – indicates the formula used for calculating the VSRP priority and the timer scales in effect for the VSRP timers. A timer true value is the value listed in the Configured or Current field divided by the scale value.

| priority | The device preferability for becoming the master for the VRID. During negotiation, the backup with the highest priority becomes the master.
If two or more backups are tied with the highest priority, the backup interface with the highest IP address becomes the master for the VRID. |
| hello-interval | The number of seconds between hello messages from the master to the backups for a given VRID. |
| dead-interval | The configured value for the dead interval. The dead interval is the number of seconds a backup waits for a hello message from the master for the VRID before determining that the master is no longer active.
If the master does not send a hello message before the dead interval expires, the backups negotiate (compare priorities) to select a new master for the VRID.
NOTE: If the value is 0, then you have not configured this parameter. |
| hold-interval | The number of seconds a backup that intends to become the master will wait before actually beginning to forward Layer 2 traffic for the VRID.
If the backup receives a hello message with a higher priority than its own before the hold-down interval expires, the backup remains in the backup state and does not become the new master. |
| initial-ttl | The number of hops a hello message can traverse after leaving the device before the hello message is dropped.
NOTE: An MRP ring counts as one hop, regardless of the number of nodes in the ring. |
| next hello sent in | The amount of time until the master dead interval expires.
If the backup does not receive a hello message from the master by the time the interval expires, either the IP address listed for the master will change to the IP address of the new master, or this Layer 3 Switch itself will become the master.
NOTE: This field applies only when this device is a backup. |
Member ports	The ports in the VRID.
Operational ports	The member ports that are currently up.
Forwarding ports	The member ports that are currently in the Forwarding state. Ports that are forwarding on the master are listed. Ports on the Standby, which are in the Blocking state, are not listed.
Displaying the active interfaces for a VRID

On a VSRP-aware device, you can display VLAN and port information for the connections to the VSRP devices (master and backups).

To display the active VRID interfaces, enter the following command on the VSRP-aware device.

```
FastIron# show vsrp aware
Aware port listing
VLAN ID  VRID  Last Port
100      1     3/2
200      2     4/1
```

Syntax: show vsrp aware

This display shows the following information when you use the `aware` parameter. For information about the display when you use the `vrid <num>` or `vlan <vlan-id>` parameter, refer to “Displaying VRID information” on page 447.

TABLE 86 CLI display of VSRP-aware information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>The VLAN that contains the VSRP-aware device connection with the VSRP master and backups.</td>
</tr>
<tr>
<td>VRID</td>
<td>The VRID.</td>
</tr>
<tr>
<td>Last Port</td>
<td>The most recent active port connection to the VRID. This is the port connected to the current master. If a failover occurs, the VSRP-aware device changes the port to the port connected to the new master. The VSRP-aware device uses this port to send and receive data through the backed up node.</td>
</tr>
</tbody>
</table>

VSRP fast start

Platform Support:

- FastIron X Series devices
- FCX-S devices running software release 06.0.00 and later
- TurboIron devices running software release 04.2.00 and later

VSRP fast start allows non-Brocade or non-VSRP aware devices that are connected to a Brocade device that is the VSRP master to quickly switchover to the new master when a VSRP failover occurs.

This feature causes the port on a VSRP master to restart when a VSRP failover occurs. When the port shuts down at the start of the restart, ports on the non-VSRP aware devices that are connected to the VSRP master flush the MAC address they have learned for the VSRP master. After a specified time, the port on the previous VSRP master (which now becomes the backup) returns back online. Ports on the non-VSRP aware devices switch over to the new master and learn its MAC address.

Configuring VSRP fast start

The VSRP fast start feature can be enabled on a VSRP-configured Brocade device, either on the VLAN to which the VRID of the VSRP-configured device belongs (globally) or on a port that belongs to the VRID.
To globally configure a VSRP-configured device to shut down its ports when a failover occurs, then restart after five seconds, enter the following command.

```
FastIron(configure)# vlan 100
FastIron(configure-vlan-100)# vsrp vrid 1
FastIron(configure-vlan-100-vrid-1)# restart-ports 5
```

Syntax: [no] restart-ports <seconds>

This command shuts down all the ports that belong to the VLAN when a failover occurs. All the ports will have the specified VRID.

To configure a single port on a VSRP-configured device to shut down when a failover occurs, then restart after a period of time, enter the following command.

```
FastIron(configure)# interface ethernet 1/1
FastIron(configure-if-1/1)# vsrp restart-port 5
```

Syntax: [no] vsrp restart-port <seconds>

In both commands, the `<seconds>` parameter instructs the VSRP master to shut down its port for the specified number of seconds before it starts back up. Enter a value between 1 – 120 seconds. The default is 1 second.

Displaying ports that Have the VSRP fast start feature enabled

The `show vsrp vrid` command shows the ports on which the VSRP fast start feature is enabled.

```
FastIron# show vsrp vrid 100
VLAN 100
   auth-type no authentication
VRID 100
--------
State      Administrative-status Advertise-backup Preempt-mode save-current
master     enabled               disabled         true         false
Parameter        Configured Current    Unit/Formula
priority         100        50         (100-0)*(2.0/4.0)
hello-interval   1          1          sec/1
dead-interval    3          3          sec/1
hold-interval    3          3          sec/1
initial-ttl      2          2          hops
next hello sent in 00:00:00.3
Member ports:      ethe 2/5 to 2/8
Operational ports: ethe 2/5 ethe 2/8
Forwarding ports:  ethe 2/5 ethe 2/8
Restart ports:     2/5(1) 2/6(1) 2/7(1) 2/8(1)
```

The "Restart ports:" line lists the ports that have the VSRP fast start enabled, and the downtime for each port. Refer to Table 85 on page 448 to interpret the remaining information on the display.

VSRP and MRP signaling

Platform Support:
- FastIron X Series devices
- FCX-S devices running software release 06.0.00 and later
- Turbolron X Series devices running software release 04.2.00 and later
A device may connect to an MRP ring through VSRP to provide a redundant path between the device and the MRP ring. VSRP and MRP signaling ensures rapid failover by flushing MAC addresses appropriately. The host on the MRP ring learns the MAC addresses of all devices on the MRP ring and VSRP link. From these MAC addresses, the host creates a MAC database (table), which is used to establish a data path from the host to a VSRP-linked device. Figure 67 below shows two possible data paths from the host to Device 1.

FIGURE 67 Two data paths from host on an MRP ring to a VSRP-linked device

If a VSRP failover from master to backup occurs, VSRP needs to inform MRP of the topology change; otherwise, data from the host continues along the obsolete learned path and never reach the VSRP-linked device, as shown in Figure 68.

FIGURE 68 VSRP on MRP rings that failed over

A signaling process for the interaction between VSRP and MRP ensures that MRP is informed of the topology change and achieves convergence rapidly. When a VSRP node fails, a new VSRP master is selected. The new VSRP master finds all MRP instances impacted by the failover. Then each MRP instance does the following:

- The MRP node sends out an MRP PDU with the mac-flush flag set three times on the MRP ring.
• The MRP node that receives this MRP PDU empties all the MAC entries from its interfaces that participate on the MRP ring.

• The MRP node then forwards the MRP PDU with the mac-flush flag set to the next MRP node that is in forwarding state.

The process continues until the master MRP node secondary (blocking) interface blocks the packet. Once the MAC address entries have been flushed, the MAC table can be rebuilt for the new path from the host to the VSRP-linked device (Figure 69).

FIGURE 69 New path established

There are no CLI commands used to configure this process.
11 Virtual Switch Redundancy Protocol (VSRP)
Configuring Uni-Directional Link Detection (UDLD) and Protected Link Groups

UDLD overview

Platform Support:
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FGS and FLS devices running software release 2.5 and later
- FastIron X Series devices running software release 04.0.00 and later – L2, BL3, L3
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

Uni-Directional Link Detection (UDLD) monitors a link between two Brocade devices and brings the ports on both ends of the link down if the link goes down at any point between the two devices. This feature is useful for links that are individual ports and for trunk links. Figure 70 shows an example.

FIGURE 70 UDLD example

Normally, a Brocade device load balances traffic across the ports in a trunk group. In this example, each Brocade device load balances traffic across two ports. Without the UDLD feature, a link failure on a link that is not directly attached to one of the Brocade devices is undetected by the Brocade devices. As a result, the Brocade devices continue to send traffic on the ports connected to the failed link.

When UDLD is enabled on the trunk ports on each Brocade device, the devices detect the failed link, disable the ports connected to the failed link, and use the remaining ports in the trunk group to forward the traffic.

Ports enabled for UDLD exchange proprietary health-check packets once every second (the keepalive interval). If a port does not receive a health-check packet from the port at the other end of the link within the keepalive interval, the port waits for two more intervals. If the port still does not receive a health-check packet after waiting for three intervals, the port concludes that the link has failed and takes the port down.
Configuration considerations

- This feature is supported only on Ethernet ports.
- To configure UDLD on a trunk group, you must enable and configure the feature on each port of the group individually. Configuring UDLD on a trunk group primary port enables the feature on that port only.
- When UDLD is enabled on a trunk port, trunk threshold is not supported.
- Dynamic trunking is not supported. If you want to configure a trunk group that contains ports on which UDLD is enabled, you must remove the UDLD configuration from the ports. After you create the trunk group, you can re-add the UDLD configuration.
- If MRP is also enabled on the device, Brocade recommends that you set the MRP preforwarding time slightly higher than the default of 300 ms; for example, to 400 or 500 ms. Refer to “Changing the hello and preforwarding times” on page 422.

Enabling UDLD

To enable UDLD on a port, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)#link-keepalive ethernet 0/1/1
```

To enable the feature on a trunk group, enter commands such as the following.

```
FastIron(config)#link-keepalive ethernet 0/1/1 ethernet 0/1/2
FastIron(config)#link-keepalive ethernet 0/1/3 ethernet 0/1/4
```

Syntax: `[no] link-keepalive ethernet [slotnum/portnum] ethernet [<stack-unit>]/slotnum/portnum]

The `<stack-unit>` parameter is required on stackable devices.
The `<slotnum>` parameter is required on chassis devices.

These commands enable UDLD on ports 1/1 – 1/4.

For releases prior to FGS 03.0.00, you can specify up to two ports on the same command line. FGS software release 03.0.00 adds the capability to configure multiple ports with a single command, such as the following.

```
FastIron(config)#link-keepalive ethernet 0/1/1 to 0/1/5 ethernet 0/1/7
```

Syntax: `[no] link-keepalive ethernet [portlist]

Changing the Keepalive interval

By default, ports enabled for UDLD send a link health-check packet once every 500 ms. You can change the interval to a value from 1 – 60, where 1 is 100 ms, 2 is 200 ms, and so on. To change the interval, enter a command such as the following.

```
FastIron(config)#link-keepalive interval 3
```

Syntax: `[no] link-keepalive interval `<num>`

The `<num>` parameter specifies how often the ports send a UDLD packet. You can specify from 1 – 60, in 100 ms increments. The default is 5 (500 ms).
Changing the Keepalive retries

By default, a port waits one second to receive a health-check reply packet from the port at the other end of the link. If the port does not receive a reply, the port tries four more times by sending up to four more health-check packets. If the port still does not receive a reply after the maximum number of retries, the port goes down.

You can change the maximum number of keepalive attempts to a value from 3 – 64. To change the maximum number of attempts, enter a command such as the following.

```
FastIron(config)#link-keepalive retries 4
```

Syntax:

```
[no] link-keepalive retries <num>
```

The `<num>` parameter specifies the maximum number of times the port will try the health check. You can specify a value from 3 – 64. The default is 7.

UDLD for tagged ports

Platform Support:

- FastIron X Series devices running software release 04.0.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

The default implementation of UDLD sends the packets untagged, even across tagged ports. If the untagged UDLD packet is received by a third-party switch, that switch may reject the packet. As a result, UDLD may be limited only to Brocade devices, since UDLD may not function on third-party switches.

You can configure ports to send out UDLD control packets that are tagged with a specific VLAN ID as tagged UDLD control packets. This feature also enables third party switches to receive the control packets that are tagged with the specified VLAN.

To enable ports to receive and send UDLD control packets tagged with a specific VLAN ID, enter commands such as the following.

```
FastIron(config)#link-keepalive ethernet 1/18 vlan 22
```

This command enables UDLD on port 1/18 and allows UDLD control packet tagged with VLAN 22 to be received and sent on port 1/18.

Syntax:

```
[no] link-keepalive ethernet [<stack-unit>]<slotnum>/]<portnum> [vlan <vlan-ID>]
```

The `<stack-unit>` parameter is required for stackable devices.

The `<slotnum>` parameter is required on chassis devices.

Enter the ID of the VLAN that the UDLD control packets can contain to be received and sent on the port. If a VLAN ID is not specified, then UDLD control packets are sent out of the port as untagged packets.

NOTE

You must configure the same VLANs that will be used for UDLD on all devices across the network; otherwise, the UDLD link cannot be maintained.
Displaying UDLD information

This section describes the commands used to display information about a UDLD configuration.

Displaying information for all ports

To display UDLD information for all ports, enter the following command.

```
FastIron#show link-keepalive
Total link-keepalive enabled ports: 4
Keepalive Retries: 3  Keepalive Interval: 1 Sec.
```

```
Port       Physical Link   Logical Link   State        Link-vlan
4/1        up              up              FORWARDING   3
4/2        up              up              FORWARDING
4/3        down            down            DISABLED
4/4        up              down            DISABLED
```

Syntax: show link-keepalive

TABLE 87 CLI display of UDLD information

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total link-keepalive enabled ports</td>
<td>The total number of ports on which UDLD is enabled.</td>
</tr>
<tr>
<td>Keepalive Retries</td>
<td>The number of times a port will attempt the health check before concluding that the link is down.</td>
</tr>
<tr>
<td>Keepalive Interval</td>
<td>The number of seconds between health check packets.</td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Physical Link</td>
<td>The state of the physical link. This is the link between the Brocade port and the directly connected device.</td>
</tr>
<tr>
<td>Logical Link</td>
<td>The state of the logical link. This is the state of the link between this Brocade port and the Brocade port on the other end of the link.</td>
</tr>
<tr>
<td>State</td>
<td>The traffic state of the port.</td>
</tr>
<tr>
<td>Link-vlan</td>
<td>The ID of the tagged VLAN in the UDLD packet.</td>
</tr>
</tbody>
</table>

If a port is disabled by UDLD, the change also is indicated in the output of the `show interfaces brief` command. An example is given below.

```
FastIron#show interfaces brief
```

```
Port Link State Dupl Speed Trunk Tag Priori MAC           Name
1/1 Up  **LK-DISABLE** None None None No  level0 00e0.52a9.bb00
1/2 Down None None None None  No  level0 00e0.52a9.bb01
1/3 Down None None None None  No  level0 00e0.52a9.bb02
1/4 Down None None None None  No  level0 00e0.52a9.bb03
```

If the port was already down before you enabled UDLD for the port, the port state is listed as None.

Syntax: show interfaces brief
Displaying information for a single port

To display detailed UDLD information for a specific port, enter a command such as the following.

```
FastIron#show link-keepalive ethernet 4/1
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current State</td>
<td>The state of the logical link. This is the link between this Brocade port and the Brocade port on the other end of the link.</td>
</tr>
<tr>
<td>Remote MAC Addr</td>
<td>The MAC address of the port or device at the remote end of the logical link.</td>
</tr>
<tr>
<td>Local Port</td>
<td>The port number on this Brocade device.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>The port number on the Brocade device at the remote end of the link.</td>
</tr>
<tr>
<td>Local System ID</td>
<td>A unique value that identifies this Brocade device. The ID can be used by Brocade technical support for troubleshooting.</td>
</tr>
<tr>
<td>Remote System ID</td>
<td>A unique value that identifies the Brocade device at the remote end of the link.</td>
</tr>
<tr>
<td>Packets sent</td>
<td>The number of UDLD health-check packets sent on this port.</td>
</tr>
<tr>
<td>Packets received</td>
<td>The number of UDLD health-check packets received on this port.</td>
</tr>
<tr>
<td>Transitions</td>
<td>The number of times the logical link state has changed between up and down.</td>
</tr>
<tr>
<td>Port blocking</td>
<td>Information used by Brocade technical support for troubleshooting.</td>
</tr>
<tr>
<td>Link-vlan</td>
<td>The ID of the tagged VLAN in the UDLD packet.</td>
</tr>
<tr>
<td>BM disabled</td>
<td>Information used by Brocade technical support for troubleshooting.</td>
</tr>
</tbody>
</table>

The `show interface ethernet` command also displays the UDLD state for an individual port. In addition, the line protocol state listed in the first line will say “down” if UDLD has brought the port down. An example is given below.

```
FastIron#show interface ethernet 4/1
Current State   : down            Remote MAC Addr  : 00e0.52d2.5100
Local Port      : 4/1           Remote Port      : 2/1
Local System ID : e0927400      Remote System ID : e0d25100
Packets sent    : 254           Packets received : 255
Transitions     : 1             Link-vlan        : 100
Port blocking   : No            BM disabled      : No
```

Syntax: `show link-keepalive [ethernet [<slotnum>/]<portnum>]`
FastIron\#show interface ethernet 1/1
FastEthernet1/1 is down, line protocol is down, link keepalive is enabled
 Hardware is FastEthernet, address is 00e0.52a9.bbca (bia 00e0.52a9.bbca)
 Configured speed auto, actual unknown, configured duplex fdx, actual unknown
 Member of L2 VLAN ID 1, port is untagged, port state is DISABLED
 STP configured to ON, priority is level0, flow control enabled
 mirror disabled, monitor disabled
 Not member of any active trunks
 Not member of any configured trunks
 No port name
 300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
 300 second output rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
 0 packets input, 0 bytes, 0 no buffer
 Received 0 broadcasts, 0 multicasts, 0 unicast
 0 input errors, 0 CRC, 0 frame, 0 ignored
 0 runts, 0 giants, DMA received 0 packets
 19 packets output, 1216 bytes, 0 underruns
 Transmitted 0 broadcasts, 19 multicasts, 0 unicast
 0 output errors, 0 collisions, DMA transmitted 19 packets

In this example, the port has been brought down by UDLD. Notice that in addition to the information in the first line, the port state on the fourth line of the display is listed as DISABLED.

Clearing UDLD statistics

To clear UDLD statistics, enter the following command.

FastIron\#clear link-keepalive statistics

Syntax: clear link-keepalive statistics

This command clears the Packets sent, Packets received, and Transitions counters in the show link keepalive ethernet [<slotnum>/]<portnum> display.

Protected link groups

Platform Support:
- FastIron X Series devices running software release 03.0.00 and later – L2, BL3, L3
- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later

A protected link group minimizes disruption to the network by protecting critical links from loss of data and power. In a protected link group, one port in the group acts as the primary or active link, and the other ports act as secondary or standby links. The active link carries the traffic. If the active link goes down, one of the standby links takes over.

During normal operation, the active port in a protected link group is enabled and the standby ports are logically disabled. If the active port fails, the Brocade device immediately enables one of the standby ports, and switches traffic to the standby port. The standby port becomes the new, active port.
About active ports

When you create a protected link group, you can optionally specify which port in the protected link group is the active port. If you do not explicitly configure an active port, the Brocade device dynamically assigns one. A dynamic active port is the first port in the protected link group that comes up (usually the lowest numbered port in the group).

Static and dynamic active ports operate as follows:

- A static active port (an active port that you explicitly configured) pre-empts other ports in the protected link group. So, if a static active link comes back up after a failure, the Brocade device will revert to this link as the active link.
- A dynamic active port (an active port assigned by the software) is non-pre-emptive. Therefore, if a dynamic active link comes back up after a failure, the Brocade device does not revert to this link, but continues carrying traffic on the current active link.

Using UDLD with protected link groups

You can use UDLD with protected link groups to detect uni-directional link failures and to improve the speed at which the device detects a failure in the link. Use UDLD and protected link groups simultaneously when the FastIron X Series device is connected to a device with slower link detection times.

NOTE
When UDLD and protected links are configured on a port and the link goes down, protected links will not come up after UDLD becomes “healthy” again without first physically disabling then re-enabling the link.

Configuration notes

- You can configure a maximum of 32 protected link groups.
- There is no restriction on the number of ports in a protected link group.
- Each port can belong to one protected link group at a time.
- There is no restriction on the type of ports in a protected link group. A protected link group can consist of 10-GbE ports, Gbps fiber ports, 10/100/1000 copper ports, and 10/100 ports, or any combination thereof.
- This feature is supported with tagged and untagged ports.
- This feature is supported with trunk ports.
- The protected link groups feature is not supported with LACP.
- There is no restriction on the properties of ports in a protected link group. For example, member ports can be in the same VLAN or in different VLANs.
- When two switches are connected together with links in a protected link group, and the ports connecting the switches together are part of a protected link group, you must configure two connecting ports (one port on each switch) as active ports of the protected link group. The following example illustrates this scenario.
Creating a protected link group and assigning an active port

Follow the steps given below to create a protected link group.

1. Specify the member ports in the protected link group. Enter a command such as the following.

 FastIron(config)# protected-link-group 10 e 1 to 4

2. Optionally specify which port will be the active port for the protected link group. Enter a command such as the following.

 FastIron(config)# protected-link-group 10 active-port e 1

 NOTE
 If you do not explicitly configure an active port, the Brocade device automatically assigns one as the first port in the protected link group to come up.

These commands configure port e1 as the active port and ports e2 – e4 as standby ports. If port 1 goes down, the Brocade device enables the first available standby port, and switches the traffic to that port. Since the above configuration consists of a statically configured active port, the active port pre-empts other ports in the protected link group. Refer to “About active ports” on page 461.

Syntax:

```
[no] protected-link-group <group-ID> ethernet [stack-unit]/<slotnum>/]portnum> to [stack-unit]/<slotnum>/]portnum>
```

The `<group-ID>` parameter specifies the protected link group number. Enter a number from 1 – 32. Each `ethernet` parameter introduces a port group.

The `[/]portnum` to `[/]portnum` parameters specify the ports in the protected link group. The `/<slotnum>` parameter is required on chassis devices.

Syntax:

```
[no] protected-link-group <group-ID> active-port ethernet <[stack-unit]/slotnum ApplicationUser Port e 1
```

These commands configure port e1 as the active port and ports e2 – e4 as standby ports. If port 1 goes down, the Brocade device enables the first available standby port, and switches the traffic to that port. Since the above configuration consists of a statically configured active port, the active port pre-empts other ports in the protected link group. Refer to “About active ports” on page 461.
The `<group-ID>` parameter specifies the protected link group number. Enter a number from 1 – 32.
The `active-port ethernet <stack-unit>[/<slotnum>]/portnum` parameter defines the active port.
The `<stack-unit>` parameter is required on stackable devices.
The `<slotnum>` parameter is required on chassis devices.

Viewing information about protected link groups

You can use the following `show` commands to view information about protected link groups:

- `show protected-link-group`
- `show interface brief`
- `show interface`

The following shows example output for the `show protected-link-group` command.

```
FastIron#show protected-link-group
Group ID: 1
Member Port(s): ethe 1 to 7
Configured Active Port: 7
Current Active Port: 7
Standby Port(s): ethe 5
Total Number of Protected Link Groups: 1
```

Syntax: `show protected-link-group [group-ID]`

<table>
<thead>
<tr>
<th>TABLE 89</th>
<th>CLI display of protected link group information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>Group ID</td>
<td>The ID number of the protected link group.</td>
</tr>
<tr>
<td>Member Port(s)</td>
<td>The ports that are members of the protected link group.</td>
</tr>
<tr>
<td>Configured Active Port</td>
<td>The statically configured active port. If you do not statically configure an active port, this value will be "None".</td>
</tr>
<tr>
<td>Current Active Port</td>
<td>The current active port for the protected link group. If all member ports are down, this value will be "None".</td>
</tr>
<tr>
<td>Standby Port(s)</td>
<td>The member ports that are on standby.</td>
</tr>
</tbody>
</table>

The `show interface brief` command also displays information about protected link groups.

Example

```
FastIron#show int brief e 3 to 4
Port Link State Dupl Speed Trunk Tag Priori MAC            Name
 3  Up  Inactive  Full Auto  None  Yes  leve10 0012.f2a8.7140
 4  Up  Forward   Full 1G   None  Yes  leve10 0012.f2a8.7140
```

In the above output, the **State** of port 3 is **Inactive**, which means port 3 is an inactive port in a protected link group. For active ports in a protected link group, the **State** will be **Active**.

Syntax: `show interface brief ethernet <stack-unit>[/<slotnum>]/<port-num>`

The `show interface` command also displays information about protected link groups.
12 Protected link groups

Example

FastIron#show int e 3
GigabitEthernet3 is up, line protocol is up, link keepalive is enabled
 Hardware is GigabitEthernet, address is 0012.f2a8.7140 (bia 0012.f2a8.7142)
 Configured speed auto, actual 1Gbit, configured duplex fdx, actual fdx
 Configured mdi mode AUTO, actual MDIX
 Member of 3 L2 VLANs, port is tagged, **port state is protected-link-inactive**
 BPDU guard is Disabled, ROOT protect is Disabled
 Link Error Dampening is Disabled
 STP configured to ON, priority is level0

 some lines omitted for brevity

In the above output, the port state is **protected-link-inactive** which means port 3 is an inactive port in a protected link group.

Syntax: show interface ethernet <stack-unit>/<slotnum>/<port-num>
Chapter 13

Configuring Virtual LANs (VLANs)

VLAN overview

The following sections provide details about the VLAN types and features supported on the FastIron and TurboIron 24X family of switches.

Types of VLANs

This section describes the VLAN types supported on Brocade devices.

VLAN support on FastIron devices

You can configure the following types of VLANs on FastIron devices:

- **Layer 2 port-based VLAN** – a set of physical ports that share a common, exclusive Layer 2 broadcast domain
- **Layer 3 protocol VLANs** – a subset of ports within a port-based VLAN that share a common, exclusive broadcast domain for Layer 3 broadcasts of the specified protocol type
- **IP subnet VLANs** – a subset of ports in a port-based VLAN that share a common, exclusive subnet broadcast domain for a specified IP subnet
- **IPv6 VLANs** – a subset of ports in a port-based VLAN that share a common, exclusive network broadcast domain for IPv6 packets
- **IPX network VLANs** – a subset of ports in a port-based VLAN that share a common, exclusive network broadcast domain for a specified IPX network
- **AppleTalk cable VLANs** – a subset of ports in a port-based-based VLAN that share a common, exclusive network broadcast domain for a specified AppleTalk cable range

When a FastIron device receives a packet on a port that is a member of a VLAN, the device forwards the packet based on the following VLAN hierarchy:

- If the port belongs to an IP subnet VLAN, IPX network VLAN, or AppleTalk cable VLAN and the packet belongs to the corresponding IP subnet, IPX network, or AppleTalk cable range, the device forwards the packet to all the ports within that VLAN.
- If the packet is a Layer 3 packet but cannot be forwarded as described above, but the port is a member of a Layer 3 protocol VLAN for the packet protocol, the device forwards the packet on all the Layer 3 protocol VLAN ports.
- If the packet cannot be forwarded based on either of the VLAN membership types listed above, but the packet can be forwarded at Layer 2, the device forwards the packet on all the ports within the receiving port port-based VLAN.

Protocol VLANs differ from IP subnet, IPX network, and AppleTalk VLANs in an important way. Protocol VLANs accept any broadcast of the specified protocol type. An IP subnet, IPX network, or AppleTalk VLAN accepts only broadcasts for the specified IP subnet, IPX network, or AppleTalk cable range.
NOTE
Protocol VLANs are different from IP subnet, IPX network, and AppleTalk cable VLANs. A port-based VLAN cannot contain both an IP subnet, IPX network, or AppleTalk cable VLAN and a protocol VLAN for the same protocol. For example, a port-based VLAN cannot contain both an IP protocol VLAN and an IP subnet VLAN.

VLAN support on TurboIron devices

The first software release for the TurboIron X Series supports Layer 2 port-based VLANs only. A Layer 2 port-based VLAN is a set of physical ports that share a common, exclusive Layer 2 broadcast domain. The next section provides more details.

Layer 2 port-based VLANs

On all Brocade devices, you can configure port-based VLANs. A port-based VLAN is a subset of ports on a Brocade device that constitutes a Layer 2 broadcast domain.

By default, all the ports on a Brocade device are members of the default VLAN. Thus, all the ports on the device constitute a single Layer 2 broadcast domain. You can configure multiple port-based VLANs. When you configure a port-based VLAN, the device automatically removes the ports you add to the VLAN from the default VLAN.

You can configure up to 4094 port-based VLANs on a Layer 2 Switch or Layer 3 Switch. On both device types, valid VLAN IDs are 1 – 4095. You can configure up to the maximum number of VLANs within that ID range.

NOTE
VLAN IDs 4087, 4090, and 4093 are reserved for Brocade internal use only. VLAN 4094 is reserved for use by Single STP. Also, in releases prior to 04.0.00, VLAN IDs 4091 and 4092 are reserved for Brocade internal use only. Starting in release 04.0.00, if you want to use VLANs 4091 and 4092 as configurable VLANs, you can assign them to different VLAN IDs. For more information, refer to “Assigning different VLAN IDs to reserved VLANs 4091 and 4092” on page 483.

Each port-based VLAN can contain either tagged or untagged ports. A port cannot be a member of more than one port-based VLAN unless the port is tagged. **802.1Q tagging** allows the port to add a four-byte tag field, which contains the VLAN ID, to each packet sent on the port. You also can configure port-based VLANs that span multiple devices by tagging the ports within the VLAN. The tag enables each device that receives the packet to determine the VLAN the packet belongs to. 802.1Q tagging applies only to Layer 2 VLANs, not to Layer 3 VLANs.

Since each port-based VLAN is a separate Layer 2 broadcast domain, by default each VLAN runs a separate instance of the Spanning Tree Protocol (STP).

Layer 2 traffic is bridged within a port-based VLAN and Layer 2 broadcasts are sent to all the ports within the VLAN.

Figure 71 shows an example of a Brocade device on which a Layer 2 port-based VLAN has been configured.

FIGURE 71 Brocade device containing user-defined Layer 2 port-based VLAN
Layer 3 protocol-based VLANs

If you want some or all of the ports within a port-based VLAN to be organized according to Layer 3 protocol, you must configure a Layer 3 protocol-based VLAN within the port-based VLAN.

You can configure each of the following types of protocol-based VLAN within a port-based VLAN. All the ports in the Layer 3 VLAN must be in the same Layer 2 VLAN.

Layer 3 protocol-based VLANs are as follows:

- **AppleTalk** – The device sends AppleTalk broadcasts to all ports within the AppleTalk protocol VLAN.
- **IP** – The device sends IP broadcasts to all ports within the IP protocol VLAN.
- **IPv6** – The device sends IPv6 broadcasts to all ports within the IPv6 protocol VLAN.
- **IPX** – The device sends IPX broadcasts to all ports within the IPX protocol VLAN.
- **DECnet** – The device sends DECnet broadcasts to all ports within the DECnet protocol VLAN.
- **NetBIOS** – The device sends NetBIOS broadcasts to all ports within the NetBIOS protocol VLAN.
- **Other** – The device sends broadcasts for all protocol types other than those listed above to all ports within the VLAN.
Figure 72 shows an example of Layer 3 protocol VLANs configured within a Layer 2 port-based VLAN.

FIGURE 72 Layer 3 protocol VLANs within a Layer 2 port-based VLAN

DEFAULT-VLAN
VLAN ID = 1
Layer 2 Port-based VLAN

User-configured port-based VLAN

User-configured protocol VLAN, IP sub-net VLAN, IPX network VLAN, or AppleTalk cable VLAN

You can add Layer 3 protocol VLANs or IP sub-net, IPX network, and AppleTalk cable VLANs to port-based VLANs.

Layer 3 VLANs cannot span Layer 2 port-based VLANs.

However, Layer 3 VLANs can overlap within a Layer 2 port-based VLAN.
Integrated Switch Routing (ISR)

The Brocade Integrated Switch Routing (ISR) feature enables VLANs configured on Layer 3 Switches to route Layer 3 traffic from one protocol VLAN or IP subnet, IPX network, or AppleTalk cable VLAN to another. Normally, to route traffic from one IP subnet, IPX network, or AppleTalk cable VLAN to another, you would need to forward the traffic to an external router. The VLANs provide Layer 3 broadcast domains for these protocols but do not in themselves provide routing services for these protocols. This is true even if the source and destination IP subnets, IPX networks, or AppleTalk cable ranges are on the same device.

ISR eliminates the need for an external router by allowing you to route between VLANs using virtual routing interfaces (vEs). A virtual routing interface is a logical port on which you can configure Layer 3 routing parameters. You configure a separate virtual routing interface on each VLAN that you want to be able to route from or to. For example, if you configure two IP subnet VLANs on a Layer 3 Switch, you can configure a virtual routing interface on each VLAN, then configure IP routing parameters for the subnets. Thus, the Layer 3 Switch forwards IP subnet broadcasts within each VLAN at Layer 2 but routes Layer 3 traffic between the VLANs using the virtual routing interfaces.

NOTE
The Layer 3 Switch uses the lowest MAC address on the device (the MAC address of port 1 or 1/1) as the MAC address for all ports within all virtual routing interfaces you configure on the device.

The routing parameters and the syntax for configuring them are the same as when you configure a physical interface for routing. The logical interface allows the Layer 3 Switch to internally route traffic between the protocol-based VLANs without using physical interfaces.

All the ports within a protocol-based VLAN must be in the same port-based VLAN. The protocol-based VLAN cannot have ports in multiple port-based VLANs, unless the ports in the port-based VLAN to which you add the protocol-based VLAN are 802.1Q tagged.

You can configure multiple protocol-based VLANs within the same port-based VLAN. In addition, a port within a port-based VLAN can belong to multiple protocol-based VLANs of the same type or different types. For example, if you have a port-based VLAN that contains ports 1 – 10, you can configure port 5 as a member of an AppleTalk protocol VLAN, an IP protocol VLAN, and an IPX protocol VLAN, and so on.

IP subnet, IPX network, and AppleTalk cable VLANs

The protocol-based VLANs described in the previous section provide separate protocol broadcast domains for specific protocols. For IP, IPX, and AppleTalk, you can provide more granular broadcast control by instead creating the following types of VLAN:

- **IP subnet VLAN** – An IP subnet broadcast domain for a specific IP subnet.
- **IPX network VLAN** – An IPX network broadcast domain for a specific IPX network.
- **AppleTalk cable VLAN** – An AppleTalk broadcast domain for a specific cable range.

You can configure these types of VLANs on Layer 3 Switches only. The Layer 3 Switch sends broadcasts for the IP subnet, IPX subnet, or AppleTalk cable range to all ports within the IP subnet, IPX network, or AppleTalk cable VLAN at Layer 2.

The Layer 3 Switch routes packets between VLANs at Layer 3. To configure an IP subnet, IPX network, or AppleTalk cable VLAN to route, you must add a virtual routing interface to the VLAN, then configure the appropriate routing parameters on the virtual routing interface.
NOTE
The Layer 3 Switch routes packets between VLANs of the same protocol. The Layer 3 Switch cannot route from one protocol to another.

NOTE
IP subnet VLANs are not the same thing as IP protocol VLANs. An IP protocol VLAN sends all IP broadcasts on the ports within the IP protocol VLAN. An IP subnet VLAN sends only the IP subnet broadcasts for the subnet of the VLAN. You cannot configure an IP protocol VLAN and an IP subnet VLAN within the same port-based VLAN.

This note also applies to IPX protocol VLANs and IPX network VLANs, and to AppleTalk protocol VLANs and AppleTalk cable VLANs.

Default VLAN

By default, all the ports on a FastIron and TurboIron device are in a single port-based VLAN. This VLAN is called the DEFAULT-VLAN and is VLAN number 1. FastIron devices do not contain any protocol VLANs or IP subnet, IPX network, or AppleTalk cable VLANs by default.

Figure 73 shows an example of the default Layer 2 port-based VLAN.

FIGURE 73 Default Layer 2 port-based VLAN

```
DEFAULT-VLAN
VLAN ID = 1
Layer 2 Port-based VLAN
```

By default, all ports belong to a single port-based VLAN, DEFAULT-VLAN. Thus, all ports belong to a single Layer 2 broadcast domain.
When you configure a port-based VLAN, one of the configuration items you provide is the ports that are in the VLAN. When you configure the VLAN, the Brocade device automatically removes the ports that you place in the VLAN from DEFAULT-VLAN. By removing the ports from the default VLAN, the Brocade device ensures that each port resides in only one Layer 2 broadcast domain.

NOTE
Information for the default VLAN is available only after you define another VLAN.

Some network configurations may require that a port be able to reside in two or more Layer 2 broadcast domains (port-based VLANs). In this case, you can enable a port to reside in multiple port-based VLANs by tagging the port. See the following section.

If your network requires that you use VLAN ID 1 for a user-configured VLAN, you can reassign the default VLAN to another valid VLAN ID. Refer to “Assigning a different VLAN ID to the default VLAN” on page 482.

802.1Q tagging

802.1Q tagging is an IEEE standard that allows a networking device to add information to a Layer 2 packet in order to identify the VLAN membership of the packet. Brocade devices tag a packet by adding a four-byte tag to the packet. The tag contains the tag value, which identifies the data as a tag, and also contains the VLAN ID of the VLAN from which the packet is sent.

- The default tag value is 8100 (hexadecimal). This value comes from the 802.1Q specification. You can change this tag value on a global basis on Brocade devices if needed to be compatible with other vendors’ equipment.
- The VLAN ID is determined by the VLAN on which the packet is being forwarded.

Figure 74 shows the format of packets with and without the 802.1Q tag. The tag format is vendor-specific. To use the tag for VLANs configured across multiple devices, make sure all the devices support the same tag format.

FIGURE 74 Packet containing a Brocade 802.1Q VLAN tag
If you configure a VLAN that spans multiple devices, you need to use tagging only if a port connecting one of the devices to the other is a member of more than one port-based VLAN. If a port connecting one device to the other is a member of only a single port-based VLAN, tagging is not required.

If you use tagging on multiple devices, each device must be configured for tagging and must use the same tag value. In addition, the implementation of tagging must be compatible on the devices. The tagging on all Brocade devices is compatible with other Brocade devices.

Figure 75 shows an example of two devices that have the same Layer 2 port-based VLANs configured across them. Notice that only one of the VLANs requires tagging.

FIGURE 75 VLANs configured across multiple devices
Support for 802.1Q-in-Q tagging

Brocade devices provide finer granularity for configuring 802.1Q tagging, enabling you to configure 802.1Q tag-types on a group of ports, thereby enabling the creation of two identical 802.1Q tags (802.1Q-in-Q tagging) on a single device. This enhancement improves SAV interoperability between Brocade devices and other vendors’ devices that support the 802.1Q tag-types, but are not very flexible with the tag-types they accept.

For example applications and configuration details, refer to “Configuring 802.1Q-in-Q tagging” on page 523.

802.1 Q-in-Q tagging for stack devices

Platform Support:

• FGS-STK and FLS-STK devices running software release 05.0.00 and later
• FGS, FLS, and FWS devices running software release 04.3.01 and later
• FCX-S devices running software release 06.0.00 and later

The following enhancements allow FGS-STK and FLS-STK, and FCX devices in an IronStack to use Q-in-Q and SAV, by allowing the changing of a tag profile for ports:

• In addition to the default tag type 0x8100, you can now configure one additional global tag profile with a number from 0xffffff.
• Tag profiles on a single port, or a group of ports can be configured to point to the global tag profile.

To configure a global tag profile, enter the following command in the configuration mode.

FGS624P Switch(config)# tag-profile 9500

Syntax: [no] tag-profile <tag-no>

<tag-no> - the number of the tag, can be 0x8100 (default), or 0xffffff
To direct individual ports or on a range of ports to this tag profile, enter commands similar to the following.

FGS648P Switch(config)# interface ethernet 1/1/1
FGS648P Switch(config-if-e1000-1/1/1)# tag-profile enable
FGS648P Switch(config-mif-1/1/1,1/2/1)# tag-profile enable

Configuration notes for stackable devices

- One global tag profile with a number between 0 and ffff can be configured on stackable devices.
- On individual ports, the `tag-profile` is enabled, it points to the global tag profile
- `Tag-profile` can also be enabled for provisional ports
- `Tag-type` and `tag-profile` cannot be configured at the same time. You will see the message “un-configure the tag-type to set the tag-profile.” If `tag-type` is already configured, you will need to unconfigure it and then add the `tag-profile`.

Spanning Tree Protocol (STP)

The default state of STP depends on the device type:

- STP is disabled by default on Brocade Layer 3 Switches.
- STP is enabled by default on Brocade Layer 2 Switches.

Also by default, each port-based VLAN has a separate instance of STP. Thus, when STP is globally enabled, each port-based VLAN on the device runs a separate spanning tree.

You can enable or disable STP on the following levels:

- **Globally** – Affects all ports on the device.

 NOTE

 If you configure a port-based VLAN on the device, the VLAN has the same STP state as the default STP state on the device. Thus, on Layer 2 Switches, new VLANs have STP enabled by default. On Layer 3 Switches, new VLANs have STP disabled by default. You can enable or disable STP in each VLAN separately. In addition, you can enable or disable STP on individual ports.

- **Port-based VLAN** – Affects all ports within the specified port-based VLAN.

STP is a Layer 2 protocol. Thus, you cannot enable or disable STP for individual protocol VLANs or for IP subnet, IPX network, or AppleTalk cable VLANs. The STP state of a port-based VLAN containing these other types of VLANs determines the STP state for all the Layer 2 broadcasts within the port-based VLAN. This is true even though Layer 3 protocol broadcasts are sent on Layer 2 within the VLAN.

It is possible that STP will block one or more ports in a protocol VLAN that uses a virtual routing interface to route to other VLANs. For IP protocol and IP subnet VLANs, even though some of the physical ports of the virtual routing interface are blocked, the virtual routing interface can still route so long as at least one port in the virtual routing interface protocol VLAN is not blocked by STP.

If you enable Single STP (SSTP) on the device, the ports in all VLANs on which STP is enabled become members of a single spanning tree. The ports in VLANs on which STP is disabled are excluded from the single spanning tree.
For more information, refer to Chapter 9, “Configuring Spanning Tree Protocol (STP) Related Features”.

Virtual routing interfaces

NOTE
On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

A virtual routing interface is a logical routing interface that Brocade Layer 3 Switches use to route Layer 3 protocol traffic between protocol VLANs.

Brocade devices send Layer 3 traffic at Layer 2 within a protocol VLAN. However, Layer 3 traffic from one protocol VLAN to another must be routed.

If you want the device to be able to send Layer 3 traffic from one protocol VLAN to another, you must configure a virtual routing interface on each protocol VLAN, then configure routing parameters on the virtual routing interfaces. For example, to enable a Layer 3 Switch to route IP traffic from one IP subnet VLAN to another, you must configure a virtual routing interface on each IP subnet VLAN, then configure the appropriate IP routing parameters on each of the virtual routing interfaces.

Figure 76 shows an example of Layer 3 protocol VLANs that use virtual routing interfaces for routing.

Figure 76 Use virtual routing interfaces for routing between Layer 3 protocol VLANs
Brocade FastIron devices and TurboIron devices support the configuration of VLAN groups. To simplify configuration, you can configure VLAN groups and virtual routing interface groups. When you create a VLAN group, the VLAN parameters you configure for the group apply to all the VLANs within the group. Additionally, you can easily associate the same IP subnet interface with all the VLANs in a group by configuring a virtual routing interface group with the same ID as the VLAN group.

For configuration information, refer to "Configuring VLAN groups and virtual routing interface groups" on page 511.
Dynamic, static, and excluded port membership

When you add ports to a protocol VLAN, IP subnet VLAN, IPX network VLAN, or AppleTalk cable VLAN, you can add them dynamically or statically:

- Dynamic ports
- Static ports

You also can explicitly exclude ports.

Dynamic ports

Dynamic ports are added to a VLAN when you create the VLAN. However, if a dynamically added port does not receive any traffic for the VLAN protocol within ten minutes, the port is removed from the VLAN. However, the port remains a candidate for port membership. Thus, if the port receives traffic for the VLAN protocol, the device adds the port back to the VLAN.

After the port is added back to the VLAN, the port can remain an active member of the VLAN up to 20 minutes without receiving traffic for the VLAN protocol. If the port ages out, it remains a candidate for VLAN membership and is added back to the VLAN when the VLAN receives protocol traffic. At this point, the port can remain in the VLAN up to 20 minutes without receiving traffic for the VLAN protocol, and so on.

Unless you explicitly add a port statically or exclude a port, the port is a dynamic port and thus can be an active member of the VLAN, depending on the traffic it receives.

NOTE

You cannot configure dynamic ports in an AppleTalk cable VLAN. The ports in an AppleTalk cable VLAN must be static. However, ports in an AppleTalk protocol VLAN can be dynamic or static.

Figure 77 shows an example of a VLAN with dynamic ports. Dynamic ports not only join and leave the VLAN according to traffic, but also allow some broadcast packets of the specific protocol to “leak” through the VLAN. Refer to “Broadcast leaks” on page 479.

FIGURE 77 VLAN with dynamic ports—all ports are active when you create the VLAN
A = active port

C = candidate port

When you add ports dynamically, all the ports are added when you add the VLAN.

SUBNET Ports in a new protocol VLAN that do not receive traffic for the VLAN protocol age out after 10 minutes and become candidate ports. Figure 78 shows what happens if a candidate port receives traffic for the VLAN protocol.

FIGURE 78 VLAN with dynamic ports—candidate ports become active again if they receive protocol traffic

Ports that time out remain candidates for membership in the VLAN and become active again if they receive traffic for the VLAN's protocol, IP sub-net, IPX network, or AppleTalk cable range.

When a candidate port rejoins a VLAN, the timeout for that port becomes 20 minutes. Thus, the port remains an active member of the VLAN even if it does not receive traffic for 20 minutes. After that, the port becomes a candidate port again.
Static ports

Static ports are permanent members of the protocol VLAN. The ports remain active members of the VLAN regardless of whether the ports receive traffic for the VLAN protocol. You must explicitly identify the port as a static port when you add it to the VLAN. Otherwise, the port is dynamic and is subject to aging out.

Excluded ports

If you want to prevent a port in a port-based VLAN from ever becoming a member of a protocol, IP subnet, IPX network, or AppleTalk cable VLAN configured in the port-based VLAN, you can explicitly exclude the port. You exclude the port when you configure the protocol, IP subnet, IPX network, or AppleTalk cable VLAN.

Excluded ports do not leak broadcast packets. Refer to “Broadcast leaks” on page 479.

Broadcast leaks

A dynamic port becomes a member of a Layer 3 protocol VLAN when traffic from the VLAN's protocol is received on the port. After this point, the port remains an active member of the protocol VLAN, unless the port does not receive traffic from the VLAN's protocol for 20 minutes. If the port does not receive traffic for the VLAN's protocol for 20 minutes, the port ages out and is no longer an active member of the VLAN.

To enable a host that has been silent for awhile to send and receive packets, the dynamic ports that are currently members of the Layer 3 protocol VLAN "leak" Layer 3 broadcast packets to the ports that have aged out. When a host connected to one of the aged out ports responds to a leaked broadcast, the port is added to the protocol VLAN again.

To "leak" Layer 3 broadcast traffic, an active port sends 1/8th of the Layer 3 broadcast traffic to the inactive (aged out) ports.

Static ports do not age out and do not leak broadcast packets.

Super aggregated VLANs

NOTE

On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

You can aggregate multiple VLANs within another VLAN. This feature allows you to construct Layer 2 paths and channels. This feature is particularly useful for Virtual Private Network (VPN) applications in which you need to provide a private, dedicated Ethernet connection for an individual client to transparently reach its subnet across multiple networks.

For an application example and configuration information, refer to “Configuring super aggregated VLANs” on page 515.

Trunk group ports and VLAN membership

A trunk group is a set of physical ports that are configured to act as a single physical interface. Each trunk group port configuration is based on the configuration of the lead port, which is the lowest numbered port in the group.
If you add a trunk group lead port to a VLAN, all of the ports in the trunk group become members of that VLAN.

Summary of VLAN configuration rules

NOTE
This section does not apply to TurboIron X Series devices.

A hierarchy of VLANs exists between the Layer 2 and Layer 3 protocol-based VLANs:

- Port-based VLANs are at the lowest level of the hierarchy.
- Layer 3 protocol-based VLANs, IP, IPv6, IPX, AppleTalk, Decnet, and NetBIOS are at the middle level of the hierarchy.
- IP subnet, IPX network, and AppleTalk cable VLANs are at the top of the hierarchy.

NOTE
You cannot have a protocol-based VLAN and a subnet or network VLAN of the same protocol type in the same port-based VLAN. For example, you can have an IPX protocol VLAN and IP subnet VLAN in the same port-based VLAN, but you cannot have an IP protocol VLAN and an IP subnet VLAN in the same port-based VLAN, nor can you have an IP protocol VLAN and an IP network VLAN in the same port-based VLAN.

As a Brocade device receives packets, the VLAN classification starts from the highest level VLAN first. Therefore, if an interface is configured as a member of both a port-based VLAN and an IP protocol VLAN, IP packets coming into the interface are classified as members of the IP protocol VLAN because that VLAN is higher in the VLAN hierarchy.

Multiple VLAN membership rules

- A port can belong to multiple, unique, overlapping Layer 3 protocol-based VLANs without VLAN tagging.
- A port can belong to multiple, overlapping Layer 2 port-based VLANs only if the port is a tagged port. Packets sent out of a tagged port use an 802.1Q-tagged frame.
- When both port and protocol-based VLANs are configured on a given device, all protocol VLANs must be strictly contained within a port-based VLAN. A protocol VLAN cannot include ports from multiple port-based VLANs. This rule is required to ensure that port-based VLANs remain loop-free Layer 2 broadcast domains.
- IP protocol VLANs and IP subnet VLANs cannot operate concurrently on the system or within the same port-based VLAN.
- IPX protocol VLANs and IPX network VLANs cannot operate concurrently on the system or within the same port-based VLAN.
- If you first configure IP and IPX protocol VLANs before deciding to partition the network by IP subnet and IPX network VLANs, then you need to delete those VLANs before creating the IP subnet and IPX network VLANs.
- One of each type of protocol VLAN is configurable within each port-based VLAN on the Layer 2 Switch.
- Multiple IP subnet and IPX network VLANs are configurable within each port-based VLAN on the Layer 2 Switch.
Routing between VLANs

Brocade Layer 3 Switches can locally route IP, IPX, and Appletalk between VLANs defined within a single router. All other routable protocols or protocol VLANs (for example, DecNet) must be routed by another external router capable of routing the protocol.

Virtual routing interfaces (Layer 3 Switches only)

You need to configure virtual routing interfaces if an IP, IPX, or Appletalk protocol VLAN, IP subnet VLAN, AppleTalk cable VLAN, or IPX network VLAN needs to route protocols to another port-based VLAN on the same router. A virtual routing interface can be associated with the ports in only a single port-based VLAN. Virtual router interfaces must be defined at the highest level of the VLAN hierarchy.

If you do not need to further partition the port-based VLAN by defining separate Layer 3 VLANs, you can define a single virtual routing interface at the port-based VLAN level and enable IP, IPX, and Appletalk routing on a single virtual routing interface.

Some configurations may require simultaneous switching and routing of the same single protocol across different sets of ports on the same router. When IP, IPX, or Appletalk routing is enabled on a Brocade Layer 3 Switch, you can route these protocols on specific interfaces while bridging them on other interfaces. In this scenario, you can create two separate backbones for the same protocol, one bridged and one routed.

To bridge IP, IPX, or Appletalk at the same time these protocols are being routed, you need to configure an IP protocol, IP subnet, IPX protocol, IPX network, or Appletalk protocol VLAN and not assign a virtual routing interface to the VLAN. Packets for these protocols are bridged or switched at Layer 2 across ports on the router that are included in the Layer 3 VLAN. If these VLANs are built within port-based VLANs, they can be tagged across a single set of backbone fibers to create separate Layer 2 switched and Layer 3 routed backbones for the same protocol on a single physical backbone.

Routing between VLANs using virtual routing interfaces (Layer 3 Switches only)

Brocade calls the ability to route between VLANs with virtual routing interfaces Integrated Switch Routing (ISR). There are some important concepts to understand before designing an ISR backbone.

Virtual router interfaces can be defined on port-based, IP protocol, IP subnet, IPX protocol, IPX network, AppleTalk protocol, and AppleTalk cable VLANs.

To create any type of VLAN on a Brocade Layer 3 Switch, Layer 2 forwarding must be enabled. When Layer 2 forwarding is enabled, the Layer 3 Switch becomes a Switch on all ports for all non-routable protocols.
If the router interfaces for IP, IPX, or AppleTalk are configured on physical ports, then routing occurs independent of the Spanning Tree Protocol (STP). However, if the router interfaces are defined for any type VLAN, they are virtual routing interfaces and are subject to the rules of STP.

If your backbone consists of virtual routing interfaces all within the same STP domain, it is a bridged backbone, not a routed one. This means that the set of backbone interfaces that are blocked by STP will be blocked for routed protocols as well. The routed protocols will be able to cross these paths only when the STP state of the link is FORWARDING. This problem is easily avoided by proper network design.

When designing an ISR network, pay attention to your use of virtual routing interfaces and the spanning-tree domain. If Layer 2 switching of your routed protocols (IP, IPX, AppleTalk) is not required across the backbone, then the use of virtual routing interfaces can be limited to edge switch ports within each router. Full backbone routing can be achieved by configuring routing on each physical interface that connects to the backbone. Routing is independent of STP when configured on a physical interface.

If your ISR design requires that you switch IP, IPX, or Appletalk at Layer 2 while simultaneously routing the same protocols over a single backbone, then create multiple port-based VLANs and use VLAN tagging on the backbone links to separate your Layer 2 switched and Layer 3 routed networks.

There is a separate STP domain for each port-based VLAN. Routing occurs independently across port-based VLANs or STP domains. You can define each end of each backbone link as a separate tagged port-based VLAN. Routing will occur independently across the port-based VLANs. Because each port-based VLAN STP domain is a single point-to-point backbone connection, you are guaranteed to never have an STP loop. STP will never block the virtual router interfaces within the tagged port-based VLAN, and you will have a fully routed backbone.

Dynamic port assignment (Layer 2 Switches and Layer 3 Switches)

All Switch ports are dynamically assigned to any Layer 3 VLAN on Brocade Layer 2 Switches and any non-routable VLAN on Brocade Layer 3 Switches. To maintain explicit control of the VLAN, you can explicitly exclude ports when configuring any Layer 3 VLAN on a Brocade Layer 2 Switch or any non-routable Layer 3 VLAN on a Brocade Layer 3 Switch.

If you do not want the ports to have dynamic membership, you can add them statically. This eliminates the need to explicitly exclude the ports that you do not want to participate in a particular Layer 3 VLAN.

Assigning a different VLAN ID to the default VLAN

When you enable port-based VLANs, all ports in the system are added to the default VLAN. By default, the default VLAN ID is “VLAN 1”. The default VLAN is not configurable. If you want to use the VLAN ID “VLAN 1” as a configurable VLAN, you can assign a different VLAN ID to the default VLAN.

To reassign the default VLAN to a different VLAN ID, enter the following command.

```plaintext
FastIron(config)# default-vlan-id 4095
```

Syntax: `[no] default-vlan-d <vlan-id>`
You must specify a valid VLAN ID that is not already in use. For example, if you have already defined VLAN 10, do not try to use “10” as the new VLAN ID for the default VLAN. Valid VLAN IDs are numbers from 1 – 4095.

NOTE
Changing the default VLAN name does not change the properties of the default VLAN. Changing the name allows you to use the VLAN ID “1” as a configurable VLAN.

Assigning different VLAN IDs to reserved VLANs 4091 and 4092

Platform Support:
- FastIron X Series devices running software release 04.0.00 and later – L2, BL3, L3
- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later

In releases prior to those listed above, VLANs 4091 and 4092 are reserved for Brocade internal VLAN management and cannot be configured. Starting in the releases listed above, VLAN IDs 4087, 4090, and 4093 are reserved for Brocade internal use only. VLAN 4094 is reserved for use by Single STP. Starting in release 04.0.00, if you want to use VLANs 4091 and 4092 as configurable VLANs, you can assign them to different VLAN IDs.

For example, to reassign reserved VLAN 4091 to VLAN 10, enter the following commands.

```plaintext
FastIron(config)# reserved-vlan-map vlan 4091 new-vlan 10
Reload required. Please write memory and then reload or power cycle.
FastIron(config)# write mem
FastIron(config)# exit
FastIron# reload
```

NOTE
You must save the configuration (write mem) and reload the software to place the change into effect.

The above configuration changes the VLAN ID of 4091 to 10. After saving the configuration and reloading the software, you can configure VLAN 4091 as you would any other VLAN.

Syntax:
```plaintext
[no] reserved-vlan-map vlan 4091 | 4092 new-vlan <vlan-id>
```

For `<vlan-id>`, enter a valid VLAN ID that is not already in use. For example, if you have already defined VLAN 20, do not try to use “20” as the new VLAN ID. Valid VLAN IDs are numbers from 1 – 4090, 4093, and 4095. VLAN ID 4094 is reserved for use by the Single Spanning Tree feature.

Viewing reassigned VLAN IDs for reserved VLANs 4091 and 4092

To view the assigned VLAN IDs for reserved VLANs 4091 and 4092, use the `show reserved-vlan-map` command. The reassigned VLAN IDs also display in the output of the `show running-config` and `show config` commands.

The following shows example output for the `show reserved-vlan-map` command.
Routing between VLANs

Syntax: show reserved-vlan-map

The following table defines the fields in the output of the `show reserved-vlan-map` command.

<table>
<thead>
<tr>
<th>Reserved Purpose</th>
<th>Default</th>
<th>Re-assign</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU VLAN</td>
<td>4091</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>All Ports VLAN</td>
<td>4092</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

1. If you reassign a reserved VLAN without saving the configuration and reloading the software, the reassigned VLAN ID will display in the `Re-assign` column. However, the previously configured or default VLAN ID will display in the `Current` column until the configuration is saved and the device reloaded.

Assigning trunk group ports

When a “lead” trunk group port is assigned to a VLAN, all other members of the trunk group are automatically added to that VLAN. A lead port is the first port of a trunk group port range; for example, “1” in 1 – 4 or “5” in 5 – 8. Refer to “Trunk group rules” on page 547 for more information.

Configuring port-based VLANs

Port-based VLANs allow you to provide separate spanning tree protocol (STP) domains or broadcast domains on a port-by-port basis.

This section describes how to perform the following tasks for port-based VLANs using the CLI:

- Create a VLAN
- Delete a VLAN
- Modify a VLAN
- Change a VLAN priority
- Enable or disable STP on the VLAN

Example 1

Figure 79 shows a simple port-based VLAN configuration using a single Brocade Layer 2 Switch. All ports within each VLAN are untagged. One untagged port within each VLAN is used to connect the Layer 2 Switch to a Layer 3 Switch (in this example, a FSX) for Layer 3 connectivity between the two port-based VLANs.

FIGURE 79 Port-based VLANs 222 and 333
To create the two port-based VLANs shown in Figure 79, enter the following commands.

```plaintext
FastIron(config)# vlan 222 by port
FastIron(config-vlan-222)# untag e 1 to 8
FastIron(config-vlan-222)# vlan 333 by port
FastIron(config-vlan-333)# untag e 9 to 16
```

Syntax: `vlan <vlan-id> by port`

Syntax: `untagged ethernet [portnum] [to portnum] | ethernet [portnum] [to portnum]`

Example 2

Figure 80 shows a more complex port-based VLAN configuration using multiple Layer 2 Switches and IEEE 802.1Q VLAN tagging. The backbone link connecting the three Layer 2 Switches is tagged. One untagged port within each port-based VLAN on FESX-A connects each separate network wide Layer 2 broadcast domain to the router for Layer 3 forwarding between broadcast domains. The STP priority is configured to force FESX-A to be the root bridge for VLANs RED and BLUE. The STP priority on FESX-B is configured so that FESX-B is the root bridge for VLANs GREEN and BROWN.

FIGURE 80 More complex port-based VLAN
To configure the Port-based VLANs on the FESX Layer 2 Switches in Figure 80, use the following method.

Configuring FESX-A

Enter the following commands to configure FESX-A.

```
FastIron> enable
FastIron# configure terminal
FastIron(config)# hostname FESX-A
FastIron-A(config)# vlan 2 name BROWN
FastIron-A(config-vlan-2)# untag ethernet 1 to 4 ethernet 17
FastIron-A(config-vlan-2)# tag ethernet 25 to 26
FastIron-A(config-vlan-2)# spanning-tree
FastIron-A(config-vlan-2)# vlan 3 name GREEN
FastIron-A(config-vlan-3)# untag ethernet 5 to 8 ethernet 18
FastIron-A(config-vlan-3)# tag ethernet 25 to 26
FastIron-A(config-vlan-3)# spanning-tree
FastIron-A(config-vlan-3)# vlan 4 name BLUE
FastIron-A(config-vlan-4)# untag ethernet 9 to 12 ethernet 19
FastIron-A(config-vlan-4)# tag ethernet 25 to 26
FastIron-A(config-vlan-4)# spanning-tree
FastIron-A(config-vlan-4)# spanning-tree priority 500
FastIron-A(config-vlan-4)# vlan 5 name RED
FastIron-A(config-vlan-5)# untag ethernet 13 to 16 ethernet 20
FastIron-A(config-vlan-5)# tag ethernet 25 to 26
FastIron-A(config-vlan-5)# spanning-tree
FastIron-A(config-vlan-5)# spanning-tree priority 500
FastIron-A(config-vlan-5)# end
FastIron-A# write memory
```
Configuring FESX-B

Enter the following commands to configure FESX-B.

FastIron> en
FastIron# configure terminal
FastIron(config)# hostname FESX-B
FastIron-B(config)# vlan 2 name BROWN
FastIron-B(config-vlan-2)# untag ethernet 1 to 4
FastIron-B(config-vlan-2)# tag ethernet 25 to 26
FastIron-B(config-vlan-2)# spanning-tree
FastIron-B(config-vlan-2)# spanning-tree priority 500
FastIron-B(config-vlan-2)# vlan 3 name GREEN
FastIron-B(config-vlan-3)# untag ethernet 5 to 8
FastIron-B(config-vlan-3)# tag ethernet 25 to 26
FastIron-B(config-vlan-3)# spanning-tree
FastIron-B(config-vlan-3)# spanning-tree priority 500
FastIron-B(config-vlan-3)# vlan 4 name BLUE
FastIron-B(config-vlan-4)# untag ethernet 9 to 12
FastIron-B(config-vlan-4)# tag ethernet 25 to 26
FastIron-B(config-vlan-4)# vlan 5 name RED
FastIron-B(config-vlan-5)# untag ethernet 13 to 16
FastIron-B(config-vlan-5)# tag ethernet 25 to 26
FastIron-B(config-vlan-5)# end
FastIron-B# write memory

Configuring FESX-C

Enter the following commands to configure FESX-C.

FastIron> en
FastIron# configure terminal
FastIron(config)# hostname FESX-C
FastIron-C(config)# vlan 2 name BROWN
FastIron-C(config-vlan-2)# untag ethernet 1 to 4
FastIron-C(config-vlan-2)# tag ethernet 25 to 26
FastIron-C(config-vlan-2)# vlan 3 name GREEN
FastIron-C(config-vlan-3)# untag ethernet 5 to 8
FastIron-C(config-vlan-3)# tag ethernet 25 to 26
FastIron-C(config-vlan-3)# spanning-tree
FastIron-C(config-vlan-3)# spanning-tree priority 500
FastIron-C(config-vlan-3)# vlan 4 name BLUE
FastIron-C(config-vlan-4)# untag ethernet 9 to 12
FastIron-C(config-vlan-4)# tag ethernet 25 to 26
FastIron-C(config-vlan-4)# vlan 5 name RED
FastIron-C(config-vlan-5)# untag ethernet 13 to 16
FastIron-C(config-vlan-5)# tag ethernet 25 to 26
FastIron-C(config-vlan-5)# end
FastIron-C# write memory

Syntax:

- `vlan <vlan-id>` by port
- `untagged ethernet [<slotnum>/]<portnum>` [to [<slotnum>/]<portnum>] | ethernet [<slotnum>/]<portnum>
- `tagged ethernet [<slotnum>/]<portnum>` [to [<slotnum>/]<portnum>] | ethernet [<slotnum>/]<portnum>
- `[no] spanning-tree`
- `spanning-tree [ethernet [<slotnum>/]<portnum> path-cost <value> priority <value>]` forward-delay <value> hello-time <value> maximum-age <time> priority <value>
Modifying a port-based VLAN

You can make the following modifications to a port-based VLAN:

- Add or delete a VLAN port.
- Enable or disable STP.

Removing a port-based VLAN

Suppose you want to remove VLAN 5 from the example in Figure 80. To do so, use the following procedure.

1. Access the global CONFIG level of the CLI on FESX-A by entering the following commands.

 FastIron-A> enable
 No password has been assigned yet...
 FastIron-A# configure terminal
 FastIron-A(config)#

2. Enter the following command.

 FastIron-A(config)# no vlan 5
 FastIron-A(config)#

3. Enter the following commands to exit the CONFIG level and save the configuration to the system-config file on flash memory.

 FastIron-A(config)#
 FastIron-A(config)# end
 FastIron-A# write memory
 FastIron-A#

4. Repeat steps 1 – 3 on FESX-B.

Syntax: no vlan <vlan-id> by port

Removing a port from a VLAN

Suppose you want to remove port 11 from VLAN 4 on FESX-A shown in Figure 80. To do so, use the following procedure.

1. Access the global CONFIG level of the CLI on FESX-A by entering the following command.

 FastIron-A> enable
 No password has been assigned yet...
 FastIron-A# configure terminal
 FastIron-A(config)#

2. Access the level of the CLI for configuring port-based VLAN 4 by entering the following command.

 FastIron-A(config)#
 FastIron-A(config)# vlan 4
 FastIron-A(config-vlan-4)#

3. Enter the following commands.

 FastIron-A(config-vlan-4)#
 FastIron-A(config-vlan-4)# no untag ethernet 11
 deleted port eth 11 from port-vlan 4.
 FastIron-A(config-vlan-4)#
4. Enter the following commands to exit the VLAN CONFIG mode and save the configuration to the system-config file on flash memory.

```
FastIron-A(config-vlan-4)#
FastIron-A(config-vlan-4)# end
FastIron-A# write memory
```

You can remove all the ports from a port-based VLAN without losing the rest of the VLAN configuration. However, you cannot configure an IP address on a virtual routing interface unless the VLAN contains ports. If the VLAN has a virtual routing interface, the virtual routing interface IP address is deleted when the ports associated with the interface are deleted. The rest of the VLAN configuration is retained.

Enable spanning tree on a VLAN

The spanning tree bridge and port parameters are configurable using one CLI command set at the Global Configuration Level of each Port-based VLAN. Suppose you want to enable the IEEE 802.1D STP across VLAN 3. To do so, use the following method.

NOTE
When port-based VLANs are not operating on the system, STP is set on a system-wide level at the global CONFIG level of the CLI.

1. Access the global CONFIG level of the CLI on FESX-A by entering the following commands.

```
FastIron-A> enable
No password has been assigned yet...
FastIron-A# configure terminal
FastIron-A(config)#
```

2. Access the level of the CLI for configuring port-based VLAN 3 by entering the following command.

```
FastIron-A(config)# vlan 3
FastIron-A(config-vlan-3)#
```

3. From VLAN 3 configuration level of the CLI, enter the following command to enable STP on all tagged and untagged ports associated with VLAN 3.

```
FastIron-B(config-vlan-3)#
FastIron-B(config-vlan-3)# spanning-tree
FastIron-B(config-vlan-3)#
```

4. Enter the following commands to exit the VLAN CONFIG mode and save the configuration to the system-config file on flash memory.

```
FastIron-B(config-vlan-3)#
FastIron-B(config-vlan-3)# end
FastIron-B# write memory
FastIron-B#
```

5. Repeat steps 1 – 4 on FESX-B.

NOTE
You do not need to configure values for the STP parameters. All parameters have default values as noted below. Additionally, all values will be globally applied to all ports on the system or on the port-based VLAN for which they are defined.
To configure a specific path-cost or priority value for a given port, enter those values using the key words in the brackets [] shown in the syntax summary below. If you do not want to specify values for any given port, this portion of the command is not required.

Syntax: `vlan <vlan-id> by port`

Syntax: `[no] spanning-tree`

Syntax: `spanning-tree [ethernet [<slotnum>/<portnum>] path-cost <value> priority <value>] forward-delay <value> hello-time <value> maximum-age <time> priority <value>`

Bridge STP parameters (applied to all ports within a VLAN):
- **Forward Delay** – the period of time a bridge will wait (the listen and learn period) before forwarding data packets. Possible values: 4 – 30 seconds. Default is 15.
- **Maximum Age** – the interval a bridge will wait for receipt of a hello packet before initiating a topology change. Possible values: 6 – 40 seconds. Default is 20.
- **Hello Time** – the interval of time between each configuration BPDU sent by the root bridge. Possible values: 1 – 10 seconds. Default is 2.
- **Priority** – a parameter used to identify the root bridge in a network. The bridge with the lowest value has the highest priority and is the root. Possible values: 1 – 65,535. Default is 32,678.

Port parameters (applied to a specified port within a VLAN):
- **Path Cost** – a parameter used to assign a higher or lower path cost to a port. Possible values: 1 – 65535. Default is (1000/Port Speed) for Half-Duplex ports and is (1000/Port Speed)/2 for Full-Duplex ports.
- **Priority** – value determines when a port will be rerouted in relation to other ports. Possible values: 0 – 255. Default is 128.

Configuring IP subnet, IPX network and protocol-based VLANs

Protocol-based VLANs provide the ability to define separate broadcast domains for several unique Layer 3 protocols within a single Layer 2 broadcast domain. Some applications for this feature might include security between departments with unique protocol requirements. This feature enables you to limit the amount of broadcast traffic end-stations, servers, and routers need to accept.

Configuration example

Suppose you want to create five separate Layer 3 broadcast domains within a single Layer 2 STP broadcast domain:
- Three broadcast domains, one for each of three separate IP subnets
- One for IPX Network 1
- One for the AppleTalk protocol

Also suppose you want a single router interface to be present within all of these separate broadcast domains, without using IEEE 802.1Q VLAN tagging or any proprietary form of VLAN tagging.
Figure 81 shows this configuration.

FIGURE 81 Protocol-based (Layer 3) VLANs

To configure the VLANs shown in Figure 81, use the following procedure.

1. To permanently assign ports 1 – 8 and port 25 to IP subnet VLAN 1.1.1.0, enter the following commands.

 FastIron> en
 No password has been assigned yet...
 FastIron# config t
 FastIron(config)#
 FastIron(config)# ip-subnet 1.1.1.0/24 name Green
 FastIron(config-ip-subnet)# no dynamic
 FastIron(config-ip-subnet)# static ethernet 1 to 8 ethernet 25

2. To permanently assign ports 9 – 16 and port 25 to IP subnet VLAN 1.1.2.0, enter the following commands.

 FastIron(config-ip-subnet)# ip-subnet 1.1.2.0/24 name Yellow
 FastIron(config-ip-subnet)# no dynamic
 FastIron(config-ip-subnet)# static ethernet 9 to 16 ethernet 25

3. To permanently assign ports 17 – 25 to IP subnet VLAN 1.1.3.0, enter the following commands.

 FastIron(config-ip-subnet)# ip-subnet 1.1.3.0/24 name Brown
 FastIron(config-ip-subnet)# no dynamic
 FastIron(config-ip-subnet)# static ethernet 17 to 25

4. To permanently assign ports 1 – 12 and port 25 to IPX network 1 VLAN, enter the following commands.
13 Configuring IP subnet, IPX network, and protocol-based VLANs within port-based VLANs

```plaintext
FastIron(config-ip-subnet)# ipx-network 1 ethernet_802.3 name Blue
FastIron(config-ipx-network)# no dynamic
FastIron(config-ipx-network)# static ethernet 1 to 12 ethernet 25
FastIron(config-ipx-network)#
```

5. To permanently assign ports 12 –– 25 to Appletalk VLAN, enter the following commands.

```plaintext
FastIron(config-ipx-proto)# atalk-proto name Red
FastIron(config-atalk-proto)# no dynamic
FastIron(config-atalk-proto)# static ethernet 13 to 25
FastIron(config-atalk-proto)# end
FastIron# write memory
FastIron#
```

Syntax: ip-subnet <ip-addr> <ip-mask> [name <string>]
Syntax: ipx-network <ipx-network-number> <frame-encapsulation-type> netbios-allow |
 netbios-disallow
 [name <string>]
Syntax: ip-proto | ipx-proto | atalk-proto | decnet-proto | netbios-proto | other-proto static |
 exclude | dynamic ethernet [<slotnum>/]<portnum> [to [<slotnum>/]<portnum>] [name |
 <string>]

Configuring IP subnet, IPX network, and protocol-based VLANs within port-based VLANs

Platform Support:
- FCX-S devices running software release 06.0.00 and later

If you plan to use port-based VLANs in conjunction with protocol-based VLANs, you must create the port-based VLANs first. Once you create a port-based VLAN, then you can assign Layer 3 protocol VLANs within the boundaries of the port-based VLAN. Generally, you create port-based VLANs to allow multiple separate STP domains.

Example

Suppose you need to provide three separate STP domains across an enterprise campus backbone. The first STP domain (VLAN 2) requires a set of ports at each Layer 2 Switch location to be statically mapped to IP only. No other protocols can enter the switches on this set of ports.

A second set of ports within STP domain VLAN 2 will be restricted to only IPX traffic. The IP and IPX protocol VLANs will overlap on Port 1 of FESX-A to support both protocols on the same router interface. The IP subnets and IPX network that span the two protocol VLANs will be determined by the FastIron router configuration. The IP and IPX Protocol VLANs ensure that only the ports included in each Layer 3 protocol VLAN will see traffic from the FastIron router.

The second STP domain (VLAN 3) requires that half the ports in the domain are dedicated to IP subnet 1.1.1.0/24 and the other ports are dedicated to IPX network 1. Similar to VLAN 2, Port 9 from VLAN 3 will be used to carry this IP subnet and IPX network to the FastIron router. No other protocols will be allowed to enter the network on VLAN 3. Also, no IP packets with a source address on subnet 1.1.1.0/24 or IPX packets with a source address on network 1 will be allowed to enter the switches on VLAN 3.
There is no need to segment Layer 3 broadcast domains within the STP broadcast domain (VLAN 4). The FastIron router will dictate the IP subnets and IPX network that are on VLAN 4. There are no Layer 3 protocol restrictions on VLAN 4; however, the FastIron router is configured to only forward IP and IPX between STP domains.

FIGURE 82 More protocol-based VLANs

To configure the Layer 3 VLANs on the FESX Layer 2 Switches in Figure 82, use the following procedure.

Configuring FESX-A

Enter the following commands to configure FESX-A.

1. Create port-based VLAN 2 and assign the untagged and tagged ports that will participate in this VLAN.

 FastIron-A >en
 FastIron-A# config t
 FastIron-A(config)# vlan 2 name IP_IPX_Protocol
 FastIron-A(config-vlan-2)# untag e1 to 8
 FastIron-A(config-vlan-2)# tag e25 to 26

2. Enable STP and set the priority to force FESX-A to be the root bridge for VLAN 2.

 FastIron-A(config-vlan-2)# spanning-tree
 FastIron-A(config-vlan-2)# spanning-tree priority 500
 FastIron-A(config-vlan-2)#

3. Create the IP and IPX protocol-based VLANs and statically assign the ports within VLAN 2 that will be associated with each protocol-based VLAN.
Configuring IP subnet, IPX network, and protocol-based VLANs within port-based VLANs

4. To prevent machines with non-IP protocols from getting into the IP portion of VLAN 2, create another Layer 3 protocol VLAN to exclude all other protocols from the ports that contains the IP-protocol VLAN. To do so, enter the following commands.

```
FastIron-A(config-vlan-ipx-proto)# other-proto name Block_other_proto
FastIron-A(config-vlan-other-proto)# no dynamic
FastIron-A(config-vlan-other-proto)# exclude e1 to 8
FastIron-A(config-vlan-other-proto)#
```

5. Create port-based VLAN 3. Note that FESX-B will be the root for this STP domain, so you do not need to adjust the STP priority.

```
FastIron-A(config-vlan-other-proto)# vlan 3 name IP-Sub_IPX-Net_Vlans
FastIron-A(config-vlan-3)# untag e9 to 16
FastIron-A(config-vlan-3)# tag e25 to 26
FastIron-A(config-vlan-3)# spanning-tree
FastIron-A(config-vlan-3)#
```

6. Create IP subnet VLAN 1.1.1.0/24, IPX network 1, and other-protocol VLANs

```
FastIron-A(config-vlan-3)# ip-subnet 1.1.1.0/24 name Green
FastIron-A(config-vlan-ip-subnet)# no dynamic
FastIron-A(config-vlan-ip-subnet)# static e9 to 12 e25 to 26
FastIron-A(config-vlan-ip-subnet)# exclude e13 to 16
FastIron-A(config-vlan-ip-subnet)# ipx-net 1 ethernet_802.3 name Brown
FastIron-A(config-vlan-ipx-network)# no dynamic
FastIron-A(config-vlan-ipx-network)# static e9 e13 to 16 e25 to 26
FastIron-A(config-vlan-ipx-network)# exclude e10 to 12
FastIron-A(config-vlan-ipx-network)# other-proto name Block_other_proto
FastIron-A(config-vlan-other-proto)# no dynamic
FastIron-A(config-vlan-other-proto)# exclude e9 to 16
FastIron-A(config-vlan-other-proto)#
```

7. Configure the last port-based VLAN 4. You need to set the STP priority for this VLAN because FESX-A will be the root bridge for this VLAN. Since you do not need to partition this STP domain into multiple Layer 3 broadcast domains, this is the only configuration required for VLAN 4.

```
FastIron-A(config-vlan-other-proto)# vlan 4 name Purple_ALL-Protocols
FastIron-A(config-vlan-4)# untag e17 to 24
FastIron-A(config-vlan-4)# tag e25 to 26
FastIron-A(config-vlan-4)# spanning-tree
FastIron-A(config-vlan-4)# spanning-tree priority 500
FastIron-A(config-vlan-4)#
```

Configuring FESX-B

Enter the following commands to configure FESX-B.

```
FastIron# config t
FastIron(config)# host FastIron-B
FastIron-B(config)# vlan 2 name IP_IPX_Protocol
FastIron-B(config-vlan-2)# untag e1 to 8
FastIron-B(config-vlan-2)# tag e25 to 26
```
Configuring IP subnet, IPX network, and protocol-based VLANs within port-based VLANs

FastIron-B(config-vlan-2)# spanning-tree
FastIron-B(config-vlan-2)# ip-proto name Red
FastIron-B(config-vlan-ip-proto)# no dynamic
FastIron-B(config-vlan-ip-proto)# static e1 to 4 e25 to 26
FastIron-B(config-vlan-ip-proto)# exclude e5 to 8
FastIron-B(config-vlan-ip-proto)# ipx-proto name Blue
FastIron-B(config-vlan-ipx-proto)# no dynamic
FastIron-B(config-vlan-ipx-proto)# static e5 to 8 e25 to 26
FastIron-B(config-vlan-ipx-proto)# exclude e1 to 4
FastIron-B(config-vlan-other-proto)# vlan 3 name IP-Sub_IPX-Net_VLANs
FastIron-B(config-vlan-3)# untag e9 to 16
FastIron-B(config-vlan-3)# tag e25 to 26
FastIron-B(config-vlan-3)# spanning-tree
FastIron-B(config-vlan-3)# spanning-tree priority 500
FastIron-B(config-vlan-3)# ip-sub 1.1.1.0/24 name Green
FastIron-B(config-vlan-ip-subnet)# no dynamic
FastIron-B(config-vlan-ip-subnet)# static e9 to 12 e25 to 26
FastIron-B(config-vlan-ip-subnet)# exclude e13 to 16
FastIron-B(config-vlan-ip-subnet)# ipx-net 1 ethernet_802.3 name Brown
FastIron-B(config-vlan-ipx-network)# no dynamic
FastIron-B(config-vlan-ipx-network)# static e13 to 16 e25 to 26
FastIron-B(config-vlan-ipx-network)# exclude e9 to 12
FastIron-B(config-vlan-ipx-network)# vlan 4 name Purple_ALL-Protocols
FastIron-B(config-vlan-4)# untag e17 to 24
FastIron-B(config-vlan-4)# tag e25 to 26
FastIron-B(config-vlan-4)# spanning-tree

Configuring FESX-C

Enter the following commands to configure FESX-C.

FastIron# config t
FastIron(config)# host FastIron-C
FastIron-C(config)# vlan 2 name IP_IPX_Protocol
FastIron-C(config-vlan-2)# untag e1 to 8
FastIron-C(config-vlan-2)# tag e25 to 26
FastIron-C(config-vlan-2)# spanning-tree
FastIron-C(config-vlan-2)# ip-proto name Red
FastIron-C(config-vlan-ip-proto)# no dynamic
FastIron-C(config-vlan-ip-proto)# static e1 to 4 e25 to 26
FastIron-C(config-vlan-ip-proto)# exclude e5 to 8
FastIron-C(config-vlan-ip-proto)# ipx-proto name Blue
FastIron-C(config-vlan-ipx-proto)# no dynamic
FastIron-C(config-vlan-ipx-proto)# static e5 to 8 e25 to 26
FastIron-C(config-vlan-ipx-proto)# exclude e1 to 4
FastIron-C(config-vlan-other-proto)# vlan 3 name IP-Sub_IPX-Net_VLANs
FastIron-C(config-vlan-3)# untag e9 to 16
FastIron-C(config-vlan-3)# tag e25 to 26
FastIron-C(config-vlan-3)# spanning-tree
FastIron-C(config-vlan-3)# ip-sub 1.1.1.0/24 name Green
FastIron-C(config-vlan-ip-subnet)# no dynamic
FastIron-C(config-vlan-ip-subnet)# static e9 to 12 e25 to 26
FastIron-C(config-vlan-ip-subnet)# exclude e13 to 16
FastIron-C(config-vlan-ip-subnet)# ipx-net 1 ethernet_802.3 name Brown
FastIron-C(config-vlan-ipx-network)# no dynamic
FastIron-C(config-vlan-ipx-network)# static e13 to 16 e25 to 26
FastIron-C(config-vlan-ipx-network)# exclude e9 to 12
Configuring an IPv6 protocol VLAN

You can configure a protocol-based VLAN as a broadcast domain for IPv6 traffic. When the Layer 3 Switch receives an IPv6 multicast packet (a packet with 06 in the version field and 0xFF as the beginning of the destination address), the Layer 3 Switch forwards the packet to all other ports.

NOTE
The Layer 3 Switch forwards all IPv6 multicast packets to all ports except the port that received the packet, and does not distinguish among subnet directed multicasts.

You can add the VLAN ports as static ports or dynamic ports. A static port is always an active member of the VLAN. Dynamic ports within any protocol VLAN age out after 10 minutes if no member protocol traffic is received on a port within the VLAN. The aged out port, however, remains as a candidate dynamic port for that VLAN. The port becomes active in the VLAN again if member protocol traffic is received on that port.

Once a port is re-activated, the aging out period for the port is reset to 20 minutes. Each time a member protocol packet is received by a candidate dynamic port (aged out port) the port becomes active again and the aging out period is reset for 20 minutes.

NOTE
Starting in software release 02.5.00, you can disable VLAN membership aging of dynamically added ports. Refer to “Disabling membership aging of dynamic VLAN ports” on page 504.

To configure an IPv6 VLAN, enter commands such as the following.

```
FastIron(config)# vlan 2
FastIron(config-vlan-2)# untag ethernet 1/1 to 1/8
FastIron(config-vlan-2)# ipv6-proto name V6
FastIron(config-ipv6-subnet)# static ethernet 1/1 to 1/6
FastIron(config-ipv6-subnet)# dynamic
```

The first two commands configure a port-based VLAN and add ports 1/1 – 1/8 to the VLAN. The remaining commands configure an IPv6 VLAN within the port-based VLAN. The `static` command adds ports 1/1 – 1/6 as static ports, which do not age out. The `dynamic` command adds the remaining ports, 1/7 – 1/8, as dynamic ports. These ports are subject to aging as described above.

Syntax: `[no] ipv6-proto [name <string>]`
Routing between VLANs using virtual routing interfaces (Layer 3 Switches only)

Brocade Layer 3 Switches offer the ability to create a virtual routing interface within a Layer 2 STP port-based VLAN or within each Layer 3 protocol, IP subnet, or IPX network VLAN. This combination of multiple Layer 2 or Layer 3 broadcast domains, or both, and virtual routing interfaces are the basis for Brocade’s very powerful Integrated Switch Routing (ISR) technology. ISR is very flexible and can solve many networking problems. The following example is meant to provide ideas by demonstrating some of the concepts of ISR.

Example

Suppose you want to move routing out to each of three buildings in a network. Remember that the only protocols present on VLAN 2 and VLAN 3 are IP and IPX. Therefore, you can eliminate tagged ports 25 and 26 from both VLAN 2 and VLAN 3 and create new tagged port-based VLANs to support separate IP subnets and IPX networks for each backbone link.

You also need to create unique IP subnets and IPX networks within VLAN 2 and VLAN 3 at each building. This will create a fully routed IP and IPX backbone for VLAN 2 and VLAN 3. However, VLAN 4 has no protocol restrictions across the backbone. In fact there are requirements for NetBIOS and DecNet to be bridged among the three building locations. The IP subnet and IPX network that exists within VLAN 4 must remain a flat Layer 2 switched STP domain. You enable routing for IP and IPX on a virtual routing interface only on FESX-A. This will provide the flat IP and IPX segment with connectivity to the rest of the network. Within VLAN 4 IP and IPX will follow the STP topology. All other IP subnets and IPX networks will be fully routed and have use of all paths at all times during normal operation.

Figure 83 shows the configuration described above.

FIGURE 83 Routing between protocol-based VLANs
Routing between VLANs using virtual routing interfaces (Layer 3 Switches only)

To configure the Layer 3 VLANs and virtual routing interfaces on the FESX Layer 3 Switch in Figure 83, use the following procedure.

Configuring FESX-A

Enter the following commands to configure FESX-A. The following commands enable OSPF or RIP routing.

```
FastIron>en
No password has been assigned yet...
FastIron# configure terminal
FastIron(config)# hostname FESX-A
FastIron-A(config)# router ospf
FastIron-A(config-ospf-router)# area 0.0.0.0 normal
Please save configuration to flash and reboot.
FastIron-A(config-ospf-router)#
```

The following commands create the port-based VLAN 2. In the previous example, an external FESX defined the router interfaces for VLAN 2. With ISR, routing for VLAN 2 is done locally within each FESX. Therefore, there are two ways you can solve this problem. One way is to create a unique IP subnet and IPX network VLAN, each with its own virtual routing interface and unique IP or IPX address within VLAN 2 on each FESX. In this example, this is the configuration used for VLAN 3. The second way is to split VLAN 2 into two separate port-based VLANs and create a virtual router interface within each port-based VLAN. Later in this example, this second option is used to create a port-based VLAN 8 to show that there are multiple ways to accomplish the same task with ISR.

You also need to create the Other-Protocol VLAN within port-based VLAN 2 and 8 to prevent unwanted protocols from being Layer 2 switched within port-based VLAN 2 or 8. Note that the only port-based VLAN that requires STP in this example is VLAN 4. You will need to configure the rest of the network to prevent the need to run STP.
Routing between VLANs using virtual routing interfaces (Layer 3 Switches only)

Once you have defined the port-based VLAN and created the virtual routing interface, you need to configure the virtual routing interface just as you would configure a physical interface.

FastIron-A(config-vlan-other-proto)# interface ve1
FastIron-A(config-vif-1)# ip address 1.1.2.1/24
FastIron-A(config-vif-1)# ip ospf area 0.0.0.0

Do the same thing for VLAN 8.

FastIron-A(config-vif-2)# vlan 8 name IPX_Network2
FastIron-A(config-vlan-8)# untag ethernet 5 to 8
FastIron-A(config-vlan-8)# no spanning-tree
FastIron-A(config-vlan-8)# router-interface ve 2
FastIron-A(config-vlan-8)# other-proto name block-other-protocols
FastIron-A(config-vlan-other-proto)# no dynamic
FastIron-A(config-vlan-other-proto)# exclude ethernet 5 to 8
FastIron-A(config-vlan-other-proto)# int ve2
FastIron-A(config-vif-2)# ipx network 2 ethernet_802.3
FastIron-A(config-vif-2)#

The next thing you need to do is create VLAN 3. This is very similar to the previous example with the addition of virtual routing interfaces to the IP subnet and IPX network VLANs. Also there is no need to exclude ports from the IP subnet and IPX network VLANs on the router.

FastIron-A(config-vif-2)# vlan 3 name IP_Sub_&_IPX_Net_VLAN
FastIron-A(config-vlan-3)# untag e 9 to 16
FastIron-A(config-vlan-3)# no spanning-tree
FastIron-A(config-vlan-3)# ip-subnet 1.1.1.0/24
FastIron-A(config-vlan-ip-subnet)# static e 9 to 12
FastIron-A(config-vlan-ip-subnet)# router-interface ve3
FastIron-A(config-vlan-ip-subnet)# ipx-network 1 ethernet_802.3
FastIron-A(config-vlan-ipx-network)# static e 13 to 16
FastIron-A(config-vlan-ipx-network)# router-interface ve4
FastIron-A(config-vlan-ipx-network)# other-proto name block-other-protocols
FastIron-A(config-vlan-other-proto)# no dynamic
FastIron-A(config-vlan-other-proto)# exclude e 9 to 16
FastIron-A(config-vlan-other-proto)# interface ve 3
FastIron-A(config-vif-3)# ip addr 1.1.1.1/24
FastIron-A(config-vif-3)# ip ospf area 0.0.0.0
FastIron-A(config-vif-3)# int ve4
FastIron-A(config-vif-4)# ipx network 1 ethernet_802.3
FastIron-A(config-vif-4)#

Now configure VLAN 4. Remember this is a flat segment that, in the previous example, obtained its IP default gateway and IPX router services from an external FESX. In this example, FESX-A will provide the routing services for VLAN 4. You also want to configure the STP priority for VLAN 4 to make FESX-A the root bridge for this VLAN.

FastIron-A(config-vif-4)# vlan 4 name Bridged_ALL_Protocols
FastIron-A(config-vlan-4)# untag ethernet 17 to 24
FastIron-A(config-vlan-4)# tag ethernet 25 to 26
FastIron-A(config-vlan-4)# spanning-tree
FastIron-A(config-vlan-4)# spanning-tree priority 500
Routing between VLANs using virtual routing interfaces (Layer 3 Switches only)

It is time to configure a separate port-based VLAN for each of the routed backbone ports (Ethernet 25 and 26).

If you do not create a separate tagged port-based VLAN for each point-to-point backbone link, you need to include tagged interfaces for Ethernet 25 and 26 within VLANs 2, 3, and 8. This type of configuration makes the entire backbone a single STP domain for each VLAN 2, 3, and 8. This is the configuration used in the example in “Configuring IP subnet, IPX network and protocol-based VLANs” on page 490. In this scenario, the virtual routing interfaces within port-based VLANs 2, 3, and 8 will be accessible using only one path through the network. The path that is blocked by STP is not available to the routing protocols until it is in the STP FORWARDING state.

This completes the configuration for FESX-A. The configuration for FESX-B and C is very similar except for a few issues which are as follows:

- IP subnets and IPX networks configured on FESX-B and FESX-C must be unique across the entire network, except for the backbone port-based VLANs 5, 6, and 7 where the subnet is the same but the IP address must change.
- There is no need to change the default priority of STP within VLAN 4.
- There is no need to include a virtual router interface within VLAN 4.
- The backbone VLAN between FESX-B and FESX-C must be the same at both ends and requires a new VLAN ID. The VLAN ID for this port-based VLAN is VLAN 7.

Configuration for FESX-B

Enter the following commands to configure FESX-B.

```
FastIron> en
No password has been assigned yet...
FastIron# config t
FastIron(config)# hostname FESX-B
FastIron-B(config)# router ospf
FastIron-B(config-ospf-router)# area 0.0.0.0 normal
FastIron-B(config-ospf-router)# router ipx
```

Routing between VLANs using virtual routing interfaces (Layer 3 Switches only)

FastIron-B(config-ospf-router)# vlan 2 name IP-Subnet_1.1.6.0/24
FastIron-B(config-vlan-2)# untag e 1 to 4
FastIron-B(config-vlan-2)# no spanning-tree
FastIron-B(config-vlan-2)# router-interface ve1
FastIron-B(config-vlan-2)# other-proto name block-other-protocols
FastIron-B(config-vlan-other-proto)# no dynamic
FastIron-B(config-vlan-other-proto)# exclude e 1 to 4
FastIron-B(config-vlan-other-proto)# int ve1
FastIron-B(config-vif-1)# ip addr 1.1.6.1/24
FastIron-B(config-vif-1)# ip ospf area 0.0.0.0
FastIron-B(config-vif-1)# vlan 8 name IPX_Network6
FastIron-B(config-vlan-8)# untag e 5 to 8
FastIron-B(config-vlan-8)# no span
FastIron-B(config-vlan-8)# router-int ve2
FastIron-B(config-vlan-8)# other-proto name block-other-protocols
FastIron-B(config-vlan-other-proto)# no dynamic
FastIron-B(config-vlan-other-proto)# exclude e 5 to 8
FastIron-B(config-vlan-other-proto)# int ve2
FastIron-B(config-vif-2)# ipx net 6 ethernet_802.3
FastIron-B(config-vif-2)# vlan 3 name IP_Sub_&_IPX_Net_VLAN
FastIron-B(config-vlan-3)# untag e 9 to 16
FastIron-B(config-vlan-3)# no spanning-tree
FastIron-B(config-vlan-3)# ip-subnet 1.1.7.0/24
FastIron-B(config-vlan-ip-subnet)# static e 9 to 12
FastIron-B(config-vlan-ip-subnet)# router-interface ve3
FastIron-B(config-vlan-ip-subnet)# ipx-network 7 ethernet_802.3
FastIron-B(config-vlan-ips-network)# static e 13 to 16
FastIron-B(config-vlan-ips-network)# router-interface ve4
FastIron-B(config-vlan-ips-network)# other-proto name block-other-protocols
FastIron-B(config-vlan-other-proto)# exclude e 9 to 16
FastIron-B(config-vlan-other-proto)# no dynamic
FastIron-B(config-vlan-other-proto)# interface ve 3
FastIron-B(config-vif-3)# ip addr 1.1.7.1/24
FastIron-B(config-vif-3)# ip ospf area 0.0.0.0
FastIron-B(config-vif-3)# int ve4
FastIron-B(config-vif-4)# ipx network 7 ethernet_802.3
FastIron-B(config-vif-4)# vlan 4 name Bridged_ALL_Protocols
FastIron-B(config-vlan-4)# untag ethernet 17 to 24
FastIron-B(config-vlan-4)# tag ethernet 25 to 26
FastIron-B(config-vlan-4)# spanning-tree
FastIron-B(config-vlan-4)# vlan 5 name Rtr_BB_to_Bldg.1
FastIron-B(config-vlan-5)# tag e 25
FastIron-B(config-vlan-5)# no spanning-tree
FastIron-B(config-vlan-5)# router-interface ve5
FastIron-B(config-vlan-5)# vlan 7 name Rtr_BB_to_Bldg.3
FastIron-B(config-vlan-7)# tag ethernet 26
FastIron-B(config-vlan-7)# no spanning-tree
FastIron-B(config-vlan-7)# router-interface ve6
FastIron-B(config-vlan-7)# int ve5
FastIron-B(config-vif-5)# ip addr 1.1.4.2/24
FastIron-B(config-vif-5)# ip ospf area 0.0.0.0
FastIron-B(config-vif-5)# ipx network 4 ethernet_802.3
FastIron-B(config-vif-5)# int ve6
FastIron-B(config-vif-6)# ip addr 1.1.8.1/24
FastIron-B(config-vif-6)# ip ospf area 0.0.0.0
FastIron-B(config-vif-6)# ipx network 8 ethernet_802.3
Configuration for FESX-C

Enter the following commands to configure FESX-C.

```
FastIron> en
No password has been assigned yet...
FastIron# config t
FastIron(config)# hostname FESX-C
FastIron-C(config)# router ospf
FastIron-C(config-ospf-router)# area 0.0.0.0 normal
FastIron-C(config-ospf-router)# router ipx
FastIron-C(config-ospf-router)# vlan 2 name IP-Subnet_1.1.9.0/24
FastIron-C(config-vlan-2)# untag e 1 to 4
FastIron-C(config-vlan-2)# no spanning-tree
FastIron-C(config-vlan-2)# router-interface ve1
FastIron-C(config-vlan-other-proto)# no dynamic
FastIron-C(config-vlan-other-proto)# exclude e 1 to 4
FastIron-C(config-vlan-other-proto)# int ve1
FastIron-C(config-vif-1)# ip addr 1.1.9.1/24
FastIron-C(config-vif-1)# ip ospf area 0.0.0.0
FastIron-C(config-vif-1)# vlan 8 name IPX_Network9
FastIron-C(config-vlan-8)# untag e 5 to 8
FastIron-C(config-vlan-8)# no span
FastIron-C(config-vlan-8)# router-int ve2
FastIron-C(config-vlan-other-proto)# no dynamic
FastIron-C(config-vlan-other-proto)# exclude e 5 to 8
FastIron-C(config-vlan-other-proto)# int ve2
FastIron-C(config-vif-2)# ipx net 9 ethernet_802.3
FastIron-C(config-vif-2)# vlan 3 name IP_Sub_&_IPX_Net_VLAN
FastIron-C(config-vlan-3)# untag e 9 to 16
FastIron-C(config-vlan-3)# no spanning-tree
FastIron-C(config-vlan-3)# ip-subnet 1.1.10.0/24
FastIron-C(config-vlan-ip-subnet)# static e 9 to 12
FastIron-C(config-vlan-ip-subnet)# router-interface ve3
FastIron-C(config-vlan-ip-subnet)# ipx-network 10 ethernet_802.3
FastIron-C(config-vlan-ipx-network)# static e 13 to 16
FastIron-C(config-vlan-ipx-network)# router-interface ve4
FastIron-C(config-vlan-ipx-network)# other-proto name block-other-protocols
FastIron-C(config-vlan-other-proto)# exclude e 9 to 16
FastIron-C(config-vlan-other-proto)# interface ve 3
FastIron-C(config-vif-3)# ip addr 1.1.10.1/24
FastIron-C(config-vif-3)# ip ospf area 0.0.0.0
FastIron-C(config-vif-3)# int ve4
FastIron-C(config-vif-4)# ipx network 10 ethernet_802.3
FastIron-C(config-vif-4)# vlan 4 name Bridged_ALL_Protocols
FastIron-C(config-vif-4)# untag ethernet 17 to 24
FastIron-C(config-vif-4)# tag ethernet 25 to 26
FastIron-C(config-vif-4)# spanning-tree
FastIron-C(config-vlan-4)# vlan 7 name Rtr_BB_to_Bldg.2
FastIron-C(config-vlan-7)# tag e 25
FastIron-C(config-vlan-7)# no spanning-tree
FastIron-C(config-vlan-7)# router-interface ve5
FastIron-C(config-vlan-7)# vlan 6 name Rtr_BB_to_Bldg.1
FastIron-C(config-vlan-6)# tag ethernet 26
FastIron-C(config-vlan-6)# no spanning-tree
FastIron-C(config-vlan-6)# router-interface ve6
FastIron-C(config-vlan-6)# int ve5
```
Configuring protocol VLANs with dynamic ports

NOTE
TurboIron X Series devices do not support dynamic VLAN ports.

The configuration examples for protocol VLANs in the sections above show how to configure the VLANs using static ports. You also can configure the following types of protocol VLANs with dynamic ports:

- AppleTalk protocol
- IP protocol
- IPX protocol
- IP subnet
- IPX network

NOTE
The software does not support dynamically adding ports to AppleTalk cable VLANs. Conceptually, an AppleTalk cable VLAN consists of a single network cable, connected to a single port. Therefore, dynamic addition and removal of ports is not applicable.

NOTE
You cannot route to or from protocol VLANs with dynamically added ports.

Aging of dynamic ports

Platform Support:

- FastIron X Series devices running software release 02.5.00 and later

When you add the ports to the VLAN, the software automatically adds them all to the VLAN. However, dynamically added ports age out. If the age time for a dynamic port expires, the software removes the port from the VLAN. If that port receives traffic for the IP subnet or IPX network, the software adds the port to the VLAN again and starts the aging timer over. Each time the port receives traffic for the VLAN's IP subnet or IPX network, the aging timer starts over.

NOTE
You can disable VLAN membership aging of dynamically added ports. Refer to “Disabling membership aging of dynamic VLAN ports” on page 504).
Dynamic ports within any protocol VLAN age out after 10 minutes, if no member protocol traffic is received on a port within the VLAN. The aged out port, however, remains as a candidate dynamic port for that VLAN. The port becomes active in the VLAN again if member protocol traffic is received on that port.

Once a port is re-activated, the aging out period for the port is reset to 20 minutes. Each time a member protocol packet is received by a candidate dynamic port (aged out port) the port becomes active again and the aging out period is reset for 20 minutes.

Disabling membership aging of dynamic VLAN ports

Platform Support:

- FastIron X Series devices running software release 02.5.00 and later

You can disable VLAN membership aging of ports that are dynamically assigned to protocol or subnet-based VLANs. This feature resolves the connectivity issue that may occur in certain configurations when protocol or subnet VLANs are configured with dynamic port membership.

NOTE

This issue does not occur with statically assigned VLAN memberships. Thus, enable this feature only if your configuration includes dynamically assigned VLAN memberships for protocol or subnet VLANs.

To enable this feature, enter commands such as the following.

```
FastIron(config)# vlan 10 by port
FastIron(config-vlan-10)# int e 1/1 to 1/5
FastIron(config-vlan-10)# ip-proto name IP_Prot_VLAN
FastIron(config-vlan-ip-proto)# no-dynamic-aging
FastIron(config-vlan-ip-proto)# write memory
```

These commands create an IP protocol VLAN and disable the VLAN membership aging of ports that are dynamically assigned to the protocol VLAN.

Syntax: `[no] no-dynamic-aging`

Enter the `no` form of the command to disable this feature after it has been enabled.

By default, VLAN membership of dynamically assigned ports will age out after a period of time if no packets belonging to that protocol or subnet VLAN are received by the CPU.

The output of the `show running-config` command indicates if the no-dynamic-aging feature is enabled for a specific protocol or subnet VLAN.

Configuration guidelines

- You cannot dynamically add a port to a protocol VLAN if the port has any routing configuration parameters. For example, the port cannot have a virtual routing interface, IP subnet address, IPX network address, or AppleTalk network address configured on it.
- Once you dynamically add a port to a protocol VLAN, you cannot configure routing parameters on the port.
- Dynamic VLAN ports are not required or supported on AppleTalk cable VLANs.
Configuring an IP, IPX, or AppleTalk Protocol VLAN with Dynamic Ports

To configure an IP, IPX, or AppleTalk protocol VLAN with dynamic ports, use the following method.

To configure port-based VLAN 10, then configure an IP protocol VLAN within the port-based VLAN with dynamic ports, enter the following commands such as the following.

```
FastIron(config)# vlan 10 by port
FastIron(config-vlan-10)# untag ethernet 1/1 to 1/6
added untagged port ethe 1/1 to 1/6 to port-vlan 30.
FastIron(config-vlan-10)# ip-proto name IP Prot_VLAN
dynamic
FastIron(config)# write memory
```

Syntax:
- `vlan <vlan-id> by port [name <string>]`
- `untagged ethernet [<slotnum>/]<portnum> to [<slotnum>/]<portnum>`
- `ip-proto [name <string>]`
- `ipx-proto [name <string>]`
- `appletalk-cable-vlan <num> [name <string>]`
- `dynamic`

NOTE
Use the first `untagged` command for adding a range of ports. Use the second command for adding separate ports (not in a range).

```
Syntax: ip-proto [name <string>]
Syntax: ipx-proto [name <string>]
Syntax: appletalk-cable-vlan <num> [name <string>]
Syntax: dynamic
```

The procedure is similar for IPX and AppleTalk protocol VLANs. Enter `ipx-proto` or `atalk-proto` instead of `ip-proto`.

Configuring an IP subnet VLAN with dynamic ports

To configure port-based VLAN 10, then configure an IP subnet VLAN within the port-based VLAN with dynamic ports, enter commands such as the following.

```
FastIron(config)# vlan 10 by port name IP_VLAN
FastIron(config-vlan-10)# untag ethernet 1/1 to 1/6
added untagged port ethe 1/1 to 1/6 to port-vlan 30.
FastIron(config-vlan-10)# ip-subnet 1.1.1.0/24 name Mktg-LAN
FastIron(config-vlan-10)# dynamic
FastIron(config)# write memory
```

These commands create a port-based VLAN on chassis ports 1/1 – 1/6 named “Mktg-LAN”, configure an IP subnet VLAN within the port-based VLAN, and then add ports from the port-based VLAN dynamically.

Syntax:
- `vlan <vlan-id> by port [name <string>]`
- `untagged ethernet [<slotnum>/]<portnum> to [<slotnum>/]<portnum>`

or
Configuring uplink ports within a port-based VLAN

Syntax: untagged ethernet [<slotnum>/]<portnum> ethernet [<slotnum>/]<portnum>

NOTE
Use the first untagged command for adding a range of ports. Use the second command for adding separate ports (not in a range).

Syntax: ip-subnet <ip-addr> <ip-mask> [name <string>]

or

Syntax: ip-subnet <ip-addr>/<mask-bits> [name <string>]

Syntax: dynamic

Configuring an IPX network VLAN with dynamic ports

To configure port-based VLAN 20, then configure an IPX network VLAN within the port-based VLAN with dynamic ports, enter commands such as the following.

FastIron(config)# vlan 20 by port name IPX_VLAN
FastIron(config-vlan-10)# untag ethernet 2/1 to 2/6
added untagged port eth 2/1 to 2/6 to port-vlan 20.
FastIron(config-vlan-10)# ipx-network abcd ethernet_ii name Eng-LAN
FastIron(config-vlan-10)# dynamic
FastIron(config)# write memory

These commands create a port-based VLAN on chassis ports 2/1 – 2/6 named “Eng-LAN”, configure an IPX network VLAN within the port-based VLAN, and then add ports from the port-based VLAN dynamically.

Syntax: vlan <vlan-id> by port [name <string>]

Syntax: untagged ethernet [<slotnum>/]<portnum> to [<slotnum>/]<portnum>

or

Syntax: untagged ethernet [<slotnum>/]<portnum> ethernet [<slotnum>/]<portnum>

NOTE
Use the first untagged command for adding a range of ports. Use the second command for adding separate ports (not in a range).

Syntax: ipx-network <network-addr> ethernet_ii | ethernet_802.2 | ethernet_802.3 | ethernet_snap
 [name <string>]

Syntax: dynamic

Configuring uplink ports within a port-based VLAN

Platform Support:

• FastIron X Series devices running software release 02.5.00 and later
• FWS devices running software release 04.3.00 and later
• FGS and FLS devices running software release
• FGS-STK and FLS-STK devices running software release 05.0.00 and later
• FCX-S devices running software release 06.0.00 and later
• TurboIron X Series devices running software release 04.2.00 and later

You can configure a subset of the ports in a port-based VLAN as uplink ports. When you configure uplink ports in a port-based VLAN, the device sends all broadcast and unknown-unicast traffic from a port in the VLAN to the uplink ports, but not to other ports within the VLAN. Thus, the uplink ports provide tighter broadcast control within the VLAN.

This uplink port feature behaves the same as the private VLAN feature, but with the ability to support tagged ports. This feature also supports two private VLAN modes: the Primary ports (uplink ports) and Isolated ports (host ports).

For example, if two ports within a port-based VLAN are Gbps ports attached to the network and the other ports are 10/100 ports attached to clients, you can configure the two ports attached to the network as uplink ports. In this configuration, broadcast and unknown-unicast traffic in the VLAN does not go to all ports. The traffic goes only to the uplink ports. The clients on the network do not receive broadcast and unknown-unicast traffic from other ports, including other clients.

Configuration considerations

• When uplink port feature is enabled on FastIron devices, flooded traffic (unknown unicast, unregistered multicast, and broadcast traffic) is software forwarded.
• On TurboIron devices, flooded traffic (unknown unicast, unregistered multicast, and broadcast traffic) is hardware forwarded.
• This feature should not be enabled with protocol VLANs or private VLANs in the same VLAN.

Configuration syntax

To configure a port-based VLAN containing uplink ports, enter commands such as the following.

FastIron(config)# vlan 10 by port
FastIron(config-vlan-10)# untag ethernet 1/1 to 1/24
FastIron(config-vlan-10)# untag ethernet 2/1 to 2/2
FastIron(config-vlan-10)# uplink-switch ethernet 2/1 to 2/2

Syntax: `[no] uplink-switch ethernet [<slotnum>/]<portnum> [to [<slotnum>/]<portnum> | ethernet [<slotnum>/]<portnum>`

In this example, 24 ports on a 10/100 module and two Gbps ports on a Gbps module are added to port-based VLAN 10. The two Gbps ports are then configured as uplink ports.

To configure a port-based VLAN containing uplink ports on TurboIron devices, enter the following commands.

TurboIron(config)# vlan 500
TurboIron(config-vlan-500)# tagged ethernet 11 to 21
TurboIron(config-vlan-500)# uplink-switch ethernet 20 to 21

Syntax: `[no] uplink-switch ethernet <portnum> to <portnum>`
Configuring the same IP subnet address on multiple port-based VLANs

For a Brocade device to route between port-based VLANs, you must add a virtual routing interface to each VLAN. Generally, you also configure a unique IP subnet address on each virtual routing interface. For example, if you have three port-based VLANs, you add a virtual routing interface to each VLAN, then add a separate IP subnet address to each virtual routing interface. The IP address on each of the virtual routing interfaces must be in a separate subnet. The Brocade device routes Layer 3 traffic between the subnets using the subnet addresses.

NOTE
This feature applies only to Layer 3 Switches.

NOTE
Before using the method described in this section, refer to “Configuring VLAN groups and virtual routing interface groups” on page 511. You might be able to achieve the results you want using the methods in that section instead.

Figure 84 shows an example of this type of configuration.

FIGURE 84 Multiple port-based VLANs with separate protocol addresses

As shown in this example, each VLAN has a separate IP subnet address. If you need to conserve IP subnet addresses, you can configure multiple VLANs with the same IP subnet address, as shown in Figure 85.

FIGURE 85 Multiple port-based VLANs with the same protocol address
Configuring the same IP subnet address on multiple port-based VLANs

Each VLAN still requires a separate virtual routing interface. However, all three VLANs now use the same IP subnet address.

In addition to conserving IP subnet addresses, this feature allows containment of Layer 2 broadcasts to segments within an IP subnet. For ISP environments where the same IP subnet is allocated to different customers, placing each customer in a separate VLAN allows all customers to share the IP subnet address, while at the same time isolating them from one another Layer 2 broadcasts.

NOTE
You can provide redundancy to an IP subnet address that contains multiple VLANs using a pair of Brocade Layer 3 Switches configured for Brocade VRRP (Virtual Router Redundancy Protocol).

The Brocade device performs proxy Address Resolution Protocol (ARP) for hosts that want to send IP traffic to hosts in other VLANs that are sharing the same IP subnet address. If the source and destination hosts are in the same VLAN, the Brocade device does not need to use ARP:

- If a host attached to one VLAN sends an ARP message for the MAC address of a host in one of the other VLANs using the same IP subnet address, the Brocade device performs a proxy ARP on behalf of the other host. The Brocade device then replies to the ARP by sending the virtual routing interface MAC address. The Brocade device uses the same MAC address for all virtual routing interfaces.

When the host that sent the ARP then sends a unicast packet addressed to the virtual routing interface MAC address, the device switches the packet on Layer 3 to the destination host on the VLAN.

NOTE
If the Brocade device ARP table does not contain the requested host, the Brocade device forwards the ARP request on Layer 2 to the same VLAN as the one that received the ARP request. Then the device sends an ARP for the destination to the other VLANs that are using the same IP subnet address.
Configuring the same IP subnet address on multiple port-based VLANs

- If the destination is in the same VLAN as the source, the Brocade device does not need to perform a proxy ARP.

To configure multiple VLANs to use the same IP subnet address:

- Configure each VLAN, including adding tagged or untagged ports.
- Configure a separate virtual routing interface for each VLAN, but do not add an IP subnet address to more than one of the virtual routing interfaces.
- Configure the virtual routing interfaces that do not have the IP subnet address to “follow” the virtual routing interface that does have the address.

To configure the VLANs shown in Figure 85, you could enter the following commands.

```
FastIron(config)# vlan 1 by port
FastIron(config-vlan-1)# untag ethernet 1/1
FastIron(config-vlan-1)# tag ethernet 1/8
FastIron(config-vlan-1)# router-interface ve 1
```

Syntax: `router-interface ve <number>`

The commands above configure port-based VLAN 1. The VLAN has one untagged port (1/1) and a tagged port (1/8). In this example, all three VLANs contain port 1/8 so the port must be tagged to allow the port to be in multiple VLANs. You can configure VLANs to share a Layer 3 protocol interface regardless of tagging. A combination of tagged and untagged ports is shown in this example to demonstrate that sharing the interface does not change other VLAN features.

Notice that each VLAN still requires a unique virtual routing interface.

The following commands configure port-based VLANs 2 and 3.

```
FastIron(config-vlan-1)# vlan 2 by port
FastIron(config-vlan-2)# untag ethernet 1/2
FastIron(config-vlan-2)# tag ethernet 1/8
FastIron(config-vlan-2)# router-interface ve 2
FastIron(config-vlan-2)# vlan 3 by port
FastIron(config-vlan-3)# untag ethernet 1/5 to 1/6
FastIron(config-vlan-3)# tag ethernet 1/8
FastIron(config-vlan-3)# router-interface ve 3
```

The following commands configure an IP subnet address on virtual routing interface 1.

```
FastIron(config-vlan-3)# interface ve 1
FastIron(config-vif-1)# ip address 10.0.0.1/24
```

The following commands configure virtual routing interfaces 2 and 3 to “follow” the IP subnet address configured on virtual routing interface 1.

```
FastIron(config-vif-1)# interface ve 2
FastIron(config-vif-2)# ip follow ve 1
FastIron(config-vif-2)# interface ve 3
FastIron(config-vif-3)# ip follow ve 1
```

NOTE
Since virtual routing interfaces 2 and 3 do not have their own IP subnet addresses but instead are “following” virtual routing interface a IP address, you still can configure an IPX or AppleTalk interface on virtual routing interfaces 2 and 3.
Configuring VLAN groups and virtual routing interface groups

NOTE
On TurboIron X Series devices, VLAN groups are supported on devices running software release 04.2.00 and later.

To simplify configuration when you have many VLANs with the same configuration, you can configure VLAN groups and virtual routing interface groups.

NOTE
VLAN groups are supported on Layer 3 Switches and Layer 2 Switches. Virtual routing interface groups are supported only on Layer 3 Switches.

When you create a VLAN group, the VLAN parameters you configure for the group apply to all the VLANs within the group. Additionally, you can easily associate the same IP subnet interface with all the VLANs in a group by configuring a virtual routing interface group with the same ID as the VLAN group.

- The VLAN group feature allows you to create multiple port-based VLANs with identical port members. Since the member ports are shared by all the VLANs within the group, you must add the ports as tagged ports. This feature not only simplifies VLAN configuration but also allows you to have a large number of identically configured VLANs in a startup-config file on the device flash memory module. Normally, a startup-config file with a large number of VLANs might not fit on the flash memory module. By grouping the identically configured VLANs, you can conserve space in the startup-config file so that it fits on the flash memory module.

- The virtual routing interface group feature is useful when you want to configure the same IP subnet address on all the port-based VLANs within a VLAN group. You can configure a virtual routing interface group only after you configure a VLAN group with the same ID. The virtual routing interface group automatically applies to the VLANs in the VLAN group that has the same ID and cannot be applied to other VLAN groups or to individual VLANs.

You can create up to 32 VLAN groups and 32 virtual routing interface groups. A virtual routing interface group always applies only to the VLANs in the VLAN group with the same ID.

NOTE
Depending on the size of the VLAN ID range you want to use for the VLAN group, you might need to allocate additional memory for VLANs. On Layer 3 Switches, if you allocate additional memory for VLANs, you also need to allocate the same amount of memory for virtual routing interfaces. This is true regardless of whether you use the virtual routing interface groups. To allocate additional memory, refer to “Allocating memory for more VLANs or virtual routing interfaces” on page 514.

Configuring a VLAN group

To configure a VLAN group, enter commands such as the following.

```
FastIron(config)# vlan-group 1 vlan 2 to 1000
FastIron(config-vlan-group-1)# tagged 1/1 to 1/2
```

The first command in this example begins configuration for VLAN group 1, and assigns VLANs 2 through 1000 to the group. The second command adds ports 1/1 and 1/2 as tagged ports. Since all the VLANs in the group share the ports, you must add the ports as tagged ports.

Syntax: `vlan-group <num> vlan <vlan-id> to <vlan-id>`
Configuring VLAN groups and virtual routing interface groups

Syntax: tagged ethernet [<slotnum>/<portnum>] [to [<slotnum>/<portnum>]] | ethernet [<slotnum>/<portnum>]

The <num> parameter with the `vlan-group` command specifies the VLAN group ID and can be from 1 – 32. The `vlan <vlan-id> to <vlan-id>` parameters specify a contiguous range (a range with no gaps) of individual VLAN IDs. Specify the low VLAN ID first and the high VLAN ID second. The command adds all the specified VLANs to the VLAN group.

NOTE
The device memory must be configured to contain at least the number of VLANs you specify for the higher end of the range. For example, if you specify 2048 as the VLAN ID at the high end of the range, you first must increase the memory allocation for VLANs to 2048 or higher. Additionally, on Layer 3 Switches, if you allocate additional memory for VLANs, you also need to allocate the same amount of memory for virtual routing interfaces, before you configure the VLAN groups. This is true regardless of whether you use the virtual routing interface groups. The memory allocation is required because the VLAN groups and virtual routing interface groups have a one-to-one mapping. Refer to “Allocating memory for more VLANs or virtual routing interfaces” on page 514.

If a VLAN within the range you specify is already configured, the CLI does not add the group but instead displays an error message. In this case, create the group by specifying a valid contiguous range. Then add more VLANs to the group after the CLI changes to the configuration level for the group. See the following example.

You can add and remove individual VLANs or VLAN ranges from at the VLAN group configuration level. For example, if you want to add VLANs 1001 and 1002 to VLAN group 1 and remove VLANs 900 through 1000, enter the following commands.

```
FastIron(config-vlan-group-1)# add-vlan 1001 to 1002
FastIron(config-vlan-group-1)# remove-vlan 900 to 1000
```

Syntax: add-vlan <vlan-id> [to <vlan-id>]
Syntax: remove-vlan <vlan-id> [to <vlan-id>]

Displaying information about VLAN groups

To display VLAN group configuration information for FastIron devices, use the `show vlan-group` command.

```
FastIron# show vlan-group
vlan-group 1 vlan 2 to 20
  tagged ethe 1/1 to 1/2
!
vlan-group 2 vlan 21 to 40
  tagged ethe 1/1 to 1/2
!
```

Syntax: show vlan-group [<group-id>]

To display VLAN group configuration information for TurboIron devices, enter the following command.

```
TurboIron# show vlan-group
vlan-group 1 vlan 2 to 500
  tagged ethe 2 ethe 5
```

Syntax: show vlan-group
The \texttt{<group-id>\texttt{\textgreater\textless}} specifies a VLAN group. If you do not use this parameter, the configuration information for all the configured VLAN groups is displayed.

Configuring a virtual routing interface group

A virtual routing interface group allows you to associate the same IP subnet interface with multiple port-based VLANs. For example, if you associate a virtual routing interface group with a VLAN group, all the VLANs in the group have the IP interface of the virtual routing interface group.

Configuration notes and feature limitations

- When you configure a virtual routing interface group, all members of the group have the same IP subnet address. This feature is useful in collocation environments where the device has many IP addresses and you want to conserve the IP address space.
- The \texttt{group-router-interface\texttt{\textgreater\textless}} command creates router interfaces for each VLAN in the VLAN group by using the VLAN IDs of each of the VLANs as the corresponding virtual interface number. Therefore, if a VLAN group contains VLAN IDs greater than the maximum virtual interface number allowed, the \texttt{group-router-interface\texttt{\textgreater\textless}} command will be rejected.

CLI syntax

To configure a virtual routing interface group, enter commands such as the following.

```
FastIron(config)# vlan-group 1
FastIron(config-vlan-group-1)# group-router-interface
FastIron(config-vlan-group-1)# exit
FastIron(config)# interface group-ve 1
FastIron(config-vif-group-1)# ip address 10.10.10.1/24
```

These commands enable VLAN group 1 to have a group virtual routing interface, then configure virtual routing interface group 1. The software always associates a virtual routing interface group only with the VLAN group that has the same ID. In this example, the VLAN group ID is 1, so the corresponding virtual routing interface group also must have ID 1.

Syntax: \texttt{group-router-interface\texttt{\textgreater\textless}}

Syntax: \texttt{interface group-ve \textless\textgreater num\texttt{\textgreater\textless}}

Syntax: \texttt{[no] ip address \textless\textgreater ip-addr\texttt{\textgreater\textless}} \texttt{ip-mask} \texttt{[secondary]} or

Syntax: \texttt{[no] ip address \textless\textgreater ip-addr\texttt{\textgreater\textless}} \texttt{mask-bits} \texttt{[secondary]}

The \texttt{router-interface-group\texttt{\textgreater\textless}} command enables a VLAN group to use a virtual routing interface group. Enter this command at the configuration level for the VLAN group. This command configures the VLAN group to use the virtual routing interface group that has the same ID as the VLAN group. You can enter this command when you configure the VLAN group for the first time or later, after you have added tagged ports to the VLAN and so on.

The \texttt{<num>\texttt{\textgreater\textless}} parameter in the \texttt{interface group-ve \textless\textgreater num\texttt{\textgreater\textless}} command specifies the ID of the VLAN group with which you want to associate this virtual routing interface group. The VLAN group must already be configured and enabled to use a virtual routing interface group. The software automatically associates the virtual routing interface group with the VLAN group that has the same ID. You can associate a virtual routing interface group only with the VLAN group that has the same ID.
NOTE
IPv6 is not supported with group-ve.

NOTE
FastIron CX devices do not support ACLs with group-ve.

NOTE
FastIron devices support group-ve with OSPF and VRRP protocols only.

The syntax and usage for the ip address command is the same as when you use the command at the interface level to add an IP interface.

Displaying the VLAN group and virtual routing interface group information

To verify configuration of VLAN groups and virtual routing interface groups, display the running-config file. If you have saved the configuration to the startup-config file, you also can verify the configuration by displaying the startup-config file. The following example shows the running-config information for the VLAN group and virtual routing interface group configured in the previous examples. The information appears in the same way in the startup-config file.

FastIron# show running-config
lines not related to the VLAN group omitted...

vlan-group 1 vlan 2 to 900
 add-vlan 1001 to 1002
 tagged ethe 1/1 to 1/2
 router-interface-group

lines not related to the virtual routing interface group omitted...

interface group-ve 1
 ip address 10.10.10.1 255.255.255.0

NOTE
If you have enabled display of subnet masks in CIDR notation, the IP address information is shown as follows: 10.10.10.1/24.

Allocating memory for more VLANs or virtual routing interfaces

Brocade Layer 2 and Layer 3 Switches support up to 4095 VLANs. In addition, Layer 3 switches support up to 512 virtual routing interfaces.

The number of VLANs and virtual routing interfaces supported on your product depends on the device and, for Chassis devices, the amount of DRAM on the management module. Table 91 lists the default and configurable maximum numbers of VLANs and virtual routing interfaces for Layer 2 and Layer 3 Switches. Unless otherwise noted, the values apply to both types of switches.
Configuring super aggregated VLANs

NOTE
On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

NOTE
If many of your VLANs will have an identical configuration, you might want to configure VLAN groups and virtual routing interface groups after you increase the system capacity for VLANs and virtual routing interfaces. Refer to “Configuring VLAN groups and virtual routing interface groups” on page 511.

Increasing the number of VLANs you can configure

NOTE
Although you can specify up to 4095 VLANs, you can configure only 4094 VLANs. VLAN ID 4094 is reserved for use by the Single Spanning Tree feature.

To increase the maximum number of VLANs you can configure, enter commands such as the following at the global CONFIG level of the CLI.

```
FastIron(config)# system-max vlan 2048
FastIron(config)# write memory
FastIron(config)# end
FastIron# reload
```

Syntax: `system-max vlan <num>`

The `<num>` parameter indicates the maximum number of VLANs. The range of valid values depends on the device you are configuring. Refer to Table 91.

Increasing the number of virtual routing interfaces you can configure

To increase the maximum number of virtual routing interfaces you can configure, enter commands such as the following at the global CONFIG level of the CLI.

```
FastIron(config)# system-max virtual-interface 512
FastIron(config)# write memory
FastIron(config)# end
FastIron# reload
```

Syntax: `system-max virtual-interface <num>`

The `<num>` parameter indicates the maximum number of virtual routing interfaces. The range of valid values depends on the device you are configuring. Refer to Table 91.

TABLE 91 VLAN and virtual routing interface support

<table>
<thead>
<tr>
<th>VLANs</th>
<th>Virtual routing interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default maximum</td>
<td>Configurable maximum</td>
</tr>
<tr>
<td>64</td>
<td>4094</td>
</tr>
</tbody>
</table>

NOTE
On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.
You can aggregate multiple VLANs within another VLAN. This feature allows you to construct Layer 2 paths and channels. This feature is particularly useful for Virtual Private Network (VPN) applications in which you need to provide a private, dedicated Ethernet connection for an individual client to transparently reach its subnet across multiple networks.

Conceptually, the paths and channels are similar to Asynchronous Transfer Mode (ATM) paths and channels. A path contains multiple channels, each of which is a dedicated circuit between two end points. The two devices at the end points of the channel appear to each other to be directly attached. The network that connects them is transparent to the two devices.

You can aggregate up to 4094 VLANs within another VLAN. This provides a total VLAN capacity on one Brocade device of 16,760,836 channels (4094 * 4094).

The devices connected through the channel are not visible to devices in other channels. Therefore, each client has a private link to the other side of the channel.

The feature allows point-to-point and point-to-multipoint connections.

Figure 86 shows a conceptual picture of the service that aggregated VLANs provide. Aggregated VLANs provide a path for multiple client channels. The channels do not receive traffic from other channels. Thus, each channel is a private link.

FIGURE 86 Conceptual model of the super aggregated VLAN application

Each client connected to the edge device is in its own port-based VLAN, which is like an ATM channel. All the clients’ VLANs are aggregated by the edge device into a single VLAN for connection to the core. The single VLAN that aggregates the clients’ VLANs is like an ATM path.
The device that aggregates the VLANs forwards the aggregated VLAN traffic through the core. The core can consist of multiple devices that forward the aggregated VLAN traffic. The edge device at the other end of the core separates the aggregated VLANs into the individual client VLANs before forwarding the traffic. The edge devices forward the individual client traffic to the clients. For the clients' perspective, the channel is a direct point-to-point link.

Figure 87 shows an example application that uses aggregated VLANs. This configuration includes the client connections shown in Figure 86.

FIGURE 87 Example of a super aggregated VLAN application

In this example, a collocation service provides private channels for multiple clients. Although the same devices are used for all the clients, the VLANs ensure that each client receives its own Layer 2 broadcast domain, separate from the broadcast domains of other clients. For example, client 1 cannot ping client 5.
The clients at each end of a channel appear to each other to be directly connected and thus can be on the same subnet and use network services that require connection to the same subnet. In this example, client 1 is in subnet 192.168.1.0/24 and so is the device at the other end of client 1 channel.

Since each VLAN configured on the core devices is an aggregate of multiple client VLANs, the aggregated VLANs greatly increase the number of clients a core device can accommodate.

This example shows a single link between the core devices. However, you can use a trunk group to add link-level redundancy.

Configuration note

- Super Aggregated VLANs and VSRP are not supported together on the same device.

Configuring aggregated VLANs

To configure aggregated VLANs, perform the following tasks:

- On each edge device, configure a separate port-based VLAN for each client connected to the edge device. In each client VLAN:
 - Add the port connected to the client as an untagged port.
 - Add the port connected to the core device (the device that will aggregate the VLANs) as a tagged port. This port must be tagged because all the client VLANs share the port as an uplink to the core device.

- On each core device:
 - Enable VLAN aggregation. This support allows the core device to add an additional tag to each Ethernet frame that contains a VLAN packet from the edge device. The additional tag identifies the aggregate VLAN (the path). However, the additional tag can cause the frame to be longer than the maximum supported frame size. The larger frame support allows Ethernet frames up to 1530 bytes long.
 - For FGS, FLS, and FWS devices, the frame size is limited to 1522, not 1530, bytes. To allow frames larger than 1522, you must enable jumbo frames. To globally enable jumbo support, enter commands such as the following.

```
FGS Switch(config)# jumbo
FGS Switch(config)# write memory
FGS Switch(config)# end
FGS Switch# reload
```

NOTE

Enable the VLAN aggregation option only on the core devices.

- Configure a VLAN tag type (tag ID) that is different than the tag type used on the edge devices. If you use the default tag type (8100) on the edge devices, set the tag type on the core devices to another value, such as 9100. The tag type must be the same on all the core devices. The edge devices also must have the same tag type but the type must be different from the tag type on the core devices.
NOTE
You can enable the Spanning Tree Protocol (STP) on the edge devices or the core devices, but not both. If you enable STP on the edge devices and the core devices, STP will prevent client traffic from travelling through the core to the other side.

Configuring aggregated VLANs on an edge device

To configure the aggregated VLANs on device A in Figure 87 on page 517, enter the following commands.

```bash
FastIron(config)# vlan 101 by port
FastIron(config-vlan-101)# tagged ethernet 2/1
FastIron(config-vlan-101)# untagged ethernet 1/1
FastIron(config-vlan-101)# exit
FastIron(config)# vlan 102 by port
FastIron(config-vlan-102)# tagged ethernet 2/1
FastIron(config-vlan-102)# untagged ethernet 1/2
FastIron(config-vlan-102)# exit
FastIron(config)# vlan 103 by port
FastIron(config-vlan-103)# tagged ethernet 2/1
FastIron(config-vlan-103)# untagged ethernet 1/3
FastIron(config-vlan-103)# exit
FastIron(config)# vlan 104 by port
FastIron(config-vlan-104)# tagged ethernet 2/1
FastIron(config-vlan-104)# untagged ethernet 1/4
FastIron(config-vlan-104)# exit
FastIron(config)# vlan 105 by port
FastIron(config-vlan-105)# tagged ethernet 2/1
FastIron(config-vlan-105)# untagged ethernet 1/5
FastIron(config-vlan-105)# exit
FastIron(config)# write memory
```

Syntax:

- `vlan <vlan-id> [by port]`
- `tagged ethernet [slotnum]/portnum] [to [slotnum]/portnum] | ethernet [slotnum]/portnum]`
- `untagged ethernet [slotnum]/portnum] [to [slotnum]/portnum] | ethernet [slotnum]/portnum]`

Use the `tagged` command to add the port that the device uses for the uplink to the core device. Use the `untagged` command to add the ports connected to the individual clients.

Configuring aggregated VLANs on a core device

To configure the aggregated VLANs on device C in Figure 87 on page 517, enter the following commands.

```bash
FastIron(config)# tag-type 9100
FastIron(config)# aggregated-vlan
FastIron(config)# vlan 101 by port
FastIron(config-vlan-101)# tagged ethernet 4/1
FastIron(config-vlan-101)# untagged ethernet 3/1
FastIron(config-vlan-101)# exit
FastIron(config)# vlan 102 by port
```

Syntax:

- `tag-type <tag-type>
- `aggregated-vlan`
- `vlan <vlan-id> [by port]`
Configuring super aggregated VLANS

```plaintext
FastIron(config-vlan-102)# tagged ethernet 4/1
FastIron(config-vlan-102)# untagged ethernet 3/2
FastIron(config-vlan-102)# exit
FastIron(config)# write memory
```

Syntax: `[no] tag-type <num>`

Syntax: `[no] aggregated-vlan`

The `<num>` parameter specifies the tag type can be a hexadecimal value from 0 – ffff. The default is 8100.

Verifying the configuration

You can verify the VLAN, VLAN aggregation option, and tag configuration by viewing the running-config. To display the running-config, enter the `show running-config` command from any CLI prompt. After you save the configuration changes to the startup-config, you also can display the settings in that file by entering the `show configuration` command from any CLI prompt.

Complete CLI examples

The following sections show all the Aggregated VLAN configuration commands on the devices in Figure 87 on page 517.

NOTE

In these examples, the configurations of the edge devices (A, B, E, and F) are identical. The configurations of the core devices (C and D) also are identical. The aggregated VLAN configurations of the edge and core devices on one side must be symmetrical (in fact, a mirror image) to the configurations of the devices on the other side. For simplicity, the example in Figure 87 on page 517 is symmetrical in terms of the port numbers. This allows the configurations for both sides of the link to be the same. If your configuration does not use symmetrically arranged port numbers, the configurations should not be identical but must use the correct port numbers.

Commands for device A

```plaintext
FastIronA(config)# vlan 101 by port
FastIronA(config-vlan-101)# tagged ethernet 2/1
FastIronA(config-vlan-101)# untagged ethernet 1/1
FastIronA(config-vlan-101)# exit
FastIronA(config)# vlan 102 by port
FastIronA(config-vlan-102)# tagged ethernet 2/1
FastIronA(config-vlan-102)# untagged ethernet 1/2
FastIronA(config-vlan-102)# exit
FastIronA(config)# vlan 103 by port
FastIronA(config-vlan-103)# tagged ethernet 2/1
FastIronA(config-vlan-103)# untagged ethernet 1/3
FastIronA(config-vlan-103)# exit
FastIronA(config)# vlan 104 by port
FastIronA(config-vlan-104)# tagged ethernet 2/1
FastIronA(config-vlan-104)# untagged ethernet 1/4
FastIronA(config-vlan-104)# exit
FastIronA(config)# vlan 105 by port
```
Configuring super aggregated VLANs

Commands for device B

The commands for configuring device B are identical to the commands for configuring device A. Notice that you can use the same channel VLAN numbers on each device. The devices that aggregate the VLANs into a path can distinguish between the identically named channel VLANs based on the ID of the path VLAN.

```
FastIronB(config)# vlan 101 by port
FastIronB(config-vlan-101)# tagged ethernet 2/1
FastIronB(config-vlan-101)# untagged ethernet 1/1
FastIronB(config)# vlan 102 by port
FastIronB(config-vlan-102)# tagged ethernet 2/1
FastIronB(config-vlan-102)# untagged ethernet 1/2
FastIronB(config)# vlan 103 by port
FastIronB(config-vlan-103)# tagged ethernet 2/1
FastIronB(config-vlan-103)# untagged ethernet 1/3
FastIronB(config)# vlan 104 by port
FastIronB(config-vlan-104)# tagged ethernet 2/1
FastIronB(config-vlan-104)# untagged ethernet 1/4
FastIronB(config)# vlan 105 by port
FastIronB(config-vlan-105)# tagged ethernet 2/1
FastIronB(config-vlan-105)# untagged ethernet 1/5
FastIronB(config)# write memory
```

Commands for device C

Since device C is aggregating channel VLANs from devices A and B into a single path, you need to change the tag type and enable VLAN aggregation.

```
FastIronC(config)# tag-type 9100
FastIronC(config)# aggregated-vlan
FastIronC(config)# vlan 101 by port
FastIronC(config-vlan-101)# tagged ethernet 4/1
FastIronC(config-vlan-101)# untagged ethernet 3/1
FastIronC(config)# vlan 102 by port
FastIronC(config-vlan-102)# tagged ethernet 4/1
FastIronC(config-vlan-102)# untagged ethernet 3/2
FastIronC(config)# write memory
```

Commands for device D

Device D is at the other end of path and separates the channels back into individual VLANs. The tag type must be the same as tag type configured on the other core device (Device C). In addition, VLAN aggregation also must be enabled.

```
FastIronD(config)# aggregated-vlan
```
FastIronD(config)# tag-type 9100
FastIronD(config)# aggregated-vlan
FastIronD(config)# vlan 101 by port
FastIronD(config-vlan-101)# tagged ethernet 4/1
FastIronD(config-vlan-101)# untagged ethernet 3/1
FastIronD(config-vlan-101)# exit
FastIronD(config)# vlan 102 by port
FastIronD(config-vlan-102)# tagged ethernet 4/1
FastIronD(config-vlan-102)# untagged ethernet 3/2
FastIronD(config-vlan-102)# exit
FastIronD(config)# write memory

Commands for device E

Since the configuration in Figure 87 on page 517 is symmetrical, the commands for configuring device E are identical to the commands for configuring device A.

FastIronE(config)# vlan 101 by port
FastIronE(config-vlan-101)# tagged ethernet 2/1
FastIronE(config-vlan-101)# untagged ethernet 1/1
FastIronE(config-vlan-101)# exit
FastIronE(config)# vlan 102 by port
FastIronE(config-vlan-102)# tagged ethernet 2/1
FastIronE(config-vlan-102)# untagged ethernet 1/2
FastIronE(config-vlan-102)# exit
FastIronE(config)# vlan 103 by port
FastIronE(config-vlan-103)# tagged ethernet 2/1
FastIronE(config-vlan-103)# untagged ethernet 1/3
FastIronE(config-vlan-103)# exit
FastIronE(config)# vlan 104 by port
FastIronE(config-vlan-104)# tagged ethernet 2/1
FastIronE(config-vlan-104)# untagged ethernet 1/4
FastIronE(config-vlan-104)# exit
FastIronE(config)# vlan 105 by port
FastIronE(config-vlan-105)# tagged ethernet 2/1
FastIronE(config-vlan-105)# untagged ethernet 1/5
FastIronE(config-vlan-105)# exit
FastIronE(config)# write memory

Commands for device F

The commands for configuring device F are identical to the commands for configuring device E. In this example, since the port numbers on each side of the configuration in Figure 87 on page 517 are symmetrical, the configuration of device F is also identical to the configuration of device A and device B.

FastIronF(config)# vlan 101 by port
FastIronF(config-vlan-101)# tagged ethernet 2/1
FastIronF(config-vlan-101)# untagged ethernet 1/1
FastIronF(config-vlan-101)# exit
FastIronF(config)# vlan 102 by port
FastIronF(config-vlan-102)# tagged ethernet 2/1
FastIronF(config-vlan-102)# untagged ethernet 1/2
FastIronF(config-vlan-102)# exit
FastIronF(config)# vlan 103 by port
FastIronF(config-vlan-103)# tagged ethernet 2/1
FastIronF(config-vlan-103)# untagged ethernet 1/3
FastIronF(config-vlan-103)# exit
FastIronF(config)# vlan 104 by port

FastIronF(config)# vlan 101 by port
FastIronF(config-vlan-101)# tagged ethernet 2/1
FastIronF(config-vlan-101)# untagged ethernet 1/1
FastIronF(config-vlan-101)# exit
FastIronF(config)# vlan 102 by port
FastIronF(config-vlan-102)# tagged ethernet 2/1
FastIronF(config-vlan-102)# untagged ethernet 1/2
FastIronF(config-vlan-102)# exit
FastIronF(config)# vlan 103 by port
FastIronF(config-vlan-103)# tagged ethernet 2/1
FastIronF(config-vlan-103)# untagged ethernet 1/3
FastIronF(config-vlan-103)# exit
FastIronF(config)# vlan 104 by port
Configuring 802.1Q-in-Q tagging

Platform Support:
- FESX devices running software version 01.1.00 and later
- All FSX and FWSX software releases
- FGS, FLS, and FWS devices running software release 04.3.01 and later
- TurboIron X Series devices running software release 04.2.00 and later

802.1Q-in-Q tagging provides finer granularity for configuring 802.1Q tagging, enabling you to configure 802.1Q tag-types on a group of ports. This feature allows you to create two identical 802.1Q tags (802.1Q-in-Q tagging) on a single device. This enhancement improves SAV interoperability between Brocade devices and other vendors’ devices that support the 802.1Q tag-types, but are not very flexible with the tag-types they accept.

NOTE
Brocade devices treat a double-tagged Ethernet frame as a Layer 2 only frame. The packets are not inspected for Layer 3 and Layer 4 information, and operations are not performed on the packet utilizing Layer 3 or Layer 4 information.

Figure 88 shows an example application with 802.1Q-in-Q tagging.

FIGURE 88 802.1Q-in-Q configuration example
In Figure 88, the untagged ports (to customer interfaces) accept frames that have any 802.1Q tag other than the configured tag-type 9100. These packets are considered untagged on this incoming port and are re-tagged when they are sent out of the uplink towards the provider. The 802.1Q tag-type on the uplink port is 8100, so the Brocade device will switch the frames to the uplink device with an additional 8100 tag, thereby supporting devices that only support this method of VLAN tagging.

Configuration rules

- Since the uplink (to the provider cloud) and the edge link (to the customer port) must have different 802.1Q tags, make sure the uplink and edge link are in different port regions. Refer to “About port regions” on page 361 for a list of valid port regions.
- If you configure a port with an 802.1Q tag-type, the Brocade device automatically applies the 802.1Q tag-type to all ports within the same port region. Likewise, if you remove the 802.1Q tag-type from a port, the Brocade device automatically removes the 802.1Q tag-type from all ports within the same port region.
- FastIron X Series devices support one configured tag-type per device along with the default tag-type of 8100. For example, if you configure an 802.1Q tag of 9100 on ports 1 – 12, then later configure an 802.1Q tag of 5100 on port 15, the device automatically applies the 5100 tag to all ports in the same port region as port 15, and also changes the 802.1Q tag-type on ports 1 – 12 to 5100.
- TurboIron X Series devices support one configured tag-type per port along with the default tag-type of 8100. TurboIron devices do not have the port region concept and do not support tag-profile.
- 802.1Q-in-Q tagging and VSRP are not supported together on the same device.

Enabling 802.1Q-in-Q tagging

To enable 802.1Q-in-Q tagging, configure an 802.1Q tag on the untagged edge links (the customer ports) to any value other than the 802.1Q tag for incoming traffic. For example, in Figure 89, the 802.1Q tag on the untagged edge links (ports 11 and 12) is 9100, whereas, the 802.1Q tag for incoming traffic is 8100.

To configure 802.1 Q-in-Q tagging as shown in Figure 89, enter commands such as the following on the untagged edge links of devices C and D.

FastIron(config)# tag-type 9100 e 11 to 12
FastIron(config)# aggregated-vlan

Note that since ports 11 and 12 belong to the port region 1 – 12, the 802.1Q tag actually applies to ports 1 – 12.

Syntax: [no] tag-type <num> [ethernet [slotnum]<port number> to <port number>]]

The <num> parameter specifies the tag-type number and can be a hexadecimal value from 0 - ffff. The default is 8100.

The <slotnum> parameter is required on chassis devices.

The ethernet <port number> to <port number> parameter specifies the ports that will use the defined 802.1Q tag. This parameter operates with the following rules:
• If you specify a single port number, the 802.1Q tag applies to all ports within the port region. For example, if you enter the command `tag-type 9100 e 1`, the Brocade device automatically applies the 802.1Q tag to ports 1 – 12 since all of these ports are in the same port region. You can use the `show running-config` command to view how the command has been applied.

• If you do not specify a port or range of ports, the 802.1Q tag applies to all Ethernet ports on the device.

Example configuration

Figure 89 shows an example 802.1Q-in-Q configuration.

FIGURE 89 Example 802.1Q-in-Q configuration
Configuring 802.1Q-in-Q tag profiles

The 802.1Q-in-Q tagging feature supports a tag profile command that allows you to add a tag profile with a value of 0 to 0xffff in addition to the default tag-type 0x8100. This enhancement also allows you to add a tag profile for a single port, or to direct a group of ports to a globally-configured tag profile.

CLI commands

Syntax: `[no] tag-profile <tag-no>` (in the configuration mode)
Syntax: [no] tag-profile enable (in the single port/multi port interface configuration mode)

Configuration notes

- One tag profile of any number between 0 to 0xffff can be configured globally
- On individual ports, if tag-profile is enabled, the tag profile will point to the global tag profile
- Tag profile can also be enabled for provisional ports
- If a port has already been configured with a tag type, you must remove the tag-type before you add the tag profile

Example

To add a global tag-profile enter the following command.

```
FGS 648P Switch(config)# tag-profile 9500
```

This command adds a profile in addition to the default profile of 0x8100. To enable the new profile on individual ports, enter commands similar to the following.

```
FGS 648P Switch(config)# interface ethernet 1/1/1
FGS 648P Switch(config-if-e1000-1/1/1)# tag-profile enable
FGS 648P Switch(config-mif-1/1/1,1/2/1)# tag-profile enable
```

NOTE

Do not use the tag-type command in conjunction with the tag-profile command. If a tag-type has already been configured and you try to use the tag-profile command, you will see an error message telling you to remove the tag-type before you add the tag-profile.

Configuring Q-in-Q tagging for stack devices

Platform Support:

- FGS-STK and FLS-STK devices running software version 05.0.00 and later

For devices operating in an IronStack topology, when a tag-type for a port is changed, the tag-type for all of the ports on a stack unit also changes. Because of this limitation, SAV and Q-in-Q cannot be used at the same time on stacking devices.

The tag-profile command supports one extra tag profile in addition to the default tag-profile (0x8100). This additional tag profile can be configured specifically on only those ports where it is required.

CLI commands

Syntax: [no] tag-profile <tag-no> (in the configuration mode)

Syntax: [no] tag-profile enable (in the single port/multi port interface configuration mode)

Example

To configure one more global tag profile (in addition to the default tag profile) enter the following command.

```
FGS 648P Switch(config)# tag-profile 9100
```
To enable the new profile on individual ports or on a range of ports, enter commands similar to the following.

FGS 648P Switch(config)# interface ethernet 1/1/1
FGS 648P Switch(config-if-e1000-1/1/1)# tag-profile enable
FGS 648P Switch(config-mif-1/1/1,1/2/1)# tag-profile enable

Configuration notes for stackable devices

- One tag profile of any number between 0 to 0xffff can be configured globally
- On individual ports, if tag-profile is enabled, it points to the new additional global tag profile
- Tag profile can also be enabled for reserved ports
- Do not use the tag-type command in conjunction with the tag-profile command. If a tag-type has already been configured and you try to use the tag-profile command, you will see the following error message: “un-configure the tag-type to add the tag-profile.” You must remove the tag type before you add the tag profile.

Configuring private VLANs

Platform Support:

- FastIron X Series devices running software release 02.4.00 and later
- FGS and FLS devices running software release
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 and later
- TurboIron X Series devices running software release 04.2.00 and later

NOTE

Software releases 02.4.00 and later support private VLANs on untagged ports. You cannot configure isolated, community, or primary VLANs on 802.1Q tagged ports.
A private VLAN is a VLAN that has the properties of standard Layer 2 port-based VLANs but also provides additional control over flooding packets on a VLAN. Figure 90 shows an example of an application using a private VLAN.

FIGURE 90 Private VLAN used to secure communication between a workstation and servers

![Diagram of private VLAN](image)

This example uses a private VLAN to secure traffic between hosts and the rest of the network through a firewall. Five ports in this example are members of a private VLAN. The first port (port 3/2) is attached to a firewall. The next four ports (ports 3/5, 3/6, 3/9, and 3/10) are attached to hosts that rely on the firewall to secure traffic between the hosts and the rest of the network. In this example, two of the hosts (on ports 3/5 and 3/6) are in a community private VLAN, and thus can communicate with one another as well as through the firewall. The other two hosts (on ports 3/9 and 3/10), are in an isolated VLAN and thus can communicate only through the firewall. The two hosts are secured from communicating with one another even though they are in the same VLAN.

By default, the private VLAN does not forward broadcast or unknown-unicast packets from outside sources into the private VLAN. If needed, you can override this behavior for broadcast packets, unknown-unicast packets, or both. (Refer to “Enabling broadcast or unknown unicast traffic to the private VLAN” on page 534.)

You can configure a combination of the following types of private VLANs:

- **Primary** – The primary private VLAN ports are “promiscuous”. They can communicate with all the isolated private VLAN ports and community private VLAN ports in the isolated and community VLANS that are mapped to the promiscuous port.
• Secondary – The secondary private VLAN are secure VLANs that are separated from the rest of the network by the primary private VLAN. Every secondary private VLAN is associated with a primary private VLAN. The two types of secondary private VLANs are isolated private VLAN and community private VLAN.

• Isolated – Broadcasts and unknown-unicasts packet received on isolated ports are sent only to the primary port. They are not flooded to other ports in the isolated VLAN.

On TurboIron X Series devices running software release 04.2.00 and later the broadcasts, unknown-unicasts, and unregistered-multicast packets received on isolated ports are sent to the primary port. They are not flooded to other ports in the isolated VLAN.

• Community – Broadcasts and unknown unicasts received on community ports are sent to the primary port and also are flooded to the other ports in the community VLAN.

On TurboIron X Series devices running software release 04.2.00 and later the broadcasts, unknown unicasts, and unregistered multicast received on community ports are sent to the primary port and are flooded to the other ports in the community VLAN.

Each private VLAN must have a primary VLAN. The primary VLAN is the interface between the secured ports and the rest of the network. The private VLAN can have any combination of community and isolated VLANs. The community VLAN and isolated VLAN cannot forward traffic to each other. You cannot forwarding traffic between different private VLANs.

Table 92 list the differences between private VLANs and standard VLANs.

TABLE 92 Comparison of private VLANs and standard port-based VLANs

<table>
<thead>
<tr>
<th>Forwarding behavior</th>
<th>Private VLANs</th>
<th>Standard VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ports within a VLAN constitute a common Layer broadcast domain</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Broadcasts and unknown unicsats are forwarded to all the VLAN ports by default</td>
<td>No (isolated VLAN)</td>
<td>Yes (community VLAN)</td>
</tr>
</tbody>
</table>

Configuration notes

• Private VLANs are supported in releases 02.4.00 and later on untagged ports only. You cannot configure isolated, community, or primary VLANs on 802.1Q tagged ports.

NOTE
TurboIron X Series devices running software release 04.2.00 support 802.1Q tagged ports on private VLAN. Private VLAN is a hardware-based feature. Private VLANs on the TurboIron device forwards unknown-unicast, unregistered multicast, and broadcast in hardware.

• Normally, in any port-based VLAN, the Brocade device floods unknown unicast, unregistered multicast, and broadcast packets in hardware, although selective packets, such as IGMP, may be sent to only the CPU for analysis, based on the IGMP snooping configuration. When Protocol or Subnet VLANs are enabled, or if private VLAN mappings are enabled, the Brocade device will flood unknown unicast, unregistered multicast, and broadcast packets in software.
• There is currently no support for IGMP snooping within private VLANs. In order for clients in private VLANs to receive multicast traffic, IGMP snooping must be disabled so that all multicast packets are treated as unregistered packets and are flooded in software to all the ports.

• FastIron X Series devices and TurboIron X Series forward all known unicast traffic in hardware. This differs from the way the BigIron implements private VLANs, in that the BigIron uses the CPU to forward packets on the primary VLAN "promiscuous" port. In addition, on the BigIron, support for the hardware forwarding in this feature sometimes results in multiple MAC address entries for the same MAC address in the device MAC address table. On the FastIron X Series devices and TurboIron X Series devices, multiple MAC entries do not appear in the MAC address table because the FastIron X Series and TurboIron X Series transparently manages multiple MAC entries in hardware.

• You can configure private VLANs and dual-mode VLAN ports on the same device. However, the dual-mode VLAN ports cannot be members of private VLANs.

• A primary VLAN can have multiple ports. All these ports are active, but the ports that will be used depends on the private VLAN mappings. Also, secondary VLANs (isolated and community VLANs) can be mapped to multiple primary VLAN ports.

 Example

 pvlan mapping 901 ethernet 1
 pvlan mapping 901 ethernet 2
 pvlan mapping 901 ethernet 3

• Trunks are not supported on FastIron X Series devices when the ports are part of a private VLAN.

Configuration notes and limitations for TurboIron devices

Consider the following statements when configuring a private VLAN on a TurboIron X Series device running software release 04.2.00 and later:

• Each private VLAN can have multiple isolated VLANs or community VLANs. You can use any combination of isolated or community VLANs with the primary VLAN.

• You cannot configure a common port in any pair of primary, isolated, and community VLANs.

• You cannot configure the default VLAN (VLAN 1) as a private VLAN.

• You can configure Virtual interface (VE) on primary VLAN. The VE configuration in secondary private VLAN is not supported.

• A secondary VLAN can have only one primary VLAN associated with it.

• You can configure static trunk or dynamic trunk in both primary and secondary private VLAN.

• Spanning tree protocol is automatically disabled on private VLAN.

• You cannot enable Metro Ring Protocol (MRP), Virtual Switch Redundancy Protocol (VSRP), and Virtual Router Redundancy Protocol (VRRP) on private VLAN.

• You cannot enable single span on a private VLAN configured system and you cannot configure private VLAN on a single span enabled system.

• You cannot configure private VLAN through VLAN group.

• ICMP redirect is automatically disabled for private VLAN.

• To enhance private VLAN security, unique VLAN ID is used to identify the primary VLAN for different private VLANs. The known unicast among isolated VLAN and known unicast across different isolated or community VLAN is restricted.
Configuring private VLANs

- To enhance private VLAN flexibility, tagged, untagged, and dual mode ports are supported.
- All ports in the primary VLAN are promiscuous. You cannot configure an individual port in the primary to secondary private VLAN mapping. Traffic is forwarded to all ports in the primary private vlan when received from a secondary VLAN.

Command syntax

To configure a private VLAN, configure each of the component VLANs (isolated, community, and primary) as a separate port-based VLAN:

- Use standard VLAN configuration commands to create the VLAN and add ports.
- Identify the private VLAN type (isolated, community, or primary)
- For the primary VLAN, map the other private VLANs to the ports in the primary VLAN

Configuring an isolated or community private VLAN

To configure a community private VLAN, enter commands such as the following.

```
FastIron(config)# vlan 901
FastIron(config-vlan-901)# untagged ethernet 3/5 to 3/6
FastIron(config-vlan-901)# pvlan type community
```

These commands create port-based VLAN 901, add ports 3/5 and 3/6 to the VLAN as untagged ports, then specify that the VLAN is a community private VLAN.

Syntax: `untagged ethernet [slotnum]/portnum [to slotnum]/portnum | ethernet slotnum/portnum`
Syntax: `[no] pvlan type community | isolated | primary`

The **untagged** command adds the ports to the VLAN.
The **pvlan type** command specifies that this port-based VLAN is a private VLAN:

- **community** – Broadcasts and unknown unicast received on community ports are sent to the primary port and also are flooded to the other ports in the community VLAN.
- **isolated** – Broadcasts and unknown unicast received on isolated ports are sent only to the primary port. They are not flooded to other ports in the isolated VLAN.
- **primary** – The primary private VLAN ports are “promiscuous”. They can communicate with all the isolated private VLAN ports and community private VLAN ports in the isolated and community VLANs that are mapped to the promiscuous port.

To configure a community private VLAN on a TurboIron X Series device running software release 04.2.00 and later, enter the following commands.

```
TurboIron(config)# vlan 901
TurboIron(config-vlan-901)# untagged ethernet 5 to 6
TurboIron(config-vlan-901)# pvlan type community
```

These commands create port-based VLAN 901, add ports 5 and 6 to the VLAN as untagged ports, and then specify that the VLAN is a community private VLAN.

To configure an isolated private VLAN on a TurboIron X Series device running software release 04.2.00 and later, enter the following commands.

```
TurboIron(config)# vlan 902
TurboIron(config-vlan-902)# tagged ethernet 9 to 10
```
Configuring private VLANs

TurboIron(config-vlan-902)# pvlan type isolated

Configuring the primary VLAN

NOTE
The primary private VLAN has only one active port. If you configure the VLAN to have more than one port, the lowest-numbered port is the active one. The additional ports provide redundancy. If the active port becomes unavailable, the lowest-numbered available port becomes the active port for the VLAN.

NOTE
In TurboIron X Series devices, all the ports in the primary private VLAN are active.

To configure a primary private VLAN, enter commands such as the following.

FastIron(config)# vlan 7
FastIron(config-vlan-7)# untagged ethernet 3/2
FastIron(config-vlan-7)# pvlan type primary
FastIron(config-vlan-7)# pvlan mapping 901 ethernet 3/2

These commands create port-based VLAN 7, add port 3/2 as an untagged port, identify the VLAN as the primary VLAN in a private VLAN, and map the other private VLANs to the ports in this VLAN.

Syntax:
- `untagged ethernet [slotnum]portnum`
- `pvlan type community | isolated | primary`
- `pvlan mapping <vlan-id> ethernet [slotnum]portnum`

The `untagged` command adds the ports to the VLAN.

The `pvlan type` command specifies that this port-based VLAN is a private VLAN. Specify `primary` as the type.

The `pvlan mapping` command identifies the other private VLANs for which this VLAN is the primary. The command also specifies the primary VLAN ports to which you are mapping the other private VLANs. The parameters of the `pvlan mapping` command are as follows:

- The `<vlan-id>` parameter specifies another private VLAN. The other private VLAN you want to specify must already be configured.
- The `ethernet <portnum>` parameter specifies the primary VLAN port to which you are mapping all the ports in the other private VLAN (the one specified by `<vlan-id>`).

To configure a primary private VLAN, on TurboIron X Series device running software release 04.2.00 and later enter the following commands:

TurboIron(config)# vlan 7
TurboIron(config-vlan-7)# untagged ethernet 2
TurboIron(config-vlan-7)# pvlan type primary
TurboIron(config-vlan-7)# pvlan mapping 901

These commands create port-based VLAN 7, add port 2 as an untagged port, identify the VLAN as the primary VLAN in a private VLAN, and map the secondary private VLANs to the primary VLAN.

NOTE
For TurboIron devices, you do not have to specify the port in the primary vlan mapping.
Enabling broadcast or unknown unicast traffic to the private VLAN

To enhance private VLAN security, the primary private VLAN does not forward broadcast or unknown unicast packets to its community and isolated VLANs. For example, if port 3/2 in Figure 90 on page 529 receives a broadcast packet from the firewall, the port does not forward the packet to the other private VLAN ports (3/5, 3/6, 3/9, and 3/10).

This forwarding restriction does not apply to traffic from the private VLAN. The primary port does forward broadcast and unknown unicast packets that are received from the isolated and community VLANs. For example, if the host on port 3/9 sends an unknown unicast packet, port 3/2 forwards the packet to the firewall.

If you want to remove the forwarding restriction, you can enable the primary port to forward broadcast or unknown unicast traffic, if desired, using the following CLI method. You can enable or disable forwarding of broadcast or unknown unicast packets separately.

NOTE
On Layer 2 Switches and Layer 3 Switches, you also can use MAC address filters to control the traffic forwarded into and out of the private VLAN. In addition, if you are using a Layer 2 Switch, you also can use ACLs.

NOTE
FastIron CX devices do not support ACLs on interface groups.

Command syntax

To configure the ports in the primary VLAN to forward broadcast or unknown unicast and multicast traffic received from sources outside the private VLAN, enter the following commands at the global CONFIG level of the CLI.

```
FastIron(config)# pvlan-preference broadcast flood
FastIron(config)# pvlan-preference unknown-unicast flood
```

These commands enable forwarding of broadcast and unknown-unicast packets to ports within the private VLAN. To again disable forwarding, enter a command such as the following.

```
FastIron(config)# no pvlan-preference broadcast flood
```

This command disables forwarding of broadcast packets within the private VLAN.

Syntax: `[no] pvlan-preference broadcast | unknown-unicast flood`

CLI example for Figure 90

To configure the private VLANs shown in Figure 90 on page 529, enter the following commands.

```
FastIron(config)# vlan 901
FastIron(config-vlan-901)# untagged ethernet 3/5 to 3/6
FastIron(config-vlan-901)# pvlan type community
FastIron(config-vlan-901)# exit
FastIron(config)# vlan 902
FastIron(config-vlan-902)# untagged ethernet 3/9 to 3/10
FastIron(config-vlan-902)# pvlan type isolated
FastIron(config-vlan-902)# exit
FastIron(config)# vlan 903
```
FastIron(config-vlan-903)# untagged ethernet 3/7 to 3/8
FastIron(config-vlan-903)# pvlan type community
FastIron(config-vlan-903)# exit
FastIron(config)# vlan 7
FastIron(config-vlan-7)# untagged ethernet 3/2
FastIron(config-vlan-7)# pvlan type primary
FastIron(config-vlan-7)# pvlan mapping 901 ethernet 3/2
FastIron(config-vlan-7)# pvlan mapping 902 ethernet 3/2
FastIron(config-vlan-7)# pvlan mapping 903 ethernet 3/2

Enabling broadcast, unregistered multicast or unknown unicast traffic to the private VLAN on TurboIron device

To configure the ports in primary VLAN to forward broadcast, unregistered multicast, or unknown unicast, enter the following commands:

TurboIron(config-vlan-7)# pvlan preference unknown-unicast flood
TurboIron(config-vlan-7)# pvlan preference broadcast flood

Syntax: [no] pvlan preference broadcast | unknown-unicast

These commands enable forwarding of broadcast, unregistered multicast flood, and unknown-unicast packets to ports within the private VLAN.

Dual-mode VLAN ports

Platform Support:
- FastIron X Series devices
- FCX-S devices running software release 06.0.00 and later
- TurboIron X Series devices running software release 04.1.00 and later.

Configuring a tagged port as a dual-mode port allows it to accept and transmit both tagged traffic and untagged traffic at the same time. A dual-mode port accepts and transmits frames belonging to VLANs configured for the port, as well as frames belonging to the default VLAN (that is, untagged traffic).

For example, in Figure 91, port 2/11 is a dual-mode port belonging to VLAN 20. Traffic for VLAN 20, as well as traffic for the default VLAN, flows from a hub to this port. The dual-mode feature allows traffic for VLAN 20 and untagged traffic to go through the port at the same time.

FIGURE 91 Dual-mode VLAN port example
To enable the dual-mode feature on port 2/11 in Figure 91, enter the following commands.

FastIron(config)# vlan 20
FastIron(config-vlan-20)# tagged e 2/11
FastIron(config-vlan-20)# tagged e 2/9
FastIron(config-vlan-20)# int e 2/11
FastIron(config-if-e1000-2/11)# dual-mode
FastIron(config-if-e1000-2/11)# exit

Syntax: [no] dual-mode

You can configure a dual-mode port to transmit traffic for a specified VLAN (other than the DEFAULT-VLAN) as untagged, while transmitting traffic for other VLANs as tagged. Figure 92 illustrates this enhancement.

FIGURE 92 Specifying a default VLAN ID for a dual-mode port
In Figure 92, tagged port 2/11 is a dual-mode port belonging to VLANs 10 and 20. The default VLAN assigned to this dual-mode port is 10. This means that the port transmits tagged traffic on VLAN 20 (and all other VLANs to which the port belongs) and transmits untagged traffic on VLAN 10.

The dual-mode feature allows tagged traffic for VLAN 20 and untagged traffic for VLAN 10 to go through port 2/11 at the same time. A dual-mode port transmits only untagged traffic on its default VLAN (that is, either VLAN 1, or a user-specified VLAN ID), and only tagged traffic on all other VLANs.

The following commands configure VLANs 10 and 20 in Figure 92. Tagged port 2/11 is added to VLANs 10 and 20, then designated a dual-mode port whose specified default VLAN is 10. In this configuration, port 2/11 transmits only untagged traffic on VLAN 10 and only tagged traffic on VLAN 20.

```
FastIron(config)# vlan 10 by port
FastIron(config-vlan-10)# untagged e 2/10
FastIron(config-vlan-10)# tagged e 2/11
FastIron(config-vlan-10)# exit
FastIron(config)# vlan 20 by port
FastIron(config-vlan-20)# tagged e 2/9
FastIron(config-vlan-20)# tagged e 2/11
FastIron(config-vlan-20)# exit
FastIron(config)# int e 2/11
FastIron(config-if-e1000-2/11)# dual-mode 10
FastIron(config-if-e1000-2/11)# exit
```

Syntax: `[no] dual-mode [<vlan-id>]`

Notes:
- If you do not specify a `<vlan-id>` in the `dual-mode` command, the port default VLAN is set to 1. The port transmits untagged traffic on the DEFAULT-VLAN.
- The dual-mode feature is disabled by default. Only tagged ports can be configured as dual-mode ports.
- In trunk group, either all of the ports must be dual-mode, or none of them can be.

The `show vlan` command displays a separate row for dual-mode ports on each VLAN.
Example

FastIron# show vlan
Total PORT-VLAN entries: 3
Maximum PORT-VLAN entries: 16

legend: [S=Slot]

PORT-VLAN 1, Name DEFAULT-VLAN, Priority level0, Spanning tree Off
 Untagged Ports: (S1) 1 2 3 4 5 6 7 8
 Untagged Ports: (S2) 1 2 3 4 5 6 7 8 12 13 14 15 16 17 18 19
 Untagged Ports: (S2) 20 21 22 23 24
 Tagged Ports: None
 Uplink Ports: None
 DualMode Ports: None

PORT-VLAN 10, Name [None], Priority level0, Spanning tree Off
 Untagged Ports: (S2) 10
 Tagged Ports: None
 Uplink Ports: None
 DualMode Ports: (S2) 11

PORT-VLAN 20, Name [None], Priority level0, Spanning tree Off
 Untagged Ports: None
 Tagged Ports: (S2) 9
 Uplink Ports: None
 DualMode Ports: (S2) 11

Displaying VLAN information

After you configure the VLANs, you can verify the configuration using the `show` commands described in this section.

NOTE
If a VLAN name begins with "GVRP_VLAN_", the VLAN was created by the GARP VLAN Registration Protocol (GVRP). If a VLAN name begins with "STATIC_VLAN_", the VLAN was created by GVRP and then was converted into a statically configured VLAN.

Displaying VLANs in alphanumeric order

Platform Support:
- FastIron X Series devices running software release 03.0.00 and later
- Turbolon X Series devices running software release 04.1.00 and later

In releases prior to 03.0.00 for the FastIron X Series devices, the output of some show commands list VLANs in the order that they were configured. Starting with release 03.0.00, by default, the VLANs are displayed in alphanumeric order.

For example, in releases prior to 03.0.00, if you configure VLANs in the order VLAN 10, VLAN 100, then VLAN 2, the `show run` command output displays.
Starting with release 03.0.00, VLANs are displayed in alphanumeric order, as shown in the following example.

FastIron# show run
...
vlan 10 by port
...
vlan 100 by port
...
vlan 2 by port
...

Displaying system-wide VLAN information

Use the `show vlans` command to display VLAN information for all the VLANs configured on the device.

The following example shows the display output for a TurboIron X Series device.

TurboIron 24X# show vlans
Total PORT-VLAN entries: 2
Maximum PORT-VLAN entries: 8
legend: [S=Slot]

PORT-VLAN 1, Name DEFAULT-VLAN, Priority level0, Spanning tree Off
Untagged Ports: (S2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Untagged Ports: (S2) 17 18 19 20 21 22 23 24
Untagged Ports: (S4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Untagged Ports: (S4) 17 18 19 20 21 22 23 24
Tagged Ports: None

PORT-VLAN 10, Name IP_VLAN, Priority level0, Spanning tree Off
Untagged Ports: (S1) 1 2 3 4 5 6
Tagged Ports: None

The following example shows the display for the IP subnet and IPX network VLANs configured in the examples in “Configuring an IP subnet VLAN with dynamic ports” on page 505 and “Configuring an IPX network VLAN with dynamic ports” on page 506.
Displaying VLAN information

FastIron# show vlans
Total PORT-VLAN entries: 2
Maximum PORT-VLAN entries: 8
legend: [S=Slot]

PORT-VLAN 1, Name DEFAULT-VLAN, Priority level0, Spanning tree Off
Untagged Ports: (S2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Untagged Ports: (S4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tagged Ports: None

PORT-VLAN 10, Name IP_VLAN, Priority level0, Spanning tree Off
Untagged Ports: (S1) 1 2 3 4 5 6
Tagged Ports: None

IP-subnet VLAN 1.1.1.0 255.255.255.0, Dynamic port enabled
Name: Mktg-LAN
Static ports: None
Exclude ports: None
Dynamic ports: (S1) 1 2 3 4 5 6

PORT-VLAN 20, Name IP_VLAN, Priority level0, Spanning tree Off
Untagged Ports: (S2) 1 2 3 4 5 6
Tagged Ports: None

IPX-network VLAN 0000ABCD, frame type ethernet_ii, Dynamic port enabled
Name: Eng-LAN
Static ports: None
Exclude ports: None
Dynamic ports: (S2) 1 2 3 4 5 6

The output of the show vlans command was enhanced in software release FSX 04.2.00. Ports that are tagged but are not dual-mode ports are listed as tagged ports. In the following example display output, ports 7 and 8 are dual-mode ports in port-based VLAN 4. Ports 7 and 8 also belong to port-based VLAN 3, but they are tagged ports only in VLAN 3 and are not configured as dual-mode ports.

FastIron# show vlan 4
Total PORT-VLAN entries: 5
Maximum PORT-VLAN entries: 3210
PORT-VLAN 4, Name [None], Priority level0, Spanning tree Off
Untagged Ports: None
Tagged Ports: 6 9 10 11
Uplink Ports: None
DualMode Ports: 7 8

ESX624FE+2XG Router# show vlan 3
Total PORT-VLAN entries: 5
Maximum PORT-VLAN entries: 3210
PORT-VLAN 3, Name [None], Priority level0, Spanning tree Off
Untagged Ports: None
Tagged Ports: 6 7 8 9 10
Uplink Ports: None
DualMode Ports: None

Syntax: show vlans [<vlan-id> | ethernet [<slotnum>/]<portnum>]
The <vlan-id> parameter specifies a VLAN for which you want to display the configuration information.
The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter specifies a port. If you use this parameter, the command lists all the VLAN memberships for the port.

Displaying global VLAN information

Platform Support:
- FastIron X Series devices running software release FSX 04.2.00 and later

New in software release FSX 04.2.00, the `show vlan brief` command displays the following information:

- The system-max VLAN values (maximum, default, and current)
- The default VLAN ID number
- The total number of VLANs configured on the device
- The VLAN ID numbers of the VLANs configured on the device

The following shows example output.

```
FastIron# show vlan brief
System-max vlan Params: Max(4095) Default(64) Current(3210)
Default vlan Id :1
Total Number of Vlan Configured :5
VLANs Configured :1 to 4 10
```

Syntax: `show vlan brief`

Displaying VLAN information for specific ports

Use one of the following methods to display VLAN information for specific ports.

To display VLAN information for all the VLANs of which port 7/1 is a member, enter the following command.

```
FastIron# show vlans e 7/1
Total PORT-VLAN entries: 3
Maximum PORT-VLAN entries: 8
legend: [S=Slot]

PORT-VLAN 100, Name [None], Priority level0, Spanning tree Off
  Untagged Ports: (S7)  1  2  3  4
  Tagged Ports: None
```

Syntax: `show vlans [<vlan-id>] | ethernet [<slotnum>/]<portnum>`

The `<vlan-id>` parameter specifies a VLAN for which you want to display the configuration information.

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter specifies a port. If you use this parameter, the command lists all the VLAN memberships for the port.
Displaying a port VLAN membership

Platform Support:

- FastIron X Series devices running software release FSX 04.2.00 and later

To display VLAN membership for a specific port on the device, enter a command such as the following.

```
FastIron# show vlan brief ethernet 7
Port 7 is a member of 3 VLANs
VLANs 3 to 4 10
```

Syntax: `show vlan brief ethernet [<slotnum>]/<portnum>`
The `<slotnum>` parameter is required on chassis devices.

Displaying a port dual-mode VLAN membership

Platform Support:

- FastIron X Series devices running software release FSX 04.2.00 and later

Starting in software release FSX 04.2.00, the output of the `show interfaces` command lists dual-mode configuration and corresponding VLAN numbers. In releases prior to FSX 04.2.00, tagged and untagged configurations were listed, but not dual-mode configurations. The following shows an example output.

```
FastIron# show interfaces ethernet e7
GigabitEthernet7 is down, line protocol is down
  Hardware is GigabitEthernet, address is 0012.f2a8.4706 (bia 0012.f2a8.4706)
  Configured speed auto, actual unknown, configured duplex fdx, actual unknown
  Configured mdi mode AUTO, actual unknown
  Member of 3 L2 VLANs, port is dual mode in Vlan 4, port state is BLOCKING
```

Syntax: `show interfaces ethernet [<slotnum>]/<portnum> [to [<slotnum>]/<portnum> [ethernet [<slotnum>]/<portnum>...]]`
The `<slotnum>` parameter is required on chassis devices.

Displaying port default VLAN IDs (PVIDs)

Platform Support:

- FastIron X Series devices running software release FSX 04.2.00 and later

Starting in software release FSX 04.2.00, the output of the `show interfaces brief` command lists the port default VLAN IDs (PVIDs) for each port. PVIDs are displayed as follows:

- For untagged ports, the PVID is the VLAN ID number.
- For dual-mode ports, the PVID is the dual-mode VLAN ID number.
- For tagged ports without dual-mode, the PVID is always Not Applicable (NA).
Displaying VLAN information

Syntax: `show interfaces brief [ethernet [slotnum]/]<portnum> [to [slotnum]/]<portnum> [ethernet [slotnum]/]<portnum>...]`

The `<slotnum>` parameter is required on chassis devices.

<table>
<thead>
<tr>
<th>Port</th>
<th>Link</th>
<th>State</th>
<th>Dupl</th>
<th>Speed</th>
<th>Trunk</th>
<th>Tag</th>
<th>Pvid</th>
<th>Pri</th>
<th>MAC</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up</td>
<td>Forward Full 1G</td>
<td>None</td>
<td>No 1</td>
<td>0</td>
<td>0012.f2a8.4700</td>
<td>a12345678901</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Up</td>
<td>Forward Full 1G</td>
<td>None</td>
<td>Yes 1</td>
<td>0</td>
<td>0012.f2a8.4701</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Up</td>
<td>Forward Full 1G</td>
<td>None</td>
<td>Yes NA</td>
<td>0</td>
<td>0012.f2a8.4702</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Up</td>
<td>Forward Full 1G</td>
<td>None</td>
<td>Yes NA</td>
<td>0</td>
<td>0012.f2a8.4703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Up</td>
<td>Forward Full 1G</td>
<td>None</td>
<td>No 2</td>
<td>0</td>
<td>0012.f2a8.4704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Down</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>NA</td>
<td>0</td>
<td>0012.f2a8.4705</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Down</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Yes 4</td>
<td>0</td>
<td>0012.f2a8.4706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Down</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Yes 4</td>
<td>0</td>
<td>0012.f2a8.4707</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Down</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Yes NA</td>
<td>0</td>
<td>0012.f2a8.4708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Down</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Yes NA</td>
<td>0</td>
<td>0012.f2a8.4709</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Displaying VLAN information
Trunk group overview

The Trunk group feature allows you to manually configure multiple high-speed load-sharing links between two Brocade Layer 2 Switches or Layer 3 Switches or between a Brocade Layer 2 Switch and Layer 3 Switch and a server.

In addition to enabling load sharing of traffic, trunk groups provide redundant, alternate paths for traffic if any of the segments fail.

- **Trunk groups** are manually-configured aggregate links containing multiple ports.
- **802.3ad link aggregation** is a protocol that dynamically creates and manages trunk groups.

NOTE
You can use both types of trunking on the same device. However, you can use only one type of trunking for a given port. For example, you can configure port 1/1 as a member of a static trunk group or you can enable 802.3ad link aggregation on the port, but you cannot do both.

Figure 93 shows an example of a configuration that uses trunk groups.
The ports in a trunk group make a single logical link. Therefore, all the ports in a trunk group must be connected to the same device at the other end.

Trunk group connectivity to a server

To support termination of a trunk group, the server must have either multiple network interface cards (NICs) or either a dual or quad interface card installed. The trunk server is designated as a server with multiple adapters or a single adapter with multiple ports that share the same MAC and IP address.

Figure 94 shows an example of a trunk group between a server and a Brocade device.
FIGURE 94 Trunk group between a server and a Brocade compact Layer 2 Switch or Layer 3 Switch

Multi-homing adapter has the same IP and MAC address

Trunk group rules

Table 93 lists the maximum number of trunk groups you can configure on a Brocade device and the valid number of ports in a trunk group. The table applies to static and LACP trunk ports.

TABLE 93 Trunk group support

<table>
<thead>
<tr>
<th>Model</th>
<th>Maximum number of Gbps trunk groups</th>
<th>Valid number of ports in a group</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESX424</td>
<td>13</td>
<td>2, 3, 4, 5, 6, 7, or 8 – IPv6 devices running software release 04.3.00 or later.</td>
</tr>
<tr>
<td>FESX624</td>
<td>2, 3, or 4 – Applies to:</td>
<td></td>
</tr>
<tr>
<td>FWSX424</td>
<td>2, 3, or 4 – Applies to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IPv4 devices running software release 04.2.00 or later</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IPv6 devices running software release FSX 04.2.00 to 04.2.00x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 or 4 – IPv4 and IPv6 devices running pre-release FSX 04.2.00.</td>
<td></td>
</tr>
<tr>
<td>FESX448</td>
<td>25</td>
<td>2, 3, 4, 5, 6, 7, or 8 – IPv6 devices running software release 04.3.00 or later.</td>
</tr>
<tr>
<td>FESX648</td>
<td>2, 3, or 4 – Applies to:</td>
<td></td>
</tr>
<tr>
<td>FWSX448</td>
<td>2, 3, or 4 – Applies to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IPv4 devices running software release 04.2.00 or later</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IPv6 devices running software release FSX 04.2.00 to 04.2.00x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 or 4 – IPv4 and IPv6 devices running pre-release FSX 04.2.00.</td>
<td></td>
</tr>
<tr>
<td>FGS624P and</td>
<td>13</td>
<td>2, 3, 4, 5, 6, 7, or 8</td>
</tr>
<tr>
<td>FGS624XGP</td>
<td>2, 3, 4, 5, 6, 7, or 8</td>
<td></td>
</tr>
<tr>
<td>FGS648P</td>
<td>25</td>
<td>2, 3, 4, 5, 6, 7, or 8</td>
</tr>
</tbody>
</table>
• You cannot configure a port as a member of a trunk group if 802.3ad link aggregation is enabled on the port.

• Unlike the FES and other Brocade devices, trunk groups on devices listed in Table 93 are not classified as switch trunk groups or server trunk groups.

• For FastIron WS devices, mixed speed LACP trunks, (i.e. trunks with member ports that are a mix of 1Gbps and 10/100Mbps), are not allowed and if configured will not come up.

• The following rules apply to multi-slot trunk groups on FastIron X Series devices:

 • Multi-slot trunk groups are supported on GbE ports on FastIron X Series devices, and on 10-GbE ports starting in software release FSX 03.2.00.

 • Support for multi-slot trunk groups with one port per module was added in software release FSX 04.0.00. Previous releases support a minimum of two ports per module. The syntax is the same as for regular multi-slot trunks, except that the port range for each slot is a single port. Refer to “Example 3: Configuring a multi-slot trunk group with one port per module” on page 558.

 • Table 94 shows multi-slot trunk group support on FastIron X Series devices:

<table>
<thead>
<tr>
<th>Model</th>
<th>Maximum number of Gbps trunk groups</th>
<th>Valid number of ports in a group</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSX SX 800</td>
<td>31</td>
<td>2, 3, 4, 5, 6, 7, or 8 – IPv6 devices running software release 04.3.00 or later.</td>
</tr>
<tr>
<td>FSX SX 1600</td>
<td>32</td>
<td>2 or 4 – IPv4 and IPv6 devices running pre-release FSX 04.2.00.</td>
</tr>
<tr>
<td>Turbolron X Series</td>
<td>31</td>
<td>2, 3, 4, 5, 6, 7, or 8</td>
</tr>
<tr>
<td>FLS624</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>FLS648</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>FWS624</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>FWS648</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>FGS624-STK</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>FGS648-STK</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>FLS624-STK</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>FLS648-STK</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>FCX</td>
<td>32</td>
<td>2, 3, 4, 5, 6, 7, 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software release</th>
<th>Valid number of slots in a multi-slot trunk group</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 devices</td>
<td>IPv4 devices</td>
</tr>
<tr>
<td>FSX 04.3.00 and later</td>
<td>2, 3, 4, 5, 6, 7, or 8</td>
</tr>
<tr>
<td>FSX 04.2.00 – 04.2.00x</td>
<td>2, 3, or 4</td>
</tr>
<tr>
<td>Pre-release FSX 04.2.00</td>
<td>2</td>
</tr>
</tbody>
</table>
- On Turbolron X Series devices, port assignment on a module need not be consecutive. The port range can contain gaps. For example, you can configure ports 1, 3, and 4 (excluding 2). Refer to “Flexible trunk group membership” on page 551.
- Port assignment on a module need not be consecutive. The port range can contain gaps. For example, you can configure ports 1, 3, and 4 (excluding 2). Refer to “Flexible trunk group membership” on page 551.
- For FGS devices, trunking is supported on the 1-port 10-GbE module (port 0/3/1).
- Although the FastIron devices have port ranges, they do not apply to trunk groups.
- You can select any port to be the primary port of the trunk group.
- You cannot combine Gbps and 10-Gbps ports in the same trunk group.
- Make sure the device on the other end of the trunk link can support the same number of ports in the link. For example, if you configure a three-port trunk group on the FESX and the other end is a different type of switch, make sure the other switch can support a three-port trunk group.
- All the ports must be connected to the same device at the other end.
- All trunk group member properties must match the lead port of the trunk group with respect to the following parameters:
 - port tag type (untagged or tagged port)
 - statically configured port speed and duplex
 - QoS priority
- To change port parameters, you must change them on the primary port. The software automatically applies the changes to the other ports in the trunk group.
- The following restrictions apply to FWS 624 and FWS 648 products:
 - In FWS 624 and 648 devices, the first four ports are 1 Gbps, the remaining ports are 10/100 Mbps. For these devices, with both static and dynamic (LACP) trunking, all members of the trunk should be either the 1 Gbps ports or the 10/100 Mbps ports.

Trunk group configuration examples

Figure 95 shows some examples of valid 2-port trunk group links between devices. The trunk groups in this example are switch trunk groups between two Brocade devices. Ports in a valid 2-port trunk group on one device are connected to two ports in a valid 2-port trunk group on another device. The same rules apply to 3-port, 4-port, etc., trunk groups.
FIGURE 95 Examples of 2-port and 3-port trunk groups

Figure 96 shows examples of two Chassis devices connected by multi-slot trunk groups.
Flexible trunk group membership

This section describes flexible trunk group membership on FastIron devices and Turbolron X Series devices.
FastIron X Series and Turbolron X Series devices

Trunking is supported on non-consecutive ports in a module. For example, you can configure ports 2/4, 2/6, and 2/7 (excluding 2/5) together on a module as a trunk group. In releases prior to the above, the ports in a trunk group must be consecutive. This feature is supported on static and LACP trunk ports, as well as GbE and 10-GbE ports.

Flexible trunk ports follow the same rules as listed in “Trunk group rules” on page 547.

Configuration example
To configure a 4-port trunk with non-consecutive ports, enter a command such as the following.

```
FastIron(config)#trunk ethe 1/7 ethe 1/9 ethe 1/11 ethe 1/21
```

This creates a 4-port trunk group with the following members.

1/7, 1/9, 1/11, 1/21

Syntax: `[no] trunk ethernet [<slotnum>/]<portnum> ethernet [<slotnum>/]<portnum> | to ethernet [<slotnum>/]<portnum>...

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

You can list all of the ports individually, use the keyword to to specify ranges of ports, or a combination of both.

FGS, FWS, and FLS, FGS-STK, FLS-STK and FCX compact switches

These devices support flexible trunk group membership. This feature eliminates the requirement for port membership to be consecutive, and allows the trunking of ports on non-consecutive interfaces. It also allows port 0/3/1 on the FGS624XGP models to be added to a trunk group. This feature is supported on static and LACP trunk ports, as well as GbE and 10-GbE ports.

NOTE

Gbps and 10 Gbps ports cannot be grouped together.

Configuration examples
To configure a 4-port trunk on a FastIron GS device, enter the following command.

```
FGS624 Switch(config)#trunk ethe 0/1/7 ethe 0/1/9 ethe 0/1/11 ethe 0/1/21
```

This creates a 4-port trunk group with the following members.

0/1/7, 0/1/9, 0/1/11, 0/1/21

Syntax: `[no] trunk ethernet <port-list>

For `<port-list>`, specify the ports in the format `<stack-unit/slotnum/portnum>`

You can list all of the ports individually, use the keyword to to specify ranges of ports, or a combination of both.

You can configure up to 8 ports in a trunk group (each trunk group should have a minimum of 2 ports). Any number of members between 2 and 8 is supported for 1 Gbps port trunk groups, and a maximum of 2 members for 10 Gbps trunk groups.

The FLS supports the following 10 Gbps trunk groups:
- The FLS624 supports trunks 0/2/1-0/3/1, 0/3/1-0/4/1, or 0/2/1 - 0/4/1
- The FLS648 supports trunks 0/2/1 - 0/3/1

FGS devices support the following 10 Gbps trunk groups:
- The FGS624P supports trunks 0/2/1 - 0/2/2
- The FGS624XGP supports trunks 0/2/1 - 0/2/2, 0/2/1 - 0/3/1, 0/2/2 - 0/3/1
- The FGS648P supports trunks 0/2/1 - 0/2/2

FGS-STK and FLS-STK devices can support a large number of trunk groups across an IronStack.

FWS devices support the following 10 Gbps trunk groups:
- The FWS624 supports trunks 0/2/1-0/3/1, 0/3/1-0/4/1, or 0/2/1 - 0/4/1
- The FWS648 supports trunks 0/2/1 - 0/3/1

Viewing the first and last ports in a trunk group

Output for many of the `show` commands will show the first and last port in a trunk as `FirstPort-LastPort`, if the ports are consecutive, and `FirstPort*LastPort` if the ports are not consecutive.

With the configuration above, output from the `show mac` command resembles the following, which shows the first and last ports.

```
FastIron#show mac
Total active entries from all ports = 1
MAC-Address Port Type Index
0007.e910.c201 0/1/7-0/1/21 Dynamic 2920
```

For a trunk group with members 0/1/7 to 0/1/9, the output from the `show mac` command resembles the following.

```
FastIron#show mac
Total active entries from all ports = 1
MAC-Address Port Type Index
0007.e910.c201 0/1/7-0/1/9 Dynamic 2920
```

Trunk group load sharing

Unlike other Brocade devices, trunk groups on the FastIron devices and TurboIron X Series devices are not classified as switch trunk groups or server trunk groups.

Brocade devices load-share across the ports in the trunk group. The method used for the load sharing depends on the following:
- Device type – Chassis device or Stackable device
- Traffic type – Layer 2 or Layer 3
- Software version your device is running

NOTE
Layer 2 and Layer 3 AppleTalk traffic is not load-balanced. Layer 3 routed IP or IPX traffic also is not load balanced. These traffic types will however still be forwarded on the trunk ports.
Note regarding IPv6

Brocade devices that support IPv6 take the IPv6 address for a packet into account when sharing traffic across a trunk group. The load sharing is performed in the same way it is for IPv4 addresses; that is; trunk types for which traffic load is shared based on IPv4 address information can now use IPv6 addresses to make the load sharing decision.

Load sharing occurs as described in Table 95 or Table 96.

Load sharing for unknown unicast, multicast, and broadcast traffic

Brocade devices load balance unknown unicast, multicast, and broadcast traffic based on the source port and VLAN ID and not on any source or destination information in the packet.

For example, when the switch receives unknown unicast, multicast, and broadcast packets, and the packets are from the same source port, the packets are forwarded to the same port of the trunk group. Conversely, when the switch receives unknown unicast, multicast, and broadcast packets, and the packets are from different source ports, the packets are load-balanced across all the ports of the trunk group.

Note that this does not apply to known unicast traffic, which is always load balanced across all the ports of a trunk group based on the traffic's Layer 2 and Layer 3 source and destination parameters.

How trunk load sharing works

Load balancing procedures differ depending on the software version your device is running. In earlier releases, the Brocade device load balances all bridged traffic based on source and destination MAC addresses. In subsequent releases, the load balancing method for bridged traffic varies depending on the traffic type.

NOTE

There is no change in load balancing for routed traffic, which is always based on the source and destination IP addresses and protocol field (not applicable for FastIron GS and FastIron LS).

NOTE

Table 95 through Table 99 show how the different Brocade devices load balance traffic.

Table 95 shows how the FastIron X Series devices load balance traffic across the ports in a trunk group, if the device is running FESX/FWSX software release 02.2.00 or later or FSX software release 02.1.00 or later.

NOTE

Table 95 does not include unknown unicast, multicast, and broadcast traffic. Refer to “Load sharing for unknown unicast, multicast, and broadcast traffic”
Table 95 shows how the FESX and FSX load balance traffic across the ports in a trunk group, if the device is running a FESX/FWSX software release prior to 02.2.00 or a FSX software release prior to 02.1.00.

Note
Table 96 does not include unknown unicast, multicast, and broadcast traffic. Refer to “Load sharing for unknown unicast, multicast, and broadcast traffic”

Table 96 shows how the FESX and FSX load balance traffic across the ports in a trunk group, if the device is running a FESX/FWSX software release prior to 02.2.00 or a FSX software release prior to 02.1.00.

Table 96
Trunk group load sharing on FSX devices and FESX/FWSX devices (early releases)

<table>
<thead>
<tr>
<th>Traffic layer</th>
<th>Traffic type</th>
<th>Load-sharing basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td>All traffic types</td>
<td>Destination MAC address, Source MAC address</td>
</tr>
<tr>
<td>Layer 3</td>
<td>IP</td>
<td>Destination IP address, Source MAC address, Protocol</td>
</tr>
<tr>
<td></td>
<td>All other traffic types</td>
<td>Destination MAC address, Source MAC address</td>
</tr>
</tbody>
</table>

Table 97 describes how the FCX, FGS, FLS, FGS-STK and FLS-STK devices load balance traffic.

Table 97 describes how the FCX, FGS, FLS, FGS-STK and FLS-STK devices load balance traffic.

Table 97
Trunk group load sharing on FCX, FGS, FGS-STK, FLS and FLS-STK devices

<table>
<thead>
<tr>
<th>Traffic type</th>
<th>Load balancing method</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 Bridged Non-IP</td>
<td>Source MAC, Destination MAC</td>
</tr>
<tr>
<td>L2 Bridged IPv4 TCP/UDP</td>
<td>Source IP, Destination IP, Source TCP/UDP Port, Destination TCP/UDP Port</td>
</tr>
<tr>
<td>L2 Bridged IPv4 Non-TCP/UDP</td>
<td>Source IP, Destination IP</td>
</tr>
<tr>
<td>L2 Bridged IPv6 TCP/UDP</td>
<td>Source IP, Destination IP, Flow Label, Source TCP/UDP Port, Destination TCP/UDP Port</td>
</tr>
<tr>
<td>L2 Bridged IPv6 Non-TCP/UDP</td>
<td>Source IP, Destination IP, Flow Label</td>
</tr>
</tbody>
</table>

Table 98 describes how the TurboIron X Series devices load balance traffic.
Configuring a trunk group

1. Disconnect the cables from those ports on both systems that will be connected by the trunk group. Do not configure the trunk groups with the cables connected.

NOTE
If you connect the cables before configuring the trunk groups and then reboot, the traffic on the ports can create a spanning tree loop.

2. Configure the trunk group on one of the two Layer 2 Switches or Layer 3 Switches involved in the configuration.

NOTE
Downtime is incurred when adding a new port to a trunk group. It is suggested that you schedule the addition of ports to a trunk group to minimize downtime and its impact to the production network.

3. Save the configuration changes to the startup-config file.

Adding Layer 2 information to trunk hash output

FastIron devices support the option to include Layer 2 information in the trunk hash calculation for IP packets. Use the following new CLI command.

Syntax: [no] trunk hash-options include-layer2

This command adds Layer 2 information (text in bold) to the following load-balancing parameters.

1. Non-IP: Source MAC, Destination MAC
2. IPv4 TCP/UDP: Source IP, Destination IP, Source TCP/UDP Port, Destination TCP/UDP Port, **Source MAC, Destination MAC**
3. IPv4 Non-TCP/UDP: Source IP, Destination IP, **Source MAC, Destination MAC**
4. IPv6 TCP/UDP: Source IP, Destination IP, Flow Label, Source TCP/UDP Port, Destination TCP/UDP Port, **Source MAC, Destination MAC**
5. IPv6 Non-TCP/UDP: Source IP, Destination IP, Flow Label, **Source MAC, Destination MAC**

Configuring a trunk group

Follow the steps given below to configure a trunk group.

1. Disconnect the cables from those ports on both systems that will be connected by the trunk group. Do not configure the trunk groups with the cables connected.

NOTE
If you connect the cables before configuring the trunk groups and then reboot, the traffic on the ports can create a spanning tree loop.

2. Configure the trunk group on one of the two Layer 2 Switches or Layer 3 Switches involved in the configuration.

NOTE
Downtime is incurred when adding a new port to a trunk group. It is suggested that you schedule the addition of ports to a trunk group to minimize downtime and its impact to the production network.

3. Save the configuration changes to the startup-config file.
4. Dynamically place the new trunk configuration into effect by entering the **trunk deploy** command at the global CONFIG level of the CLI.

5. If the device at the other end of the trunk group is another Layer 2 Switch or Layer 3 Switch, repeat Steps 2 – 4 for the other device.

6. When the trunk groups on both devices are operational, reconnect the cables to those ports that are now configured as trunk groups, starting with the first port (lead port) of each trunk group.

7. To verify the link is operational, use the **show trunk** command.

CLI syntax

The following is the CLI syntax for creating a trunk group. Configuration examples are shown in later sections of this chapter.

Syntax:

```
[no] trunk ethernet [stack-unit]/[slotnum]/primary-portnum to [slotnum]/portnum [ethernet stack-unit]/[slotnum]/primary-portnum to [stack-unit]/[slotnum]/portnum
```

Syntax: **trunk deploy**

Each **ethernet** parameter introduces a port group. Enter the slot number (if applicable) and the port number of the Ethernet port.

The **<stack-unit>** parameter is required on FGS and FLS devices running software release 03.0.00 and later, FWS devices running software release 04.3.00 and later and FGS and FLS stackable devices. Refer to “Configuring trunk groups for FastIron stackable devices” on page 559.

The **<slotnum>** parameter is required on chassis devices.

The **<primary-portnum> to <portnum>** parameters specify a port group. Notice that each port group must begin with a primary port. After you enter this command, the primary port of the first port group specified (which must be the group with the lower port numbers) becomes the primary port for the entire trunk group.

To configure a trunk group consisting of two groups of two ports each, enter commands such as the following.

```
FastIron(config)#trunk ethernet 1/1 to 1/2 ethernet 3/3 to 3/4
Trunk will be created in next trunk deploy
FastIron(config)#write memory
FastIron(config)#trunk deploy
```

Example 1: Configuring the trunk groups shown in Figure 93

To configure the trunk groups shown in **Figure 93**, enter the following commands. Notice that the commands are entered on multiple devices.

To configure the trunk group link between FSX1 and the FESX, enter the following commands.

NOTE

The text shown in italics in the CLI example below shows messages echoed to the screen in answer to the CLI commands entered.
Configuring a trunk group

Example 2: Configuring a trunk group that spans two Gbps Ethernet modules in a chassis device

This section shows how to configure a trunk group that spans two modules in a chassis device.

Multi-slot trunk groups are supported on 1-GbE ports, 10-GbE ports (starting in software release FSX 03.2.00), as well as on static and LACP trunk ports. For multi-slot trunk group rules, refer to Table 94 on page 548.

To configure a trunk group consisting of two groups of ports, 1/1 – 1/2 on module 1 and 4/5 – 4/6 on module 4, enter the following commands.

```
FastIron(config)#trunk ethernet 1/1 to 1/2 ethernet 4/5 to 4/6
Trunk will be created in next trunk deploy
FastIron(config)#write memory
FastIron(config)#trunk deploy
```

NOTE
The `trunk deploy` command dynamically places trunk configuration changes into effect, without a software reload.

Example 3: Configuring a multi-slot trunk group with one port per module

You can select one port per module in a multi-slot trunk group. Software releases prior to 04.0.00 support a minimum of two ports per module in a multi-slot trunk group.

This feature is supported on GbE and 10-GbE ports, as well as on static and LACP trunk ports. For multi-slot trunk group rules, refer to Table 94 on page 548.

To configure a two-port multi-slot trunk group consisting of ports 1/1 on module 1 and 2/1 on module 2, enter the following commands.

```
FastIron(config)#trunk e 1/5 to 1/8
Trunk will be created in next trunk deploy
FastIron(config)#write memory
FastIron(config)#trunk deploy
```

To configure the trunk group link between FSX2 and the server, enter the following commands.

```
FastIron(config)#trunk e 1/2 to 1/4
Trunk will be created in next trunk deploy
FastIron(config)#write memory
FastIron(config)#trunk deploy
```

You then configure the trunk group on the FESX.

```
FastIron(config)#trunk ethernet 17 to 18
Trunk will be created in next trunk deploy
FastIron(config)#write memory
FastIron(config)#trunk deploy
```

NOTE
The `trunk deploy` command dynamically places trunk configuration changes into effect, without a software reload.
Configuring a trunk group

Example 4: Configuring a trunk group of 10 Gbps Ethernet ports

You can configure 10 Gbps Ethernet ports together in a trunk group.

To configure a trunk group containing two 10 Gbps Ethernet ports, enter commands such as the following.

```plaintext
FastIron(config)#trunk ethernet 1/1 to 2/1
Trunk will be created in next trunk deploy
FastIron(config)#write memory
FastIron(config)#trunk deploy
```

Notice that the groups of ports meet the criteria for a multi-slot trunk group. Each group contains the same number of ports (two) and begins on a primary port (1/1 and 3/3).

Syntax:
```
```

Syntax: trunk deploy

The <stack-unit> parameter is required on FGS and FLS devices running software release 03.0.00 and later, FWS devices running software release 04.3.00 and later and FGS and FLS stackable devices. Refer to “Configuring trunk groups for FastIron stackable devices” on page 559.

The <primary-portnum> parameter specifies the trunk group primary port.

The <secondary-portnum> parameter specifies the secondary port in the trunk group.

NOTE
Two-port trunk groups are supported for 10 Gbps Ethernet. You cannot specify more than two ports.

To display configuration information and load-sharing statistics for the trunk group, enter the show trunk command. Refer to “Displaying trunk group configuration information” on page 565.

Configuring trunk groups for FastIron stackable devices

In a Brocade IronStack system, a trunk group may have port members distributed across multiple stack units. Both static and dynamic trunking are supported.

NOTE
Cascaded trunks between stack units are not currently supported.

CLI syntax for IronStack devices

Syntax:
```
```

FastIron and TurboIron 24X Configuration Guide
53-1001719-01
Configuring a trunk group

- `<stack-unit>` - the number of the stack unit (1-8)
- `<slotnum>` - a specific slot number for the stack unit
- `<primary-portnum>` to `<portnum>` - These parameters specify a port group. Each port group must begin with a primary port. The primary port of the first port group specified in the command (the group with the lowest port numbers) becomes the primary port for the entire trunk. The `<stack-unit>` and `<slotnum>` parameters are required for members of an IronStack.

IronStack static trunk group configuration notes

These notes apply to FGS-STK, FLS-STK, and FCX devices.

- If a stack unit fails, or is removed from the stack its static trunk configuration becomes a reserved configuration on the Active Controller. Any remaining ports of the static trunk in the IronStack continue to function.
- When a new stack unit is added to an IronStack, the new unit receives running configuration and trunk-related information, including a list of ports that are up and are members of a trunk, from the Active Controller.
- Before merging two IronStacks, make sure that there are no static trunks configured between them. This can result in self-looped ports.
- When an IronStack with static trunks partitions into multiple IronStacks, loops and forwarding errors may occur. In these cases, user intervention is required to remove the loops.
- 10 Gbps links support up to eight ports in a trunk for stackable units.

Static trunk group configuration for an IronStack

The following example shows how to configure a static trunk group for units in an IronStack.

```
STK1(config)#trunk ethe 1/1/1 ethe 2/1/4 ethe 3/1/7 ethe 4/1/2 ethe 5/1/5 ethe 6/1/7 ethe 7/1/2 ethe 7/1/5
Trunk will be created in next trunk deploy.
STK1(config)#trunk deploy
STK1(config)#show trunk
```

Configured trunks:

Trunk ID: 1
Hw Trunk ID: 1
Ports_Configured: 8
Primary Port Monitored: Jointly

<table>
<thead>
<tr>
<th>Ports</th>
<th>Port Names</th>
<th>Port_Status</th>
<th>Monitor</th>
<th>Rx Mirr Port</th>
<th>Tx Mirr Port</th>
<th>Monitor Dir</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2/1/4</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3/1/7</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4/1/2</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5/1/5</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6/1/7</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7/1/2</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7/1/5</td>
<td>none</td>
<td>enable</td>
<td>off</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Operational trunks:

Trunk ID: 1
Hw Trunk ID: 1
Duplex: None
Speed: None
Tag: Yes
Priority: level0
Active Ports: 0

Ports 1/1/1 2/1/4 3/1/7 4/1/2 5/1/5 6/1/7 7/1/2 7/1/5
Link_Status active active active active active active active active
port_state Forward Forward Forward Forward Forward Forward Forward Forward

Additional trunking options

The following trunking options can be performed on ports in deployed trunks. These options are supported on static trunk ports. Except where noted, these options are also supported on dynamic (LACP) trunk ports on FastIron X Series devices starting in release FSX 04.3.00. Note that these options are not supported on LACP trunk ports on Turbolron Series devices.

The additional trunking options are as follows:

- Naming a trunk port
- Disabling or re-enabling a trunk port
- Deleting a static trunk group (applies to static trunks only)
- Specifying the minimum number of ports in a trunk group (applies to static trunks only)
- Monitoring a trunk port
- Configuring outbound rate shaping on a trunk port
- Enabling sFlow forwarding on an individual port in a trunk
- Setting the sFlow sampling rate on an individual port in a trunk

NOTE

Depending on the operational state of LACP-enabled ports, at any time, these ports may join a trunk group, change trunk group membership, exit a trunk group, or possibly never join a trunk group. Therefore, before configuring trunking options on LACP-enabled ports (e.g., naming the port, disabling the port, etc.), verify the actual trunk group port membership using the `show trunk` command. To view the status of LACP, use the `show link-aggregate` command.

Naming a trunk port

To name an individual port in a trunk group, enter a command such as the following at the trunk group configuration level.

```
FastIron(config)#trunk e 4/1 to 4/4
FastIron(config-trunk-4/1-4/4)#port-name customer1 ethernet 4/2
```

This command assigns the name “customer1” to port 4/2 in the trunk group consisting of ports 4/1 – 4/4.

Syntax: `[no] port-name <ASCII string> ethernet [stack-unit]/[slotnum]/portnum

The `<ASCII string>` parameter specifies the port name. The name can be up to 49 characters long. The `<stack-unit>` parameter is required for FGS, FLS, FGS-STK and FLS-STK, and FCX devices. The `<slotnum>` parameter is required for chassis devices.
The `<portnum>` parameter is a valid port in the trunk group.

Disabling or re-enabling a trunk port

This feature is supported on individual ports of a static trunk group.

You can disable or re-enable individual ports in a trunk group. To disable an individual port in a trunk group, enter commands such as the following at the trunk group configuration level.

```
FastIron(config)#trunk e 4/1 to 4/4
FastIron(config-trunk-4/1-4/4)#config-trunk-ind
FastIron(config-trunk-4/1-4/4)#disable ethernet 4/2
```

Syntax: `[no] config-trunk-ind

Syntax: `[no] disable ethernet [<stack-unit>/<slotnum>/<portnum>]

The `<stack-unit>` parameter is required for FGS, FLS, FGS-STK and FLS-STK, and FCX devices.

The `config-trunk-ind` command enables configuration of individual ports in the trunk group. If you do not use this command, the `disable` and `enable` commands will be valid only for the primary port in the trunk group and will disable or enable all ports in the trunk group. You need to enter the `config-trunk-ind` command only once in a trunk group. After you enter the command, all applicable port configuration commands apply to individual ports only.

NOTE

If you enter `no config-trunk-ind`, all port configuration commands are removed from the individual ports and the configuration of the primary port is applied to all the ports. Also, once you enter the `no config-trunk-ind` command, the `enable`, `disable`, and `monitor` commands are valid only on the primary port and apply to the entire trunk group.

The `disable` command disables the port. The states of other ports in the trunk group are not affected.

If you have configured a name for the trunk port, you can specify the port name, as shown in the following example.

```
FastIron(config-trunk-4/1-4/4)#config-trunk-ind
FastIron(config-trunk-4/1-4/4)#disable customer1
```

Syntax: disable `<portname>`

To enable an individual port in a trunk group, enter commands such as the following at the trunk group configuration level.

```
FastIron(config-trunk-4/1-4/4)#config-trunk-ind
FastIron(config-trunk-4/1-4/4)#enable ethernet 4/2
```

Syntax: enable ethernet [<stack-unit>/<slotnum>/<portnum>]

The `<stack-unit>` parameter is required for FGS, FLS, FGS-STK and FLS-STK, and FCX devices.

Syntax: enable `<portname>`

Disabling or re-enabling a range or list of trunk ports

To disable a range of ports in a trunk group, enter commands such as the following:

```
FastIron(config)#trunk ethernet 2/1 to 2/4
FastIron(config-trunk-2/1-2/4)#config-trunk-ind
FastIron(config-trunk-2/1-2/4)#disable ethernet 2/3 to 2/4
```
This command disables ports 2/3 – 2/4 in trunk group 2/1 – 2/4.

To disable a list of ports, enter a command such as the following.

```
FastIron(config-trunk-2/1-2/4)#disable ethernet 2/1 ethernet 2/3 ethernet 2/4
```

This command disables ports 2/1, 2/3, and 2/4 in the trunk group.

You can specify a range and a list on the same command line. For example, to re-enable some trunk ports, enter a command such as the following.

```
FastIron(config-trunk-2/1-2/4)#enable ethernet 2/1 to 2/2 ethernet 2/4
```

Syntax:
```
[no] config-trunk-ind
```

Syntax:
```
[no] disable ethernet [<stack-unit>]/<slotnum>/| ethernet [<slotnum>] <portnum>
```

Syntax:
```
[no] enable ethernet [<stack-unit>]/<slotnum>/| ethernet [<slotnum>] <portnum>
```

The `<stack-unit>` parameter is required for FGS, FLS, FGS-STK and FLS-STK, and FCX devices.

The `<slotnum>` parameter is required on chassis devices.

The to `<portnum>` parameter indicates that you are specifying a range. Specify the lower port number in the range first, then to, then the higher port number in the range.

The `<portnum>` parameter specifies an individual port. You can enter this parameter multiple times to specify a list, as shown in the examples above.

Modifying Trunk Group Membership

You can change port membership by removing individual ports from the trunk group. To remove a port from a trunk group, use one of the following methods.

NOTE
Removing individual trunk ports is supported only on the ServerIron.

USING THE CLI

To remove ports 1/3 and 1/4 from the trunk group, enter the following command:

```
FESX Router(config)# no trunk ethernet 1/3 to 1/4
```

Syntax:
```
no trunk ethernet | pos <portnum> [to <portnum>]
```

The `<portnum>` parameter indicates the port you are removing.

NOTE
Make sure you enter the lower port in the range before the “to” and the higher port in the range after the “to”.

As a shortcut, you also can enter just the lower port in the range. The software automatically removes all higher ports in addition to the specified port. For example, to remove ports 1/3 and 1/4, you can enter the following command:

```
FESX Router(config)# no trunk ethernet 1/3
```

The rules regarding trunk group membership are the same as in earlier software releases.

Therefore, for trunk group 1/1 – 1/4, the following commands are not valid:

```
FESX Router(config)# no trunk ethernet 1/2
```
Or

FESX Router(config)# no trunk ethernet 1/2 to 1/4
These commands are invalid because the trunk group cannot contain only a single port. These commands, if the software allowed them, would result in a trunk group consisting only of port 1/1.

On most devices, trunk groups can contain two ports or four ports but cannot contain only three ports. Therefore, the following command also is invalid for trunk group 1/1 – 1/4:

FESX Router(config)# no trunk ethernet 1/4
This command is invalid because it would result in a trunk group containing three ports, 1/1 – 1/3.

Deleting a static trunk group

Use the no trunk ethernet command to delete a static trunk group.

NOTE
To delete an LACP trunk group, use the CLI command no link-aggregate active | passive.

To delete a trunk group, use no in front of the command you used to create the trunk group. For example, to remove one of the trunk groups configured in the examples above, enter the following command.

FastIron(config)# no trunk ethernet 1/1 to 1/2 ethernet 3/3 to 3/4
Syntax: no trunk ethernet | pos [<stack-unit>[/<slotnum>[/]<portnum> to </stack-unit>[/<slotnum>[/]<portnum>]

The <stack-unit> parameter is required for FGS, FLS, FGS-STK and FLS-STK, and FCX devices.

The <slotnum> parameter is required on chassis devices.

Specifying the minimum number of ports in a static trunk group

You can configure Brocade devices to disable all of the ports in a trunk group when the number of active member ports drops below a specified threshold value. For example, if a trunk group has 4 ports, and the threshold for the trunk group is 3, then the trunk group is disabled if the number of available ports in the trunk group drops below 3. If the trunk group is disabled, then traffic is forwarded over a different link or trunk group.

For example, the following commands establish a trunk group consisting of 4 ports, then establish a threshold for this trunk group of three ports.

FastIron(config)# trunk e 3/31 to 3/34
FastIron(config-trunk-3/31-3/34)# threshold 3

In this example, if the number of active ports drops below three, then all the ports in the trunk group are disabled.

Syntax: [no] threshold <number>

• <number> - Specify a threshold number from 2 (default) up to the number of ports in a trunk group. The total number of threshold ports must be greater than 1.

NOTE
When using the no threshold command, it is not necessary to enter a number.
Configuration notes:

- This feature is supported on static trunk groups only. It is not supported on LACP trunk groups.
- When UDLD is enabled on a trunk port, trunk threshold is not supported.
- The disable module command can be used to disable the ports on a module. However, on 10 Gbps modules, the disable module command does not cause the remote connection to be dropped. If a trunk group consists of 10 Gbps ports, and you use the disable module command to disable ports in the trunk group, which then causes the number of active ports in the trunk group to drop below the threshold value, the trunk group is not disabled.
- If you establish a threshold for a trunk used in conjunction with Metro Ring Protocol (MRP) on 10 Gbps interfaces, then you must also enable Link Fault Signaling (LFS).
- If you specify a threshold for a trunk group, the other end of the trunk group must also have the same threshold configuration.

Monitoring a trunk port

You can monitor the traffic on an individual port of a static trunk group. For configuration details, refer to “Monitoring an individual trunk port” on page 726.

Configuring outbound rate shaping for a trunk port

You can configure the maximum rate at which outbound traffic is sent out on a static trunk port. For configuration details, refer to “Configuring outbound rate shaping for a trunk port” on page 760.

Enabling sFlow forwarding on a trunk port

You can enable sFlow forwarding on individual ports of a static trunk group. For configuration details, refer to “Enabling sFlow forwarding on individual trunk ports” on page 1752.

Setting the sFlow sampling rate on a trunk port

You can configure an individual trunk port to use a different sampling rate than the global default sampling rate. This feature is supported on static trunk ports. For configuration details, refer to “Changing the sampling rate for a trunk port” on page 1751.

Displaying trunk group configuration information

To display configuration information for the trunk groups, use the show trunk command. This command displays information for configured trunk groups and operational trunk groups. A configured trunk group is one that has been configured in the software but has not been placed into operation by a reset or reboot. An operational trunk group is one that has been placed into operation by a reset or reboot.

Enter the show trunk command at any CLI level.

Syntax: show trunk [ethernet | pos [<stack-unit>/<slotnum>/]<portnum> to [<slotnum>/]<portnum>]

The <stack-unit> parameter is required for FGS, FLS, FGS-STK and FLS-STK, and FCX devices.

The <slotnum> applies to chassis devices only.
NOTE
The `show trunk` command does not display any form of trunk when links are up.

FastIron#show trunk

Configured trunks:

Trunk ID: 1
HW Trunk ID: 1
Ports_Configured: 8
Primary Port Monitored: Jointly

<table>
<thead>
<tr>
<th>Ports</th>
<th>1/1</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
<th>1/6</th>
<th>1/7</th>
<th>1/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Names</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>longna</td>
<td>test</td>
<td>none</td>
</tr>
<tr>
<td>Port_Status</td>
<td>enable</td>
<td>enable</td>
<td>enable</td>
<td>enable</td>
<td>disable</td>
<td>disable</td>
<td>enable</td>
<td>enable</td>
</tr>
<tr>
<td>Mirror Port</td>
<td>3/3</td>
<td>3/4</td>
<td>N/A</td>
<td>3/5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Monitor Dir</td>
<td>both</td>
<td>in</td>
<td>N/A</td>
<td>out</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Operational trunks:
Trunk ID: 1
HW Trunk ID: 1
Duplex: Full
Speed: 1G
Tag: No
Priority: level0
Active Ports: 6

<table>
<thead>
<tr>
<th>Ports</th>
<th>1/1</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
<th>1/6</th>
<th>1/7</th>
<th>1/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link_Status</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>active</td>
<td>down</td>
<td>down</td>
<td>down</td>
<td>active</td>
</tr>
<tr>
<td>LACP_Status</td>
<td>ready</td>
<td>ready</td>
<td>ready</td>
<td>expired</td>
<td>down</td>
<td>down</td>
<td>ready</td>
<td>ready</td>
</tr>
<tr>
<td>Load Sharing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mac Address</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multicast</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 99 describes the information displayed by the `show trunk` command.

TABLE 99 CLI trunk group information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk ID</td>
<td>The trunk group number. The software numbers the groups in the display to make the display easy to use.</td>
</tr>
<tr>
<td>HW Trunk ID</td>
<td><<TBD>>The trunk ID.</td>
</tr>
<tr>
<td>Duplex</td>
<td>The mode of the port, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• None – The link on the primary trunk port is down.</td>
</tr>
<tr>
<td></td>
<td>• Full – The primary port is running in full-duplex.</td>
</tr>
<tr>
<td></td>
<td>• Half – The primary port is running in half-duplex.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field and the following fields apply only to operational trunk groups.</td>
</tr>
<tr>
<td>Speed</td>
<td>The speed set for the port. The value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• None – The link on the primary trunk port is down.</td>
</tr>
<tr>
<td></td>
<td>• 10 – The port speed is 10 Mbps.</td>
</tr>
<tr>
<td></td>
<td>• 100 – The port speed is 100 Mbps.</td>
</tr>
<tr>
<td></td>
<td>• IG – The port speed is 1000 Mbps.</td>
</tr>
<tr>
<td>Tag</td>
<td>Indicates whether the ports have 802.1Q VLAN tagging. The value can be Yes or No.</td>
</tr>
<tr>
<td>Priority</td>
<td>Indicates the Quality of Service (QoS) priority of the ports. The priority can be a value from 0 – 7.</td>
</tr>
</tbody>
</table>
Dynamic link aggregation

Brocade software supports the IEEE 802.3ad standard for link aggregation. This standard describes the Link Aggregation Control Protocol (LACP), a mechanism for allowing ports on both sides of a redundant link to form a trunk link (aggregate link), without the need for manual configuration of the ports into trunk groups.

When you enable link aggregation on a group of Brocade ports, the Brocade ports can negotiate with the ports at the remote ends of the links to establish trunk groups.

The link aggregation feature automates trunk configuration but can coexist with the Brocade trunk group feature. Link aggregation parameters do not interfere with trunk group parameters.

NOTE
Use the link aggregation feature only if the device at the other end of the link you want to aggregate also supports IEEE 802.3ad link aggregation. Otherwise, you need to manually configure the trunk links.

Link aggregation support is disabled by default. You can enable the feature on an individual port basis, in active or passive mode:

- **Active mode** – When you enable a port for active link aggregation, the Brocade port can exchange standard LACP Protocol Data Unit (LACPDU) messages to negotiate trunk group configuration with the port on the other side of the link. In addition, the Brocade port actively sends LACPDU messages on the link to search for a link aggregation partner at the other end of the link, and can initiate an LACPDU exchange to negotiate link aggregation parameters with an appropriately configured remote port.

- **Passive mode** – When you enable a port for passive link aggregation, the Brocade port can exchange LACPDU messages with the port at the remote end of the link, but the Brocade port cannot search for a link aggregation port or initiate negotiation of an aggregate link. Thus, the port at the remote end of the link must initiate the LACPDU exchange.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Ports</td>
<td>The number of ports in the trunk group that are currently active.</td>
</tr>
<tr>
<td>Ports</td>
<td>The ports in the trunk group.</td>
</tr>
<tr>
<td>Link_Status</td>
<td>The link status or each port in the trunk group.</td>
</tr>
<tr>
<td>LACP_Status</td>
<td>This field appears in software releases 07.6.034 and later. For more information about this feature, refer to the section “Displaying and determining the status of aggregate links” on page 581:</td>
</tr>
<tr>
<td></td>
<td>• Ready - The port is functioning normally in the trunk group and is able to transmit and receive LACP packets.</td>
</tr>
<tr>
<td></td>
<td>• Expired - The time has expired (as determined by timeout values) and the port has shut down because the port on the other side of the link has stopped transmitting packets.</td>
</tr>
<tr>
<td></td>
<td>• Down - The port physical link is down.</td>
</tr>
<tr>
<td>Load Sharing</td>
<td>The number of traffic flows currently being load balanced on the trunk ports. All traffic exchanged within the flow is forwarded on the same trunk port. For information about trunk load sharing, refer to “Trunk group load sharing” on page 553.</td>
</tr>
</tbody>
</table>
NOTE
Brocade recommends that you disable or remove the cables from the ports you plan to enable for dynamic link aggregation. Doing so prevents the possibility that LACP will use a partial configuration to talk to the other side of a link. A partial configuration does not cause errors, but does sometimes require LACP to be disabled and re-enabled on both sides of the link to ensure that a full configuration is used. It's easier to disable a port or remove its cable first. This applies both for active link aggregation and passive link aggregation.

FGS-STK and FLS-STK devices support LACP. The following rules apply to units in an IronStack:

- With LACP trunk configurations, the LACP system id is the MAC address of the Active Controller. If the LACP system id changes, the entire trunk flaps and an STP re-convergence occurs.
- Link aggregation can be used to form multi-slot aggregate links on stack units, but the link aggregation keys must match for the port groups on each stack unit. For example, to configure an aggregate link containing ports 1/1/1 through 1/1/4, and 3/1/5 through 3/1/8, you must change the link aggregation key on one or both port groups so that the key is the same for all 8 ports. See the following example.

IronStack LACP trunk group configuration example

To configure a trunk group consisting of two groups of two ports each on an IronStack, enter commands similar to the following.

FGS648 Switch(config)#interface ethernet 1/1/1 to 1/1/4
FGS648 Switch(config-mif-1/1/1-1/1/4)#link-aggregate off
FGS648 Switch(config-mif-1/1/1-1/1/4)#link-aggregate configure key 10000
FGS648 Switch(config-mif-1/1/1-1/1/4)#link-aggregate active
FGS648 Switch(config-mif-1/1/1-1/1/4)#interface ethernet 3/1/5 to 3/1/8
FGS648 Switch(config-mif-3/1/5-3/1/8)#link-aggregate off
FGS648 Switch(config-mif-3/1/5-3/1/8)#link-aggregate configure key 10000
FGS648 Switch(config-mif-3/1/5-3/1/8)#link-aggregate active

This command sequence changes the key for ports 1/1/1-1/1/4 and 3/1/5-3/1/8 to 10000. Since all ports in an aggregate link must have the same key, this example forms a multi-slot aggregate link for ports 1/1/1-1/1/4 and 3/1/5-3/1/8.

Examples of valid LACP trunk groups

Brocade ports follow the same configuration rules for dynamically created aggregate links as they do for statically configured trunk groups. Refer to “Trunk group rules” on page 547 and “Trunk group load sharing” on page 553.

Figure 98 on page 569 shows some examples of valid aggregate links.
In this example, assume that link aggregation is enabled on all of the links between the Brocade device on the left and the device on the right (which can be either a Brocade device or another vendor device). The ports that are members of aggregate links in this example are following the configuration rules for trunk links on Brocade devices.

The Brocade rules apply to a Brocade device even if the device at the other end is from another vendor and uses different rules. Refer to “Trunk group rules” on page 547.

Configuration notes and limitations

This section lists the configuration considerations and limitations for dynamic link aggregation.
FastIron GS, FastIron LS, and FastIron CX devices

The following notes and feature limitations apply to the FGS, and FLS, FGS-STK and FLS-STK, and FCX devices:

- The dynamic link aggregation (802.3ad) implementation allows any number of ports up to eight to be aggregated into a link.

- The default key assigned to an aggregate link is based on the port type (1 Gbps port or 10 Gbps port). The FastIron GS assigns different keys to 10 Gbps ports than on 1 Gbps ports so that ports with different physical capabilities will not be able to form a trunk.

NOTE
The trunks that will be formed by link aggregation will strictly adhere to the static trunking rules on the FGS, FLS, FGS-STK, FLS-STK and FCX devices. Be careful in selecting keys if you are manually configuring link aggregation keys. Make sure that the possible trunks that you expect to be formed conform to the static trunking rules.

- When you enable link aggregation (LACP) on a group of Brocade ports, you must also assign a unique key (other than the default key) to all of the ports in the aggregate link.

- 10 Gbps links only support two port trunks.

NOTE
It is recommended to disable the link aggregation on ports before you disable link aggregation.

IronStack dynamic trunk group (LACP trunk) notes

- If a stack unit fails, or is removed from the stack, its LACP configuration becomes a reserved configuration on the Active Controller. Any remaining ports of the dynamic trunk in the IronStack continue to function.

- Merging two IronStacks with a dynamic trunk configured between them results in self-looped ports, which are detected and corrected by the Spanning Tree Protocol (STP). LACP configuration on the winning Active Controller is not affected by the LACP configuration on the losing Active Controller is lost after the merge.

- When an IronStack with dynamic trunks partitions into multiple IronStacks, the protocol will take care of splitting the dynamic trunk in the partner. No user intervention is required.

FastIron X Series devices

The following notes and feature limitations apply to the FastIron X Series devices:

- You cannot use 802.3ad link aggregation on a port configured as a member of a static trunk group.

- The dynamic link aggregation (802.3ad) implementation on FastIron X Series devices allows different numbers of ports to be aggregated in a link, depending on the hardware type (IPv6 or IPv4) and the software version running on the device. For details, refer to Table 93 on page 547.

- The default key assigned to an aggregate link is based on the port type (1 Gbps port or 10 Gbps port). The Brocade device assigns different keys to 10 Gbps ports than on 1 Gbps ports so that ports with different physical capabilities will not be able to form a trunk.
NOTE
The trunks that will be formed by link aggregation will strictly adhere to the static trunking rules on the Brocade device. Be careful in selecting keys if you are manually configuring link aggregation keys. Make sure that the possible trunks that you expect to be formed conform to the static trunking rules.

- When the feature dynamically adds or changes a trunk group, the `show trunk` command displays the trunk as both configured and active. However, the `show running-config` or `write terminal` command does not contain a trunk command defining the new or changed trunk group.
- If the feature places a port into a trunk group as a secondary port, all configuration information except information related to link aggregation is removed from the port. For example, if port 1/3 has an IP interface, and the link aggregation feature places port 1/3 into a trunk group consisting of ports 1/1 – 1/4, the IP interface is removed from the port.
- If you use this feature on a Layer 3 Switch that is running OSPF or BGP4, the feature causes these protocols to reset when a dynamic link change occurs. The reset includes ending and restarting neighbor sessions with OSPF and BGP4 peers, and clearing and relearning dynamic route entries and forwarding cache entries. Although the reset causes a brief interruption, the protocols automatically resume normal operation.
- Starting with software release FSX 02.4.00, you can enable link aggregation on 802.1Q tagged ports (ports that belong to more than one port-based VLAN). In releases prior to 02.4.00, link aggregation works with untagged ports only.

NOTE
It is recommended to disable the link aggregation on ports before you disable link aggregation.

TurboIron X Series devices
The following notes and feature limitations apply to the TurboIron X Series devices:

- You cannot use 802.3ad link aggregation on a port configured as a member of a static trunk group.
- The dynamic link aggregation (802.3ad) implementation on TurboIron X Series devices allows any number or ports up to eight to be aggregated into a link.
- The default key assigned to an aggregate link is based on the port type (1 Gbps port or 10 Gbps port). The Brocade device assigns different keys to 10 Gbps ports than on 1 Gbps ports so that ports with different physical capabilities will not be able to form a trunk.

NOTE
The trunks that will be formed by link aggregation will strictly adhere to the static trunking rules on the Brocade device. Be careful in selecting keys if you are manually configuring link aggregation keys. Make sure that the possible trunks that you expect to be formed conform to the static trunking rules.

- When the feature dynamically adds or changes a trunk group, the `show trunk` command displays the trunk as both configured and active. However, the `show running-config` or `write terminal` command does not contain a trunk command defining the new or changed trunk group.
• If the feature places a port into a trunk group as a secondary port, all configuration information except information related to link aggregation is removed from the port. For example, if port 3 has an IP interface, and the link aggregation feature places port 3 into a trunk group consisting of ports 1 – 4, the IP interface is removed from the port.

NOTE
Unique Key should be configured for each group of ports that have differing VLAN membership, regardless of being tagged or untagged.

• If you use this feature on a Layer 3 Switch that is running OSPF or BGP4, the feature causes these protocols to reset when a dynamic link change occurs. The reset includes ending and restarting neighbor sessions with OSPF and BGP4 peers, and clearing and relearning dynamic route entries and forwarding cache entries. Although the reset causes a brief interruption, the protocols automatically resume normal operation.

• You can enable link aggregation on 802.1Q tagged ports (ports that belong to more than one port-based VLAN).

NOTE
It is recommended to disable the link aggregation on ports before you disable link aggregation.

Adaptation to trunk disappearance

The Brocade device will tear down an aggregate link if the device at the other end of the link reboots or brings all the links down. Tearing the aggregate link down prevents a mismatch if the other device has a different trunk configuration following the reboot or re-establishment of the links. Once the other device recovers, 802.3 can renegotiate the link without a mismatch.

Flexible trunk eligibility

The criteria for trunk port eligibility in an aggregate link are flexible. A range of ports can contain down ports and still be eligible to become an aggregate link.

Software release 07.6.01b also increases the tolerance for down ports during link negotiation. In previous releases, all the ports in a valid trunk configuration (2-port, 4-port, or 8-port trunk starting on a valid primary port number) need to be up. Thus, in previous releases, if you enable link aggregation on four ports but one of the ports is down, the device will negotiate based only on a valid two-port trunk group consisting of two of the up ports. For example, if you enable link aggregation on ports 1/1 - 1/4 and port 1/3 is down, 802.3ad will negotiate only for a two-port link consisting of ports 1/1 and 1/2.

In release 07.6.01b and later, the device places the ports into 2-port groups by default, consisting of an odd-numbered port and the next even-numbered port. For example, ports 1/1 and 1/2 are a two-port group, as are ports 1/3 and 1/4, 9/1 and 9/2, and so on. If either of the ports in a two-port group is up, the device considers both ports to be eligible to be in an aggregate link.

Figure 99 shows an example of 2-port groups in a range of four ports on which link aggregation is enabled. Based on the states of the ports, some or all of them will be eligible to be used in an aggregate link.
Table 100 shows examples of the ports from Figure 99 that will be eligible for an aggregate link based on individual port states.

TABLE 100 Port eligibility for link aggregation

<table>
<thead>
<tr>
<th>Port group 1</th>
<th>Port group 2</th>
<th>Trunk eligibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>1/2</td>
<td>Up</td>
</tr>
<tr>
<td>Link State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-port 1/1 - 1/4</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-port 1/1 - 1/4</td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-port 1/1 - 1/4</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-port 1/1 - 1/4</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-port 1/3 - 1/4</td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-port 1/1 - 1/2</td>
</tr>
</tbody>
</table>

As shown in these examples, all or a subset of the ports within a port range will be eligible for formation into an aggregate link based on port states. Notice that the sets of ports that are eligible for the aggregate link must be valid static trunk configurations.

Enabling dynamic link aggregation

By default, link aggregation is disabled on all ports. To enable link aggregation on a set of ports, enter commands such as the following at the Interface configuration level of the CLI.
NOTE
Configuration commands for link aggregation differ depending on whether you are using the default link aggregation key automatically assigned by the software, or if you are assigning a different, unique key. Follow the commands below, according to the type of key you are using. For more information about keys, refer to “Key” on page 577.

Using the default key assigned by the software

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e1000-1/1)#link-aggregate active
FastIron(config)#interface ethernet 1/2
FastIron(config-if-e1000-1/2)#link-aggregate active
```

The commands in this example enable the active mode of link aggregation on ports 1/1 and 1/2. The ports can send and receive LACPDU messages. Note that these ports will use the default key, since one has not been explicitly configured.

NOTE
In conformance with the 802.3ad specification, the default key assigned to an aggregate link is based on the port type (1 Gbps port or 10 Gbps port). The Brocade device assigns different keys to 10 Gbps ports than 1 Gbps ports, so that ports with different physical capabilities will not be able to form a trunk.

Assigning a unique key

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e1000-1/1)#link-aggregate configure key 10000
FastIron(config-if-e1000-1/1)#link-aggregate active
FastIron(config)#interface ethernet 1/2
FastIron(config-if-e1000-1/2)#link-aggregate configure key 10000
FastIron(config-if-e1000-1/2)#link-aggregate active
```

The commands in this example assign the key 10000 and enable the active mode of link aggregation on ports 1/1 and 1/2. The ports can send and receive LACPDU messages.

NOTE
As shown in this example, when configuring a key, it is pertinent that you assign the key prior to enabling link aggregation.

The following commands enable passive link aggregation on ports 1/5 – 1/8.

```
FastIron(config)#interface ethernet 1/5 to 1/8
FastIron(config-mif-1/5-1/8)#link-aggregate passive
```

The commands in this example enable the passive mode of link aggregation on ports 1/5 – 1/8. These ports wait for the other end of the link to contact them. After this occurs, the ports can send and receive LACPDU messages.

To disable link aggregation on a port, enter a command such as the following.

```
FastIron(config-if-e1000-1/8)# link-aggregate
Syntax: [no] link-aggregate <active | passive>
```

Syntax:

- `[no] link-aggregate <active | passive>`
- `[no] link-aggregate configure [system-priority <num>] | [port-priority <num>] | [key <num>]`
NOTE
For more information about keys, including details about the syntax shown above, refer to “Key” on page 577.

Dynamic Operation of Allocation Keys
Starting with software release 07.7.00, the Brocade device dynamically changes a port key based on changes to the port VLAN membership.

When you change a port VLAN membership, the device searches through existing key groups for a port with matching port properties. Specifically, it searches for a match on all three of the following properties:

- VLAN ID
- default key
- port tag type (tagged or untagged)

If it finds a match, the port (whose VLAN membership you are changing) gets the matching port key. If it does not find a match, the port gets a new key.

NOTE
For multi-slot trunk groups, you must manually configure the keys in the trunk group(s) to match. For instructions on configuring keys manually, see “Configuring keys for ports with link aggregation enabled” on page 580.

How changing the VLAN membership of a port affects trunk groups and dynamic keys

When you change a port VLAN membership and the port is currently a member of a trunk group, the following changes occur to the trunk group:

- The Brocade device tears down the existing trunk group.
- All ports in the trunk group get a new key.
- The new key group aggregates into a new trunk group.

When you change a port VLAN membership, and the port is not a member of a trunk group, the following changes occur:

- The port gets a new key depending on changes to the port VLAN tag type, as follows:
 - Tagged to Tagged VLAN – The primary port of the trunk group gets a new key.
 - Tagged to Untagged VLAN – The port gets the default key for untagged ports.
 - Untagged to Tagged VLAN – If the Brocade device finds a port with matching port properties, the port gets that port key. If it does not find one, the port gets a new key.
 - Untagged to Untagged VLAN – The port gets a new key depending on whether it is in the default VLAN or not. If there is a trunk group associated with the key, it is not affected.
- All other ports keep their existing key.
- The new key groups try to aggregate into trunk groups.
Additional trunking options for LACP trunk ports

NOTE
This feature is not supported on TurboIron X Series devices.

Additional trunking options are supported on individual ports that are part of an 802.3ad aggregate link. Previous releases allow you to configure trunking options on individual ports that are part of a manually-created trunk group only. Refer to “Additional trunking options” on page 561.

Link aggregation parameters

You can change the settings on individual ports for the following link aggregation parameters:

- System priority
- Port priority
- Timeout
- Key

System priority

The system priority parameter specifies the link aggregation priority on the Brocade device, relative to the devices at the other ends of the links on which link aggregation is enabled. A higher value indicates a lower priority. You can specify a priority from 0 – 65535. The default is 1.

System Priority does not take effect until you toggle the `link-aggregate <active| passive>` command.

NOTE
If you are connecting the Brocade device to another vendor device and the link aggregation feature is not working, set the system priority on the Brocade device to a lower priority (a higher priority value). In some cases, this change allows the link aggregation feature to operate successfully between the two devices.

Port priority

The port priority parameter determines the active and standby links. When a group of ports is negotiating with a group of ports on another device to establish a trunk group, the Brocade port with the highest priority becomes the default active port. The other ports (with lower priorities) become standby ports in the trunk group. You can specify a priority from 0 – 65535. A higher value indicates a lower priority. The default is 1.

NOTE
This parameter is not supported in the current software release. The primary port in the port group becomes the default active port. The primary port is the lowest-numbered port in a valid trunk-port group.
Link type

The link type parameter specifies whether the trunk is connecting to a server (server link) or to another networking device (switch link). The default link type is switch.

Timeout

You can specify a timeout mode, which determines how fast ports are removed from a trunk. You can specify a short timeout mode.

Key

Every port that is 802.3ad-enabled has a key. The key identifies the group of potential trunk ports to which the port belongs. Ports with the same key are called a key group and are eligible to be in the same trunk group.

When you enable link-aggregation on an untagged port, the software assigns a default key to the port. For tagged ports, you must manually configure link-aggregation keys. Refer to “Configuring keys for ports with link aggregation enabled” on page 580.

All ports within an aggregate link must have the same key. However, if the device has ports that are connected to two different devices, and the port groups allow the ports to form into separate aggregate links with the two devices, then each group of ports can have the same key while belonging to separate aggregate links with different devices. Figure 100 on page 578 shows an example.

NOTE

It is recommended to configure a unique key if ports are tagged or untagged in a VLAN.
Notice that the keys between one device and another do not need to match. The only requirement for key matching is that all the ports within an aggregate link on a given device must have the same key.

Devices that support multi-slot trunk groups can form multi-slot aggregate links using link aggregation. However, the link aggregation keys for the groups of ports on each module must match. For example, if you want to allow link aggregation to form an aggregate link containing ports 1/1 – 1/4 and 3/5 – 3/8, you must change the link aggregation key on one or both groups of ports so that the key is the same on all eight ports. Figure 101 on page 579 shows an example.
By default, the device ports are divided into 4-port groups. The software dynamically assigns a unique key to each 4-port group. If you need to divide a 4-port group into two 2-port groups, change the key in one of the groups so that the two 2-port groups have different keys. For example, if you plan to use ports 1/1 and 1/2 in VLAN 1, and ports 1/3 and 1/4 in VLAN 2, change the key for ports 1/3 and 1/4.

NOTE

If you change the key for a port group, Brocade recommends that you use the value 10000 or higher, to avoid potential conflicts with dynamically created keys.

Viewing keys for tagged ports

To display link aggregation information, including the key for a specific port, enter a command such as the following at any level of the CLI.

```
FastIron# show link-aggregation ethernet 1/1
```

The command in this example shows the key and other link aggregation information for port 1/1.

To display link aggregation information, including the key for all ports on which link aggregation is enabled, enter the following command at any level of the CLI.

```
FastIron# show link-aggregation
```

![Multi-slot aggregate link](image)
Dynamic link aggregation

Syntax: show link-aggregation [ethernet [\(<stack-unit>/\)<slotnum>/\)]<portnum>\]

The \(<stack-unit>\) parameter is required for FGS, FLS, and FGS-STK and FLS-STK devices.

Possible values: N/A

Default value: N/A

Configuring link aggregation parameters

You can configure one or more parameters on the same command line, and in any order.

NOTE
For key configuration only, configuration commands differ depending on whether or not link aggregation is enabled on the ports. Follow the appropriate set of commands below, according to your system configuration.

Configuring a port group key if link aggregation is disabled

Use this command sequence to change the key for ports that do not have link aggregation enabled, and for all other link aggregation parameters (i.e., system priority, port priority).

For example, to change the software-assigned key for a port group to another value, enter commands similar to the following.

```
FastIron(config)#interface ethernet 1/1 to 1/4
FastIron(config-mif-1/1-1/4)#link-aggregate configure key 10000
FastIron(config-mif-1/1-1/4)#interface ethernet 3/5 to 3/8
FastIron(config-mif-3/5-3/8)#link-aggregate configure key 10000
```

Configuring keys for ports with link aggregation enabled

As shown in this command sequence, to change the key on ports that already have link aggregation enabled, you must first turn OFF link aggregation, configure the new key, then re-enable link aggregation.

```
FastIron(config)# interface ethernet 1/1 to 1/4
FastIron(config-mif-1/1-1/4)# link-aggregate
FastIron(config-mif-1/1-1/4)# link-aggregate configure key 10000
FastIron(config-mif-1/1-1/4)# link-aggregate active
FastIron(config-mif-3/5-3/8)# link-aggregate
FastIron(config-mif-3/5-3/8)# link-aggregate configure key 10000
FastIron(config-mif-3/5-3/8)# link-aggregate active
```

These commands change the key for ports 1/1 – 1/4 and 3/5 – 3/8 to 10000. Since all ports in an aggregate link must have the same key, the command in this example enables ports 1/1 – 1/4 and 3/5 – 3/8 to form a multi-slot aggregate link.

Syntax: \([\text{no}] \) link-aggregate configure \([\text{system-priority} <num>] \) \| \([\text{port-priority} <num>] \) \| \([\text{key} <num>] \)

The **system-priority** \(<num>\) parameter specifies the Brocade device link aggregation priority. A higher value indicates a lower priority. You can specify a priority from 0 – 65535. The default is 1.
The `port-priority <num>` parameter specifies an individual port priority within the port group. A higher value indicates a lower priority. You can specify a priority from 0 – 65535. The default is 1.

The `key <num>` parameter identifies the group of ports that are eligible to be aggregated into a trunk group. The software automatically assigns a key to each group of ports. The software assigns the keys in ascending numerical order, beginning with 0. You can change a port group key to a value from 10000 – 65535.

NOTE
If you change the key for a port group, Brocade recommends that you use the value 10000 or higher, to avoid potential conflicts with dynamically created keys.

Configuring port timeout
You can control the time it takes to remove ports from a trunk with link aggregation enabled by configuring the link aggregated port with a “short” timeout mode. Once a port is configured with a timeout mode, it will remain in that timeout mode whether it is up or down or whether or not it is part of a trunk.

All ports in a trunk should have the same timeout mode, which is checked when link aggregation is enabled on ports.

To configure a port with a short timeout mode, enter a command such as the following.

```
FastIron(config)# interface ethernet8/1
FastIron(config-if-e1000-8/1)# link-aggregation configure timeout short
```

Syntax: `[no] link-aggregate configure timeout [short]`

If the timeout mode is not configured for a port and link aggregation is enabled, the port starts with a short timeout mode. Once a trunk is formed, the timeout mode is changed to the long timeout mode. The value for “long” and “short” is displayed in the output for the `show link-aggregate` command.

NOTE
LACP short timeout mode is not supported on FESX combo copper ports. If these ports are configured with a short timeout, the ports will flap and will not be aggregated into a trunk group.

Displaying and determining the status of aggregate links

The `show link-aggregation` command provides the ability to view the status of dynamic links. You can determine the status of ports that are members of an aggregate link, and whether LACPDU messages are being transmitted between the ports.

The following section provides details about the events that can affect the status of ports in an aggregate link and the status of LACP messages exchanged between the ports. Later sections provide instructions for viewing these status reports.
Displaying and determining the status of aggregate links

Events that affect the status of ports in an aggregate link

Brocade devices can block traffic on a port or shut down a port that is part of a trunk group or aggregate link, when a port joins a trunk group and the port on the other end of the link shuts down or stops transmitting LACP packets. Depending on the timeout value set on the port, the link aggregation information expires. If this occurs, the Brocade device shuts down the port and notifies all the upper layer protocols that the port is down.

Brocade devices can also block traffic on a port that is initially configured with link aggregation. The port is blocked until it joins a trunk group. In this case, traffic is blocked, but the port is still operational.

A port remains blocked until one of the following events occurs:

- Both ports in the aggregate link have the same key
- LACP brings the port back up
- The port joins a trunk group

Displaying link aggregation and port status information

Use the `show link-aggregation` command to determine the operational status of ports associated with aggregate links.

To display the link aggregation information for a specific port, enter a command such as the following at any level of the CLI.

```
FastIron# show link-aggregation ethernet 1/1
```

```
System ID: 00e0.52a9.bb00
Port [Sys P] [Port P] [ Key ] [Act][Tio][Agg][Syn][Col][Dis][Def][Exp] [Ope]
1/1 0 0 No L No No No No No Ope
```

The command in this example shows the link aggregation information for port 1/1.

To display the link aggregation information for all ports on which link aggregation is enabled, enter the following command at any level of the CLI.

```
FastIron# show link-aggregation
```

```
System ID: 00e0.52a9.bb00
Long timeout: 120, default: 120 Short timeout: 3, default: 3
Port [Sys P] [Port P] [ Key ] [Act][Tio][Agg][Syn][Col][Dis][Def][Exp] [Ope]
1/1 1 1 0 No L Agg Syn No No Def Exp Ope
1/2 1 1 0 No L Agg Syn No No Def Exp Ina
1/3 1 1 0 No L Agg Syn No No Def Exp Ina
1/4 1 1 0 No L Agg Syn No No Def Exp Blo
1/5 1 1 1 No L Agg No No Def Exp Ope
1/6 1 1 1 No L Agg No No Def Exp Ope
1/7 1 1 1 No L Agg No No Def Exp Dwn
1/8 1 1 1 No L Agg No No Def Exp Dwn
```

Syntax: `show link-aggregation [ethernet [<stack-id>/]<slotnum>]/<portnum>]`

The `<stack-id>` parameter is required on FGS, FLS, FGS-STK and FLS-STK devices.

The `<slotnum>` parameter is required on chassis devices.

Use `ethernet <portnum>` to display link-aggregation information for a specific port.
NOTE
Ports that are configured as part of an aggregate link must also have the same key. For more information about assigning keys, refer to the section “Link aggregation parameters” on page 576.

The show link aggregation command output is described in “CLI display of link aggregation information” on page 583.

TABLE 101 CLI display of link aggregation information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>System ID</td>
<td>Lists the base MAC address of the device. This is also the MAC address of port 1 (or 1/1).</td>
</tr>
<tr>
<td>Short timeout</td>
<td>Supported on systems running FSX software release 03.2.00.</td>
</tr>
<tr>
<td>Port</td>
<td>Lists the port number.</td>
</tr>
<tr>
<td>Sys P</td>
<td>Lists the system priority configured for this port.</td>
</tr>
<tr>
<td>Port P</td>
<td>Lists the port link aggregation priority.</td>
</tr>
<tr>
<td>Key</td>
<td>Lists the link aggregation key. On devices running FSX software release 03.2.00, this column displays “singleton” if the port is configured with a Single Instance of LACP. (Refer to “Configuring single link LACP” on page 585 for more details.</td>
</tr>
<tr>
<td>Act</td>
<td>Indicates the link aggregation mode, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• No – The mode is passive or link aggregation is disabled (off) on the port.</td>
</tr>
<tr>
<td></td>
<td>If link aggregation is enabled (and the mode is passive), the port can send and receive LACPDU messages to participate in negotiation of an aggregate link initiated by another port, but cannot search for a link aggregation port or initiate negotiation of an aggregate link.</td>
</tr>
<tr>
<td></td>
<td>• Yes – The mode is active. The port can send and receive LACPDU messages.</td>
</tr>
<tr>
<td>Tio</td>
<td>Indicates the timeout value of the port. The timeout value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• L – Long. The trunk group has already been formed and the port is therefore using a longer message timeout for the LACPDU messages exchanged with the remote port. Typically, these messages are used as confirmation of the health of the aggregate link.</td>
</tr>
<tr>
<td></td>
<td>• S – Short. The port has just started the LACPDU message exchange process with the port at the other end of the link. The S timeout value also can mean that the link aggregation information received from the remote port has expired and the ports are starting a new information exchange.</td>
</tr>
<tr>
<td>Agg</td>
<td>Indicates the link aggregation state of the port. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Agg – Link aggregation is enabled on the port.</td>
</tr>
<tr>
<td></td>
<td>• No – Link aggregation is disabled on the port.</td>
</tr>
<tr>
<td>Syn</td>
<td>Indicates the synchronization state of the port. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• No – The port is out of sync with the remote port. The port does not understand the status of the LACPDU process and is not prepared to enter a trunk link.</td>
</tr>
<tr>
<td></td>
<td>• Syn – The port is in sync with the remote port. The port understands the status of the LACPDU message exchange process, and therefore knows the trunk group to which it belongs, the link aggregation state of the remote port, and so on.</td>
</tr>
<tr>
<td>Col</td>
<td>Indicates the collection state of the port, which determines whether the port is ready to send traffic over the trunk link.</td>
</tr>
<tr>
<td></td>
<td>• Col – The port is ready to send traffic over the trunk link.</td>
</tr>
<tr>
<td></td>
<td>• No – The port is not ready to send traffic over the trunk link.</td>
</tr>
</tbody>
</table>
Displaying and determining the status of aggregate links

TABLE 101 CLI display of link aggregation information (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| Dis | Indicates the distribution state of the port, which determines whether the port is ready to receive traffic over the trunk link.
 - Dis – The port is ready to receive traffic over the trunk link.
 - No – The port is not ready to receive traffic over the trunk link. |
| Def | Indicates whether the port is using default link aggregation values. The port uses default values if it has not received link aggregation information through LACP from the port at the remote end of the link. This field can have one of the following values:
 - Def – The port has not received link aggregation values from the port at the other end of the link and is therefore using its default link aggregation LACP settings.
 - No – The port has received link aggregation information from the port at the other end of the link and is using the settings negotiated with that port. |
| Exp | Indicates whether the negotiated link aggregation settings have expired. The settings expire if the port does not receive an LACPDU message from the port at the other end of the link before the message timer expires. This field can have one of the following values:
 - Exp – The link aggregation settings this port negotiated with the port at the other end of the link have expired. The port is now using its default link aggregation settings.
 - No – The link aggregation values that this port negotiated with the port at the other end of the link have not expired, so the port is still using the negotiated settings. |
| Ope | Ope (operational) - The port is operating normally.
 - Ina (inactive) - The port is inactive because the port on the other side of the link is down or has stopped transmitting LACP packets.
 - Blo (blocked) - The port is blocked because the adjacent port is not configured with link aggregation or because it is not able to join a trunk group. To unblock the port and bring it to an operational state, enable link aggregation on the adjacent port and ensure that the ports have the same key.
 - Dwn - <<Need definition.>> |

Displaying link aggregation and port status information for stackable devices

To display link aggregation information for devices in an IronStack, enter the `show link-aggregation` command. The output for an Ironstack resembles the following.

FGS624P-STK Router(config)#show link-aggregate
System ID: 0012.f2e5.a200
Long timeout: 120, default: 120
Short timeout: 3, default: 3
Port [Sys P] [Port P] [Key] [Act][Tio][Agg][Syn][Col][Dis][Def][Exp][Ope]
1/1/1 1 1 13000 Yes L Agg Syn Col Dis No No Ope
2/1/1 1 1 13000 Yes L Agg Syn Col Dis No No Ope
3/1/1 1 1 13000 Yes L Agg Syn Col Dis No No Ope
4/1/1 1 1 13000 Yes L Agg Syn Col Dis No No Ope

Displaying LACP status information

Use the `show trunk` command to determine the status of LACP. Refer to “Displaying trunk group configuration information” on page 565.
Clearing the negotiated aggregate links table

When a group of ports negotiates a trunk group configuration, the software stores the negotiated configuration in a table. You can clear the negotiated link aggregation configurations from the software. When you clear the information, the software does not remove link aggregation parameter settings you have configured. Only the configuration information negotiated using LACP is removed.

NOTE
The software automatically updates the link aggregation configuration based on LACPDU messages. However, clearing the link aggregation information can be useful if you are troubleshooting a configuration.

To clear the link aggregation information, enter the following command at the Privileged EXEC level of the CLI.

```
FastIron#clear link-aggregate
```

Syntax: clear link-aggregate

Configuring single link LACP

A single instance of link aggregation (or single link LACP) can be used for unidirectional link detection. Single link LACP is based on the 802.3ad LACP protocol; but allows you to form an aggregated link with only one Ethernet port. It is the preferred method for detecting unidirectional links across multi-vendor devices, instead of link-keepalive (UDLD), since it is based on a standard rather than on a proprietary solution.

Configuration notes

- This feature is supported on 1-GbE and 10-GbE ports.
- This feature is not supported on static trunk ports.
- This feature is not intended for the creation of trunk groups.
- The single link LACP timer is always short (3 seconds) and is not configurable. PDUs are sent out every three seconds.
- This feature is not supported on ports that have the `link-keepalive` command (UDLD) configured.

CLI syntax

To form a single link LACP, the port on both sides of the link must have LACP enabled. You can then define a single link LACP at the interface level of the device by entering the following command.

```
FastIron(config)#interface ethernet 8/1
FastIron(config-if-e1000-8/1)#link-aggregate configure singleton
Link-aggregation active
```

Syntax: `[no] link-aggregate configure singleton`

When single link LACP is configured, the `show link-aggregate` command displays the following information.
Configuring single link LACP

FastIron#show link-agg
System ID: 00e0.5200.0118
Long timeout: 120, default: 120 Short timeout: 3, default: 3
Port [Sys P] [Port P] [Key] [Act][Tio][Agg][Syn][Col][Dis][Def][Exp][Ope]
2/1 1 1 1 Yes S Agg Syn No No Def Exp Ina
2/2 1 1 1 Yes S Agg Syn No No Def Exp Ina
2/3 1 singleton Yes S Agg Syn No No Def Exp Ina
2/4 1 singleton Yes S Agg Syn No No Def Exp Dwn

If singleton is configured on the port, the “Key” column displays “singleton”. Refer to “CLI display of link aggregation information” on page 583 to interpret the information on the displayed output.

Also, when ports are logically brought up or down while singleton is configured on the port, the following Syslog messages are generated:

- Logical link on interface ethernet <slot#/port#> is up.
- Logical link on interface ethernet <slot#/port#> is down.
GVRP overview

GARP VLAN Registration Protocol (GVRP) is a Generic Attribute Registration Protocol (GARP) application that provides VLAN registration service by means of dynamic configuration (registration) and distribution of VLAN membership information.

A Brocade device enabled for GVRP can do the following:

- Learn about VLANs from other Brocade devices and configure those VLANs on the ports that learn about the VLANs. The device listens for GVRP Protocol Data Units (PDUs) from other devices, and implements the VLAN configuration information in the PDUs.
- Advertise VLANs configured on the device to other Brocade devices. The device sends GVRP PDUs advertising its VLANs to other devices. GVRP advertises statically configured VLANs and VLANs learned from other devices through GVRP.

GVRP enables a Brocade device to dynamically create 802.1Q-compliant VLANs on links with other devices that are running GVRP. GVRP reduces the chances for errors in VLAN configuration by automatically providing VLAN ID consistency across the network. You can use GVRP to propagate VLANs to other GVRP-aware devices automatically, without the need to manually configure the VLANs on each device. In addition, if the VLAN configuration on a device changes, GVRP automatically changes the VLAN configurations of the affected devices.

The Brocade implementation of GARP and GVRP is based on the following standards:

- IEEE draft P802.1w/D10, March 26, 2001
- IEEE draft P802.1u/D9, November 23, 2000
- IEEE draft P802.1t/D10, November 20, 2000

Application examples

Figure 102 shows an example of a network that uses GVRP. This section describes various ways you can use GVRP in a network such as this one. “CLI examples” on page 603 lists the CLI commands to implement the applications of GVRP described in this section.
In this example, a core device is attached to three edge devices. Each of the edge devices is attached to other edge devices or host stations (represented by the clouds).

The effects of GVRP in this network depend on which devices the feature is enabled on, and whether both learning and advertising are enabled. In this type of network (a core device and edge devices), you can have the following four combinations:

- Dynamic core and fixed edge
- Dynamic core and dynamic edge
- Fixed core and dynamic edge
- Fixed core and fixed edge

Dynamic core and fixed edge

In this configuration, all ports on the core device are enabled to learn and advertise VLAN information. The edge devices are configured to advertise their VLAN configurations on the ports connected to the core device. GVRP learning is disabled on the edge devices.

<table>
<thead>
<tr>
<th>Core device</th>
<th>Edge device A</th>
<th>Edge device B</th>
<th>Edge device C</th>
</tr>
</thead>
<tbody>
<tr>
<td>- GVRP is enabled on all ports.</td>
<td>- GVRP is enabled on port 4/24. Learning is disabled.</td>
<td>- GVRP is enabled on port 4/1. Learning is disabled.</td>
<td>- GVRP is enabled on port 4/1. Learning is disabled.</td>
</tr>
<tr>
<td>- Both learning and advertising are enabled.</td>
<td>- VLAN 20</td>
<td>- VLAN 20</td>
<td>- VLAN 30</td>
</tr>
<tr>
<td>- Port 2/1 (untagged)</td>
<td>- Port 4/24 (tagged)</td>
<td>- Port 2/24 (untagged)</td>
<td>- Port 2/24 (untagged)</td>
</tr>
<tr>
<td>- VLAN 40</td>
<td>- Port 4/1 (tagged)</td>
<td>- VLAN 30</td>
<td>- VLAN 40</td>
</tr>
<tr>
<td>- Port 4/1 (untagged)</td>
<td>- Port 4/24 (tagged)</td>
<td>- Port 4/24 (untagged)</td>
<td>- Port 4/1 (tagged)</td>
</tr>
<tr>
<td>- Port 4/24 (tagged)</td>
<td>- Port 4/24 (tagged)</td>
<td>- Port 4/1 (tagged)</td>
<td>- Port 4/1 (tagged)</td>
</tr>
</tbody>
</table>

NOTE: Since learning is disabled on all the edge devices, advertising on the core device has no effect in this configuration.
In this configuration, the edge devices are statically (manually) configured with VLAN information. The core device dynamically configures itself to be a member of each of the edge device VLANs. The operation of GVRP on the core device results in the following VLAN configuration on the device:

- VLAN 20
 - 1/24 (tagged)
 - 6/24 (tagged)
- VLAN 30
 - 6/24 (tagged)
 - 8/17 (tagged)
- VLAN 40
 - 1/24 (tagged)
 - 8/17 (tagged)

VLAN 20 traffic can now travel through the core between edge devices A and B. Likewise, VLAN 30 traffic can travel between B and C and VLAN 40 traffic can travel between A and C. If an edge device is moved to a different core port or the VLAN configuration of an edge device is changed, the core device automatically reconfigures itself to accommodate the change.

Notice that each of the ports in the dynamically created VLANs is tagged. All GVRP VLAN ports configured by GVRP are tagged, to ensure that the port can be configured for additional VLANs.

NOTE
This example assumes that the core device has no static VLANs configured. However, you can have static VLANs on a device that is running GVRP. GVRP can dynamically add other ports to the statically configured VLANs but cannot delete statically configured ports from the VLANs.

Dynamic core and dynamic edge

GVRP is enabled on the core device and on the edge devices. This type of configuration is useful if the devices in the edge clouds are running GVRP and advertise their VLANs to the edge devices. The edge devices learn the VLANs and also advertise them to the core. In this configuration, you do not need to statically configure the VLANs on the edge or core devices, although you can have statically configured VLANs on the devices. The devices learn the VLANs from the devices in the edge clouds.

Fixed core and dynamic edge

GVRP learning is enabled on the edge devices. The VLANs on the core device are statically configured, and the core device is enabled to advertise its VLANs but not to learn VLANs. The edge devices learn the VLANs from the core.

Fixed core and fixed edge

The VLANs are statically configured on the core and edge devices. On each edge device, VLAN advertising is enabled but learning is disabled. GVRP is not enabled on the core device. This configuration enables the devices in the edge clouds to learn the VLANs configured on the edge devices.
VLAN names

The `show vlans` command lists VLANs created by GVRP as “GVRRP_VLAN_<vlan-id>”. VLAN names for statically configured VLANs are not affected. To distinguish between statically-configured VLANs that you add to the device and VLANs that you convert from GVRP-configured VLANs into statically-configured VLANs, the `show vlans` command displays a converted VLAN name as “STATIC_VLAN_<vlan-id>”.

Configuration notes

- If you disable GVRP, all GVRP configuration information is lost if you save the configuration change (write memory command) and then reload the software. However, if you reload the software without first saving the configuration change, the GVRP configuration is restored following a software reload.
- The maximum number of VLANs supported on a device enabled for GVRP is the same as the maximum number on a device that is not enabled for GVRP.
- To display the maximum number of VLANs allowed on your device, enter the `show default values` command. See the “vlan” row in the System Parameters section. Make sure you allow for the default VLAN (1), the GVRP base VLAN (4093), and the Single STP VLAN (4094). These VLANs are maintained as “Registration Forbidden” in the GVRP database. Registration Forbidden VLANs cannot be advertised or learned by GVRP.
- To increase the maximum number of VLANs supported on the device, enter the `system-max vlan <num>` command at the global CONFIG level of the CLI, then save the configuration and reload the software. The maximum number you can specify is listed in the Maximum column of the `show default values` display.
- The default VLAN (VLAN 1) is not advertised by the Brocade implementation of GVRP. The default VLAN contains all ports that are not members of statically configured VLANs or VLANs enabled for GVRP.

NOTE
The default VLAN has ID 1 by default. You can change the VLAN ID of the default VLAN, but only before GVRP is enabled. You cannot change the ID of the default VLAN after GVRP is enabled.

- Single STP must be enabled on the device. Brocade implementation of GVRP requires Single STP. If you do not have any statically configured VLANs on the device, you can enable Single STP as follows.
  ```
  FastIron(config)# vlan 1
  FastIron(config-vlan-1)# exit
  FastIron(config)# span
  FastIron(config)# span single
  ```
 These commands enable configuration of the default VLAN (VLAN 1), which contains all the device ports, and enable STP and Single STP.
- All VLANs that are learned dynamically through GVRP are added to the single spanning tree.
- All ports that are enabled for GVRP become tagged members of the GVRP base VLAN (4093). If you need to use this VLAN ID for another VLAN, you can change the GVRP VLAN ID. Refer to “Changing the GVRP base VLAN ID” on page 591. The software adds the GVRP base VLAN to the single spanning tree.
- All VLAN ports added by GVRP are tagged.
GVRP is supported only for tagged ports or for untagged ports that are members of the default VLAN. GVRP is not supported for ports that are untagged and are members of a VLAN other than the default VLAN.

To configure GVRP on a trunk group, enable the protocol on the primary port in the trunk group. The GVRP configuration of the primary port is automatically applied to the other ports in the trunk group.

You can use GVRP on a device even if the device has statically configured VLANs. GVRP does not remove any ports from the statically configured VLANs, although GVRP can add ports to the VLANS. GVRP advertises the statically configured VLANs. Ports added by GVRP do not appear in the running-config and will not appear in the startup-config file when you save the configuration. You can manually add a port to make the port a permanent member of the VLAN. After you manually add the port, the port will appear in the running-config and be saved to the startup-config file when you save the configuration.

VLANs created by GVRP do not support virtual routing interfaces or protocol-based VLANs. virtual routing interfaces and protocol-based VLANs are still supported on statically configured VLANs even if GVRP adds ports to those VLANs.

You cannot manually configure any parameters on a VLAN that is created by GVRP. For example, you cannot change STP parameters for the VLAN.

The GVRP timers (Join, Leave, and Leaveall) must be set to the same values on all the devices that are exchanging information using GVRP.

If the network has a large number of VLANs, the GVRP traffic can use a lot of CPU resources. If you notice high CPU utilization after enabling GVRP, set the GVRP timers to longer values. In particular, set the Leaveall timer to a longer value. Refer to “Changing the GVRP timers” on page 593.

The feature is supported only on Ethernet ports.

NOTE
If you plan to change the GVRP base VLAN ID (4093) or the maximum configurable value for the Leaveall timer (300000 ms by default), you must do so before you enable GVRP.

Configuring GVRP

To configure a device for GVRP, globally enable support for the feature, then enable the feature on specific ports. Optionally, you can disable VLAN learning or advertising on specific interfaces.

You can also change the protocol timers and the GVRP base VLAN ID.

Changing the GVRP base VLAN ID

By default, GVRP uses VLAN 4093 as a base VLAN for the protocol. All ports that are enabled for GVRP become tagged members of this VLAN. If you need to use VLAN ID 4093 for a statically configured VLAN, you can change the GVRP base VLAN ID.

NOTE
If you want to change the GVRP base VLAN ID, you must do so before enabling GVRP.

To change the GVRP base VLAN ID, enter a command such as the following at the global CONFIG level of the CLI.
Configuring GVRP

FastIron(config)# gvrp-base-vlan-id 1001
This command changes the GVRP VLAN ID from 4093 to 1001.

Syntax: [no] gvrp-base-vlan-id <vlan-id>
The <vlan-id> parameter specifies the new VLAN ID. You can specify a VLAN ID from 2 – 4092 or 4095.

Increasing the maximum configurable value of the Leaveall timer

By default, the highest value you can specify for the Leaveall timer is 300000 ms. You can increase the maximum configurable value of the Leaveall timer to 1000000 ms.

NOTE
You must enter this command before enabling GVRP. Once GVRP is enabled, you cannot change the maximum Leaveall timer value.

NOTE
This command does not change the default value of the Leaveall timer itself. The command only changes the maximum value to which you can set the Leaveall timer.

To increase the maximum value you can specify for the Leaveall timer, enter a command such as the following at the global CONFIG level of the CLI.

FastIron(config)# gvrp-max-leaveall-timer 1000000

Syntax: [no] gvrp-max-leaveall-timer <ms>
The <ms> parameter specifies the maximum number of ms to which you can set the Leaveall timer. You can specify from 300000 – 1000000 (one million) ms. The value must be a multiple of 100 ms. The default is 300000 ms.

Enabling GVRP

To enable GVRP, enter commands such as the following at the global CONFIG level of the CLI.

FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable all
The first command globally enables support for the feature and changes the CLI to the GVRP configuration level. The second command enables GVRP on all ports on the device.

The following command enables GVRP on ports 1/24, 2/24, and 4/17.

FastIron(config-gvrp)# enable ethernet 1/24 ethernet 2/24 ethernet 4/17

Syntax: [no] gvrp-enable
Syntax: [no] enable all | ethernet [<slotnum>/] <portnum> [ethernet [<slotnum>/] <portnum> | to [<slotnum>/] <portnum>]
The all parameter enables GVRP on all ports.
The ethernet [<slotnum>/] <portnum> [ethernet [<slotnum>/] <portnum> | to [<slotnum>/] <portnum>] parameter enables GVRP on the specified list or range of Ethernet ports.
Configuring GVRP

- To specify a list, enter each port as `ethernet <portnum>` followed by a space. Include the slot number if required. For example, to enable GVRP on three Ethernet ports on a FSX device, enter the following command: `enable ethernet 1/24 ethernet 6/24 ethernet 8/17`

- To specify a range, enter the first port in the range as `ethernet [<slotnum>/]<portnum>` followed by to followed by the last port in the range. For example, to add ports 1/1 – 1/8, enter the following command: `enable ethernet 1/1 to 1/8`.

You can combine lists and ranges in the same command. For example: `enable ethernet 1/1 to 1/8 ethernet 1/24 ethernet 6/24 ethernet 8/17`.

Disabling VLAN advertising

To disable VLAN advertising on a port enabled for GVRP, enter a command such as the following at the GVRP configuration level.

```
FastIron(config-gvrp)# block-applicant ethernet 1/24 ethernet 6/24 ethernet 8/17
```

This command disables advertising of VLAN information on ports 1/24, 6/24, and 8/17.

Syntax: `[no] block-applicant all | ethernet [<slotnum>/]<portnum> [ethernet [<slotnum>/]<portnum>]
<portnum> | to [<slotnum>/]<portnum>`

NOTE
Leaveall messages are still sent on the GVRP ports.

Disabling VLAN learning

To disable VLAN learning on a port enabled for GVRP, enter a command such as the following at the GVRP configuration level.

```
FastIron(config-gvrp)# block-learning ethernet 6/24
```

This command disables learning of VLAN information on port 6/24.

NOTE
The port still advertises VLAN information unless you also disable VLAN advertising.

Syntax: `[no] block-learning all | ethernet [<slotnum>/]<portnum> [ethernet [<slotnum>/]<portnum>]
<portnum> | to [<slotnum>/]<portnum>`

Changing the GVRP timers

GVRP uses the following timers:

- Join – The maximum number of milliseconds (ms) a device GVRP interfaces wait before sending VLAN advertisements on the interfaces. The actual interval between Join messages is randomly calculated to a value between 0 and the maximum number of milliseconds specified for Join messages. You can set the Join timer to a value from 200 – one third the value of the Leave timer. The default is 200 ms.
• Leave – The number of ms a GVRP interface waits after receiving a Leave message on the port to remove the port from the VLAN indicated in the Leave message. If the port receives a Join message before the Leave timer expires, GVRP keeps the port in the VLAN. Otherwise, the port is removed from the VLAN. When a port receives a Leave message, the port GVRP state is changed to Leaving. Once the Leave timer expires, the port GVRP state changes to Empty. You can set the Leave timer to a value from three times the Join timer – one fifth the value of the Leaveall timer. The default is 600 ms.

NOTE
When all ports in a dynamically created VLAN (one learned through GVRP) leave the VLAN, the VLAN is immediately deleted from the device's VLAN database. However, this empty VLAN is still maintained in the GVRP database for an amount of time equal to the following.

\[(\text{number-of-GVRP-enabled-up-ports}) \times (2 \times \text{join-timer})\]

While the empty VLAN is in the GVRP database, the VLAN does not appear in the `show vlans` display but does still appear in the `show gvrp vlan all` display.

• Leaveall – The minimum interval at which GVRP sends Leaveall messages on all GVRP interfaces. Leaveall messages ensure that the GVRP VLAN membership information is current by aging out stale VLAN information and adding information for new VLAN memberships, if the information is missing. A Leaveall message instructs the port to change the GVRP state for all its VLANs to Leaving, and remove them unless a Join message is received before the Leave timer expires. By default, you can set the Leaveall timer to a value from five times the Leave timer – maximum value allowed by software (configurable from 300000 – 1000000 ms). The default is 10000.

NOTE
The actual interval is a random value between the Leaveall interval and 1.5 * the Leaveall time or the maximum Leaveall time, whichever is lower.

NOTE
You can increase the maximum configurable value of the Leaveall timer from 300000 ms up to 1000000 ms using the `gvrp-max-leaveall-timer` command. (Refer to “Increasing the maximum configurable value of the Leaveall timer” on page 592.)

Timer configuration requirements
- All timer values must be in multiples of 100 ms.
- The Leave timer must be \(\geq 3 \times \) the Join timer.
- The Leaveall timer must be \(\geq 5 \times \) the Leave timer.
- The GVRP timers must be set to the same values on all the devices that are exchanging information using GVRP.

Changing the Join, Leave, and Leaveall timers
The same CLI command controls changes to the Join, Leave, and Leaveall timers. To change values to the timers, enter a command such as the following.

```
FastIron(config-gvrp)# join-timer 1000 leave-timer 3000 leaveall-timer 15000
```
This command changes the Join timer to 1000 ms, the Leave timer to 3000 ms, and the Leaveall timer to 15000.

Syntax:
```
[no] join-timer <ms> leave-timer <ms> leaveall-timer <ms>
```

NOTE
When you enter this command, all the running GVRP timers are canceled and restarted using the new times specified by the command.

Resetting the timers to their defaults

To reset the Join, Leave, and Leaveall timers to their default values, enter the following command.

```
FastIron(config-gvrp)# default-timers
```

Syntax:
```
default-timers
```

This command resets the timers to the following values:

- Join – 200 ms
- Leave – 600 ms
- Leaveall – 10000 ms

Converting a VLAN created by GVRP into a statically-configured VLAN

You cannot configure VLAN parameters on VLANs created by GVRP. Moreover, VLANs and VLAN ports added by GVRP do not appear in the running-config and cannot be saved in the startup-config file.

To be able to configure and save VLANs or ports added by GVRP, you must convert the VLAN ports to statically-configured ports.

To convert a VLAN added by GVRP into a statically-configured VLAN, add the ports using commands such as the following.

```
FastIron(config)# vlan 22
FastIron(config-vlan-222)# tagged ethernet 1/1 to 1/8
```

These commands convert GVRP-created VLAN 22 containing ports 1/1 through 1/8 into statically-configured VLAN 22.

Syntax:
```
[no] vlan <vlan-id>
```

Syntax:
```
[no] tagged ethernet [<slotnum>/]<portnum> [to [<slotnum>/]<portnum> | ethernet [<slotnum>/]<portnum>]
```

Use the same commands to statically add ports that GVRP added to a VLAN.

NOTE
You cannot add the VLAN ports as untagged ports.
NOTE
After you convert the VLAN, the VLAN name changes from “GVRP_VLAN_<vlan-id>” to “STATIC_VLAN_<vlan-id>”.

Displaying GVRP information

You can display the following GVRP information:

- GVRP configuration information
- GVRP VLAN information
- GVRP statistics
- CPU utilization statistics
- GVRP diagnostic information

Displaying GVRP configuration information

To display GVRP configuration information, enter a command such as the following.

```
FastIron# show gvrp
GVRP is enabled on the system
GVRP BASE VLAN ID          : 4093
GVRP MAX Leaveall Timer    : 300000 ms
GVRP Join Timer            : 200 ms
GVRP Leave Timer           : 600 ms
GVRP Leave-all Timer       : 10000 ms
===========================================================================
Configuration that is being used:
  block-learning ethe 1/3
  block-applicant ethe 2/7 ethe 2/11
  enable ethe 1/1 to 1/7 ethe 2/1 ethe 2/7 ethe 2/11
===========================================================================
Spanning Tree: SINGLE SPANNING TREE
Dropped Packets Count: 0
===========================================================================
Number of VLANs in the GVRP Database: 15
Maximum Number of VLANs that can be present: 4095
===========================================================================
```

Syntax: `show gvrp [ethernet <port-num>]`

This display shows the following information.
To display detailed GVRP information for an individual port, enter a command such as the following.

```
TABLE 102  CLI display of summary GVRP information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol state</td>
<td>The state of GVRP. The display shows one of the following:</td>
</tr>
<tr>
<td></td>
<td>• GVRP is disabled on the system</td>
</tr>
<tr>
<td></td>
<td>• GVRP is enabled on the system</td>
</tr>
<tr>
<td>GVRP BASE VLAN ID</td>
<td>The ID of the base VLAN used by GVRP.</td>
</tr>
<tr>
<td>GVRP MAX Leaveall Timer</td>
<td>The maximum number of ms to which you can set the Leaveall timer.</td>
</tr>
<tr>
<td></td>
<td>NOTE: To change the maximum value, refer to “Increasing the maximum</td>
</tr>
<tr>
<td></td>
<td>configurable value of the Leaveall timer” on page 592.</td>
</tr>
<tr>
<td>GVRP Join Timer</td>
<td>The value of the Join timer.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For descriptions of the Join, Leave, and Leaveall timers or to change</td>
</tr>
<tr>
<td></td>
<td>the timers, refer to “Changing the GVRP timers” on page 593.</td>
</tr>
<tr>
<td>GVRP Leave Timer</td>
<td>The value of the Leave timer.</td>
</tr>
<tr>
<td>GVRP Leave-all Timer</td>
<td>The value of the Leaveall timer.</td>
</tr>
<tr>
<td>Configuration that is being used</td>
<td>The configuration commands used to enable GVRP on individual ports. If GVRP</td>
</tr>
<tr>
<td></td>
<td>learning or advertising is disabled on a port, this information also is</td>
</tr>
<tr>
<td></td>
<td>displayed.</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>The type of STP enabled on the device.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The current release supports GVRP only with Single STP.</td>
</tr>
<tr>
<td>Dropped Packets Count</td>
<td>The number of GVRP packets that the device has dropped. A GVRP packet can</td>
</tr>
<tr>
<td></td>
<td>be dropped for either of the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• GVRP packets are received on a port on which GVRP is not enabled.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If GVRP support is not globally enabled, the device does not drop the</td>
</tr>
<tr>
<td></td>
<td>GVRP packets but instead forwards them at Layer 2.</td>
</tr>
<tr>
<td></td>
<td>• GVRP packets are received with an invalid GARP Protocol ID. The protocol</td>
</tr>
<tr>
<td></td>
<td>ID must always be 0x0001.</td>
</tr>
<tr>
<td>Number of VLANs in the GVRP</td>
<td>The number of VLANs in the GVRP database.</td>
</tr>
<tr>
<td>Database</td>
<td>NOTE: This number includes the default VLAN (1), the GVRP base VLAN (4093),</td>
</tr>
<tr>
<td></td>
<td>and the single STP VLAN (4094). These VLANs are not advertised by GVRP but</td>
</tr>
<tr>
<td></td>
<td>are maintained as “Registration Forbidden”.</td>
</tr>
<tr>
<td>Maximum Number of VLANs that</td>
<td>The maximum number of VLANs that can be configured on the device. This</td>
</tr>
<tr>
<td>can be present</td>
<td>number includes statically configured VLANs, VLANs learned through GVRP,</td>
</tr>
<tr>
<td></td>
<td>and VLANs 1, 4093, and 4094.</td>
</tr>
<tr>
<td></td>
<td>To change the maximum number of VLANs the device can have, use the</td>
</tr>
<tr>
<td></td>
<td>system-max vlan &lt;num&gt; command. Refer to “Displaying and modifying system</td>
</tr>
<tr>
<td></td>
<td>parameter default settings” on page 380.</td>
</tr>
</tbody>
</table>

To display detailed GVRP information for an individual port, enter a command such as the following.
Displaying GVRP information

This display shows the following information.

**TABLE 103** CLI display of detailed GVRP information for a port

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port number</td>
<td>The port for which information is being displayed.</td>
</tr>
<tr>
<td>GVRP Enabled</td>
<td>Whether GVRP is enabled on the port.</td>
</tr>
<tr>
<td>GVRP Learning</td>
<td>Whether the port can learn VLAN information from GVRP.</td>
</tr>
<tr>
<td>GVRP Applicant</td>
<td>Whether the port can advertise VLAN information into GVRP.</td>
</tr>
<tr>
<td>Port State</td>
<td>The port link state, which can be UP or DOWN.</td>
</tr>
<tr>
<td>Forwarding</td>
<td>Whether the port is in the GVRP Forwarding state:</td>
</tr>
<tr>
<td></td>
<td>• NO – The port is in the Blocking state.</td>
</tr>
<tr>
<td></td>
<td>• YES – The port is in the Forwarding state.</td>
</tr>
<tr>
<td>VLAN Membership</td>
<td>The VLANs of which the port is a member. For each VLAN, the following information is shown:</td>
</tr>
<tr>
<td></td>
<td>• VLAN ID – The VLAN ID.</td>
</tr>
<tr>
<td></td>
<td>• Mode – The type of VLAN, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• FIXED – The port will always be a member of this VLAN and the VLAN will always be advertised on this port by GVRP. A port becomes FIXED when you configure the port as a tagged member of a statically configured VLAN.</td>
</tr>
<tr>
<td></td>
<td>• FORBIDDEN – The VLAN is one of the special VLANs that is not advertised or learned by GVRP. In the current release, the following VLANs are forbidden: the default VLAN (1), the GVRP base VLAN (4093), or the Single STP VLAN (4094).</td>
</tr>
<tr>
<td></td>
<td>• NORMAL – The port became a member of this VLAN after learning about the VLAN through GVRP. The port membership in the VLAN depends on GVRP. If the VLAN is removed from the ports that send GVRP advertisements to this device, then the port will stop being a member of the VLAN.</td>
</tr>
</tbody>
</table>

Displaying GVRP VLAN information

To display information about all the VLANs on the device, enter the following command.

```
FastIron# show gvrp ethernet 2/1
Port 2/1 -
GVRP Enabled : YES
GVRP Learning : ALLOWED
GVRP Applicant : ALLOWED
Port State : UP
Forwarding : YES

VLAN Membership: [VLAN-ID] [MODE]
1 FORBIDDEN
2 FIXED
1001 NORMAL
1003 NORMAL
1004 NORMAL
1007 NORMAL
1009 NORMAL
1501 NORMAL
2507 NORMAL
4001 NORMAL
4093 FORBIDDEN
4094 FORBIDDEN
```
FastIron# show gvrp vlan brief

Number of VLANs in the GVRP Database: 7
Maximum Number of VLANs that can be present: 4095

<table>
<thead>
<tr>
<th>VLAN-ID</th>
<th>[MODE]</th>
<th>VLAN-INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STATIC-DEFAULT</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>STATIC</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>STATIC</td>
<td>4</td>
</tr>
<tr>
<td>1001</td>
<td>DYNAMIC</td>
<td>7</td>
</tr>
<tr>
<td>1003</td>
<td>DYNAMIC</td>
<td>8</td>
</tr>
<tr>
<td>4093</td>
<td>STATIC-GVRP-BASE-VLAN</td>
<td>6</td>
</tr>
<tr>
<td>4094</td>
<td>STATIC-SINGLE-SPAN-VLAN</td>
<td>5</td>
</tr>
</tbody>
</table>

FastIron# show gvrp vlan 1001

VLAN-ID: 1001, VLAN-INDEX: 7, STATIC: NO, DEFAULT: NO, BASE-VLAN: NO
Timer to Delete Entry Running: NO
Legend: [S=Slot]
Forbidden Members: None
Fixed Members: None
Normal(Dynamic) Members: (S2) 1

Syntax: show gvrp vlan all | brief | <vlan-id>
This display shows the following information.

**TABLE 104** CLI display of summary VLAN information for GVRP

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of VLANs in the GVRP Database</td>
<td>The number of VLANs in the GVRP database.</td>
</tr>
<tr>
<td><strong>NOTE:</strong></td>
<td>This number includes the default VLAN (1), the GVRP base VLAN (4093), and the single STP VLAN (4094). These VLANs are not advertised by GVRP but are included in the total count.</td>
</tr>
<tr>
<td>Maximum Number of VLANs that can be present</td>
<td>The maximum number of VLANs that can be configured on the device. This number includes statically configured VLANs, VLANs learned through GVRP, and VLANs 1, 4093, and 4094.</td>
</tr>
<tr>
<td>To change the maximum number of VLANs the device can have, use the system-max vlan &lt;num&gt; command. Refer to &quot;Displaying and modifying system parameter default settings&quot; on page 380.</td>
<td></td>
</tr>
<tr>
<td>VLAN-ID</td>
<td>The VLAN ID.</td>
</tr>
<tr>
<td>MODE</td>
<td>The type of VLAN, which can be one of the following:</td>
</tr>
<tr>
<td>• STATIC – The VLAN is statically configured and cannot be removed by GVRP. This includes VLANs you have configured as well as the default VLAN (1), base GVRP VLAN (4093), and Single STP VLAN (4094).</td>
<td></td>
</tr>
<tr>
<td>• DYNAMIC – The VLAN was learned through GVRP.</td>
<td></td>
</tr>
<tr>
<td>VLAN-INDEX</td>
<td>A number used as an index into the internal database.</td>
</tr>
</tbody>
</table>
This display shows the following information.

**TABLE 105** CLI display of summary VLAN information for GVRP

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN-ID</td>
<td>The VLAN ID.</td>
</tr>
<tr>
<td>VLAN-INDEX</td>
<td>A number used as an index into the internal database.</td>
</tr>
<tr>
<td>STATIC</td>
<td>Whether the VLAN is a statically configured VLAN.</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>Whether this is the default VLAN.</td>
</tr>
<tr>
<td>BASE-VLAN</td>
<td>Whether this is the base VLAN for GVRP.</td>
</tr>
<tr>
<td>Timer to Delete Entry Running</td>
<td>Whether all ports have left the VLAN and the timer to delete the VLAN itself is running. The timer is described in the note for the Leave timer in “Changing the GVRP timers” on page 593.</td>
</tr>
</tbody>
</table>

**Legend**
The meanings of the letter codes used in other parts of the display.

**Forbidden Members**
The ports that cannot become members of a VLAN advertised or leaned by GVRP.

**Fixed Members**
The ports that are statically configured members of the VLAN. GVRP cannot remove these ports.

**Normal(Dynamic) Members**
The ports that were added by GVRP. These ports also can be removed by GVRP.

**MODE**
The type of VLAN, which can be one of the following:
- **STATIC** – The VLAN is statically configured and cannot be removed by GVRP. This includes VLANs you have configured as well as the default VLAN (1), base GVRP VLAN (4093), and Single STP VLAN (4094).
- **DYNAMIC** – The VLAN was learned through GVRP.

To display detailed information for all VLANs, enter the `show gvrp vlan all` command.

### Displaying GVRP statistics

To display GVRP statistics for a port, enter a command such as the following.

```
FastIron# show gvrp statistics ethernet 2/1
```

**PORT 2/1 Statistics:**

- Leave All Received : 147
- Join Empty Received : 4193
- Join In Received : 599
- Leave Empty Received : 0
- Leave In Received : 0
- Empty Received : 588
- Leave All Transmitted : 157
- Join Empty Transmitted : 1794
- Join In Transmitted : 598
- Leave Empty Transmitted : 0
- Leave In Transmitted : 0
- Empty Transmitted : 1248
- Invalid Messages/Attributes Skipped : 0
- Failed Registrations : 0

**Syntax:** `show gvrp statistics all | ethernet [<slotnum>/] <port-num>`

This display shows the following information for the port.
To display GVRP statistics for all ports, enter the `show gvrp statistics all` command.

### Displaying CPU utilization statistics

You can display CPU utilization statistics for GVRP.

To display CPU utilization statistics for GVRP for the previous one-second, one-minute, five-minute, and fifteen-minute intervals, enter the following command at any level of the CLI:
If the software has been running less than 15 minutes (the maximum interval for utilization statistics), the command indicates how long the software has been running. An example is given below.

```
FastIron# show process cpu
The system has only been up for 6 seconds.
```

To display utilization statistics for a specific number of seconds, enter a command such as the following.

```
FastIron# show process cpu 2
Statistics for last 1 sec and 80 ms
```

When you specify how many seconds’ worth of statistics you want to display, the software selects the sample that most closely matches the number of seconds you specified. In this example, statistics are requested for the previous two seconds. The closest sample available is actually for the previous 1 second plus 80 milliseconds.

**Syntax: show process cpu [<num>]**

The `<num>` parameter specifies the number of seconds and can be from 1 – 900. If you use this parameter, the command lists the usage statistics only for the specified number of seconds. If you do not use this parameter, the command lists the usage statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals.
Clearing GVRP statistics

To clear the GVRP statistics counters, enter a command such as the following.

FastIron# clear gvrp statistics all

This command clears the counters for all ports. To clear the counters for a specific port only, enter a command such as the following.

FastIron# clear gvrp statistics ethernet 2/1

Syntax: clear gvrp statistics all | ethernet [slotnum/]portnum>

CLI examples

The following sections show the CLI commands for implementing the applications of GVRP described in "Application examples" on page 587.

NOTE
Although some of the devices in these configuration examples do not have statically configured VLANs, this is not a requirement. You always can have statically configured VLANs on a device that is running GVRP.

Displaying GVRP diagnostic information

To display diagnostic information, enter the following command.

FastIron# debug gvrp packets

```
GVRP: Packets debugging is on
GVRP: 0x2095ced4: 01 80 c2 00 00 21 00 e0 52 ab 87 40 00 3a 42 42
GVRP: 0x2095cee4: 03 00 01 01 02 00 04 05 00 02 04 05 00 07 04 05
GVRP: 0x2095cef4: 00 09 04 05 00 0b 04 02 03 e9 04 01 03 eb 04 01
GVRP: 0x2095cf04: 03 ec 04 01 03 ef 04 01 03 f1 04 01 05 dd 04 01
GVRP: 0x2095cf14: 09 cb 04 01 0f a1 00 00
GVRP: Port 2/1 RCV
GVRP: 0x2095ced4: 01 80 c2 00 00 21 00 e0 52 ab 87 40 00 28 42 42
GVRP: 0x2095cee4: 03 00 01 01 04 02 03 e9 04 01 03 eb 04 01 03 ec
GVRP: 0x2095cef4: 04 01 03 e9 04 01 03 f1 04 01 05 dd 04 01 09 cb
GVRP: 0x2095cf04: 04 01 0f a1 00 00
GVRP: Port 2/1 TX
GVRP: 0x207651b8: 01 80 c2 00 00 21 00 04 80 2c 0e 20 00 3a 42 42
GVRP: 0x207651c8: 03 00 01 01 02 00 04 05 03 e9 04 05 03 eb 04 05
GVRP: 0x207651d8: 03 ec 04 05 03 ef 04 05 03 f1 04 05 05 dd 04 05
GVRP: 0x207651e8: 09 cb 04 05 0f a1 04 02 04 01 00 07 04 01
GVRP: 0x207651f8: 00 09 04 01 00 0b 00 00
GVRP: Port 2/1 TX
GVRP: 0x207651b8: 01 80 c2 00 00 21 00 04 80 2c 0e 20 00 18 42 42
GVRP: 0x207651c8: 03 00 01 01 04 02 00 02 04 01 00 07 04 01 00 09
GVRP: 0x207651d8: 04 01 00 0b 00 00
```

Syntax: debug gvrp packets
Dynamic core and fixed edge

In this configuration, the edge devices advertise their statically configured VLANs to the core device. The core device does not have any statically configured VLANs but learns the VLANs from the edge devices.

Enter the following commands on the core device.

```
FastIron> enable
FastIron# configure terminal
FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable all
```

These commands globally enable GVRP support and enable the protocol on all ports.

Enter the following commands on edge device A.

```
FastIron> enable
FastIron# configure terminal
FastIron(config)# vlan 20
FastIron(config-vlan-20)# untag ethernet 2/1
FastIron(config-vlan-20)# tag ethernet 4/24
FastIron(config-vlan-20)# vlan 40
FastIron(config-vlan-40)# untag ethernet 2/1
FastIron(config-vlan-40)# tag ethernet 4/24
FastIron(config-vlan-40)# exit
FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable ethernet 4/24
FastIron(config-gvrp)# block-learning ethernet 4/24
```

These commands statically configure two port-based VLANs, enable GVRP on port 4/24, and block GVRP learning on the port. The device will advertise the VLANs but will not learn VLANs from other devices.

Enter the following commands on edge device B.

```
FastIron> enable
FastIron# configure terminal
FastIron(config)# vlan 20
FastIron(config-vlan-20)# untag ethernet 2/24
FastIron(config-vlan-20)# tag ethernet 4/1
FastIron(config-vlan-20)# vlan 30
FastIron(config-vlan-30)# untag ethernet 4/24
FastIron(config-vlan-30)# tag ethernet 4/1
FastIron(config-vlan-30)# exit
FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable ethernet 4/1
FastIron(config-gvrp)# block-learning ethernet 4/1
```

Enter the following commands on edge device C.

```
FastIron> enable
FastIron# configure terminal
FastIron(config)# vlan 30
FastIron(config-vlan-30)# untag ethernet 2/24
FastIron(config-vlan-30)# tag ethernet 4/1
FastIron(config-vlan-20)# vlan 40
FastIron(config-vlan-40)# untag ethernet 4/24
FastIron(config-vlan-40)# tag ethernet 4/1
```
FastIron(config-vlan-40)# exit
FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable ethernet 4/1
FastIron(config-gvrp)# block-learning ethernet 4/1

Dynamic core and dynamic edge

In this configuration, the core and edge devices have no statically configured VLANs and are enabled to learn and advertise VLANs. The edge and core devices learn the VLANs configured on the devices in the edge clouds. To enable GVRP on all the ports, enter the following command on each edge device and on the core device.

FastIron> enable
FastIron# configure terminal
FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable all

Fixed core and dynamic edge

In this configuration, GVRP learning is enabled on the edge devices. The VLANs on the core device are statically configured, and the core device is enabled to advertise its VLANs but not to learn VLANs. The edge devices learn the VLANs from the core.

Enter the following commands on the core device.

FastIron> enable
FastIron# configure terminal
FastIron(config)# vlan 20
FastIron(config-vlan-20)# tag ethernet 1/24
FastIron(config-vlan-20)# tag ethernet 6/24
FastIron(config-vlan-20)# vlan 30
FastIron(config-vlan-30)# tag ethernet 6/24
FastIron(config-vlan-30)# tag ethernet 8/17
FastIron(config-vlan-30)# vlan 40
FastIron(config-vlan-40)# tag ethernet 1/5
FastIron(config-vlan-40)# tag ethernet 8/17
FastIron(config-vlan-40)# vlan 50
FastIron(config-vlan-50)# untag ethernet 6/1
FastIron(config-vlan-50)# tag ethernet 1/11
FastIron(config-vlan-50)# exit
FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable ethernet 1/24 ethernet 6/24 ethernet 8/17
FastIron(config-gvrp)# block-learning ethernet 1/24 ethernet 6/24 ethernet 8/17

These VLAN commands configure VLANs 20, 30, 40, and 50. The GVRP commands enable the protocol on the ports that are connected to the edge devices, and disable VLAN learning on those ports. All the VLANs are advertised by GVRP.

Enter the following commands on edge devices A, B, and C.

FastIron> enable
FastIron# configure terminal
FastIron(config)# gvrp-enable
FastIron(config-gvrp)# enable all
FastIron(config-gvrp)# block-applicant all
Fixed core and fixed edge

The VLANs are statically configured on the core and edge devices. On each edge device, VLAN advertising is enabled but learning is disabled. GVRP is not configured on the core device. This configuration enables the devices in the edge clouds to learn the VLANs configured on the edge devices.

This configuration does not use any GVRP configuration on the core device.

The configuration on the edge device is the same as in “Dynamic core and fixed edge” on page 604.
Overview

Platform Support:
- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later

The MAC-based VLAN feature controls network access by authenticating a host source MAC address, and mapping the incoming packet source MAC to a VLAN. Mapping is based on the MAC address of the end station connected to the physical port. Users who relocate can remain on the same VLAN as long as they connect to any switch in the same domain, on a port which is permitted in the VLAN. The MAC-based VLAN feature may be enabled for two types of hosts: static and dynamic.

MAC-based VLAN activity is determined by authentication through a RADIUS server. Incoming traffic that originates from a specific MAC address is forwarded only if the source MAC address-to-VLAN mapping is successfully authenticated. While multi-device port authentication is in progress, all traffic from the new MAC address will be blocked or dropped until the authentication succeeds. Traffic is dropped if the authentication fails.

NOTE
FastIron devices do not support UDLD link-keepalives on ports with MAC-based VLAN enabled.

NOTE
FastIron devices do not support STP BPDU packets on ports with MAC-based VLAN enabled.

NOTE
MAC-based VLAN does not work in conjunction with ACLs or MAC filters.

Static and dynamic hosts

Static hosts are devices on the network that do not speak until spoken to. Static hosts may not initiate a request for authentication on their own. Such static hosts can be managed through a link up or link down notification.

Dynamic hosts are “chatty” devices that generate packets whenever they are in the link up state. Dynamic hosts must be authenticated before they can switch or forward traffic.

MAC-based VLAN feature structure

The MAC-based VLAN feature operates in two stages:
Dynamic MAC-based VLAN

- Source MAC Address Authentication
- Policy-Based Classification and Forwarding

### Source MAC address authentication

Source MAC address authentication is performed by a central RADIUS server when it receives a PAP request with a username and password that match the MAC address being authenticated. When the MAC address is successfully authenticated, the server must return the VLAN identifier, which is carried in the Tunnel-Type, Tunnel-Medium-Type, and Tunnel-Private-Group-ID attributes of the RADIUS packets. If the Tunnel-Type is tagged, the MAC address will be blocked or restricted. If the identified VLAN does not exist, then the authentication is considered a failure, and action is taken based on the configured failure options. (The default failure action is to drop the traffic.) The RADIUS server may also optionally return the QoS attribute for the authenticated MAC address. Refer to Table 108 on page 611 for more information about attributes.

### Policy-based classification and forwarding

Once the authentication stage is complete, incoming traffic is classified based on the response from the RADIUS server. There are three possible actions:

- Incoming traffic from a specific source MAC is dropped because authentication failed
- Incoming traffic from a specific source MAC is classified as untagged into a specific VLAN
- Incoming traffic from a specific source MAC is classified as untagged into a restricted VLAN

Traffic classification is performed by programming incoming traffic and RADIUS-returned attributes in the hardware. Incoming traffic attributes include the source MAC address and the port on which the feature is enabled. The RADIUS-returned attributes are the VLAN into which the traffic is to be classified, and the QoS priority.

**NOTE**

This feature drops any incoming tagged traffic on the port, and classifies and forwards untagged traffic into the appropriate VLANs.

This feature supports up to a maximum of 32 MAC addresses per physical port, with a default of 2. Once a client MAC address is successfully authenticated and registered, the MAC-to-VLAN association remains until the port connection is dropped, or the MAC entry expires.

### MAC-based VLAN and port up or down events

When the state of a port is changed to down, all authorized and unauthorized MAC addresses are removed from the MAC-to-VLAN mapping table, any pending authentication requests are cancelled.

**Dynamic MAC-based VLAN**

**Platform Support:**

- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later
When enabled, this feature allows the dynamic addition of mac-vlan-permit ports to the VLAN table only after successful RADIUS authentication. Ports that fail RADIUS authentication are not added to the VLAN table.

When this feature is not enabled, the physical port is statically added to the hardware table, regardless of the outcome of the authentication process. This feature prevents the addition of un-authenticated ports to the VLAN table. For information about how to configure Dynamic MAC-based VLAN, refer to “Configuring dynamic MAC-based VLAN” on page 614.

Configuring MAC-based VLANs

Configure MAC-based VLAN mapping on the switch statically for static hosts, or dynamically for non-static hosts, by directing the RADIUS server to authenticate the incoming packet.

To configure the a MAC-based VLAN, first perform the following tasks:

- In the VLANs, configure `mac-vlan-permit` for each port that will be participating in the MAC-based VLAN
- If a port has been MAC-based VLAN-enabled, but has not been added as `mac-vlan-permit` in any of the VLANs, any MAC addresses learned on this port will be blocked in the reserved VLAN. To prevent this, you must create all of the VLANs and add all ports as `mac-vlan-permit` before enabling MAC-based VLAN on any ports.
- Disable any multi-device port authentication on ports you will be using for MAC-to-VLAN mapping

**NOTE**
Do not configure MAC-based VLAN on ports that are tagged to any VLAN. Do not use ports on which MAC-based VLAN is configured as tagged ports.

**NOTE**
For FCX devices, MAC-based VLAN with 802.1x will not work on the same port if 802.1x has the RADIUS VLAN attribute defined as an untagged VLAN (for example U:1, U:2).

**NOTE**
MAC-based VLAN is not supported on trunk or LACP ports. Do not configure trunks on MAC-based VLAN-enabled ports.

Using MAC-based VLANs and 802.1X security on the same port

On Brocade devices, MAC-based VLANs and 802.1X security can be configured on the same port. When both of these features are enabled on the same port, MAC-based VLAN is performed prior to 802.1X authentication. If MAC-based VLAN is successful, 802.1X authentication may be performed, based on the configuration of a vendor-specific attribute (VSA) in the profile for the MAC address on the RADIUS server.
When both features are configured on a port, a device connected to the port is authenticated as follows.

1. MAC-based VLAN is performed on the device to authenticate the device MAC address.

2. If MAC-based VLAN is successful, the device then checks to see if the RADIUS server included the Foundry-802_1x-enable VSA (described in Table 108) in the Access-Accept message that authenticated the device.

3. If the Foundry-802_1x-enable VSA is not present in the Access-Accept message, or is present and set to 1, then 802.1X authentication is performed for the device.

4. If the Foundry-802_1x-enable VSA is present in the Access-Accept message, and is set to 0, then 802.1X authentication is skipped.

**Configuring generic and Brocade vendor-specific attributes on the RADIUS server**

If the RADIUS authentication process is successful, the RADIUS server sends an Access-Accept message to the Brocade device, authenticating the device. The Access-Accept message includes Vendor-Specific Attributes (VSAs) that specify additional information about the device.

Add Brocade vendor-specific attributes to your RADIUS server configuration, and configure the attributes in the individual or group profiles of the devices that will be authenticated. Brocade vendor-ID is 1991, vendor-type 1. Table 107 lists generic RADIUS attributes. Table 108 lists Brocade Vendor-Specific Attributes.

**TABLE 107** Generic RADIUS attributes

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute ID</th>
<th>Data type</th>
<th>Optional or mandatory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Type</td>
<td>64</td>
<td>13 decimal</td>
<td>Mandatory</td>
<td>VLAN RFC 2868.</td>
</tr>
<tr>
<td>Tunnel-Medium-Type</td>
<td>65</td>
<td>6 decimal</td>
<td>Mandatory</td>
<td>802 RFC 2868.</td>
</tr>
<tr>
<td>Tunnel-Private-Group-ID</td>
<td>81</td>
<td>decimal</td>
<td>Mandatory</td>
<td>RFC 2868. &lt;vlan-id&gt; or U:&lt;&lt;vlan-id&gt; – a MAC-based VLAN ID configured on the Brocade device.</td>
</tr>
</tbody>
</table>
Aging for MAC-based VLAN

The aging process for MAC-based VLAN works as described below.

For permitted hosts
For permitted hosts, as long as the Brocade device is receiving traffic aging does not occur. The age column in the output of the `show table-mac-vlan` command displays Ena or S <num>. If the Brocade device stops receiving traffic, the entry first ages out from the MAC table (in the hardware) and then the aging cycle for MAC-based VLAN begins. Aging in the MAC-based VLAN continues for 2 minutes (the default is 120 seconds) after which the MAC-based VLAN session is flushed out.

For blocked hosts
For blocked hosts, as long as the Brocade device is receiving traffic, aging does not occur. In the output of the `show table-mac-vlan` command, the age column displays H0 to H70, S0, and H0 to H70, etc. Aging of the MAC-based VLAN MAC occurs in two phases: hardware aging and software aging. The hardware aging period can be configured using the `mac-authentication hw-deny-age` command in config mode. The default is 70 seconds. The software aging time for MAC-based VLAN MACs can be configured using the `mac-authentication max-age` command. When the Brocade device is no longer receiving traffic from a MAC-based VLAN MAC address, the hardware aging period begins and lasts for a fixed length of time (default or user-configured). When the hardware

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute ID</th>
<th>Data type</th>
<th>Optional or mandatory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundry-MAC-based VLAN-QoS</td>
<td>8</td>
<td>decimal</td>
<td>Optional</td>
<td>The QoS attribute specifies the priority of the incoming traffic based on any value between 0 (lowest priority) and 7 (highest priority). Default is 0.</td>
</tr>
<tr>
<td>Foundry-802_1x-enable</td>
<td>6</td>
<td>integer</td>
<td>Optional</td>
<td>Specifies whether 802.1x authentication is performed when MAC-based VLAN is successful for a device. This attribute can be set to one of the following: 0 - Do not perform 802.1x authentication on a device that passes MAC-based VLAN. Set the attribute to zero (0) for devices that do not support 802.1x authentication. 1 - Perform 802.1x authentication when a device passes MAC-based VLAN. Set the attribute to one (1) for devices that support 802.1x authentication.</td>
</tr>
<tr>
<td>Foundry-802_1x-valid</td>
<td>7</td>
<td>integer</td>
<td>Optional</td>
<td>Specifies whether the RADIUS record is valid only for MAC-based VLAN, or for both MAC-based VLAN and 802.1x authentication. This attribute can be set to one of the following: 0 - The RADIUS record is valid only for MAC-based VLAN. Set this attribute to zero (0) to prevent a user from using their MAC address as username and password for 802.1x authentication 1 - The RADIUS record is valid for both MAC-based VLAN and 802.1x authentication.</td>
</tr>
</tbody>
</table>
aging period ends, the software aging period begins. The software aging period lasts for a configurable amount of time (the default is 120 seconds). After the software aging period ends, the MAC-based VLAN session is flushed, and the MAC address can be authenticated or denied if the Brocade device again receives traffic from that MAC address.

For MAC-based dynamic activation
If all of the sessions age out on a port, the port is dynamically removed from the VLAN table. When any new session is established, the port is dynamically added back to the VLAN table.

NOTE
If the Brocade device receives a packet from an authenticated MAC address, and the MAC-based VLAN software aging is still in progress (hardware aging has already occurred), a RADIUS message is NOT sent to the RADIUS server. Instead the MAC address is reentered in the hardware along with the parameters previously returned from the RADIUS server. A RADIUS message is sent only when the MAC-based VLAN session ages out from the software.

To change the length of the software aging period
To change the length of the software aging period for blocked MAC addresses, enter a command such as the following.

FGS648P Switch(config)#mac-authentication max-age 180

Syntax: [no] mac-authentication max-age <seconds>
You can specify from 1 – 65535 seconds. The default is 120 seconds.

Disabling aging for MAC-based VLAN sessions
MAC addresses that have been authenticated or denied by a RADIUS server are aged out if no traffic is received from the MAC address for a certain period of time.

You can optionally disable aging for MAC-based VLAN session subject to authentication, either for all MAC addresses or for those learned on a specified interface.

Globally disabling aging
On most devices, you can disable aging on all interfaces where MAC-based VLAN has been enabled, by entering the following command.

FGS648P Switch(config)#mac-authentication disable-aging

Syntax: mac-authentication disable-aging
Enter the command at the global or interface configuration level.

The denied-mac-only parameter prevents denied sessions from being aged out, but ages out permitted sessions.

The permitted-mac-only parameter prevents permitted (authenticated and restricted) sessions from being aged out and ages denied sessions.

Disabling the aging on interfaces
To disable aging on a specific interface where MAC-based VLAN has been enabled, enter the command at the interface level.
Configuring MAC-based VLANs

FGS648P Switch(config)#interface e 3/1
FGS648P Switch(config-if-e1000-3/1)#mac-authentication disable-aging

Syntax: [no] mac-authentication disable-aging

Configuring the maximum MAC addresses per port

To configure the maximum number of MAC addresses allowed per port, use the following commands:

```
FGS648P Switch(config)#interface e 0/1/1
FGS648P Switch(config-if-e1000-0/1/1)#mac-authentication mac-vlan
max-mac-entries 24
```

NOTE
32 MAC addresses maximum are allowed per port. This total includes both static and dynamic hosts. The default number of allowed MACs is 2.

NOTE
To change the maximum MAC addresses per port, you must first disable MAC-based VLAN on that port.

Configuring a MAC-based VLAN for a static host

Follow the steps given below to configure a MAC-based VLAN for a static host.

1. Enable multi-device port authentication globally using the following command.

```
FGS648P Switch(config)#mac-authentication enable
```

2. Add each port on which you want MAC-based VLAN enabled as mac-vlan-permit for a specific VLAN.

```
FGS648P Switch(config)#vlan 10 by port
FGS648P Switch(config-vlan-10)#mac-vlan-permit ethernet 0/1/1 to 0/1/6
added mac-vlan-permit ports ethe 0/1/1 to 0/1/6 to port-vlan 10.
```

3. Add the static MAC-based VLAN configuration on the port.

```
FGS648P Switch(config)#interface e 0/1/1
FGS648P Switch(config-if-e1000-0/1/1)#mac-authentication mac-vlan
0000.0010.0011 vlan 10 priority 5
```

4. To enable MAC-based VLAN on the port.

```
FGS648P Switch(config)#interface e 0/1/1
FGS648P Switch(config-if-e1000-0/1/1)#mac-authentication mac-vlan enable
```

5. To disable MAC-based VLAN on the port.

```
FGS648P Switch(config)#interface e 0/1/1
FGS648P Switch(interface-0/1/1)#mac-auth mac-vlan disable
```

6. To remove and disable the MAC-based VLAN configuration.

```
FGS648P Switch(config)#interface e 0/1/1
FGS648P Switch(config-if-e1000-0/1/1)#no mac-auth mac-vlan
```
Configuring MAC-based VLAN for a dynamic host

Follow the steps given below to configure MAC-based VLAN for a dynamic host.

1. Enable multi-device port authentication globally using the following command.
   
   FGS648P Switch(config)#mac-authentication enable

2. Add each port on which you want MAC-based VLAN enabled as `mac-vlan-permit` for a specific VLAN.
   
   FGS648P Switch(config)#vlan 10 by port
   FGS648P Switch(config-vlan-10)#mac-vlan-permit ethernet 0/1/1 to 0/1/6

3. Enable MAC-based VLAN on the port.
   
   FGS648P Switch(config)#interface e 0/1/1
   FGS648P Switch(config-if-e1000-0/1/1)#mac-authentication mac-vlan enable

4. Disable MAC-based VLAN on the port.
   
   FGS648P Switch(config)#interface e 0/1/1
   FGS648P Switch(config-if-e1000-0/1/1)#mac-auth mac-vlan disable

5. Remove and disable the MAC-based VLAN configuration.
   
   FGS648P Switch(config)#interface e 0/1/1
   FGS648P Switch(config-if-e1000-0/1/1)#no mac-auth mac-vlan

Configuring dynamic MAC-based VLAN

To globally enable MAC-based VLAN globally (for all MAC-based VLAN ports), enter the following commands.

   FGS648P Switch(config)#mac-authentication enable
   FGS648P Switch(config)#mac-authentication mac-vlan-dyn-activation

To configure Dynamic MAC-based VLAN to add a specific port to a specific VLAN, enter commands similar to the following.

   FGS648P Switch(config)#vlan 10
   FGS648P Switch(config-vlan-10)#mac-vlan-permit e 0/1/35

**Syntax:** `mac-vlan-permit < stack | slot | port>

To disable Dynamic MAC-based VLAN, enter the following command.

   FGS648P Switch(config)#no mac-authentication mac-vlan-dyn-activation

**NOTE**

If static Mac-Based VLAN is configured on a port, the port will be added only to the VLAN table for which the static MAC-based VLAN configuration exists.

**NOTE**

If the Dynamic MAC-based VLAN is enabled after any MAC-based VLAN sessions are established, all sessions are flushed and the mac-vlan-permit ports are removed from the VLAN. The ports are then added back to the VLAN dynamically after they successfully pass the RADIUS authentication process.
The following guidelines apply to MAC-based VLAN configurations:

- MAC-to-VLAN mapping must be associated with VLANs that exist on the switch. Create the VLANs before you configure the MAC-based VLAN feature.
- Ports participating in MAC-based VLANs must first be configured as `mac-vlan-permit` ports under the VLAN configuration.
- In the RADIUS server configuration file, a MAC address cannot be configured to associate with more than one VLAN.
- This feature does not currently support dynamic assignment of a port to a VLAN. Users must pre-configure VLANs and port membership before enabling the feature.
- Multi-device port authentication filters will not work with MAC-based VLANs on the same port.
- MAC-based VLAN is not currently supported for trunk ports and LACP.
- MAC-based VLAN is not supported for VLAN groups, topology groups and dual-mode configuration.

The following table describes the CLI commands used to configure MAC-based VLANs.

### TABLE 109 CLI commands for MAC-based VLANs

<table>
<thead>
<tr>
<th>CLI command</th>
<th>Description</th>
<th>CLI level</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-auth mac-vlan enable</td>
<td>Enables per-port MAC-based VLAN</td>
<td>Interface</td>
</tr>
<tr>
<td>mac-auth mac-vlan disable</td>
<td>Disables per-port MAC-based VLAN</td>
<td>interface</td>
</tr>
<tr>
<td>mac-auth mac-vlan-dyn-activation</td>
<td>Enables Dynamic MAC-based VLAN</td>
<td>global</td>
</tr>
<tr>
<td>no mac-auth mac-vlan-dyn-activation</td>
<td>Disables Dynamic MAC-based VLAN</td>
<td>global</td>
</tr>
<tr>
<td>no mac-auth mac-vlan</td>
<td>Removes the MAC-VLAN configuration from the port</td>
<td>interface</td>
</tr>
<tr>
<td>mac-auth mac-vlan max-mac-entries <code>&lt;num of entries&gt;</code></td>
<td>The maximum number of allowed and denied MAC addresses (static and dynamic) that can be learned on a port. The default is 2.</td>
<td>interface</td>
</tr>
<tr>
<td>mac-auth mac-vlan <code>&lt;mac-addr&gt;</code> vlan <code>&lt;vlan id&gt;</code> priority <code>&lt;0-7&gt;</code></td>
<td>Adds a static MAC-VLAN mapping to the MAC-based VLAN table (for static hosts)</td>
<td>interface</td>
</tr>
<tr>
<td>clear table-mac-vlan</td>
<td>Clears the contents of the authenticated MAC address table</td>
<td>global</td>
</tr>
<tr>
<td>clear table-mac-vlan ethernet <code>&lt;port&gt;</code></td>
<td>Clears all MAC-based VLAN mapping on a port</td>
<td>global</td>
</tr>
<tr>
<td>show table-mac-vlan</td>
<td>Displays information about allowed and denied MAC addresses on ports with MAC-based VLAN enabled.</td>
<td>global</td>
</tr>
<tr>
<td>show table-mac-vlan allowed-mac</td>
<td>Displays MAC addresses that have been successfully authenticated</td>
<td>global</td>
</tr>
<tr>
<td>show table-mac-vlan denied-mac</td>
<td>Displays MAC addresses for which authentication failed</td>
<td>global</td>
</tr>
<tr>
<td>show table-mac-vlan detailed</td>
<td>Displays detailed MAC-VLAN settings and classified MAC addresses for a port with the feature enabled</td>
<td>global</td>
</tr>
</tbody>
</table>
Configuration notes

Configuration example

The following example shows a MAC-based VLAN configuration.

```
FLS624 Switch#show run
Current configuration:
ver 04.0.00b122T7e
fan-threshold mp speed-3 35 100
module 1 fis-24-port-copper-base-module
module 4 fis-xfp-1-port-10g-module
vlan 1 by port
 untagged ethe 0/1/10
 mac-vlan-permit ethe 0/1/1 to 0/1/3
 no spanning-tree
vlan 2 by port
 untagged ethe 0/1/24
 mac-vlan-permit ethe 0/1/1 to 0/1/3
 no spanning-tree
vlan 222 name RESTRICTED_MBV by port
 untagged ethe 0/1/4
 mac-vlan-permit ethe 0/1/1 to 0/1/3
 spanning-tree 802-lw
vlan 666 name RESTRICTED_MAC_AUTH by port
 untagged ethe 0/1/20
 mac-vlan-permit ethe 0/1/1 to 0/1/3
vlan 4000 name DEFAULT-VLAN by port
vlan 4004 by port
 mac-vlan-permit ethe 0/1/1 ethe 0/1/3
 default-vlan-id 4000
ip address 10.44.3.3 255.255.255.0
ip default-gateway 10.44.3.1
radius-server host 10.44.3.111
radius-server key 1 $-ndUno
mac-authentication enable
mac-authentication mac-vlan-dyn-activation
mac-authentication max-age 60
mac-authentication hw-deny-age 30
mac-authentication auth-passwd-format xxxx.xxxx.xxxx
mac-authentication auth-fail-vlan-id 666
interface ethernet 0/1/1
 mac-authentication mac-vlan max-mac-entries 5
 mac-authentication mac-vlan 0030.4888.b9fe vlan 1 priority 1
 mac-authentication mac-vlan enable
interface ethernet 0/1/2
 mac-authentication mac-vlan max-mac-entries 10
 mac-authentication mac-vlan enable
 mac-authentication auth-fail-action restrict-vlan 222
interface ethernet 0/1/3
```

TABLE 109 CLI commands for MAC-based VLANs (Continued)

<table>
<thead>
<tr>
<th>CLI command</th>
<th>Description</th>
<th>CLI level</th>
</tr>
</thead>
<tbody>
<tr>
<td>show table-mac-vlan &lt;mac-address&gt;</td>
<td>Displays status and details for a specific MAC address</td>
<td>global</td>
</tr>
<tr>
<td>show table-mac-vlan ethernet &lt;port&gt;</td>
<td>Displays all MAC addresses allowed or denied on a specific port</td>
<td>global</td>
</tr>
</tbody>
</table>

TABLE 109 CLI commands for MAC-based VLANs (Continued)

Configuration example

The following example shows a MAC-based VLAN configuration.

```
FLS624 Switch#show run
Current configuration:
ver 04.0.00b122T7e
fan-threshold mp speed-3 35 100
module 1 fis-24-port-copper-base-module
module 4 fis-xfp-1-port-10g-module
vlan 1 by port
 untagged ethe 0/1/10
 mac-vlan-permit ethe 0/1/1 to 0/1/3
 no spanning-tree
vlan 2 by port
 untagged ethe 0/1/24
 mac-vlan-permit ethe 0/1/1 to 0/1/3
 no spanning-tree
vlan 222 name RESTRICTED_MBV by port
 untagged ethe 0/1/4
 mac-vlan-permit ethe 0/1/1 to 0/1/3
 spanning-tree 802-lw
vlan 666 name RESTRICTED_MAC_AUTH by port
 untagged ethe 0/1/20
 mac-vlan-permit ethe 0/1/1 to 0/1/3
 spanning-tree 802-lw
vlan 4000 name DEFAULT-VLAN by port
vlan 4004 by port
 mac-vlan-permit ethe 0/1/1 ethe 0/1/3
 default-vlan-id 4000
ip address 10.44.3.3 255.255.255.0
ip default-gateway 10.44.3.1
radius-server host 10.44.3.111
radius-server key 1 $-ndUno
mac-authentication enable
mac-authentication mac-vlan-dyn-activation
mac-authentication max-age 60
mac-authentication hw-deny-age 30
mac-authentication auth-passwd-format xxxx.xxxx.xxxx
mac-authentication auth-fail-vlan-id 666
interface ethernet 0/1/1
 mac-authentication mac-vlan max-mac-entries 5
 mac-authentication mac-vlan 0030.4888.b9fe vlan 1 priority 1
 mac-authentication mac-vlan enable
interface ethernet 0/1/2
 mac-authentication mac-vlan max-mac-entries 10
 mac-authentication mac-vlan enable
 mac-authentication auth-fail-action restrict-vlan 222
interface ethernet 0/1/3
```
mac-authentication mac-vlan enable
mac-authentication auth-fail-action restrict-vlan
!
end

Configuring MAC-based VLANs using SNMP

Platform Support:

- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later

Several MIB objects have been developed to allow the configuration of MAC-based VLANs using SNMP. For more information, refer to the IronWare MIB Reference, in the MAC-based VLAN chapter.

Displaying the MAC-VLAN table

Enter the following command to display the MAC-VLAN table for an FGS device.

FGS648P Switch#show table-mac-vlan

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlan</th>
<th>Accepted</th>
<th>Rejected</th>
<th>Attempted</th>
<th>Static</th>
<th>Static</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/1</td>
<td>N/A</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>0/1/2</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>209</td>
<td>0</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>0/1/3</td>
<td>N/A</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>0/1/4</td>
<td>N/A</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>0/1/5</td>
<td>N/A</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>0/1/6</td>
<td>N/A</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>0/1/7</td>
<td>N/A</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
</tbody>
</table>

The output from this command differs slightly for FCX devices, and resembles the following.

FCX648S Switch(config)#show table-mac-vlan

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlan</th>
<th>Accepted</th>
<th>Rejected</th>
<th>Attempted</th>
<th>Static</th>
<th>Static</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1</td>
<td>N/A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Syntax:  show table-mac-vlan

The following table describes the information in this output.
Displaying the MAC-VLAN table for a specific MAC address

Enter the following command to display the MAC-VLAN table information for a specific MAC address on an FGS device.

```
FGS624#show table-mac-vlan 0030.4875.3f73
```

```
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
| MAC Address | Port | Vlan Authenticated | Time Age | CAM Index | MAC Type Pri | Dot1x Type Pri | Pri Index |
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
| 0030.4875.3f73 | 0/1/1 | 2 | 01d00h04m27s S0 | 0001 | 3728 Ena | Dyn | 0 |
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
```

The following example shows output from the show table-mac-vlan command while authentication is in progress on an FGS device.

```
FGS624#show table-mac-vlan 0000.0200.001b
```

```
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
| MAC Address | Port | Vlan Authenticated | Time Age | CAM Index | MAC Type Pri | Dot1x Type Pri | Pri Index |
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
| 0000.0200.001b | 0/1/2 | 4092 | 00d00h04m27s S36 | N/A | N/A Dis | Dyn | 0 |
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
```

The following output shows information for a specific MAC address on an FCX device:

```
FCX648S Switch(config)#show table-mac-vlan 0000.0010.1001
```

```
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
| MAC Address | Port | Vlan Authenticated | Time Age | dot1x |
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
| 0000.0010.1001 | 1/1/1 | 2 | 00d00h05m45s Ena | Dis |
+----------------+----------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
```

The following table describes the information in these output examples.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>The MAC address for which this information is displayed.</td>
</tr>
<tr>
<td>Port</td>
<td>The port where MAC-based VLAN is enabled.</td>
</tr>
<tr>
<td>Vlan</td>
<td>The VLAN to which the MAC address has been assigned.</td>
</tr>
</tbody>
</table>
### Displaying allowed MAC addresses

Enter the following command to display information about successfully authenticated MAC addresses.

For FGS and FLS devices:

```
FGS648P Switch#show table-mac-vlan allowed-mac
```

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Vlan</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>CAM</th>
<th>MAC</th>
<th>Dot1x</th>
<th>Type</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.0100.0001</td>
<td>0/1/1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m29s S60</td>
<td>0008</td>
<td>4000</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0100.0002</td>
<td>0/1/1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m29s S56</td>
<td>0009</td>
<td>4000</td>
<td>Dis</td>
<td>Dyn</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0000.0100.0003</td>
<td>0/1/1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m30s Ena</td>
<td>000a</td>
<td>2b44</td>
<td>Dis</td>
<td>Dyn</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0000.0100.0004</td>
<td>0/1/1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m49s Ena</td>
<td>0013</td>
<td>0c20</td>
<td>Dis</td>
<td>Dyn</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

For FCX devices:

```
FCX648S Switch(config)#show table-mac-vlan allowed-mac
```

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Vlan</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>dot1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.0010.1001</td>
<td>1/1/1</td>
<td>2</td>
<td>Yes</td>
<td>00d00h05m45s Ena</td>
<td>Dis</td>
<td></td>
</tr>
</tbody>
</table>

**Syntax:** `show table-mac-vlan allowed-mac`

The following table describes the information in this output.
Displaying denied MAC addresses

Enter the following command to display information about denied (authentication failed) MAC addresses.

For FGS and FLS devices:

FGS648P Switch#show table-mac-vlan denied-mac

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Vlan</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>CAM</th>
<th>MAC</th>
<th>Dot1x</th>
<th>Type</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.1111.0107</td>
<td>0/2/1</td>
<td>4092</td>
<td>No</td>
<td>00d20h12m30s</td>
<td>H64</td>
<td>0000</td>
<td>37dc</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
</tr>
</tbody>
</table>

For FCX devices:

FCX648S Switch(config)#show table-mac-vlan denied-mac

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Vlan</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>dot1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.0030.1002</td>
<td>1/1/1</td>
<td>4092</td>
<td>No</td>
<td>00d00h11m57s</td>
<td>H40</td>
<td>Dis</td>
</tr>
</tbody>
</table>

**Syntax:** show table-mac-vlan denied-mac

The following table describes the information in this output.
Displaying detailed MAC-VLAN data

Enter the following command to display a detailed version of MAC-VLAN information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>The denied MAC address for which the information is displayed.</td>
</tr>
<tr>
<td>Port</td>
<td>The port where MAC-based VLAN is enabled.</td>
</tr>
<tr>
<td>Vlan</td>
<td>This field displays VLAN 4092 for blocked hosts, or the restricted VLAN ID if it is configured on the port.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>No indicates that authentication has failed. Inp indicates that authentication is in progress.</td>
</tr>
<tr>
<td>Time</td>
<td>The time at which authenticated failed.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the MAC address entry in the authenticated MAC address list.</td>
</tr>
<tr>
<td>CAM Index</td>
<td>This field displays the index of the CAM entry. The index value will be between 0 and 31. A value of “ff” indicates that the index is not used.</td>
</tr>
<tr>
<td>MAC Index</td>
<td>The index of the entry in the hardware MAC table.</td>
</tr>
<tr>
<td>Dot1x</td>
<td>Indicates whether 802.1X authentication is disabled (Dis) or enabled (Ena) for this MAC address.</td>
</tr>
<tr>
<td>Type</td>
<td>Dyn Indicates a dynamic host.</td>
</tr>
<tr>
<td>Pri</td>
<td>This field indicates the value set for Foundry-MAC-based VLAN-QoS attribute in the RADIUS configuration for dynamic hosts, if configured. If the Foundry-MAC-based VLAN-QoS attribute is not configured, the value will be zero. For static hosts, the user-configured priority value for the MAC address is displayed.</td>
</tr>
</tbody>
</table>
FGS648P Switch#show table-mac-vlan detailed e 0/1/2
Port : 0/1/2
Dynamic-Vlan Assignment : Disabled
RADIUS failure action : Block Traffic
    Failure restrict use dot1x : No
Override-restrict-vlan : Yes
Vlan : (MAC-PERMIT-VLAN )
Port Vlan State : DEFAULT
802.1x override Dynamic PVID : NO
Original PVID : 1
DOS attack protection : Disabled
Accepted Mac Addresses : 32
Authentication in progress : 0
Authentication attempts : 54
RADIUS timeouts : 16817
Num of MAC entries in TCAM : 32
Num of MAC entries in MAC : 32
Aging of MAC-sessions : Enabled
Port move-back vlan : Port-configured-vlan
Max-Age of sw mac session : 60 seconds
hw age for denied mac : 30 seconds
MAC Filter applied : No

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>RADIUS</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>CAM</th>
<th>MAC</th>
<th>Dot1x</th>
<th>Type</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.0200.0012 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S12</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0200.0017 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S20</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0200.0018 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S20</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0100.000a 10.44.3.111</td>
<td>Yes</td>
<td>00d19h38m30s</td>
<td>Ena</td>
<td>000b</td>
<td>22d4</td>
<td>Dis</td>
<td>Sta</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0000.0200.0019 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S20</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0200.001a 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S20</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0200.001b 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S20</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0200.001c 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S20</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0000.0200.001d 0.0.0.0</td>
<td>No</td>
<td>00d00h00m00s</td>
<td>S20</td>
<td>N/A</td>
<td>N/A</td>
<td>Dis</td>
<td>Dyn</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>RADIUS</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>CAM</th>
<th>MAC</th>
<th>Dot1x</th>
<th>Type</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.feed.1111 0.0.0.0</td>
<td>No</td>
<td>07d17h00m43s</td>
<td>S0</td>
<td>0000</td>
<td>4000</td>
<td>Dis</td>
<td>Sta</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0000.feed.1112 0.0.0.0</td>
<td>No</td>
<td>07d17h01m51s</td>
<td>S0</td>
<td>0001</td>
<td>4000</td>
<td>Dis</td>
<td>Sta</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0000.feed.1113 0.0.0.0</td>
<td>No</td>
<td>07d17h03m00s</td>
<td>S0</td>
<td>0002</td>
<td>4000</td>
<td>Dis</td>
<td>Sta</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Displaying MAC-VLAN information for a specific interface

Enter the following command to display MAC-VLAN information for a specific interface.

FGS648P Switch#show table-mac-vlan e 0/1/1

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Vlan</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>CAM</th>
<th>MAC Index</th>
<th>Dot1x</th>
<th>Type</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.0100.0001 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m29s Ena</td>
<td>0008 0970 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0002 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m29s Ena</td>
<td>0009 0a40 Dis Dyn 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0003 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m30s Ena</td>
<td>000a 2b44 Dis Dyn 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0004 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m49s S96</td>
<td>0013 4000 Dis Dyn 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0005 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m53s Ena</td>
<td>0014 2d24 Dis Dyn 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0006 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m53s Ena</td>
<td>0015 2e14 Dis Dyn 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0007 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h38m41s S80</td>
<td>000f 4000 Dis Dyn 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0008 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m07s Ena</td>
<td>001f 0e00 Dis Dyn 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0009 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m30s Ena</td>
<td>0000 22d4 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0010 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m19s Ena</td>
<td>0001 21e4 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0011 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m30s Ena</td>
<td>000b 22d4 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0012 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m19s Ena</td>
<td>0002 03d0 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0013 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m57s Ena</td>
<td>001a 24b4 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0014 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m19s Ena</td>
<td>0003 05b0 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0015 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m31s S120</td>
<td>000c 4000 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0016 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m20s Ena</td>
<td>0004 2784 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0017 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m04s S32</td>
<td>001d 4000 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0018 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m43s Ena</td>
<td>0010 3864 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000.0100.0019 0/1/1</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>00d19h39m39s Ena</td>
<td>000d 3b54 Dis Dyn 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following table describes the information in this output.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>The MAC addresses related to the specified interface.</td>
</tr>
<tr>
<td>Port</td>
<td>The interface for which this information is displayed.</td>
</tr>
<tr>
<td>Vlan</td>
<td>The VLAN to which the interface has been assigned.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>Yes indicates authentication is successful.</td>
</tr>
<tr>
<td></td>
<td>No indicates authentication has failed.</td>
</tr>
<tr>
<td></td>
<td>Inp indicates authentication in progress</td>
</tr>
<tr>
<td></td>
<td>Rst indicates a restricted VLAN</td>
</tr>
<tr>
<td>Time</td>
<td>The time at which the MAC address was authenticated. If the clock is set on the Brocade device, then the actual date and time are displayed. If the clock has not been set, then the time is displayed relative to when the device was last restarted.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the MAC address entry in the authenticated MAC address list.</td>
</tr>
<tr>
<td>CAM Index</td>
<td>This field displays the index of the CAM entry. The index value will be between 0 and 31. A value of “ff” indicates that the index is not used.</td>
</tr>
<tr>
<td>MAC Index</td>
<td>The index of the entry in the hardware MAC table.</td>
</tr>
<tr>
<td>Dot1x</td>
<td>Indicates whether 802.1X authentication is enabled or disabled for this MAC address.</td>
</tr>
<tr>
<td>Type</td>
<td>Dyn Indicates a dynamic host. Sta indicates a static host.</td>
</tr>
<tr>
<td>Pri</td>
<td>This field indicates the value set for Foundry-MAC-based VLAN-QoS attribute in the RADIUS configuration for dynamic hosts, if configured. If the Foundry-MAC-based VLAN-QoS attribute is not configured, the value will be zero. For static hosts, the user-configured priority value for the MAC address is displayed.</td>
</tr>
</tbody>
</table>
Clearing MAC-VLAN information for a specific interface

Enter the following command to clear MAC-VLAN information. Add the interface id to clear information for a specific interface.

FGS648P Switch#clear table-mac-vlan <interface>

Displaying MAC addresses in a MAC-based VLAN

Enter the following command to display a list of MAC addresses in a MAC-based VLAN.

FGS648P Switch#show mac-address
Total active entries from all ports = 1541

<table>
<thead>
<tr>
<th>MAC-Address</th>
<th>Port</th>
<th>Type</th>
<th>Index</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.2000.0001</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>1048</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0002</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>1832</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0003</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>9772</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0004</td>
<td>0/1/32</td>
<td>Static (MBV)</td>
<td>328</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0005</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>8268</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0006</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>9084</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0007</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>632</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0008</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>3464</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.0009</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>11404</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.000a</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>12220</td>
<td>1</td>
</tr>
<tr>
<td>0000.2000.000b</td>
<td>0/1/32</td>
<td>Dynamic (MBV)</td>
<td>3768</td>
<td>1</td>
</tr>
</tbody>
</table>

**NOTE**
In this output, (MBV) indicates MAC-based VLAN is enabled.

The following table describes the output from this command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total active entries</td>
<td>The total number of active entries for all ports.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC addresses assigned to this VLAN.</td>
</tr>
<tr>
<td>Port</td>
<td>The interface for which this information is displayed.</td>
</tr>
<tr>
<td>Type</td>
<td>Dynamic (MBV) Indicates a dynamic host. Static (MBV) indicates a static host.</td>
</tr>
<tr>
<td>Index</td>
<td>The index of the entry in the hardware MAC table.</td>
</tr>
<tr>
<td>VLAN</td>
<td>The VLAN to which these addresses are assigned.</td>
</tr>
</tbody>
</table>
Displaying MAC-based VLAN logging

Enter the following command to display MAC-based VLAN logging activity.

FGS648P Switch#show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 15 overruns)
  Buffer logging: level ACDMEINW, 50 messages logged
  level code: A=alert C=critical D=debugging M=emergency E=error
Static Log Buffer
  0d00h00m12s:A:System:  Power supply 1  is up
Dynamic Log Buffer (50 lines):
  0d18h46m28s:I:running-config was changed from console
  0d02h12m25s:A:MAC Based Vlan Mapping failed for [0000.1111.0108 ] on port 0/2/1 (Invalid User)
  0d02h08m52s:A:MAC Based Vlan Mapping failed for [0000.1111.011b ] on port 0/2/1 (Invalid User)
  0d02h05m01s:A:MAC Based Vlan Mapping failed for [0000.1111.00df ] on port 0/2/1 (Invalid User)
  0d02h01m15s:A:MAC Based Vlan Mapping failed for [0000.1111.0108 ] on port 0/2/1 (Invalid User)
  0d02h01m15s:A:MAC Based Vlan Mapping failed for [0000.1111.0107 ] on port 0/2/1 (Invalid User)
  0d01h58m43s:N:MAC Based Vlan Enabled on port 0/2/1
  0d01h58m32s:N:MAC Based Vlan Disabled on port 0/2/1
  0d01h39m00s:I:running-config was changed from console
  0d01h38m28s:I:System: Interface ethernet 0/1/47, state up
  0d01h38m27s:I:System: Interface ethernet 0/1/46, state up
  0d01h38m27s:I:System: Interface ethernet 0/1/34, state up
  0d01h38m27s:I:System: Interface ethernet 0/1/25, state up

Sample application

Figure 103 illustrates a sample configuration that uses MAC-based VLAN on port e 0/1/1 on the Brocade device. In this configuration, three host PCs are connected to port e 0/1/1 through a hub.

Host A MAC address is statically configured on port e 0/1/1. The profile for Host B MAC address on the RADIUS server specifies that the PC should be assigned to VLAN 2. Host C profile does not exist in the RADIUS server, and will be put into a restricted VLAN.
Host A MAC address is statically mapped to VLAN 1 with priority 1 and is not subjected to RADIUS authentication. When Host B MAC address is authenticated, the Access-Accept message from the RADIUS server specifies that Host B MAC address be placed into VLAN 2. Since Host C MAC address is not present in the RADIUS server, Host C will be rejected by the server and its MAC address will be placed into a restricted VLAN.

Below is the configuration for this example.

```
module 1 fgs-48-port-management-module
module 2 fgs-xfp-1-cx4-1-port-10g-module
vlan 1 by port
 untagged ethe 0/1/10
 mac-vlan-permit ethe 0/1/1 to 0/1/2
 no spanning-tree
vlan 2 by port
 untagged ethe 0/1/30
 mac-vlan-permit ethe 0/1/1 to 0/1/2
 no spanning-tree
vlan 666 name mac_restricted by port
 untagged ethe 0/1/20
 mac-vlan-permit ethe 0/1/1 to 0/1/2
 no spanning-tree
vlan 4000 name DEFAULT-VLAN by port
 no spanning-tree
vlan 4004 by port
 mac-vlan-permit ethe 0/1/1
 default-vlan-id 4000
ip address 10.44.3.8 255.255.255.0
ip default-gateway 10.44.3.1
radius-server host 10.44.3.111
radius-server key 1 $-ndUno
mac-authentication enable
mac-authentication max-age 60
```
mac-authentication hw-deny-age 30
mac-authentication auth-passwd-format xxxx.xxxx.xxxx
interface ethernet 0/1/1
  mac-authentication mac-vlan max-mac-entries 5
  mac-authentication mac-vlan 0030.4888.b9fe vlan 1 priority 1
  mac-authentication mac-vlan enable
!
interface ethernet 0/1/2
  mac-authentication mac-vlan max-mac-entries 5
  mac-authentication mac-vlan enable
!
end

The `show table-mac-vlan` command returns the following results for all ports in this configuration.

```
FGS648P Switch#show table-mac-vlan

 Port Vlan Accepted Rejected Attempted Static Static Max
 Macs Macs Macs Conf Macs

 0/1/1 N/A 2 1 0 1 1 5
 0/1/2 N/A 0 0 0 0 0 5
```

The `show table-mac-vlan e 0/1/1` command returns the following results for port 0/1/1 in this configuration.

```
FGS648P Switch#show table-mac-vlan e 0/1/1

 MAC Address Port Vlan Authenticated Time Age CAM MAC Dot1x Type Pri
 Index Index

 0030.4875.3f73 0/1/1 2 Yes 00d00h00m46s S32 0001 3728 Dis Dyn 4
 0030.4888.b9fe 0/1/1 1 Yes 00d00h00m08s Dis 0000 0970 Dis Sta 1
 0030.4875.3ff5 0/1/1 666 Rst 01d18h47m58s S8 0002 1ee4 Dis Dyn 0
```
Sample application
ACL overview

This chapter describes how Access Control Lists (ACLs) are implemented and configured in the FastIron and TurboIron X Series and FCX devices.

**NOTE**
For information about IPv6 ACLs, refer to Chapter 18, “Configuring IPv6 Access Control Lists (ACLs)”.

Brocade devices support **rule-based ACLs** (sometimes called hardware-based ACLs), where the decisions to permit or deny packets are processed in hardware and all permitted packets are switched or routed in hardware. All denied packets are also dropped in hardware. In addition, FCX, FastIron and TurboIron X Series devices support inbound ACLs only. Outbound ACLs are not supported.

**NOTE**
FCX, FastIron and TurboIron X Series devices support hardware-based ACLs only. These devices do not support flow-based ACLs. In contrast, FES devices support flow-based ACLs only.

Rule-based ACLs program the ACL entries you assign to an interface into Content Addressable Memory (CAM) space allocated for the ports. The ACLs are programmed into hardware at startup (or as new ACLs are entered and bound to ports). Devices that use rule-based ACLs program the ACLs into the CAM entries and use these entries to permit or deny packets in the hardware, without sending the packets to the CPU for processing.

Rule-based ACLs are supported on the following interface types:

- Gbps Ethernet ports
- 10 Gbps Ethernet ports
- Trunk groups
- Virtual routing interfaces

**Types of IP ACLs**

You can configure the following types of IP ACLs:

- **Standard** – Permits or denies packets based on source IP address. Valid standard ACL IDs are 1 – 99 or a character string.
- **Extended** – Permits or denies packets based on source and destination IP address and also based on IP protocol information. Valid extended ACL IDs are a number from 100 – 199 or a character string.

**ACL IDs and entries**

ACLs consist of ACL IDs and ACL entries:
- **ACL ID** – An ACL ID is a number from 1 – 99 (for a standard ACL) or 100 – 199 (for an extended ACL) or a character string. The ACL ID identifies a collection of individual ACL entries. When you apply ACL entries to an interface, you do so by applying the ACL ID that contains the ACL entries to the interface, instead of applying the individual entries to the interface. This makes applying large groups of access filters (ACL entries) to interfaces simple. Refer to “Numbered and named ACLs” on page 631.

**NOTE**
This is different from IP access policies. If you use IP access policies, you apply the individual policies to interfaces.

- **ACL entry** – Also called an **ACL rule**, this is a filter command associated with an ACL ID. The maximum number of ACL rules you can configure is a system-wide parameter and depends on the device you are configuring. You can configure up to the maximum number of entries in any combination in different ACLs. The total number of entries in all ACLs cannot exceed the system maximum, listed in Table 110.

**TABLE 110**  Maximum number of ACL entries

<table>
<thead>
<tr>
<th>System</th>
<th>Maximum ACL rules per port region</th>
<th>Maximum ACL entries per system</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESX Layer 2 Switch</td>
<td>IPv4 devices = 1016</td>
<td>4096</td>
</tr>
<tr>
<td>FESX Layer 3 Switch</td>
<td>IPv6 devices = 1023</td>
<td></td>
</tr>
<tr>
<td>FSX, FSX 800, FSX 1600 Layer 2 Switch</td>
<td>IPv4 devices = 1016</td>
<td>8192</td>
</tr>
<tr>
<td>FSX, FSX 800, FSX 1600 Layer 3 Switch</td>
<td>IPv6 devices = 1023</td>
<td></td>
</tr>
<tr>
<td>FGS, FGS-STK, FLS, FLS-STK and FWS Layer 2</td>
<td>1021</td>
<td>1021 (24-port)</td>
</tr>
<tr>
<td>Switch</td>
<td></td>
<td>2042 (48-port)</td>
</tr>
<tr>
<td>FGS, FGS-STK, FLS, FLS-STK, and FWS base</td>
<td>756</td>
<td>756 (24-port)</td>
</tr>
<tr>
<td>Layer 3 Switch</td>
<td></td>
<td>1512 (48-port)</td>
</tr>
<tr>
<td>FCX Layer 2 or Layer 3 Switch</td>
<td>4093</td>
<td>4093 (24-port)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8186 (48-port)</td>
</tr>
<tr>
<td>TI24X Layer 2 or Layer 3 Switch</td>
<td>1534</td>
<td>1534</td>
</tr>
</tbody>
</table>

The following rules apply to the FastIron devices, except for TurboIron X Series, listed in Table 110:

- Each ACL group must contain one entry for the implicit deny all IP traffic clause. Also, each ACL group uses a multiple of 8 ACL entries. For example, if all ACL groups contain 5 ACL entries, you could add 127 ACL groups (1016/8) in that port region. If all your ACL groups contain 8 ACL entries, you could add 63 ACL groups, since you must account for the implicit deny entry.

The TurboIron X Series supports a maximum of 1015 ACL entries per ACL.

You configure ACLs on a global basis, then apply them to the incoming traffic on specific ports. The software applies the entries within an ACL in the order they appear in the ACL configuration. As soon as a match is found, the software takes the action specified in the ACL entry (permit or deny the packet) and stops further comparison for that packet.
Numbered and named ACLs

When you configure an ACL, you can refer to the ACL by a numeric ID or by an alphanumeric name. The commands to configure numbered ACLs are different from the commands for named ACLs.

- **Numbered ACL** – If you refer to the ACL by a numeric ID, you can use 1 – 99 for a standard ACL or 100 – 199 for an extended ACL.

- **Named ACL** – If you refer to the ACL by a name, you specify whether the ACL is a standard ACL or an extended ACL, then specify the name.

You can configure up to 99 standard numbered IP ACLs and 100 extended numbered IP ACLs. You also can configure up to 99 standard named ACLs and 100 extended named ACLs by number.

Default ACL action

The default action when no ACLs are configured on a device is to permit all traffic. However, once you configure an ACL and apply it to a port, the default action for that port is to deny all traffic that is not explicitly permitted on the port:

- If you want to tightly control access, configure ACLs consisting of permit entries for the access you want to permit. The ACLs implicitly deny all other access.

- If you want to secure access in environments with many users, you might want to configure ACLs that consist of explicit deny entries, then add an entry to permit all access to the end of each ACL. The software permits packets that are not denied by the deny entries.

How hardware-based ACLs work

When you bind an ACL to inbound traffic on an interface, the device programs the Layer 4 CAM with the ACL. Permit and deny rules are programmed. Most ACL rules require one Layer 4 CAM entry. However, ACL rules that match on more than one TCP or UDP application port may require several CAM entries. The Layer 4 CAM entries for ACLs do not age out. They remain in the CAM until you remove the ACL:

- If a packet received on the interface matches an ACL rule in the Layer 4 CAM, the device permits or denies the packet according to the ACL.

- If a packet does not match an ACL rule, the packet is dropped, since the default action on an interface that has ACLs is to deny the packet.

How fragmented packets are processed

The descriptions above apply to non-fragmented packets. The default processing of fragments by hardware-based ACLs is as follows:

- The first fragment of a packet is permitted or denied using the ACLs. The first fragment is handled the same way as non-fragmented packets, since the first fragment contains the Layer 4 source and destination application port numbers. The device uses the Layer 4 CAM entry if one is programmed, or applies the interface's ACL entries to the packet and permits or denies the packet according to the first matching ACL.

- For other fragments of the same packet, they are subject to a rule only if there is no Layer 4 information in the rule or in any preceding rules.
The fragments are forwarded even if the first fragment, which contains the Layer 4 information, was denied. Generally, denying the first fragment of a packet is sufficient, since a transaction cannot be completed without the entire packet.

For tighter control, you can configure the port to drop all packet fragments. Refer to “Enabling strict control of ACL filtering of fragmented packets” on page 654.

**Hardware aging of Layer 4 CAM entries**

Rule-based ACLs use Layer 4 CAM entries. The device permanently programs rule-based ACLs into the CAM. The entries never age out.

### Configuration considerations

- FastIron and Turbolron X Series devices support inbound ACLs. Outbound ACL are not supported.
- Hardware-based ACLs are supported on:
  - GbE Ethernet ports
  - 10 Gbps Ethernet ports
  - Trunk groups
  - Virtual routing interfaces
- ACLs on the FastIron X Series and Turbolron X Series devices apply to all traffic, including management traffic.
- ACL logging is supported for denied packets and packets that are sent to the CPU to generate the log if logging is enabled on the port and the ACL that is applied to that port. ACL logging is not supported for packets that are processed in hardware (permitted packets).
- ACL logging is supported on FastIron CX devices for ACLs that are applied to network management access features such as Telnet, SSH, Web, SNMP.
- The number of ACL rules supported per device is listed in Table 110.
- Hardware-based ACLs support only one ACL per port. The ACL of course can contain multiple entries (rules). For example, hardware-based ACLs do not support ACLs 101 and 102 on port 1, but hardware-based ACLs do support ACL 101 containing multiple entries.
- ACLs on the FESX and FSX are affected by port regions. Multiple ACL groups share 1016 ACL rules per port region. Each ACL group must contain one entry for the implicit deny all IP traffic clause. Also, each ACL group uses a multiple of 8 ACL entries. For example, if all ACL groups contain 5 ACL entries, you could add 127ACL groups (1016/8) in that port region. If all your ACL groups contain 8 ACL entries, you could add 63 ACL groups, since you must account for the implicit deny entry.
- By default, the first fragment of a fragmented packet received by the Brocade device is permitted or denied using the ACLs, but subsequent fragments of the same packet are forwarded in hardware. Generally, denying the first fragment of a packet is sufficient, since a transaction cannot be completed without the entire packet.
• Starting in software release FSX 04.0.01, ACLs are supported on member ports of a VLAN on which DHCP snooping and Dynamic ARP Inspection (DAI) are enabled. Also new in release FSX 04.0.01, IP source guard and ACLs are supported together on the same port, as long as both features are configured at the port-level or per-port-per-VLAN level. Brocade ports do not support IP source guard and ACLs on the same port if one is configured at the port-level and the other is configured at the per-port-per-VLAN level.

• The following ACL features and options are not supported on the FastIron and TurboIron X Series devices:
  • Applying an ACL on a device that has Super Aggregated VLANs (SAVs) enabled.
  • ACL logging – ACL logging is supported for packets that are sent to the CPU for processing (denied packets). ACL logging is not supported for packets that are processed in hardware (permitted packets).
  • Flow-based ACLs
  • Layer 2 ACLs are not supported on FastIron devices.
  • TurboIron X Series devices support MAC filters instead of Layer 2 ACLs.
  • You can apply an ACL to a port that has TCP SYN protection or ICMP smurf protection, or both, enabled.

NOTE
TurboIron X Series and FastIron CX devices do not support ACLs on Group VEs, even though the CLI contains commands for this action.

Configuring standard numbered ACLs

This section describes how to configure standard numbered ACLs with numeric IDs and provides configuration examples.

Standard ACLs permit or deny packets based on source IP address. You can configure up to 99 standard numbered ACLs. There is no limit to the number of ACL entries an ACL can contain except for the system-wide limitation. For the number of ACL entries supported on a device, refer to “ACL IDs and entries” on page 629.

Standard numbered ACL syntax

Syntax: [no] access-list <ACL-num> deny | permit <source-ip> | <hostname> <wildcard> [log]

or

Syntax: [no] access-list <ACL-num> deny | permit <source-ip>/<mask-bits> | <hostname> [log]

Syntax: [no] access-list <ACL-num> deny | permit host <source-ip> | <hostname> [log]

Syntax: [no] access-list <ACL-num> deny | permit any [log]

Syntax: [no] ip access-group <ACL-num> in

The <ACL-num> parameter is the access list number from 1 – 99.

The deny | permit parameter indicates whether packets that match a policy in the access list are denied (dropped) or permitted (forwarded).
The `<source-ip>` parameter specifies the source IP address. Alternatively, you can specify the host name.

**NOTE**
To specify the host name instead of the IP address, the host name must be configured using the DNS resolver on the Brocade device. To configure the DNS resolver name, use the `ip dns server-address...` command at the global CONFIG level of the CLI.

The `<wildcard>` parameter specifies the mask value to compare against the host address specified by the `<source-ip>` parameter. The `<wildcard>` is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example 0.0.0.255. Zeros in the mask mean the packet source address must match the `<source-ip>`. Ones mean any value matches. For example, the `<source-ip>` and `<wildcard>` values 209.157.22.26 0.0.0.255 mean that all hosts in the Class C subnet 209.157.22.x match the policy.

If you prefer to specify the wildcard (mask value) in CIDR format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of “209.157.22.26 0.0.0.255” as “209.157.22.26/24”. The CLI automatically converts the CIDR number into the appropriate ACL mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into ones. For example, if you specify 209.157.22.26/24 or 209.157.22.26 0.0.0.255, then save the changes to the startup-config file, the value appears as 209.157.22.0/24 (if you have enabled display of subnet lengths) or 209.157.22.0 0.0.0.255 in the startup-config file.

If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in “/<mask-bits>” format. To enable the software to display the CIDR masks, enter the `ip show-subnet-length` command at the global CONFIG level of the CLI. You can use the CIDR format to configure the ACL entry regardless of whether the software is configured to display the masks in CIDR format.

**NOTE**
If you use the CIDR format, the ACL entries appear in this format in the running-config and startup-config files, but are shown with subnet mask in the display produced by the `show ip access-list` command.

The `host <source-ip> | <hostname>` parameter lets you specify a host IP address or name. When you use this parameter, you do not need to specify the mask. A mask of all zeros (0.0.0.0) is implied.

The `any` parameter configures the policy to match on all host addresses.

The `log` argument configures the device to generate Syslog entries and SNMP traps for packets that are denied by the access policy.

**NOTE**
You can enable logging on ACLs and filters that support logging even when the ACLs and filters are already in use. To do so, re-enter the ACL or filter command and add the `log` parameter to the end of the ACL or filter. The software replaces the ACL or filter command with the new one. The new ACL or filter, with logging enabled, takes effect immediately.

The `in` parameter applies the ACL to incoming traffic on the interface to which you apply the ACL. You can apply the ACL to an Ethernet port or virtual interface.
NOTE
If the ACL is for a virtual routing interface, you also can specify a subset of ports within the VLAN containing that interface when assigning an ACL to the interface.

Configuration example for standard numbered ACLs
To configure a standard ACL and apply it to incoming traffic on port 1/1, enter the following commands.

```plaintext
FastIron(config)# access-list 1 deny host 209.157.22.26 log
FastIron(config)# access-list 1 deny 209.157.29.12 log
FastIron(config)# access-list 1 deny host IPHost1 log
FastIron(config)# access-list 1 permit any
FastIron(config)# int eth 1/1
FastIron(config-if-1/1)# ip access-group 1 in
FastIron(config)# write memory
```

The commands in this example configure an ACL to deny packets from three source IP addresses from being received on port 1/1. The last ACL entry in this ACL permits all packets that are not explicitly denied by the first three ACL entries.

Configuring standard named ACLs

This section describes how to configure standard named ACLs with alphanumeric IDs. This section also provides configuration examples.

Standard ACLs permit or deny packets based on source IP address. You can configure up to 99 standard named ACLs. There is no limit to the number of ACL entries an ACL can contain except for the system-wide limitation. For the number of ACL entries supported on a device, refer to "ACL IDs and entries" on page 629.

The commands for configuring named ACL entries are different from the commands for configuring numbered ACL entries. The command to configure a numbered ACL is `access-list`. The command for configuring a named ACL is `ip access-list`. In addition, when you configure a numbered ACL entry, you specify all the command parameters on the same command. When you configure a named ACL, you specify the ACL type (standard or extended) and the ACL name with one command, which places you in the configuration level for that ACL. Once you enter the configuration level for the ACL, the command syntax is the same as the syntax for numbered ACLs.

Standard named ACL syntax

```plaintext
Syntax: [no] ip access-list standard <ACL-name> | <ACL-num>
Syntax: deny | permit <source-ip> | <hostname> <wildcard> [log]
 or
Syntax: deny | permit <source-ip>/<mask-bits> | <hostname> [log]
Syntax: deny | permit host <source-ip> | <hostname> [log]
Syntax: deny | permit any [log]
Syntax: [no] ip access-group <ACL-name> in
```
The `<ACL-name>` parameter is the access list name. You can specify a string of up to 256 alphanumeric characters. You can use blanks in the ACL name if you enclose the name in quotation marks (for example, “ACL for Net1”).

The `<ACL-num>` parameter allows you to specify an ACL number if you prefer. If you specify a number, you can specify from 1 – 99 for standard ACLs.

**NOTE**
For convenience, the software allows you to configure numbered ACLs using the syntax for named ACLs. The software also still supports the older syntax for numbered ACLs. Although the software allows both methods for configuring numbered ACLs, numbered ACLs are always formatted in the startup-config and running-config files in using the older syntax, as follows.

```
access-list 1 deny host 209.157.22.26 log
access-list 1 deny 209.157.22.0 0.0.0.255 log
access-list 1 permit any
access-list 101 deny tcp any any eq http log
```

The `deny | permit` parameter indicates whether packets that match a policy in the access list are denied (dropped) or permitted (forwarded).

The `<source-ip>` parameter specifies the source IP address. Alternatively, you can specify the host name.

**NOTE**
To specify the host name instead of the IP address, the host name must be configured using the DNS resolver on the Brocade device. To configure the DNS resolver name, use the `ip dns server-address...` command at the global CONFIG level of the CLI.

The `<wildcard>` parameter specifies the mask value to compare against the host address specified by the `<source-ip>` parameter. The `<wildcard>` is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example 0.0.0.255. Zeros in the mask mean the packet source address must match the `<source-ip>`. Ones mean any value matches. For example, the `<source-ip>` and `<wildcard>` values 209.157.22.26 0.0.0.255 mean that all hosts in the Class C subnet 209.157.22.x match the policy.

If you prefer to specify the wildcard (mask value) in CIDR format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of “209.157.22.26 0.0.0.255” as “209.157.22.26/24”. The CLI automatically converts the CIDR number into the appropriate ACL mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into ones. For example, if you specify 209.157.22.26/24 or 209.157.22.26 0.0.0.255, then save the changes to the startup-config file, the value appears as 209.157.22.0/24 (if you have enabled display of subnet lengths) or 209.157.22.0 0.0.0.255 in the startup-config file.

If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in “/<mask-bits>” format. To enable the software to display the CIDR masks, enter the `ip show-subnet-length` command at the global CONFIG level of the CLI. You can use the CIDR format to configure the ACL entry regardless of whether the software is configured to display the masks in CIDR format.
NOTE
If you use the CIDR format, the ACL entries appear in this format in the running-config and startup-config files, but are shown with subnet mask in the display produced by the `show ip access-list` command.

The `host <source-ip> | <hostname>` parameter lets you specify a host IP address or name. When you use this parameter, you do not need to specify the mask. A mask of all zeros (0.0.0.0) is implied.

The `any` parameter configures the policy to match on all host addresses.

The `log` argument configures the device to generate Syslog entries and SNMP traps for packets that are denied by the access policy.

NOTE
You can enable logging on ACLs and filters that support logging even when the ACLs and filters are already in use. To do so, re-enter the ACL or filter command and add the `log` parameter to the end of the ACL or filter. The software replaces the ACL or filter command with the new one. The new ACL or filter, with logging enabled, takes effect immediately.

The `in` parameter applies the ACL to incoming traffic on the interface to which you apply the ACL. You can apply the ACL to an Ethernet port or virtual interface.

NOTE
If the ACL is bound to a virtual routing interface, you also can specify a subset of ports within the VLAN containing that interface when assigning an ACL to the interface.

Configuration example for standard named ACLs

To configure a standard named ACL, enter commands such as the following.

```
FastIron(config)#ip access-list standard Net1
FastIron(config-std-nACL)# deny host 209.157.22.26 log
FastIron(config-std-nACL)# deny 209.157.29.12 log
FastIron(config-std-nACL)# deny host IPHost1 log
FastIron(config-std-nACL)# permit any
FastIron(config-std-nACL)# exit
FastIron(config)#int eth 1/1
FastIron(config-if-e1000-1/1)# ip access-group Net1 in
```

The commands in this example configure a standard ACL named “Net1”. The entries in this ACL deny packets from three source IP addresses from being forwarded on port 1. Since the implicit action for an ACL is “deny”, the last ACL entry in this ACL permits all packets that are not explicitly denied by the first three ACL entries. For an example of how to configure the same entries in a numbered ACL, refer to “Configuring standard numbered ACLs” on page 633.

Notice that the command prompt changes after you enter the ACL type and name. The “std” in the command prompt indicates that you are configuring entries for a standard ACL. For an extended ACL, this part of the command prompt is “ext”. The “nACL” indicates that you are configuring a named ACL.
Configuring extended numbered ACLs

This section describes how to configure extended numbered ACLs.

Extended ACLs let you permit or deny packets based on the following information:

- IP protocol
- Source IP address or host name
- Destination IP address or host name
- Source TCP or UDP port (if the IP protocol is TCP or UDP)
- Destination TCP or UDP port (if the IP protocol is TCP or UDP)

The IP protocol can be one of the following well-known names or any IP protocol number from 0 – 255:

- Internet Control Message Protocol (ICMP)
- Internet Group Management Protocol (IGMP)
- Internet Gateway Routing Protocol (IGRP)
- Internet Protocol (IP)
- Open Shortest Path First (OSPF)
- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

For TCP and UDP, you also can specify a comparison operator and port name or number. For example, you can configure a policy to block web access to a specific website by denying all TCP port 80 (HTTP) packets from a specified source IP address to the website IP address.

**NOTE**

TurboIron X Series devices running software release 04.1.00 and later support extended ACLs.

Extended numbered ACL syntax

Syntax: `[no] access-list <ACL-num> deny | permit <ip-protocol> <source-ip> | <hostname>
         <wildcard> | <operator> <source-tcp/udp-port> | <destination-ip> | <hostname>
         | <icmp-num> | <icmp-type> | <wildcard> | <tcp/udp comparison operator>
         <destination-tcp/udp-port> | [dscp-cos-mapping] [dscp-marking <0-63>
         | [802.1p-priority-marking <0 – 7>... | dscp-cos-mapping]] [dscp-matching <0-63> | [log]
         [precedence <name> | <0 - 7> | [tos <0 - 63> | <name>]] [traffic policy <name>]

Syntax: `[no] access-list <ACL-num> deny | permit host <ip-protocol> any any

Syntax: `[no] ip access-group <ACL-num> in

The `<ACL-num>` parameter is the extended access list number. Specify a number from 100 – 199.

The `deny | permit` parameter indicates whether packets that match the policy are dropped or forwarded.

The `<ip-protocol>` parameter indicates the type of IP packet you are filtering. You can specify a well-known name for any protocol whose number is less than 255. For other protocols, you must enter the number. Enter “?” instead of a protocol to list the well-known names recognized by the CLI.
The `<source-ip> | <hostname>` parameter specifies the source IP host for the policy. If you want the policy to match on all source addresses, enter `any`.

The `<wildcard>` parameter specifies the portion of the source IP host address to match against. The `<wildcard>` is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example `0.0.0.255`. Zeros in the mask mean the packet source address must match the `<source-ip>`. Ones mean any value matches. For example, the `<source-ip>` and `<wildcard>` values `209.157.22.26 0.0.0.255` mean that all hosts in the Class C subnet `209.157.22.0` match the policy.

If you prefer to specify the wildcard (mask value) in Classless Interdomain Routing (CIDR) format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of “209.157.22.26 0.0.0.255” as “209.157.22.26/24”. The CLI automatically converts the CIDR number into the appropriate ACL mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into zeros. For example, if you specify `209.157.22.26/24` or `209.157.22.26 0.0.0.255`, then save the changes to the startup-config file, the value appears as `209.157.22.0/24` (if you have enabled display of subnet lengths) or `209.157.22.0 0.0.0.255` in the startup-config file.

If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in “/<mask-bits>” format. To enable the software to display the CIDR masks, enter the `ip show-subnet-length` command at the global CONFIG level of the CLI. You can use the CIDR format to configure the ACL entry regardless of whether the software is configured to display the masks in CIDR format.

**NOTE**
If you use the CIDR format, the ACL entries appear in this format in the running-config and startup-config files, but are shown with subnet mask in the display produced by the `show ip access-list` command.

The `<destination-ip> | <hostname>` parameter specifies the destination IP host for the policy. If you want the policy to match on all destination addresses, enter `any`.

The `<icmp-type> | <icmp-num>` parameter specifies the ICMP protocol type:
- This parameter applies only if you specified `icmp` as the `<ip-protocol>` value.
- If you use this parameter, the ACL entry is sent to the CPU for processing.
- If you do not specify a message type, the ACL applies to all types of ICMP messages.

The `<icmp-num>` parameter can be a value from 0 - 255.

The `<icmp-type>` parameter can have one of the following values, depending on the software version the device is running:
- `any-icmp-type`
- `echo`
- `echo-reply`
- `information-request`
- `log`
- `mask-reply`
- `mask-request`
- `parameter-problem`
Configuring extended numbered ACLs

- redirect
- source-quench
- time-exceeded
- timestamp-reply
- timestamp-request
- traffic policy
- unreachable
- <num>

The `<tcp/udp comparison operator>` parameter specifies a comparison operator for the TCP or UDP port number. This parameter applies only when you specify `tcp` or `udp` as the IP protocol. For example, if you are configuring an entry for HTTP, specify `tcp eq http`. You can enter one of the following operators:

- **eq** – The policy applies to the TCP or UDP port name or number you enter after `eq`.
- **established** – This operator applies only to TCP packets. If you use this operator, the policy applies to TCP packets that have the ACK (Acknowledgment) or RST (Reset) bits set on (set to “1”) in the Control Bits field of the TCP packet header. Thus, the policy applies only to established TCP sessions, not to new sessions. Refer to Section 3.1, “Header Format”, in RFC 793 for information about this field.

**NOTE**
This operator applies only to destination TCP ports, not source TCP ports.

- **gt** – The policy applies to TCP or UDP port numbers greater than the port number or the numeric equivalent of the port name you enter after `gt`.
- **lt** – The policy applies to TCP or UDP port numbers that are less than the port number or the numeric equivalent of the port name you enter after `lt`.
- **neq** – The policy applies to all TCP or UDP port numbers except the port number or port name you enter after `neq`.
- **range** – The policy applies to all TCP or UDP port numbers that are between the first TCP or UDP port name or number and the second one you enter following the `range` parameter. The `range` includes the port names or numbers you enter. For example, to apply the policy to all ports between and including 23 (Telnet) and 53 (DNS), enter the following: range 23 53. The first port number in the `range` must be lower than the last number in the `range`.

The `<tcp/udp-port>` parameter specifies the TCP or UDP port number or well-known name. You can specify a well-known name for any application port whose number is less than 1024. For other application ports, you must enter the number. Enter “?” instead of a port to list the well-known names recognized by the CLI.

The `in` parameter specifies that the ACL applies to incoming traffic on the interface to which you apply the ACL. You can apply the ACL to an Ethernet port or a virtual interface.

**NOTE**
If the ACL is for a virtual routing interface, you also can specify a subset of ports within the VLAN containing that interface when assigning an ACL to the interface. Refer to “Configuring standard numbered ACLs” on page 633.
The **precedence** `<name> | <num>` parameter of the **ip access-list** command specifies the IP precedence. The precedence option for of an IP packet is set in a three-bit field following the four-bit header-length field of the packet header. You can specify one of the following:

- **critical** or 5 – The ACL matches packets that have the critical precedence. If you specify the option number instead of the name, specify number 5.
- **flash** or 3 – The ACL matches packets that have the flash precedence. If you specify the option number instead of the name, specify number 3.
- **flash-override** or 4 – The ACL matches packets that have the flash override precedence. If you specify the option number instead of the name, specify number 4.
- **immediate** or 2 – The ACL matches packets that have the immediate precedence. If you specify the option number instead of the name, specify number 2.
- **internet** or 6 – The ACL matches packets that have the internetwork control precedence. If you specify the option number instead of the name, specify number 6.
- **network** or 7 – The ACL matches packets that have the network control precedence. If you specify the option number instead of the name, specify number 7.
- **priority** or 1 – The ACL matches packets that have the priority precedence. If you specify the option number instead of the name, specify number 1.
- **routine** or 0 – The ACL matches packets that have the routine precedence. If you specify the option number instead of the name, specify number 0.

The **tos** `<name> | <num>` parameter of the **ip access-list** command specifies the IP ToS. You can specify one of the following:

- **max-reliability** or 2 – The ACL matches packets that have the maximum reliability ToS. The decimal value for this option is 2.
- **max-throughput** or 4 – The ACL matches packets that have the maximum throughput ToS. The decimal value for this option is 4.
- **min-delay** or 8 – The ACL matches packets that have the minimum delay ToS. The decimal value for this option is 8.
- **min-monetary-cost** or 1 – The ACL matches packets that have the minimum monetary cost ToS. The decimal value for this option is 1.

**NOTE**
This value is not supported on 10 Gbps Ethernet modules.

- **normal** or 0 – The ACL matches packets that have the normal ToS. The decimal value for this option is 0.
- `<num>` – A number from 0 – 15 that is the sum of the numeric values of the options you want. The ToS field is a four-bit field following the Precedence field in the IP header. You can specify one or more of the following. To select more than one option, enter the decimal value that is equivalent to the sum of the numeric values of all the ToS options you want to select. For example, to select the **max-reliability** and **min-delay** options, enter number 10. To select all options, select 15.

The **dscp-cos-mapping** option maps the DSCP value in incoming packets to a hardware table that provides mapping of each of the 0 – 63 DSCP values, and distributes them among eight traffic classes (internal priorities) and eight 802.1p priorities.

**NOTE**
The **dscp-cos-mapping** option overrides port-based priority settings.
NOTE
The `dscp-cos-mapping` option is **not** supported for TIX, FGS, FGS-STK, FLS and FLS-STK, or FCX devices.

The `dscp-marking` option enables you to configure an ACL that marks matching packets with a specified DSCP value. Enter a value from 0 – 63. Refer to “Using an IP ACL to mark DSCP values (DSCP marking)” on page 665.

The `dscp-matching` option matches on the packet DSCP value. Enter a value from 0 – 63. This option does not change the packet forwarding priority through the device or mark the packet. Refer to “DSCP matching” on page 668.

The `log` parameter enables SNMP traps and Syslog messages for packets denied by the ACL.

You can enable logging on ACLs and filters that support logging even when the ACLs and filters are already in use. To do so, re-enter the ACL or filter command and add the `log` parameter to the end of the ACL or filter. The software replaces the ACL or filter command with the new one. The new ACL or filter, with logging enabled, takes effect immediately.

The `traffic-policy` option enables the device to rate limit inbound traffic and to count the packets and bytes per packet to which ACL permit or deny clauses are applied. For configuration procedures and examples, refer to Chapter 25, “Configuring Traffic Policies”.

Configuration examples for extended numbered ACLs

To configure an extended access list that blocks all Telnet traffic received on port 1/1 from IP host 209.157.22.26, enter the following commands.

```
FastIron(config)#access-list 101 deny tcp host 209.157.22.26 any eq telnet log
FastIron(config)#access-list 101 permit ip any any
FastIron(config)#int eth 1/1
FastIron(config-if-e1000-1/1)#ip access-group 101 in
FastIron(config)#write memory
```

Here is another example of commands for configuring an extended ACL and applying it to an interface. These examples show many of the syntax choices. Notice that some of the entries are configured to generate log entries while other entries are not thus configured.

```
FastIron(config)# access-list 102 perm icmp 209.157.22.0/24 209.157.21.0/24
FastIron(config)# access-list 102 deny igmp host rkwong 209.157.21.0/24 log
FastIron(config)# access-list 102 deny igrp 209.157.21.0/24 host rkwong log
FastIron(config)# access-list 102 deny ip host 209.157.21.100 host 209.157.22.1 log
FastIron(config)# access-list 102 deny ospf any any log
FastIron(config)# access-list 102 permit ip any any
```

The first entry permits ICMP traffic from hosts in the 209.157.22.x network to hosts in the 209.157.21.x network.

The second entry denies IGMP traffic from the host device named “rkwong” to the 209.157.21.x network.

The third entry denies IGMP traffic from the 209.157.21.x network to the host device named “rkwong”.

```
The fourth entry denies all IP traffic from host 209.157.21.100 to host 209.157.22.1 and generates Syslog entries for packets that are denied by this entry.

The fifth entry denies all OSPF traffic and generates Syslog entries for denied traffic.

The sixth entry permits all packets that are not explicitly denied by the other entries. Without this entry, the ACL would deny all incoming or outgoing IP traffic on the ports to which you assign the ACL.

The following commands apply ACL 102 to the incoming traffic on port 1/2 and to the incoming traffic on port 4/3.

```
FastIron(config)# int eth 1/2
FastIron(config-if-1/2)# ip access-group 102 in
FastIron(config-if-1/2)# exit
FastIron(config)# int eth 4/3
FastIron(config-if-4/3)# ip access-group 102 in
FastIron(config)# write memory
```

Here is another example of an extended ACL.

```
FastIron(config)# access-list 103 deny tcp 209.157.21.0/24 209.157.22.0/24
FastIron(config)# access-list 103 deny tcp 209.157.21.0/24 eq ftp 209.157.22.0/24
FastIron(config)# access-list 103 deny tcp 209.157.21.0/24 eq telnet neq 5
FastIron(config)# access-list 103 deny udp any range 5 6 209.157.22.0/24 range 7
```

The first entry in this ACL denies TCP traffic from the 209.157.21.x network to the 209.157.22.x network.

The second entry denies all FTP traffic from the 209.157.21.x network to the 209.157.22.x network.

The third entry denies TCP traffic from the 209.157.21.x network to the 209.157.22.x network, if the TCP port number of the traffic is less than the well-known TCP port number for Telnet (23), and if the TCP port is not equal to 5. Thus, TCP packets whose TCP port numbers are 5 or are greater than 23 are allowed.

The fourth entry denies UDP packets from any source to the 209.157.22.x network, if the UDP port number from the source network is 5 or 6 and the destination UDP port is 7 or 8.

The fifth entry permits all packets that are not explicitly denied by the other entries. Without this entry, the ACL would deny all incoming or outgoing IP traffic on the ports to which you assign the ACL.

The following commands apply ACL 103 to the incoming traffic on ports 2/1 and 2/2.

```
FastIron(config)# int eth 2/1
FastIron(config-if-2/1)# ip access-group 103 in
FastIron(config-if-2/1)# exit
FastIron(config)# int eth 0/2/2
FastIron(config-if-2/2)# ip access-group 103 in
FastIron(config)# write memory
```
Configuring extended named ACLs

The commands for configuring named ACL entries are different from the commands for configuring numbered ACL entries. The command to configure a numbered ACL is `access-list`. The command for configuring a named ACL is `ip access-list`. In addition, when you configure a numbered ACL entry, you specify all the command parameters on the same command. When you configure a named ACL, you specify the ACL type (standard or extended) and the ACL number with one command, which places you in the configuration level for that ACL. Once you enter the configuration level for the ACL, the command syntax is the same as the syntax for numbered ACLs.

Extended ACLs let you permit or deny packets based on the following information:

- IP protocol
- Source IP address or host name
- Destination IP address or host name
- Source TCP or UDP port (if the IP protocol is TCP or UDP)
- Destination TCP or UDP port (if the IP protocol is TCP or UDP)

The IP protocol can be one of the following well-known names or any IP protocol number from 0 – 255:

- Internet Control Message Protocol (ICMP)
- Internet Group Management Protocol (IGMP)
- Internet Gateway Routing Protocol (IGRP)
- Internet Protocol (IP)
- Open Shortest Path First (OSPF)
- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

For TCP and UDP, you also can specify a comparison operator and port name or number. For example, you can configure a policy to block web access to a specific website by denying all TCP port 80 (HTTP) packets from a specified source IP address to the website’s IP address.

Extended named ACL syntax

Syntax: `[no] ip access-list extended <ACL-name> deny | permit <ip-protocol> <source-ip> | <hostname> <wildcard> [<operator> <source-tcp/udp-port>] <destination-ip> | <hostname> [<icmp-num> | <icmp-type> <wildcard> [<operator> <tcp/udp comparison operator> <destination-tcp/udp-port>]] [dscp-cos-mapping] [dscp-marking <0-63> [802.1p-priority-marking <0 – 7> ...] dscp-cos-mapping]] dscp-matching <0-63> [log] [precedence <name> | <0 – 7>] [tos <0 – 63> | <name>] [traffic policy <name>]

Syntax: `[no] access-list <num> deny | permit host <ip-protocol> any any

Syntax: `[no] ip access-group <num> in

The `<ACL-name>` parameter is the access list name. You can specify a string of up to 256 alphanumeric characters. You can use blanks in the ACL name if you enclose the name in quotation marks (for example, “ACL for Net1”).

The `deny` | `permit` parameter indicates whether packets that match the policy are dropped or forwarded.
The <ip-protocol> parameter indicates the type of IP packet you are filtering. You can specify a well-known name for any protocol whose number is less than 255. For other protocols, you must enter the number. Enter "?" instead of a protocol to list the well-known names recognized by the CLI.

The <source-ip> | <hostname> parameter specifies the source IP host for the policy. If you want the policy to match on all source addresses, enter any.

The < wildcard > parameter specifies the portion of the source IP host address to match against. The < wildcard > is a four-part value in dotted-decimal notation (IP address format) consisting of ones and zeros. Zeros in the mask mean the packet’s source address must match the <source-ip>. Ones mean any value matches. For example, the <source-ip> and < wildcard > values 209.157.22.26 0.0.0.255 mean that all hosts in the Class C subnet 209.157.22.x match the policy.

If you prefer to specify the wildcard (mask value) in Classless Interdomain Routing (CIDR) format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of “209.157.22.26 0.0.0.255” as “209.157.22.26/24”. The CLI automatically converts the CIDR number into the appropriate ACL mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into zeros. For example, if you specify 209.157.22.26/24 or 209.157.22.26 0.0.0.255, then save the changes to the startup-config file, the value appears as 209.157.22.0/24 (if you have enabled display of subnet lengths) or 209.157.22.0 0.0.0.255 in the startup-config file.

If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in “/ <mask-bits>” format. To enable the software to display the CIDR masks, enter the ip show-subnet-length command at the global CONFIG level of the CLI. You can use the CIDR format to configure the ACL entry regardless of whether the software is configured to display the masks in CIDR format.

NOTE
If you use the CIDR format, the ACL entries appear in this format in the running-config and startup-config files, but are shown with subnet mask in the display produced by the show ip access-list command.

The < destination-ip > | < hostname > parameter specifies the destination IP host for the policy. If you want the policy to match on all destination addresses, enter any.

The <icmp-type> | <icmp-num> parameter specifies the ICMP protocol type:
- This parameter applies only if you specified icmp as the <ip-protocol> value.
- If you use this parameter, the ACL entry is sent to the CPU for processing.
- If you do not specify a message type, the ACL applies to all types of ICMP messages.

The <icmp-num> parameter can be a value from 0 – 255.

The <icmp-type> parameter can have one of the following values, depending on the software version the device is running:
- any-icmp-type
- echo
- echo-reply
- information-request
- log
- mask-reply
Configuring extended named ACLs

- mask-request
- parameter-problem
- redirect
- source-quench
- time-exceeded
- timestamp-reply
- timestamp-request
- traffic policy
- unreachable
- `<num>`

The `<tcp/udp comparison operator>` parameter specifies a comparison operator for the TCP or UDP port number. This parameter applies only when you specify `tcp` or `udp` as the IP protocol. For example, if you are configuring an entry for HTTP, specify `tcp eq http`. You can enter one of the following operators:

- `eq` – The policy applies to the TCP or UDP port name or number you enter after `eq`.
- `established` – This operator applies only to TCP packets. If you use this operator, the policy applies to TCP packets that have the ACK (Acknowledgment) or RST (Reset) bits set on (set to “1”) in the Control Bits field of the TCP packet header. Thus, the policy applies only to established TCP sessions, not to new sessions. Refer to Section 3.1, “Header Format”, in RFC 793 for information about this field.

NOTE
This operator applies only to destination TCP ports, not source TCP ports.

- `gt` – The policy applies to TCP or UDP port numbers greater than the port number or the numeric equivalent of the port name you enter after `gt`.
- `lt` – The policy applies to TCP or UDP port numbers that are less than the port number or the numeric equivalent of the port name you enter after `lt`.
- `neq` – The policy applies to all TCP or UDP port numbers except the port number or port name you enter after `neq`.
- `range` – The policy applies to all TCP or UDP port numbers that are between the first TCP or UDP port name or number and the second one you enter following the range parameter. The range includes the port names or numbers you enter. For example, to apply the policy to all ports between and including 23 (Telnet) and 53 (DNS), enter the following: `range 23 53`. The first port number in the range must be lower than the last number in the range.

The `<tcp/udp-port>` parameter specifies the TCP or UDP port number or well-known name. You can specify a well-known name for any application port whose number is less than 1024. For other application ports, you must enter the number. Enter “?” instead of a port to list the well-known names recognized by the CLI.

The `in` parameter specifies that the ACL applies to incoming traffic on the interface to which you apply the ACL. You can apply the ACL to an Ethernet port or a virtual interface.

NOTE
If the ACL is for a virtual routing interface, you also can specify a subset of ports within the VLAN containing that interface when assigning an ACL to the interface. Refer to “Configuring standard numbered ACLs” on page 633.
The **precedence** `<name> | <num>` parameter of the `ip access-list` command specifies the IP precedence. The precedence option for of an IP packet is set in a three-bit field following the four-bit header-length field of the packet’s header. You can specify one of the following:

- **critical** or **5** – The ACL matches packets that have the critical precedence. If you specify the option number instead of the name, specify number 5.
- **flash** or **3** – The ACL matches packets that have the flash precedence. If you specify the option number instead of the name, specify number 3.
- **flash-override** or **4** – The ACL matches packets that have the flash override precedence. If you specify the option number instead of the name, specify number 4.
- **immediate** or **2** – The ACL matches packets that have the immediate precedence. If you specify the option number instead of the name, specify number 2.
- **internet** or **6** – The ACL matches packets that have the internetwork control precedence. If you specify the option number instead of the name, specify number 6.
- **network** or **7** – The ACL matches packets that have the network control precedence. If you specify the option number instead of the name, specify number 7.
- **priority** or **1** – The ACL matches packets that have the priority precedence. If you specify the option number instead of the name, specify number 1.
- **routine** or **0** – The ACL matches packets that have the routine precedence. If you specify the option number instead of the name, specify number 0.

The **tos** `<name> | <num>` parameter of the `ip access-list` command specifies the IP ToS. You can specify one of the following:

- **max-reliability** or **2** – The ACL matches packets that have the maximum reliability ToS. The decimal value for this option is 2.
- **max-throughput** or **4** – The ACL matches packets that have the maximum throughput ToS. The decimal value for this option is 4.
- **min-delay** or **8** – The ACL matches packets that have the minimum delay ToS. The decimal value for this option is 8.
- **min-monetary-cost** or **1** – The ACL matches packets that have the minimum monetary cost ToS. The decimal value for this option is 1.

NOTE
This value is not supported on 10 Gigabit Ethernet modules.

- **normal** or **0** – The ACL matches packets that have the normal ToS. The decimal value for this option is 0.
- `<num>` – A number from 0 – 15 that is the sum of the numeric values of the options you want. The ToS field is a four-bit field following the Precedence field in the IP header. You can specify one or more of the following. To select more than one option, enter the decimal value that is equivalent to the sum of the numeric values of all the ToS options you want to select. For example, to select the max-reliability and min-delay options, enter number 10. To select all options, select 15.
- The **dscp-cos-mapping** option maps the DSCP value in incoming packets to a hardware table that provides mapping of each of the 0 – 63 DSCP values, and distributes them among eight traffic classes (internal priorities) and eight 802.1p priorities.

NOTE
The **dscp-cos-mapping** option overrides port-based priority settings.
Preserving user input for ACL TCP/UDP port numbers

Prior to release 03.1.00 for the FastIron X Series, ACL implementations automatically display the TCP/UDP port name instead of the port number, regardless of user preference. This feature preserves the user input (name or number) and now displays either the port name or the number.

A new command has been added to enable this feature.

Syntax: `ip preserve-ACL-user-input-format`

The following example shows how this feature works for a TCP port (this feature works the same way for UDP ports). In this example, the user identifies the TCP port by number (80) when configuring ACL group 140. However, `show ip access-list 140` reverts back to the port name for the TCP port (http in this example). After the user issues the new `ip preserve-ACL-user-input-format` command, `show ip access-list 140` displays either the TCP port number or name, depending on how it was configured by the user.

```
FastIron(config)# access-list 140 permit tcp any any eq 80
FastIron(config)# access-list 140 permit tcp any any eq ftp
FastIron# show ip access-lists 140
```
Managing ACL comment text

ACL comment text describes entries in an ACL. The comment text appears in the output of `show` commands that display ACL information.

This section describes how to add, delete, and view ACL comments.

Adding a comment to an entry in a numbered ACL

To add comments to entries in a numbered ACL, enter commands such as the following.

```
FastIron(config)#access-list 100 remark The following line permits TCP packets
FastIron(config)#access-list 100 permit tcp 192.168.4.40/24 2.2.2.2/24
FastIron(config)#access-list 100 remark The following permits UDP packets
FastIron(config)#access-list 100 permit udp 192.168.2.52/24 2.2.2.2/24
FastIron(config)#access-list 100 deny ip any any
```

Starting in software release FSX 04.2.00, you can add comments to entries in a numbered ACL using the syntax for named ACLs. For example, using the same example configuration above, you could instead enter the following commands.

```
FastIron(config)#ip access-list extended 100
FastIron(config-ext-nACL)#remark The following line permits TCP packets
FastIron(config-ext-nACL)#permit tcp 192.168.4.40/24 2.2.2.2/24
FastIron(config-ext-nACL)#remark The following permits UDP packets
FastIron(config-ext-nACL)#permit udp 192.168.2.52/24 2.2.2.2/24
FastIron(config-ext-nACL)#deny ip any any
```

Syntax: `[no] access-list <ACL-num> remark <comment-text>`

or

Syntax: `[no] ip access-list standard | extended <ACL-num>`

Syntax: `remark <comment-text>`

For `<ACL-num>`, enter the number of the ACL.

The `<comment-text>` can be up to 128 characters in length. The comment must be entered separately from the actual ACL entry; that is, you cannot enter the ACL entry and the ACL comment with the same `access-list` or `ip access-list` command. Also, in order for the remark to be displayed correctly in the output of `show` commands, the comment must be entered immediately before the ACL entry it describes. Note that an ACL comment is tied to the ACL entry immediately following the comment. Therefore, if the ACL entry is removed, the ACL comment is also removed.

The `standard | extended` parameter indicates the ACL type.
Adding a comment to an entry in a named ACL

Platform Support:
- FastIron X Series devices running software release 04.2.00 and later – L2, BL3, L3

To add comments to entries in a named ACL, enter commands such as the following.

```
FastIron(config)# ip access-list extended TCP/UDP
FastIron(config-ext-nACL)# remark The following line permits TCP packets
FastIron(config-ext-nACL)# permit tcp 192.168.4.40/24 2.2.2.2/24
FastIron(config-ext-nACL)# remark The following permits UDP packets
FastIron(config-ext-nACL)# permit udp 192.168.2.52/24 2.2.2.2/24
FastIron(config-ext-nACL)# deny ip any any
```

Syntax: `[no] access-list standard | extended <ACL-name>`

Syntax: `remark <comment-text>`

The `standard | extended` parameter indicates the ACL type.

For `<ACL-name>`, enter the name of the ACL.

The `<comment-text>` can be up to 128 characters in length. The comment must be entered separately from the actual ACL entry; that is, you cannot enter the ACL entry and the ACL comment with the same `ip access-list` command. Also, in order for the remark to be displayed correctly in the output of show commands, the comment must be entered immediately before the ACL entry it describes. Note that an ACL comment is tied to the ACL entry immediately following the comment. Therefore, if the ACL entry is removed, the ACL comment is also removed.

Deleting a comment from an ACL entry

Platform Support:
- FastIron X Series devices running software release 04.2.00 and later – L2, BL3, L3

To delete a comment from an ACL entry, enter commands such as the following.

```
FastIron(config)# ip access-list standard 99
FastIron(config)# no remark The following line permits TCP packets
```

Syntax: `no remark <comment-text>`

Viewing comments in an ACL

You can use the following commands to display comments for ACL entries:

- `show running-config`
- `show access-list`
- `show ip access-list`

The following shows the comment text for a numbered ACL, ACL 100, in a `show running-config` display.
Applying an ACL to a virtual interface in a protocol- or subnet-based VLAN

By default, when you apply an ACL to a virtual interface in a protocol-based or subnet-based VLAN, the ACL takes effect on all protocol or subnet VLANs to which the untagged port belongs. To prevent the Brocade device from denying packets on other virtual interfaces that do not have an ACL applied, configure an ACL that permits packets in the IP subnet of the virtual interface in all protocol-based or subnet-based VLANs to which the untagged port belongs. The following is an example configuration.

```
FastIron# conf t
FastIron(config)# vlan 1 name DEFAULT-VLAN by port
FastIron(config-vlan-1)# ip-subnet 192.168.10.0 255.255.255.0
FastIron(config-vlan-ip-subnet)# static ethe 1
FastIron(config-vlan-ip-subnet)# router-interface ve 10
FastIron(config-vlan-ip-subnet)# ip-subnet 10.15.1.0 255.255.255.0
FastIron(config-vlan-ip-subnet)# static ethe 1
FastIron(config-vlan-ip-subnet)# router-interface ve 20
FastIron(config-vlan-ip-subnet)# logging console
FastIron(config-vlan-ip-subnet)# exit
FastIron(config-vlan-1)# no vlan-dynamic-discovery
Vlan dynamic discovery is disabled
FastIron(config-vlan-1)# int e 2
FastIron(config-if-e1000-2)# disable
FastIron(config-if-e1000-2)# interface ve 10
FastIron(config-vif-10)# ip address 192.168.10.254 255.255.255.0
```

Applying an ACL to a virtual interface in a protocol- or subnet-based VLAN

```
FastIron# show running-config
...
access-list 100 remark The following line permits TCP packets
access-list 100 permit tcp 192.168.4.40/24 2.2.2.2/24
access-list 100 remark The following line permits UDP packets
access-list 100 permit udp 192.168.2.52/24 2.2.2.2/24
access-list 100 deny ip any any

Syntax: show running-config

The following example shows the comment text for an ACL in a show access-list display. The output is identical in a show ip access-list display.

FastIron# show access-list
IP access list rate-limit 100 aaaa.bbbb.cccc
Extended IP access list TCP/UDP (Total flows: N/A, Total packets: N/A)
ACL Remark: The following line permits TCP packets
permit tcp 0.0.0.40 255.255.255.0 0.0.0.2 255.255.255.0 (Flows: N/A, Packets: N/A)
ACL Remark: The following line permits UDP packets
permit udp 0.0.0.52 255.255.255.0 0.0.0.2 255.255.255.0 (Flows: N/A, Packets: N/A)
deny ip any any (Flows: N/A, Packets: N/A)

Syntax: show access-list <ACL-num> | <ACL-name> | all
or
Syntax: show ip access-list <ACL-num> | <ACL-name> | all
```
Enabling ACL logging

You may want the software to log entries in the Syslog for packets that are denied by ACL filters. ACL logging is disabled by default; it must be explicitly enabled on a port.

When you enable logging for ACL entries, statistics for packets that match the deny conditions of the ACL entries are logged. For example, if you configure a standard ACL entry to deny all packets from source address 209.157.22.26, statistics for packets that are explicitly denied by the ACL entry are logged in the Syslog buffer and in SNMP traps sent by the Brocade device.

The first time an ACL entry denies a packet, the software immediately generates a Syslog entry and an SNMP trap. The software also starts a five-minute timer. The timer keeps track of all packets explicitly denied by the ACL entries. After five minutes, the software generates a single Syslog entry for each ACL entry that denied a packet. The Syslog entry (message) indicates the number of packets denied by the ACL entry during the previous five minutes. Note however that packet count may be inaccurate if the packet rate is high and exceeds the CPU processing rate.

If no ACL entries explicitly deny packets during an entire five-minute timer interval, the timer stops. The timer restarts when an ACL entry explicitly denies a packet.

NOTE
The timer for logging packets denied by Layer 2 filters is a different timer than the ACL logging timer.

Configuration notes

Note the following before configuring ACL logging:

- You can enable ACL logging on physical and virtual interfaces.
- ACL logging logs denied packets only.
- When ACL logging is disabled, packets that match the ACL rule are forwarded or dropped in hardware. When ACL logging is enabled, all packets that match the ACL deny rule are sent to the CPU. When ACL logging is enabled, Brocade recommends that you configure a traffic conditioner, then link the ACL to the traffic conditioner to prevent CPU overload. For example:
  ```
  FastIron(config)# traffic-policy TPD1 rate-limit fixed 100 exceed-action drop
  FastIron(config)# access-list 101 deny ip host 210.10.12.2 any traffic-policy TPD1 log
  ```
 NOTE
 Adding a rate limit to the ACL will not prevent a CPU overload on FCX devices.

- ACL logging is intended for debugging purpose. Brocade recommends that you disable ACL logging after the debug session is over.
Configuration Tasks

To enable ACL logging, complete the following steps:

1. Create ACL entries with the log option
2. Enable ACL logging on individual ports

NOTE

The command syntax for enabling ACL logging is different on IPv4 devices than on IPv6 devices. See the configuration examples in the next section.

3. Bind the ACLs to the ports on which ACL logging is enabled

Example Configuration

The following shows an example configuration on an IPv4 device.

```
FastIron(config)# access-list 1 deny host 209.157.22.26 log
FastIron(config)# access-list 1 deny 209.157.29.12 log
FastIron(config)# access-list 1 deny host IPHost1 log
FastIron(config)# access-list 1 permit any
FastIron(config)# interface e 1/4
FastIron(config-if-e1000-1/4)# ACL-logging
FastIron(config-if-e1000-1/4)# ip access-group 1 in
```

The above commands create ACL entries that include the log option, enable ACL logging on interface e 1/4, then bind the ACL to interface e 1/4. Statistics for packets that match the deny statements will be logged.

NOTE

The `ACL-logging` command shown above is not required for FGS, FWS, and FLS devices.

Syntax: ACL-logging

The `ACL-logging` command applies to IPv4 devices only. For IPv6 devices, use the `logging-enable` command as shown in the following example.

The following shows an example configuration on an IPv6 device.

```
FastIron(config)# ipv6 acc ACL_log_v6
FastIron(config-ipv6-access-list ACL_log_v6)# logging-enable
FastIron(config-ipv6-access-list ACL_log_v6)# deny ipv6 host 2001::1 any log
FastIron(config-ipv6-access-list ACL_log_v6)# inter e 9/12
FastIron(config-if-e1000-9/12)# ipv6 traffic-filter ACL_log_v6 in
```

The above commands create ACL entries that include the log option, then bind the ACL to interface e 9/12. Statistics for packets that match the deny statement will be logged.

Syntax: logging-enable

NOTE

The `logging-enabled` command applies to IPv6 devices only. For IPv4 devices, use the `ACL-logging` command as shown in the previous example.
Enabling strict control of ACL filtering of fragmented packets

Displaying ACL Log Entries

The first time an entry in an ACL permits or denies a packet and logging is enabled for that entry, the software generates a Syslog message and an SNMP trap. Messages for packets permitted or denied by ACLs are at the warning level of the Syslog.

When the first Syslog entry for a packet permitted or denied by an ACL is generated, the software starts an ACL timer. After this, the software sends Syslog messages every five minutes. If an ACL entry does not permit or deny any packets during the timer interval, the software does not generate a Syslog entry for that ACL entry.

NOTE
For an ACL entry to be eligible to generate a Syslog entry for denied packets, logging must be enabled for the entry. The Syslog contains entries only for the ACL entries that deny packets and have logging enabled.

To display Syslog entries, enter the following command from any CLI prompt:

```
FastIron#show log
```

Syslog logging: enabled (0 messages dropped, 2 flushes, 0 overruns)
Buffer logging: level ACDMEINW, 9 messages logged
 level code: A=alert C=critical D=debugging M=emergency E=error
 I=informational N=notification W=warning

Dynamic Log Buffer (50 lines):
0d00h12m18s:W:ACL: ACL: List 122 denied tcp 20.20.15.6(0)(Ethernet 4 0000.0804.01 20.20.18.6(0), 1 event(s)
0d00h12m18s:W:ACL: ACL: List 122 denied tcp 20.20.15.2(0)(Ethernet 4 0000.0804.01 20.20.18.2(0), 1 event(s)
0d00h12m18s:W:ACL: ACL: List 122 denied tcp 20.20.15.4(0)(Ethernet 4 0000.0804.01 20.20.18.4(0), 1 event(s)
0d00h12m18s:W:ACL: ACL: List 122 denied tcp 20.20.15.3(0)(Ethernet 4 0000.0804.01 20.20.18.3(0), 1 event(s)
0d00h12m18s:W:ACL: ACL: List 122 denied tcp 20.20.15.5(0)(Ethernet 4 0000.0804.01 20.20.18.5(0), 1 event(s)
0d00h12m18s:I:ACL: 122 applied to port 4 by from console session
0d00h10m12s:I:ACL: 122 removed from port 4 by from console session
0d00h09m56s:I:ACL: 122 removed from port 4 by from console session
0d00h09m38s:I:ACL: 122 removed from port 4 by from console session

Syntax: show log

Enabling strict control of ACL filtering of fragmented packets

NOTE
This feature is not supported on the FastIron GS.

The default processing of fragments by hardware-based ACLs is as follows:
Enabling ACL support for switched traffic in the router image

Platform Support:

- FastIron X Series devices running software release 02.5.00 and later
- FCX-S devices running software release 06.0.00 and later (enabled by default)
- TurboIron X Series devices running software release 04.2.00 and later

By default, when an ACL is applied to a physical or virtual routing interface, the Brocade Layer 3 device filters routed traffic only. It does not filter traffic that is switched from one port to another within the same VLAN or virtual routing interface, even if an ACL is applied to the interface.

You can enable the device to filter switched traffic within a VLAN or virtual routing interface. When filtering is enabled, the device uses the ACLs applied to inbound traffic to filter traffic received by a port from another port in the same virtual routing interface.

To enable this feature, enter a command such as the following.

```
FastIron(config)# access-list 101 bridged-routed
```

Applying the ACL rule above to an interface, enables filtering of traffic switched within a VLAN or virtual routing interface.

Syntax: `[no] ip access-list <ACL-ID> bridged-routed`

The `<ACL-ID>` parameter specifies a standard or extended numbered or named ACL.

You can use this feature in conjunction with `enable ACL-per-port-per-vlan`, to assign an ACL to a single port within a virtual interface. In this case, all of the Layer 3 traffic (bridged and routed) are filtered by the ACL.
Enabling ACL filtering based on VLAN membership or VE port membership

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later
- TurboIron X Series devices running software release 04.1.00 and later

NOTE
This section applies to IPv4 ACLs only. IPv6 ACLs do not support ACL filtering based on VLAN membership or VE port membership.

You can apply an inbound IPv4 ACL to specific VLAN members on a port (Layer 2 devices only) or to specific ports on a virtual interface (VE) (Layer 3 Devices only).

By default, this feature support is disabled. To enable it, enter the following commands at the Global CONFIG level of the CLI.

FastIron (config)# enable ACL-per-port-per-vlan
FastIron (config)# write memory
FastIron (config)# exit
FastIron# reload

NOTE
On FastIron X Series devices, you must save the configuration and reload the software to place the change into effect. On TurboIron X Series devices, the write memory and reload commands are not necessary.

After entering the above commands, you can do the following:
- Apply an IPv4 ACL to specific VLAN members on a port – refer to “Applying an IPv4 ACL to specific VLAN members on a port (Layer 2 devices only)” on page 657
- Apply an IPv4 ACL to a subset of ports on a VE – refer to “Applying an IPv4 ACL to a subset of ports on a virtual interface (Layer 3 devices only)” on page 658

Syntax: [no] enable ACL-per-port-per-vlan
Enter the no form of the command to disable this feature.

Configuration notes

- Before enabling this feature on an IPv4 device, make sure the VLAN numbers are contiguous. For example, the VLAN numbers can be 201, 202, 203, and 204, but not 300, 401, 600, and 900.
Enabling ACL filtering based on VLAN membership or VE port membership

- Brocade devices running software release 04.0.01 and later do not support a globally-configured PBR policy together with per-port-per-VLAN ACLs.
- IPv4 ACLs that filter based on VLAN membership or VE port membership (ACL-per-port-per-VLAN), are supported together with IPv6 ACLs on the same device, as long as they are not bound to the same port or virtual interface.

Applying an IPv4 ACL to specific VLAN members on a port (Layer 2 devices only)

Platform Support:
- FastIron X Series devices running software release 02.3.03 and later
- TurboIron X Series devices running software release 04.1.00 and later

NOTE
This section applies to IPv4 ACLs only. IPv6 ACLs do not support ACL filtering based on VLAN membership.

When you bind an IPv4 ACL to a port, the port filters all inbound traffic on the port. However, on a tagged port, there may be a need to treat packets for one VLAN differently from packets for another VLAN. Starting with release 02.3.03, you can configure a tagged port on a Layer 2 device to filter packets based on the packets’ VLAN membership.

NOTE
Before you can bind an ACL to specific VLAN members on a port, you must first enable support for this feature. If this feature is not already enabled on your device, enable it as instructed in the section “Enabling ACL filtering based on VLAN membership or VE port membership” on page 656.

To apply an IPv4 ACL to a specific VLAN on a port, enter commands such as the following on a tagged port.

```
FastIron(config)# vlan 12 name vlan12
FastIron(config-vlan-12)# untag ethernet 5 to 8
FastIron(config-vlan-12)# tag ethernet 23 to 24
FastIron(config-vlan-12)# exit
FastIron(config)# access-list 10 deny host 209.157.22.26 log
FastIron(config)# access-list 10 deny 209.157.29.12 log
FastIron(config)# access-list 10 deny host IPHost1 log
FastIron(config)# access-list 10 permit
FastIron(config)# int e 1/23
FastIron(config-if-e1000-1/23))# per-vlan 12
FastIron(config-if-e1000-1/23-vlan-12))# ip access-group 10 in
```

The commands in this example configure port-based VLAN 12, and add ports e 5 – 8 as untagged ports and ports e 23 – 24 as tagged ports to the VLAN. The commands following the VLAN configuration commands configure ACL 10. Finally, the last three commands apply ACL 10 on VLAN 12 for which port e 23 is a member.

Syntax: `per-vlan <VLAN ID>`

Syntax: `[no] ip access-group <ACL ID>`

The `<VLAN ID>` parameter specifies the VLAN name or number to which you will bind the ACL.
The `<ACL ID>` parameter is the access list name or number.
Applying an IPv4 ACL to a subset of ports on a virtual interface (Layer 3 devices only)

Platform Support:

- FastIron X Series devices running software release 02.4.00 and later
- TurboIron X Series devices running software release 04.2.00 and later

NOTE
This section applies to IPv4 ACLs only. IPv6 ACLs do not support ACL filtering based on VE port membership.

You can apply an IPv4 ACL to a virtual routing interface. The virtual interface is used for routing between VLANs and contains all the ports within the VLAN. The IPv4 ACL applies to all the ports on the virtual routing interface. Starting with release 02.3.03, you also can specify a subset of ports within the VLAN containing a specified virtual interface when assigning an ACL to that virtual interface.

Use this feature when you do not want the IPv4 ACLs to apply to all the ports in the virtual interface VLAN or when you want to streamline IPv4 ACL performance for the VLAN.

NOTE
Before you can bind an IPv4 ACL to specific ports on a virtual interface, you must first enable support for this feature. If this feature is not already enabled on your device, enable it as instructed in the section "Enabling ACL filtering based on VLAN membership or VE port membership" on page 656.

To apply an ACL to a subset of ports within a virtual interface, enter commands such as the following.

```
FastIron(config)# vlan 10 name IP-subnet-vlan
FastIron(config-vlan-10)# untag ethernet 1/1 to 2/12
FastIron(config-vlan-10)# router-interface ve 1
FastIron(config-vlan-10)# exit
FastIron(config)# access-list 1 deny host 209.157.22.26 log
FastIron(config)# access-list 1 deny 209.157.29.12 log
FastIron(config)# access-list 1 deny host IPHost1 log
FastIron(config)# access-list 1 permit any
FastIron(config)# interface ve 1/1
FastIron(config-vif-1/1)# ip access-group 1 in ethernet 1/1 ethernet 1/3 ethernet 2/1 to 2/4
```

The commands in this example configure port-based VLAN 10, add ports 1/1 – 2/12 to the VLAN, and add virtual routing interface 1 to the VLAN. The commands following the VLAN configuration commands configure ACL 1. Finally, the last two commands apply ACL 1 to a subset of the ports associated with virtual interface 1.

Syntax:
```
[no] ip access-group <ACL ID> in ethernet <stack-unit>/<slotnum>/<portnum>
[to<stack-unit>/<slotnum>/<portnum>]
```

The `<ACL ID>` parameter is the access list name or number.

The `<slotnum>` parameter applies on chassis devices only. It does not apply on FESX devices.
Using ACLs to filter ARP packets

NOTE
This feature is not supported on TurboIron 24X Series devices.

You can use ACLs to filter ARP packets. Without this feature, ACLs cannot be used to permit or deny incoming ARP packets. Although an ARP packet contains an IP address just as an IP packet does, an ARP packet is not an IP packet; therefore, it is not subject to normal filtering provided by ACLs.

When a Brocade device receives an ARP request, the source MAC and IP addresses are stored in the device ARP table. A new record in the ARP table overwrites existing records that contain the same IP address. This behavior can cause a condition called "ARP hijacking", when two hosts with the same IP address try to send an ARP request to the Brocade device.

Normally ARP hijacking is not a problem because IP assignments are done dynamically; however, in some cases, ARP hijacking can occur, such as when a configuration allows a router interface to share the IP address of another router interface. Since multiple VLANs and the router interfaces that are associated with each of the VLANs share the same IP segment, it is possible for two hosts in two different VLANs to fight for the same IP address in that segment. ARP filtering using ACLs protects an IP host record in the ARP table from being overwritten by a hijacking host. Using ACLs to filter ARP requests checks the source IP address in the received ARP packet. Only packets with the permitted IP address will be allowed to be written in the ARP table; others are dropped.

Configuration considerations

- This feature is available on all devices running Layer 3 code. This filtering occurs on the management processor.
- The feature is available on physical interfaces and virtual routing interfaces. It is supported on the following physical interface types Ethernet and trunks.
- ACLs used to filter ARP packets on a virtual routing interface can be inherited from a previous interface if the virtual routing interface is defined as a follower virtual routing interface.

Configuring ACLs for ARP filtering

To implement the ACL ARP filtering feature, enter commands such as the following.

FastIron(config)# access-list 101 permit ip host 192.168.2.2 any
FastIron(config)# access-list 102 permit ip host 192.168.2.3 any
FastIron(config)# access-list 103 permit ip host 192.168.2.4 any
FastIron(config)# vlan 2
FastIron(config-vlan-2)# tag ethe 1/1 to 1/2
FastIron(config-vlan-2)# router-interface ve 2
FastIron(config-vlan-2)# vlan 3
FastIron(config-vlan-3)# tag ethe 1/1 to 1/2
FastIron(config-vlan-3)# router-int ve 3
FastIron(config-vlan-3)# vlan 4
FastIron(config-vlan-4)# tag ethe 1/1 to 1/2
FastIron(config-vlan-4)# router-int ve 4
FastIron(config-vlan-4)# interface ve 2
FastIron(config-ve-2)# ip access-group 101 in
FastIron(config-ve-2)# ip address 192.168.2.1/24
FastIron(config-ve-2)# ip use-ACL-on-arp 103
FastIron(config-ve-2)# exit
Using ACLs to filter ARP packets

FastIron(config)# interface ve 3
FastIron(config-ve-3)# ip access-group 102 in
FastIron(config-ve-3)# ip follow ve 2
FastIron(config-ve-3)# ip use-ACL-on-arp
FastIron(config-ve-3)# exit
FastIron(config-vlan-4)# interface ve 4
FastIron(config-ve-4)# ip follow ve 2
FastIron(config-ve-4)# ip use-ACL-on-arp
FastIron(config-ve-4)# exit

Syntax: \[no\] ip use-ACL-on-arp \[<access-list-number>\]

When the use-ACL-on-arp command is configured, the ARP module checks the source IP address of the ARP request packets received on the interface. It then applies the specified ACL policies to the packet. Only the packet with the IP address that the ACL permits will be allowed to be written in the ARP table; those that are not permitted will be dropped.

The <access-list-number> parameter identifies the ID of the standard ACL that will be used to filter the packet. Only the source and destination IP addresses will be used to filter the ARP packet. You can do one of the following for <access-list-number>:

- Enter an ACL ID to explicitly specify the ACL to be used for filtering. In the example above, the line FastIron(config-ve-2)# ip use-ACL-on-arp 103 specifies ACL 103 to be used as the filter.

- Allow the ACL ID to be inherited from the IP ACLs that have been defined for the device. In the example above, the line FastIron(config-ve-4)# ip use-ACL-on-arp allows the ACL to be inherited from IP ACL 101 because of the ip follow relationship between virtual routing interface 2 and virtual routing interface 4. Virtual routing interface 2 is configured with IP ACL 101; thus virtual routing interface 4 inherits IP ACL 101.

ARP requests will not be filtered by ACLs if one of the following conditions occur:

- If the ACL is to be inherited from an IP ACL, but there is no IP ACL defined.
- An ACL ID is specified for the use-ACL-on-arp command, but no IP address or “any any” filtering criteria have been defined under the ACL ID.

Displaying ACL filters for ARP

To determine which ACLs have been configured to filter ARP requests, enter a command such as the following.

FastIron(config)# show ACL-on-arp
Port ACL ID Filter Count
2 103 10
3 102 23
4 101 12

Syntax: show ACL-on-arp \[ethernet \[<slotnum>/<portnum>\] \] | loopback \[<num>\] | ve \[<num>\]]

If the slot number (chassis devices only) and interface number is not specified, all ports on the device that use ACLs for ARP filtering will be included in the display.

The Filter Count column shows how many ARP packets have been dropped on the interface since the last time the count was cleared.
Clearing the filter count

To clear the filter count for all interfaces on the device, enter a command such as the following.

```
FastIron(config)# clear ACL-on-arp
```

The above command resets the filter count on all interfaces in a device back to zero.

Syntax: clear ACL-on-arp

Filtering on IP precedence and ToS values

To configure an extended IP ACL that matches based on IP precedence, enter commands such as the following.

```
FastIron(config)#access-list 103 deny tcp 209.157.21.0/24 209.157.22.0/24 precedence internet
FastIron(config)#access-list 103 deny tcp 209.157.21.0/24 eq ftp 209.157.22.0/24 precedence 6
FastIron(config)#access-list 103 permit ip any any
```

The first entry in this ACL denies TCP traffic from the 209.157.21.x network to the 209.157.22.x network, if the traffic has the IP precedence option “internet” (equivalent to “6”).

The second entry denies all FTP traffic from the 209.157.21.x network to the 209.157.22.x network, if the traffic has the IP precedence value “6” (equivalent to “internet”).

The third entry permits all packets that are not explicitly denied by the other entries. Without this entry, the ACL would deny all incoming or outgoing IP traffic on the ports to which you assign the ACL.

To configure an IP ACL that matches based on ToS, enter commands such as the following.

```
FastIron(config)#access-list 104 deny tcp 209.157.21.0/24 209.157.22.0/24 tos normal
FastIron(config)#access-list 104 deny tcp 209.157.21.0/24 eq ftp 209.157.22.0/24 tos 13
FastIron(config)#access-list 104 permit ip any any
```

The first entry in this IP ACL denies TCP traffic from the 209.157.21.x network to the 209.157.22.x network, if the traffic has the IP ToS option “normal” (equivalent to “0”).

The second entry denies all FTP traffic from the 209.157.21.x network to the 209.157.22.x network, if the traffic has the IP ToS value “13” (equivalent to “max-throughput”, “min-delay”, and “min-monetary-cost”).

The third entry permits all packets that are not explicitly denied by the other entries. Without this entry, the ACL would deny all incoming or outgoing IP traffic on the ports to which you assign the ACL.

TCP flags - edge port security

Platform Support:
- FGS and FLS devices running software release 02.6.00 and later
- FWS devices running software release 04.3.00 or later
This release supports edge port security on FastIron GS and FastIron LS devices. This feature works in combination with IP ACL rules, and supports all 6 TCP flags present in the offset 13 of the TCP header:

- +|- urg = Urgent
- +|- ack = Acknowledge
- +|- psh = Push
- +|- rst = Reset
- +|- syn = Synchronize
- +|- fin = Finish

TCP flags can be combined with other ACL functions (such as dscp-marking and traffic policies), giving you greater flexibility when designing ACLs.

The TCP flags feature offers two options, match-all and match-any:

- **Match-any** - Indicates that incoming TCP traffic must be matched against any of the TCP flags configured as part of the match-any ACL rule. In CAM hardware, the number of ACL rules will match the number of configured flags.

- **Match-all** - Indicates that incoming TCP traffic must be matched against all of the TCP flags configured as part of the match-all ACL rule. In CAM hardware, there will be only one ACL rule for all configured flags.

Example

```
FastIron(config-ext-nACL)# permit tcp 1.1.1.1 0.0.0.255 eq 100 2.2.2.2 0.0.0.255 eq 300 match-all +urg +ack +syn -rst
```

This command configures a single rule in CAM hardware. This rule will contain all of the configured TCP flags (urg, ack, syn, and rst).

Using TCP flags in combination with other ACL features

The TCP Flags feature has the added capability of being combined with other ACL features.

Example

```
FastIron(config-ext-nACL)# permit tcp any any match-all +urg +ack +syn -rst traffic-policy test
```

This command configures the ACL to match incoming traffic with the TCP Flags urg, ack, and syn and also to apply the traffic policy (rate, limit, etc.) to the matched traffic.

```
FastIron(config-ext-nACL)# permit tcp any any match-all +urg +ack +syn -rst tos normal
```

This command configures the ACL to match incoming traffic with the flags urg, ack, and syn, and also sets the tos bit to normal when the traffic exits the device.

NOTE

TCP Flags combines the functionality of older features such as TCP Syn Attack and TCP Establish. Avoid configuring these older features on a port where you have configured TCP Flags. TCP Flags can perform all of the functions of TCP Syn Attack and TCP Establish, and more. However, if TCP Syn Attack is configured on a port along with TCP Flags, TCP Syn Attack will take precedence.
NOTE
If an ACL clause with match-any exists, and the system runs out of CAM, if the total number of TCP rules to TCP Flags will not fit within 1021 entries (the maximum rules allowed per device), then none of the TCP Flag rules will be programmed into the CAM hardware.

NOTE
If a range option and match-any TCP-flags are combined in the same ACL, the total number of rules will be calculated as Total number of rules in CAM hardware = (number of rules for range) * (number of rules for match-any TCP-flags).

QoS options for IP ACLs

Quality of Service (QoS) options enable you to perform QoS for packets that match the ACLs. Using an ACL to perform QoS is an alternative to directly setting the internal forwarding priority based on incoming port, VLAN membership, and so on. (This method is described in “Assigning QoS priorities to traffic” on page 742.)

The following QoS ACL options are supported:

- **dscp-cos-mapping** – This option is similar to the dscp-matching command (described below). This option maps the DSCP value in incoming packets to a hardware table that provides mapping of each of the 0 – 63 DSCP values, and distributes them among eight traffic classes (internal priorities) and eight 802.1p priorities.

 By default, the Brocade device does the 802.1p to CoS mapping. If you want to change the priority mapping to DSCP to CoS mapping, you must enter the following ACL statement.

 `permit ip any any dscp-cos-mapping`

- **dscp-marking** – Marks the DSCP value in the outgoing packet with the value you specify.

- **internal-priority-marking** and **802.1p-priority-marking** – Supported on FastIron devices only with the DSCP marking option, these commands assign traffic that matches the ACL to a hardware forwarding queue (internal-priority-marking), and re-mark the packets that match the ACL with the 802.1p priority (802.1p-priority-marking).

- **802.1p-and internal-marking** – Supported on Turbolron devices only with the DSCP marking option, this command assigns traffic that matches the ACL to a hardware forwarding queue and re-marks the packets that match the ACL with the 802.1p priority.

- **dscp-matching** – Matches on the packet DSCP value. This option does not change the packet forwarding priority through the device or mark the packet.

Configuration notes for FGS, FLS, FGS-STK, FLS-STK and FCX devices

- These devices do not support marking and prioritization simultaneously with the same rule. To achieve this, you need to create two separate rules. In other words, you can mark a rule with DSCP or 802.1p information, or you can prioritize a rule based on DSCP or 802.1p information. You can enable only one of the following ACL options per rule:

 - 802.1p-priority-marking
 - dscp-marking
QoS options for IP ACLs

- internal-priority-marking

For example, any one of the following commands is supported.

FastIron(config)# access-list 101 permit ip any any dscp-marking 43

or

FastIron(config)# access-list 101 permit ip any any 802.1p-priority-marking

or

FastIron(config)# access-list 101 permit ip any any internal-priority-marking

6

The following command is not supported.

FastIron(config)# access-list 101 permit ip any any dscp-marking 43
802.1p-priority-marking 4 internal-priority-marking 6

Using an ACL to map the DSCP value (DSCP CoS mapping)

The `dscp-cos-mapping` option maps the DSCP value in incoming packets to a hardware table that provides mapping of each of the 0 – 63 DSCP values, and distributes them among eight traffic classes (internal priorities) and eight 802.1p priorities.

NOTE
The `dscp-cos-mapping` option overrides port-based priority settings.

NOTE
The `dscp-cos-mapping` option is not supported for TIX, FGS, FGS-STK, FLS, and FLS-STK devices.

By default, the Brocade device does the 802.1p to CoS mapping. If you want to change the priority mapping to DSCP to CoS mapping, you must enter the following ACL statement.

`permit ip any any dscp-cos-mapping`

The complete CLI syntax for this feature is shown in “Configuring extended numbered ACLs” on page 638 and “Configuring extended named ACLs” on page 644. The following shows the syntax specific to the DSCP Cos mapping feature.

Syntax: ... `[dscp-marking <dscp-value> dscp-cos-mapping]`

or

Syntax: ... `[dscp-cos-mapping]`

NOTE
The `dscp-cos-mapping` option should not be used when assigning an 802.1p priority. To assign an 802.1p priority to a specific DSCP (using `dscp-match`), re-assign the DSCP value as well. For example

FastIron(config)# access-list 100 permit ip any any dscp-match 0 dscp-marking 0 802.1p 0 internal 1

NOTE
The `dscp-cos-mapping` option is not supported for TIX, FGS, FGS-STK, FLS, FLS-STK and FCX devices.
Using an IP ACL to mark DSCP values (DSCP marking)

The dscp-marking option for extended ACLs allows you to configure an ACL that marks matching packets with a specified DSCP value. You also can use DSCP marking to assign traffic to a specific hardware forwarding queue (refer to “Using an ACL to change the forwarding queue for FastIron X Series devices” on page 666).

For example, the following commands configure an ACL that marks all IP packets with DSCP value 5. The ACL is then applied to incoming packets on interface 7. Consequently, all inbound packets on interface 7 are marked with the specified DSCP value.

```
FastIron(config)# access-list 120 permit ip any any dscp-marking 5
dscp-cos-mapping
FastIron(config)# interface 1/7
FastIron(config-if-e1000-1/7)# ip access-group 120 in
```

Syntax: ...
dscp-marking <dscp-value>

The dscp-marking <dscp-value> parameter maps a DSCP value to an internal forwarding priority. The DSCP value can be from 0 – 63.

Combined ACL for 802.1p marking on FastIron X Series devices

Platform Support:
- FastIron X Series devices running software release 03.1.00 and later

NOTE
This section applies to FastIron X Series devices. For feature support on TurboIron X Series devices, refer to “Combined ACL for 802.1p marking on TurboIron X Series devices” on page 667.

FastIron X Series devices support a simple method for assigning an 802.1p priority value to packets without affecting the actual packet or the DSCP. Prior to release 03.1.00, users were required to provide DSCP-marking and DSCP-matching information in order to assign 802.1p priority values, which required the deployment of a 64-line ACL to match all possible DSCP values. Users were also required to configure an internal priority marking value. This release allows users to easily specify 802.1p priority marking values directly, and changes internal priority marking from required to optional. If the user does not set a specific internal marking priority, the default value is the same as the 802.1p priority marking value. Priority values range from 0 to 7.

Two new ACL parameters support this feature, one required for priority marking and one optional for internal priority marking. These parameters apply to IP, TCP, and UDP.

For IP

```
FastIron(config)# acc 104 per ip any any 802.1p-priority-marking 1
```

or the following command, which also assigns an optional internal-priority-marking value.

```
FastIron(config)# acc 104 per ip any any 802.1p-priority-marking 1 internal-priority-marking 5
```

Syntax: access-list <num(100-199)> permit ip any any 802.1p-priority-marking <priority value (0-7)> [internal-priority-marking <value (0-7)>]

For TCP

```
FastIron(config)# acc 105 per tcp any any 802.1p-priority-marking 1
```

or the following command, which also assigns an optional internal-priority-marking value.

```
FastIron(config)# acc 105 per tcp any any 802.1p-priority-marking 1 internal-priority-marking 5
```
Using an ACL to change the forwarding queue for FastIron X Series devices

NOTE
This section applies to FastIron X Series devices. For feature support on TurboIron X Series devices, refer to “Using an ACL to change the forwarding queue for TurboIron X Series devices” on page 667.

The 802.1p-priority-marking <0 – 7> parameter re-marks the packets of the 802.1Q traffic that match the ACL with this new 802.1p priority, or marks the packets of the non-802.1Q traffic that match the ACL with this 802.1p priority, later at the outgoing 802.1Q interface.

The 802.1p priority mapping is shown in Table 111.

The internal-priority-marking <0 – 7> parameter assigns traffic that matches the ACL to a specific hardware forwarding queue (qosp0 – qosp7).

NOTE
The internal-priority-marking parameter overrides port-based priority settings.

In addition to changing the internal forwarding priority, if the outgoing interface is an 802.1Q interface, this parameter maps the specified priority to its equivalent 802.1p (CoS) priority and marks the packet with the new 802.1p priority. Table 111 lists the default mappings of hardware forwarding queues to 802.1p priorities on the FESX and FSX.

<table>
<thead>
<tr>
<th>Forwarding queue</th>
<th>qosp0</th>
<th>qosp1</th>
<th>qosp2</th>
<th>qosp3</th>
<th>qosp4</th>
<th>qosp5</th>
<th>qosp6</th>
<th>qosp7</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1p</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

The complete CLI syntax for 802.1p priority marking and internal priority marking is shown in “Configuring extended numbered ACLs” on page 638 and “Configuring extended named ACLs” on page 644. The following shows the syntax specific to these features.

Syntax: acc 105 per tcp any any 802.1p-priority-marking 1
internal-priority-marking 5

Syntax: access-list <num(100-199)> permit tcp any any 802.1p-priority-marking <priority value (0-7)> [internal-priority-marking <value (0-7)>]

For UDP

Syntax: access-list <num(100-199)> permit udp any any 802.1p-priority-marking <priority value (0-7)> [internal-priority-marking <value (0-7)>]
Combined ACL for 802.1p marking on TurboIron X Series devices

Platform Support:
- TurboIron X Series devices running software release 04.1.00 and later

NOTE
This section applies to TurboIron X Series devices. For feature support on FastIron X Series devices, refer to “Combined ACL for 802.1p marking on FastIron X Series devices” on page 665.

TurboIron X Series devices support a simple method for assigning an 802.1p priority and internal marking priority to packets without affecting the actual packet or the DSCP marking. TurboIron X Series devices use the same configured value for both the internal marking priority and the 802.1p priority marking value. This differs from FastIron X Series devices, which support the configuration of different values for each priority marking type. The priority value ranges from 0 to 7.

This feature is enabled through the use of an ACL option. The option applies to IP, TCP, and UDP traffic.

For IP
FastIron(config)# acc 104 per ip any any 802.1p-and-internal-marking 1

Syntax: access-list <num(100-199)> permit ip any any 802.1p-and-internal-marking <priority value (0-7)>

For TCP
FastIron(config)# acc 105 per tcp any any 802.1p-and-internal-marking 1

Syntax: access-list <num(100-199)> permit tcp any any 802.1p-and-internal-marking <priority value (0-7)>

For UDP
FastIron(config)# acc 105 per udp any any 802.1p-and-internal-marking 1

Syntax: access-list <num(100-199)> permit udp any any 802.1p-and-internal-marking <priority value (0-7)>

In each of these examples, the 802.1p value and internal priority value were set to 1.

Using an ACL to change the forwarding queue for TurboIron X Series devices

NOTE
This section applies to TurboIron X Series devices. For feature support on FastIron X Series devices, refer to “Using an ACL to change the forwarding queue for FastIron X Series devices” on page 666.

The 802.1p-and-internal-marking <0 – 7> parameter does the following:
- Re-marks the packets of the 802.1Q traffic that match the ACL with this new priority, or marks the packets of the non-802.1Q traffic that match the ACL with this priority, later at the outgoing 802.1Q interface.
- Assigns traffic that matches the ACL to the specific hardware forwarding queue (qosp0 – qosp7).

NOTE
The 802.1p-and-internal-marking option overrides port-based priority settings.
ACL-based rate limiting

Platform Support:

- FastIron X Series devices running software release 02.3.03 and later
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

ACL-based rate limiting provides the facility to limit the rate for IP traffic that matches the permit conditions in extended IP ACLs. This feature is available in the Layer 2 and Layer 3 code.

For more details, including configuration procedures, refer to Chapter 25, "Configuring Traffic Policies".

NOTE

For complete syntax information, refer to "Extended numbered ACL syntax" on page 638.

DSCP matching

The dscp-matching option matches on the packet DSCP value. This option does not change the packet forwarding priority through the device or mark the packet.

To configure an ACL that matches on a packet with DSCP value 29, enter a command such as the following.

```
FastIron(config)# access-list 112 permit ip 1.1.1.0 0.0.0.255 2.2.2.x 0.0.0.255
dscp-matching 29
```

The complete CLI syntax for this feature is shown in "Configuring extended numbered ACLs" on page 638 and "Configuring extended named ACLs" on page 644. The following shows the syntax specific to this feature.

Syntax: ...dscp-matching <0 – 63>

NOTE

For complete syntax information, refer to "Extended numbered ACL syntax" on page 638.

ACL-based rate limiting

Platform Support:

- FastIron X Series devices running software release 02.3.03 and later
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

ACL-based rate limiting provides the facility to limit the rate for IP traffic that matches the permit conditions in extended IP ACLs. This feature is available in the Layer 2 and Layer 3 code.

For more details, including configuration procedures, refer to Chapter 25, "Configuring Traffic Policies".

NOTE

For complete syntax information, refer to "Extended numbered ACL syntax" on page 638.

DSCP matching

The dscp-matching option matches on the packet DSCP value. This option does not change the packet forwarding priority through the device or mark the packet.

To configure an ACL that matches on a packet with DSCP value 29, enter a command such as the following.

```
FastIron(config)# access-list 112 permit ip 1.1.1.0 0.0.0.255 2.2.2.x 0.0.0.255
dscp-matching 29
```

The complete CLI syntax for this feature is shown in "Configuring extended numbered ACLs" on page 638 and "Configuring extended named ACLs" on page 644. The following shows the syntax specific to this feature.

Syntax: ...dscp-matching <0 – 63>

NOTE

For complete syntax information, refer to "Extended numbered ACL syntax" on page 638.
ACL statistics

Platform Support:
- FastIron X Series devices running software release 02.3.03 and later

ACL statistics is a mechanism for counting the number of packets and the number of bytes per packet to which ACL filters are applied.

To see the configuration procedures for ACL statistics, refer to Chapter 25, “Configuring Traffic Policies”.

NOTE
The terms ACL statistics and ACL counting are used interchangeably in this guide and mean the same thing.

Using ACLs to control multicast features

You can use ACLs to control the following multicast features:
- Limit the number of multicast groups that are covered by a static rendezvous point (RP)
- Control which multicast groups for which candidate RPs sends advertisement messages to bootstrap routers
- Identify which multicast group packets will be forwarded or blocked on an interface

For configuration procedures, refer to Chapter 28, “Configuring IP Multicast Protocols”.

Enabling and viewing hardware usage statistics for an ACL

The number of configured ACL rules can affect the rate at which hardware resources are used. You can use the `show access-list hw-usage on` command to enable hardware usage statistics, followed by the `show access-list <access-list-id>` command to determine the hardware usage for an ACL. To gain more hardware resources, you can modify the ACL rules so that it uses less hardware resource.

To enable and view hardware usage statistics, enter commands such as the following:

```
FastIron# show access-list hw-usage on
FastIron# show access-list 100
Extended IP access list 100 (hw usage : 2)
deny ip any any (hw usage : 1

Syntax:  show access-list hw-usage on
Syntax:  show access-list <access-list-id>
```

where <access-list-id> is a valid ACL name or number.

Compared to FastIron devices, the behavior of these commands differ slightly on the TurboIron. The differences on the TurboIron are as follows.
- When an ACL is not attached to any port, the `show access-list` command will display an estimate of the current TCAM usage, assuming it is attached to one port and one VLAN. Once the ACL is attached to a port, the `show access-list <access-list-id>` command will show the exact current TCAM usage by the ACL.
Displaying ACL information

To display the number of Layer 4 CAM entries used by each ACL, enter the following command.

FastIron#show access-list all

Extended IP access list 100 (Total flows: N/A, Total packets: N/A, Total rule cam use: 3)
permit udp host 192.168.2.169 any (Flows: N/A, Packets: N/A, Rule cam use: 1)
permit icmp any any (Flows: N/A, Packets: N/A, Rule cam use: 1)
deny ip any any (Flows: N/A, Packets: N/A, Rule cam use: 1)

Syntax: show access-list <ACL-num> | <ACL-name> | all

The Rule cam use field lists the number of CAM entries used by the ACL or entry. The number of CAM entries listed for the ACL itself is the total of the CAM entries used by the ACL entries.

For flow-based ACLs, the Total flows and Flows fields list the number of Layer 4 session table flows in use for the ACL.

The Total packets and Packets fields apply only to flow-based ACLs.

Troubleshooting ACLs

Use the following methods to troubleshoot ACLs:

- If the ACL contains filters with Layer 4 source or destination port ranges and the ACL is not attached to any port or VLAN, then the minimum and maximum number of estimated TCAM usage per filter is displayed in ‘x or y’ format where ‘x’ is the minimum number and ‘y’ is the maximum number of estimated TCAM entries.
- Whenever the ACL is attached to a different VLAN (on the same or another port), the TCAM usage count is incremented to reflect the current usage.

The following shows an example show access-list command output before an ACL is attached to a port. This example applies to the TurboIron only.

TurboIron 24X(config-if-e10000-2-vlan-2)#show access-list 111
Extended IP access list 111 (hw usage : 3 or up to 13)
permit tcp any range 10 40 any (hw usage : 1 or 5)
permit tcp any range 10 60 any (hw usage : 1 or 7)

The following shows an example show access-list command output after an ACL is attached to a port. This example applies to the TurboIron only.

TurboIron 24X(config-if-e10000-2)#show access-list 111
Extended IP access list 111 (hw usage : 3)
permit tcp any range 10 40 any (hw usage : 1)
permit tcp any range 10 60 any (hw usage : 1)
Policy-based routing (PBR)

Platform Support:

- FESX and FSX devices running software release 03.0.00 and later – L3

Policy-Based Routing (PBR) allows you to use ACLs and route maps to selectively modify and route IP packets in hardware. The ACLs classify the traffic. Route maps that match on the ACLs set routing attributes for the traffic.

A PBR policy specifies the next hop for traffic that matches the policy. Using standard ACLs with PBR, you can route IP packets based on their source IP address. With extended ACLs, you can route IP packets based on all of the clauses in the extended ACL.

You can configure the Brocade device to perform the following types of PBR based on a packet Layer 3 and Layer 4 information:

- Select the next-hop gateway.
- Send the packet to the null interface (null0).

When a PBR policy has multiple next hops to a destination, PBR selects the first live next hop specified in the policy that is up. If none of the policy's direct routes or next hops are available, the packet is routed in the normal way.

Configuration considerations

- Policy-Based Routing is not supported in the Base Layer 3 code.
- Global Policy-Based Routing is not supported when IP Follow is configured on an interface.
- Starting in software release FSX 04.0.01, global Policy-Based Routing is not supported with per-port-per-VLAN ACLs.
- A PBR policy on an interface takes precedence over a global PBR policy.
- You cannot apply PBR on a port if that port already has ACLs, ACL-based rate limiting, DSCP-based QoS, MAC filtering.
- The number of route maps that you can define is limited by the available system memory, which is determined by the system configuration and how much memory other features use. When a route map is used in a PBR policy, the PBR policy uses up to six instances of a route map, up to five ACLs in a matching policy of each route map instance, and up to six next hops in a set policy of each route map instance. Note that the CLI will allow you configure more than six next hops in a route map; however, the extra next hops will not be placed in the PBR database. The route map could be used by other features like BGP or OSPF, which may use more than six next hops.
- ACLs with the log option configured should not be used for PBR purposes.
• PBR ignores explicit or implicit `deny ip any any` ACL entries, to ensure that for route maps that use multiple ACLs, the traffic is compared to all the ACLs. PBR also ignores any deny clauses in an ACL. Traffic that matches a deny clause is routed normally using Layer 3 paths.

• PBR always selects the first next hop from the next hop list that is up. If a PBR policy's next hop goes down, the policy uses another next hop if available. If no next hops are available, the device routes the traffic in the normal way.

• PBR is not supported for fragmented packets. If the PBR ACL filters on Layer 4 information like TCP/UDP ports, fragmented packets are routed normally.

• You can change route maps or ACL definitions dynamically and do not need to rebind the PBR policy to an interface.

Configuring a PBR policy

To configure PBR, you define the policies using IP ACLs and route maps, then enable PBR globally or on individual interfaces. The device programs the ACLs into the packet processor on the interfaces and routes traffic that matches the ACLs according to the instructions in the route maps.

To configure a PBR policy:

- Configure ACLs that contain the source IP addresses for the IP traffic you want to route using PBR.
- Configure a route map that matches on the ACLs and sets the route information.
- Apply the route map to an interface.

Configure the ACLs

PBR uses route maps to change the routing attributes in IP traffic. This section shows an example of how to configure a standard ACL to identify the source subnet for IP traffic.

To configure a standard ACL to identify a source subnet, enter a command such as the following.

```
FastIron(config)# access-list 99 permit 209.157.23.0 0.0.0.255
```

The command in this example configures a standard ACL that permits traffic from subnet 209.157.23.0/24. After you configure a route map that matches based on this ACL, the software uses the route map to set route attributes for the traffic, thus enforcing PBR.

NOTE

Do not use an access group to apply the ACL to an interface. Instead, use a route map to apply the ACL globally or to individual interfaces for PBR, as shown in the following sections.

Syntax: `[no]access-list <num> deny | permit <source-ip> | <hostname> < wildcard>

or

Syntax: `[no]access-list <num> deny | permit <source-ip>/<mask-bits> | <hostname>

Syntax: `[no]access-list <num> deny | permit host <source-ip> | <hostname>

Syntax: `[no]access-list <num> deny | permit any

The `<num>` parameter is the access list number and can be from 1 – 99.

The `deny` | `permit` parameter indicates whether packets that match a policy in the access list are denied (dropped) or permitted (forwarded).
NOTE
If you are configuring the ACL for use in a route map, always specify permit. Otherwise, the Brocade device will ignore deny clauses and packets that match deny clauses are routed normally.

The <source-ip> parameter specifies the source IP address. Alternatively, you can specify the host name.

NOTE
To specify the host name instead of the IP address, the host name must be configured using the DNS resolver on the Brocade device. To configure the DNS resolver name, use the ip dns server-address... command at the global CONFIG level of the CLI.

The <wildcard> parameter specifies the mask value to compare against the host address specified by the <source-ip> parameter. The <wildcard> is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example 0.0.0.255. Zeros in the mask mean the packet source address must match the <source-ip>. Ones mean any value matches. For example, the <source-ip> and <wildcard> values 209.157.22.26 0.0.0.255 mean that all hosts in the Class C subnet 209.157.22.x match the policy.

If you prefer to specify the wildcard (mask value) in CIDR format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of “209.157.22.26 0.0.0.255” as “209.157.22.26/24”. The CLI automatically converts the CIDR number into the appropriate ACL mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into zeros. For example, if you specify 209.157.22.26/24 or 209.157.22.26 0.0.0.255, then save the changes to the startup-config file, the value appears as 209.157.22.0/24 (if you have enabled display of subnet lengths) or 209.157.22.0 0.0.0.255 in the startup-config file.

If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in “/mask-bits” format. To enable the software to display the CIDR masks, enter the ip show-subnet-length command at the global CONFIG level of the CLI. You can use the CIDR format to configure the ACL entry regardless of whether the software is configured to display the masks in CIDR format.

NOTE
If you use the CIDR format, the ACL entries appear in this format in the running-config and startup-config files, but are shown with subnet mask in the display produced by the show ip access-list command.

The host <source-ip> | <hostname> parameter lets you specify a host IP address or name. When you use this parameter, you do not need to specify the mask. A mask of all zeros (0.0.0.0) is implied.

The any parameter configures the policy to match on all host addresses.

NOTE
Do not use the log option in ACLs that will be used for PBR.

Configure the route map

After you configure the ACLs, you can configure a PBR route map that matches based on the ACLs and sets routing information in the IP traffic.
NOTE
The match and set statements described in this section are the only route-map statements supported for PBR. Other route-map statements described in the documentation apply only to the protocols with which they are described.

To configure a PBR route map, enter commands such as the following.

```plaintext
FastIron(config)# route-map test-route permit 99
FastIron(config-routemap test-route)# match ip address 99
FastIron(config-routemap test-route)# set ip next-hop 192.168.2.1
FastIron(config-routemap test-route)# exit
```

The commands in this example configure an entry in a route map named “test-route”. The match statement matches on IP information in ACL 99. The set statement changes the next-hop IP address for packets that match to 192.168.2.1.

Syntax: `[no]route-map <map-name> permit | deny <num>`

The `<map-name>` is a string of characters that names the map. Map names can be up to 32 characters in length. You can define an unlimited number of route maps on the Brocade device, as long as system memory is available.

The `permit | deny` parameter specifies the action the Brocade device will take if a route matches a match statement:

- If you specify `deny`, the Brocade device does not apply a PBR policy to packets that match the ACLs in a match clause. Those packets are routed normally,
- If you specify `permit`, the Brocade device applies the match and set statements associated with this route map instance.

The `<num>` parameter specifies the instance of the route map you are defining. Routes are compared to the instances in ascending numerical order. For example, a route is compared to instance 1, then instance 2, and so on.

PBR uses up to six route map instances for comparison and ignores the rest.

Syntax: `[no] match ip address <ACL-num-or-name>`

The `<ACL-num>` parameter specifies a standard or extended ACL number or name.

Syntax: `[no] set ip next hop <ip-addr>`

This command sets the next-hop IP address for traffic that matches a match statement in the route map.

Syntax: `[no] set interface null0`

This command sends the traffic to the null0 interface, which is the same as dropping the traffic.

Enabling PBR

After you configure the ACLs and route map entries, you can enable PBR globally, on individual interfaces, or both as described in this section. To enable PBR, you apply a route map you have configured for PBR globally or locally.

Enabling PBR globally

To enable PBR globally, enter a command such as the following at the global CONFIG level.

```plaintext
FastIron(config)# ip policy route-map test-route
```
This command applies a route map named “test-route” to all interfaces on the device for PBR.

Syntax: `ip policy route-map <map-name>`

Enabling PBR locally

To enable PBR locally, enter commands such as the following.

```
FastIron(config)# interface ve 1
FastIron(config-vif-1)# ip policy route-map test-route
```

The commands in this example change the CLI to the Interface level for virtual interface 1, then apply the “test-route” route map to the interface. You can apply a PBR route map to Ethernet ports or virtual interfaces.

Syntax: `ip policy route-map <map-name>`

Enter the name of the route map you want to use for the route-map `<map-name>` parameter.

Configuration examples

This section presents configuration examples for:

- “Basic example” on page 675
- “Setting the next hop” on page 676
- “Setting the output interface to the null interface” on page 677
- “Trunk formation” on page 677

Basic example

The following commands configure and apply a PBR policy that routes HTTP traffic received on virtual routing interface 1 from the 10.10.10.x/24 network to 5.5.5.x/24 through next-hop IP address 1.1.1.1/24 or, if 1.1.1.x is unavailable, through 2.2.2.1/24.

```
FastIron(config)#access-list 101 permit tcp 10.10.10.0 0.0.0.255 eq http 5.5.5.0 0.0.0.255
FastIron(config)#route-map net10web permit 101
FastIron(config-route-map net10web)#match ip address 101
FastIron(config-route-map net10web)#set ip next-hop 1.1.1.1
FastIron(config-route-map net10web)#set ip next-hop 2.2.2.2
FastIron(config-route-map net10web)#exit
FastIron(config)#vlan 10
FastIron(config-vlan-10)#tagged ethernet 1/1 to 1/4

FastIron(config-vlan-10)#router-interface ve 1
FastIron(config)#interface ve 1
FastIron(config-vif-1)#ip policy route-map net10web
```

Syntax: `[no] route-map <map-name> permit | deny <num>`

Syntax: `[no] set ip next hop <ip-addr>`

This command sets the next-hop IP address for traffic that matches a match statement in the route map.
Policy-based routing (PBR)

Setting the next hop

The following commands configure the Brocade device to apply PBR to traffic from IP subnets 209.157.23.x, 209.157.24.x, and 209.157.25.x. In this example, route maps specify the next-hop gateway for packets from each of these subnets:

- Packets from 209.157.23.x are sent to 192.168.2.1.
- Packets from 209.157.24.x are sent to 192.168.2.2.
- Packets from 209.157.25.x are sent to 192.168.2.3.

The following commands configure three standard ACLs. Each ACL contains one of the ACLs listed above. Make sure you specify permit instead of deny in the ACLs, so that the Brocade device permits the traffic that matches the ACLs to be further evaluated by the route map. If you specify deny, the traffic that matches the deny statements are routed normally. Notice that these ACLs specify any for the destination address.

```
FastIron(config)# access-list 50 permit 209.157.23.0 0.0.0.255
FastIron(config)# access-list 51 permit 209.157.24.0 0.0.0.255
FastIron(config)# access-list 52 permit 209.157.25.0 0.0.0.255
```

The following commands configure three entries in a route map called “test-route”. The first entry (permit 50) matches on the IP address information in ACL 50 above. For IP traffic from subnet 209.157.23.0/24, this route map entry sets the next-hop IP address to 192.168.2.1.

```
FastIron(config)# route-map test-route permit 50
FastIron(config-route-map test-route)# match ip address 50
FastIron(config-route-map test-route)# set ip next-hop 192.168.2.1
FastIron(config-route-map test-route)# exit
```

The following commands configure the second entry in the route map. This entry (permit 51) matches on the IP address information in ACL 51 above. For IP traffic from subnet 209.157.24.0/24, this route map entry sets the next-hop IP address to 192.168.2.2.

```
FastIron(config)# route-map test-route permit 51
FastIron(config-route-map test-route)# match ip address 51
FastIron(config-route-map test-route)# set ip next-hop 192.168.2.2
FastIron(config-route-map test-route)# exit
```

The following commands configure the third entry in the test-route route map. This entry (permit 52) matches on the IP address information in ACL 52 above. For IP traffic from subnet 209.157.25.0/24, this route map entry sets the next-hop IP address to 192.168.2.3.

```
FastIron(config)# route-map test-route permit 52
FastIron(config-route-map test-route)# match ip address 52
FastIron(config-route-map test-route)# set ip next-hop 192.168.2.3
FastIron(config-route-map test-route)# exit
```

The following command enables PBR by globally applying the test-route route map to all interfaces.

```
FastIron(config)# ip policy route-map test-route
```

Alternatively, you can enable PBR on specific interfaces, as shown in the following example. The commands in this example configure IP addresses in the three source subnets identified in ACLs 50, 51, and 52, then apply route map test-route to the interface.

```
FastIron(config)# interface ve 1
FastIron(config-vif-1)# ip address 209.157.23.1/24
FastIron(config-vif-1)# ip address 209.157.24.1/24
FastIron(config-vif-1)# ip address 209.157.25.1/24
FastIron(config-vif-1)# ip policy route-map test-route
```
Setting the output interface to the null interface

The following commands configure a PBR policy to send all traffic from 192.168.1.204/32 to the null interface, thus dropping the traffic instead of forwarding it.

```
FastIron(config)# access-list 56 permit 209.168.1.204 0.0.0.0
```

The following commands configure an entry in a route map called “file-13”. The first entry (permit 56) matches on the IP address information in ACL 56 above. For IP traffic from the host 209.168.1.204/32, this route map entry sends the traffic to the null interface instead of forwarding it, thus sparing the rest of the network the unwanted traffic.

```
FastIron(config)# route-map file-13 permit 56
FastIron(config-routemap file-13)# match ip address 56
FastIron(config-routemap file-13)# set interface null0
FastIron(config-routemap file-13)# exit
```

The following command enables PBR by globally applying the route map to all interfaces.

```
FastIron(config)# ip policy route-map file-13
```

Alternatively, you can enable PBR on specific interfaces, as shown in the following example. The commands in this example configure IP addresses in the source subnet identified in ACL 56, then apply route map file-13 to the interface.

```
FastIron(config)# interface ethernet 3/11
FastIron(config-if-e10000-3/11)# ip address 192.168.1.204/32
FastIron(config-if-e10000-3/11)# ip policy route-map file-13
```

Trunk formation

When a trunk is formed, the PBR policy on the primary port applies to all the secondary ports. If a different PBR policy exists on a secondary port at the time of a trunk formation, that policy is overridden by the PBR policy on the primary port. If the primary port does not have a PBR policy, then the secondary ports will not have a PBR policy.

When a trunk is removed, the PBR policy that was applied to the trunk interface is unbound (removed) from former secondary ports. If global PBR is configured, the secondary ports adhere to the global PBR; otherwise, no PBR policy is bound to former secondary ports.
Policy-based routing (PBR)
Configuring IPv6 Access Control Lists (ACLs)

ACL overview

This chapter describes how Access Control Lists (ACLs) are implemented and configured on a Brocade IPv6 Layer 3 Switch.

Platform Support:

- FESX and FSX IPv6 devices running software release 04.1.00 and later – L2, BL3, L3

Brocade supports IPv6 Access Control Lists (ACLs), which you can use for traffic filtering. You can configure up to 100 IPv6 ACLs.

An IPv6 ACL is composed of one or more conditional statements that pose an action (permit or deny) if a packet matches a specified source or destination prefix. There can be up to 1024 statements per device, including IPv6, IPv4, MAC filters, and default statements. When the maximum number of ACL rules are reached on the device, an error message will display on the console.

In ACLs with multiple statements, you can specify a priority for each statement. The specified priority determines the order in which the statement appears in the ACL. The last statement in each IPv6 ACL is an implicit deny statement for all packets that do not match the previous statements in the ACL.

You can configure an IPv6 ACL on a global basis, then apply it to the incoming IPv6 packets on specified interfaces. You can apply only one IPv6 ACL to an interface incoming traffic. When an interface receives an IPv6 packet, it applies the statements within the ACL in their order of appearance to the packet. As soon as a match occurs, the Brocade device takes the specified action (permit or deny the packet) and stops further comparison for that packet.

NOTE

IPv6 ACLs are supported on inbound traffic and are implemented in hardware, making it possible for the Brocade device to filter traffic at line-rate speed on 10 Gbps interfaces.

The Brocade implementation of IPv6 ACLs enable traffic filtering based on the following information:

- IPv6 protocol
- Source IPv6 address
- Destination IPv6 address
- IPv6 message type
- Source TCP or UDP port (if the IPv6 protocol is TCP or UDP)
- Destination TCP or UDP port (if the IPv6 protocol is TCP or UDP)

The IPv6 protocol can be one of the following well-known names or any IPv6 protocol number from 0 – 255:

- Authentication Header (AHP)
Configuration notes

- Encapsulating Security Payload (ESP)
- Internet Control Message Protocol (ICMP)
- Internet Protocol Version 6 (IPv6)
- Stream Control Transmission Protocol (SCTP)
- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

NOTE
TCP and UDP filters will be matched only if they are listed as the first option in the extension header.

For TCP and UDP, you also can specify a comparison operator and port name or number. For example, you can configure a policy to block web access to a specific website by denying all TCP port 80 (HTTP) packets from a specified source IPv6 address to the website IPv6 address.

IPv6 ACLs also provide support for filtering packets based on DSCP.

This chapter contains the following sections:
- “Configuring an IPv6 ACL” on page 681
- “Applying an IPv6 ACL to an interface” on page 688
- “Adding a comment to an IPv6 ACL entry” on page 689
- “Displaying IPv6 ACLs” on page 690

IPv4 ACLs that filter based on VLAN membership or VE port membership (ACL-per-port-per-VLAN), are supported together with IPv6 ACLs on the same device, as long as they are not bound to the same port or virtual interface.

IPv4 source guard and IPv6 ACLs are supported together on the same device, as long as they are not configured on the same port or virtual interface.

IPv6 ACLs do not support ACL filtering based on VLAN membership or VE port membership.

If an IPv6 ACL has the implicit `deny` condition, make sure it also permits the IPv6 link-local address, in addition to the global unicast address. Otherwise, routing protocols such as OSPF will not work. To view the link-local address, use the `show ipv6 interface` command.

IPv6 must be enabled on the interface before an ACL can be applied to it. If IPv6 is not enabled on the interface, the system will display the following error message.

```
FastIron(config-if-e1000-7)# ipv6 traffic-filter netw in
Error: IPv6 is not enabled for interface 7
```

To enable IPv6 on an interface, enter `ipv6 enable` at the Interface level of the CLI, or assign an IPv6 address to the interface as described in “Configuring IPv6 on each router interface” on page 214.

You cannot disable IPv6 on an interface to which an ACL is bound. Attempting to do so will cause the system to return the following error message.

```
FastIron(config-if-e1000-7)# no ipv6 enable
Error: Port 7 has IPv6 ACL configured. Cannot disable IPv6
```

To disable IPv6, first remove the ACL from the interface.
Configuring an IPv6 ACL

Follow the steps given below to configure an IPv6 ACL.

1. Create the ACL
2. Enable IPv6 on the interface to which the ACL will be applied
3. Apply the ACL to the interface

Example configurations

To configure an access list that blocks all Telnet traffic received on port 1/1 from IPv6 host 2000:2382:e0bb::2, enter the following commands.

```bash
FastIron(config)# ipv6 access-list fdry
FastIron(config-ipv6-access-list-fdry)# deny tcp host 2000:2382:e0bb::2 any eq telnet
FastIron(config-ipv6-access-list-fdry)# permit ipv6 any any
FastIron(config-ipv6-access-list-fdry)# exit
FastIron(config)# int eth 1/1
FastIron(config-if-1/1)# ipv6 enable
FastIron(config-if-1/1)# ipv6 traffic-filter fdry in
FastIron(config)# write memory
```

Here is another example of commands for configuring an ACL and applying it to an interface.

```bash
FastIron(config)# ipv6 access-list netw
FastIron(config-ipv6-access-list-netw)# permit icmp 2000:2383:e0bb::/64 2001:3782::/64
FastIron(config-ipv6-access-list-netw)# deny ipv6 host 2000:2383:e0ac::2 host 2000:2383:e0aa:0::24
FastIron(config-ipv6-access-list-netw)# deny udp any any
FastIron(config-ipv6-access-list-netw)# permit ipv6 any any
```

The first condition permits ICMP traffic from hosts in the 2000:2383:e0bb::x network to hosts in the 2001:3782::x network.

The second condition denies all IPv6 traffic from host 2000:2383:e0ac::2 to host 2000:2383:e0aa:0::24.

The third condition denies all UDP traffic.

The fourth condition permits all packets that are not explicitly denied by the other entries. Without this entry, the ACL would deny all incoming IPv6 traffic on the ports to which you assigned the ACL.

The following commands apply the ACL "netw" to the incoming traffic on port 1/2 and to the incoming traffic on port 4/3.

```bash
FastIron(config)# int eth 1/2
FastIron(config-if-1-1/2)# ipv6 enable
FastIron(config-if-1-1/2)# ipv6 traffic-filter netw in
FastIron(config-if-1-1/2)# exit
FastIron(config)# int eth 4/3
FastIron(config-if-4-3)# ipv6 enable
FastIron(config-if-4-3)# ipv6 traffic-filter netw in
FastIron(config)# write memory
```

Here is another example.
Configuring an IPv6 ACL

FastIron(config)# ipv6 access-list nextone
FastIron(config-ipv6-access-list rtr)# deny udp any range 5 6 2001:1570:22::/24
FastIron(config-ipv6-access-list rtr)# permit ipv6 any any
FastIron(config-ipv6-access-list rtr)# write memory

The first condition in this ACL denies TCP traffic from the 2001:1570:21::x network to the 2001:1570:22::x network.

The next condition denies UDP packets from any source with source UDP port in ranges 5 to 6 and whose destination is to the 2001:1570:22::/24 network.

The third condition permits all packets containing source and destination addresses that are not explicitly denied by the first two. Without this entry, the ACL would deny all incoming IPv6 traffic on the ports to which you assign the ACL.

A show running-config command displays the following.

FastIron(config)# show running-config
ipv6 access-list rtr
deny udp any range 5 6 2001:1570:22::/24
permit ipv6 any any

A show ipv6 access-list command displays the following.

FastIron(config)# sh ipv6 access-list rtr
ipv6 access-list rtr: 3 entries
20: deny udp any range rje 6 2001:1570:22::/24
30: permit ipv6 any any

The following commands apply the ACL “rtr” to the incoming traffic on ports 2/1 and 2/2.

FastIron(config)# int eth 2/1
FastIron(config-if-2/1)# ipv6 enable
FastIron(config-if-2/1)# ipv6 traffic-filter rtr in
FastIron(config-if-2/1)# exit
FastIron(config)# int eth 2/2
FastIron(config-if-2/2)# ipv6 enable
FastIron(config-if-2/2)# ipv6 traffic-filter rtr in
FastIron(config)# write memory

Default and implicit IPv6 ACL action

The default action when no IPv6 ACLs are configured on an interface is to permit all IPv6 traffic. However, once you configure an IPv6 ACL and apply it to an interface, the default action for that interface is to deny all IPv6 traffic that is not explicitly permitted on the interface.

- If you want to tightly control access, configure ACLs consisting of permit entries for the access you want to permit. The ACLs implicitly deny all other access.
- If you want to secure access in environments with many users, you might want to configure ACLs that consist of explicit deny entries, then add an entry to permit all access to the end of each ACL. The permit entry permits packets that are not denied by the deny entries.
Every IPv6 ACL has the following implicit conditions as its last match conditions.

1. `permit icmp any any nd-na` – Allows ICMP neighbor discovery acknowledgements.
2. `permit icmp any any nd-ns` – Allows ICMP neighbor discovery solicitations.
3. `deny ipv6 any any` – Denies IPv6 traffic. You must enter a `permit ipv6 any any` as the last statement in the access-list if you want to permit IPv6 traffic that were not denied by the previous statements.

NOTE
If an IPv6 ACL has the implicit `deny` condition, make sure it also permits the IPv6 link-local address, in addition to the global unicast address. Otherwise, routing protocols such as OSPF will not work. To view the link-local address, use the `show ipv6 interface` command.

The conditions are applied in the order shown above, with `deny ipv6 any any` as the last condition applied.

For example, if you want to deny ICMP neighbor discovery acknowledgement, then permit any remaining IPv6 traffic, enter commands such as the following:

```
FastIron(config)# ipv6 access-list netw
FastIron(config-ipv6-access-list-netw)# permit icmp 2000:2383:e0bb::/64 2001:3782::/64
FastIron(config-ipv6-access-list-netw)# deny icmp any any nd-na
FastIron(config-ipv6-access-list-netw)# permit ipv6 any any
```

The first permit statement permits ICMP traffic from hosts in the 2000:2383:e0bb:x network to hosts in the 2001:3782::x network.

The deny statement denies ICMP neighbor discovery acknowledgement.

The last entry permits all packets that are not explicitly denied by the other entries. Without this entry, the ACL will deny all incoming IPv6 traffic on the ports to which you assigned the ACL.

Furthermore, if you add the statement `deny icmp any any` in the access list, then all neighbor discovery messages will be denied. You must explicitly enter the `permit icmp any any nd-na` and `permit icmp any any nd-ns` statements just before the `deny icmp` statement if you want the ACLs to permit neighbor discovery as in the example below.

```
FastIron(config)# ipv6 access-list netw
FastIron(config-ipv6-access-list-netw)# permit icmp 2000:2383:e0bb::/64 2001:3782::/64
FastIron(config-ipv6-access-list-netw)# permit icmp any any nd-na
FastIron(config-ipv6-access-list-netw)# permit icmp any any nd-ns
FastIron(config-ipv6-access-list-netw)# deny icmp any any
FastIron(config-ipv6-access-list-netw)# permit ipv6 any any
```

ACL syntax

NOTE
The following features are not supported:

- `ipv6-operator flow-label`
For IPv6 and supported protocols other than ICMP, TCP, or UDP

Syntax: [no] ipv6 access-list <ACL name>

Syntax: permit | deny <protocol>
 <ipv6-source-prefix/prefix-length> | any | host <source-ipv6_address>
 <ipv6-destination-prefix/prefix-length> | any | host <ipv6-destination-address>
 [ipv6-operator [value]]
 [802.1p-priority-matching <number>]
 [dscp-marking <number> 802.1p-priority-marking <number> internal-priority-marking <number>]
 | [dscp-marking <dscp-value> dscp-cos-mapping] | [dscp-cos-mapping]

For ICMP

Syntax: [no] ipv6 access-list <ACL name>

Syntax: permit | deny icmp <ipv6-source-prefix/prefix-length> | any | host
 <source-ipv6_address>
 <ipv6-destination-prefix/prefix-length> | any | host <ipv6-destination-address>
 [ipv6-operator [value]]
 [[icmp-type][icmp-code]] | [icmp-message]
 [802.1p-priority-matching <number>]
 [dscp-marking <number> 802.1p-priority-marking <number> internal-priority-marking <number>]
 [dscp-marking <dscp-value> dscp-cos-mapping]
 [dscp-cos-mapping]

For TCP

Syntax: [no] ipv6 access-list <ACL name>

Syntax: permit | deny <tcp>
 <ipv6-source-prefix/prefix-length> | any | host <source-ipv6_address> [tcp-udp-operator]
 [source-port-number]]
 <ipv6-destination-prefix/prefix-length> | any | host <ipv6-destination-address>
 [tcp-udp-operator [destination-port-number]]
 [ipv6-operator [value]]
 [802.1p-priority-matching <number>]
 [dscp-marking <number> 802.1p-priority-marking <number> internal-priority-marking <number>]
 [dscp-marking <dscp-value> dscp-cos-mapping]
 [dscp-cos-mapping]
For UDP

Syntax: [no] ipv6 access-list <ACL name>

Syntax: permit | deny <udp>
 <ipv6-source-prefix/prefix-length> | any | host <ipv6-source-address> [tcp-udp-operator [source port number]]
 <ipv6-destination-prefix/prefix-length> | any | host <ipv6-destination-address> [tcp-udp-operator [destination port number]]
 [ipv6-operator [value]]
 [802.1p-priority-matching <number>]
 [dscp-marking <number> 802.1p-priority-marking <number> internal-priority-marking <number>]
 [dscp-marking <dscp-value> dscp-cos-mapping]
 [dscp-cos-mapping]

TABLE 113 Syntax descriptions

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 access-list</td>
<td>Enables the IPv6 configuration level and defines the name of</td>
</tr>
<tr>
<td><ACL name></td>
<td>the IPv6 ACL. The <ACL name> can contain up to 199 characters</td>
</tr>
<tr>
<td></td>
<td>and numbers, but cannot begin with a number and cannot</td>
</tr>
<tr>
<td></td>
<td>contain any spaces or quotation marks.</td>
</tr>
<tr>
<td>permit</td>
<td>The ACL will permit (forward) packets that match a policy in</td>
</tr>
<tr>
<td>deny</td>
<td>The ACL will deny (drop) packets that match a policy in the</td>
</tr>
<tr>
<td>icmp</td>
<td>indicates you are filtering ICMP packets.</td>
</tr>
<tr>
<td>protocol</td>
<td>The type of IPv6 packet you are filtering. You can specify</td>
</tr>
<tr>
<td></td>
<td>a well-known name for some protocols whose number is less</td>
</tr>
<tr>
<td></td>
<td>than 255. For other protocols, you must enter the number.</td>
</tr>
<tr>
<td></td>
<td>Enter “?” instead of a protocol to list the well-known</td>
</tr>
<tr>
<td></td>
<td>names recognized by the CLI. IPv6 protocols include</td>
</tr>
<tr>
<td></td>
<td>AHP – Authentication Header</td>
</tr>
<tr>
<td></td>
<td>ESP – Encapsulating Security Payload</td>
</tr>
<tr>
<td></td>
<td>IPv6 – Internet Protocol version 6</td>
</tr>
<tr>
<td></td>
<td>SCTP – Stream Control Transmission Protocol</td>
</tr>
<tr>
<td><ipv6-source-prefix></td>
<td>The <ipv6-source-prefix>/prefix-length parameter specify a</td>
</tr>
<tr>
<td><prefix-length></td>
<td>source prefix and prefix length that a packet must match for</td>
</tr>
<tr>
<td></td>
<td>the specified action (deny or permit) to occur. You must</td>
</tr>
<tr>
<td></td>
<td>specify the <ipv6-source-prefix> parameter in hexadecimal</td>
</tr>
<tr>
<td></td>
<td>using 16-bit values between colons as documented in RFC</td>
</tr>
<tr>
<td></td>
<td>2373. You must specify the <prefix-length> parameter as a</td>
</tr>
<tr>
<td></td>
<td>decimal value. A slash mark (/) must follow the <ipv6-</td>
</tr>
<tr>
<td></td>
<td>prefix> parameter and precede the <prefix-length> parameter.</td>
</tr>
<tr>
<td><ipv6-destination-</td>
<td>The <ipv6-destination-prefix>/prefix-length parameter specify</td>
</tr>
<tr>
<td>prefix-length></td>
<td>a destination prefix and prefix length that a packet must</td>
</tr>
<tr>
<td></td>
<td>match for the specified action (deny or permit) to occur.</td>
</tr>
<tr>
<td></td>
<td>You must specify the <ipv6-destination-prefix> parameter in</td>
</tr>
<tr>
<td></td>
<td>hexadecimal using 16-bit values between colons as documented</td>
</tr>
<tr>
<td></td>
<td>in RFC 2373. You must specify the <prefix-length> parameter</td>
</tr>
<tr>
<td></td>
<td>as a decimal value. A slash mark (/) must follow the</td>
</tr>
<tr>
<td></td>
<td><ipv6-prefix> parameter and precede the <prefix-length></td>
</tr>
<tr>
<td>any</td>
<td>When specified instead of the <ipv6-source-prefix>/prefix-</td>
</tr>
<tr>
<td></td>
<td>length> or <ipv6-destination-prefix>/prefix-length></td>
</tr>
<tr>
<td>host</td>
<td>Allows you specify a host IPv6 address. When you use this</td>
</tr>
<tr>
<td></td>
<td>parameter, you do not need to specify the prefix length.</td>
</tr>
</tbody>
</table>
Configuring an IPv6 ACL

TABLE 113 Syntax descriptions (Continued)

<table>
<thead>
<tr>
<th>Arguments...</th>
<th>Description...</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-type</td>
<td>ICMP packets can be filtered by ICMP message type. The type is a number from 0 to 255.</td>
</tr>
<tr>
<td>icmp code</td>
<td>ICMP packets, which are filtered by ICMP message type can also be filtered by the ICMP message code. The code is a number from 0 to 255.</td>
</tr>
<tr>
<td>icmp-message</td>
<td>ICMP packets are filtered by ICMP messages. Refer to “ICMP message configurations” on page 687 for a list of ICMP message types.</td>
</tr>
<tr>
<td>tcp</td>
<td>Indicates the you are filtering TCP packets.</td>
</tr>
<tr>
<td>udp</td>
<td>Indicates the you are filtering UDP packets.</td>
</tr>
<tr>
<td><ipv6-source-prefix>/prefix-length</td>
<td>The <ipv6-source-prefix>/prefix-length parameter specify a source prefix and prefix length that a packet must match for the specified action (deny or permit) to occur. You must specify the <ipv6-source-prefix> parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the <ipv6-prefix> parameter and precede the prefix-length parameter.</td>
</tr>
<tr>
<td><ipv6-destination-prefix>/prefix-length</td>
<td>The <ipv6-destination-prefix>/prefix-length parameter specify a destination prefix and prefix length that a packet must match for the specified action (deny or permit) to occur. You must specify the <ipv6-destination-prefix> parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the prefix-length parameter as a decimal value. A slash mark (/) must follow the <ipv6-prefix> parameter and precede the prefix-length parameter.</td>
</tr>
<tr>
<td>any</td>
<td>When specified instead of the <ipv6-source-prefix>/prefix-length or <ipv6-destination-prefix>/prefix-length parameters, matches any IPv6 prefix and is equivalent to the IPv6 prefix::/0.</td>
</tr>
<tr>
<td>host</td>
<td>Allows you specify a host IPv6 address. When you use this parameter, you do not need to specify the prefix length. A prefix length of all128 is implied.</td>
</tr>
<tr>
<td>tcp-udp-operator</td>
<td>The <tcp-udp-operator> parameter can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• eq – The policy applies to the TCP or UDP port name or number you enter after eq.</td>
</tr>
<tr>
<td></td>
<td>• gt – The policy applies to TCP or UDP port numbers greater than the port number or the numeric equivalent of the port name you enter after gt. Enter "?" to list the port names.</td>
</tr>
<tr>
<td></td>
<td>• lt – The policy applies to TCP or UDP port numbers that are less than the port number or the numeric equivalent of the port name you enter after lt.</td>
</tr>
<tr>
<td></td>
<td>• neq – The policy applies to all TCP or UDP port numbers except the port number or port name you enter after neq.</td>
</tr>
<tr>
<td></td>
<td>• range – The policy applies to all TCP port numbers that are between the first TCP or UDP port name or number and the second one you enter following the range parameter. The range includes the port names or numbers you enter. For example, to apply the policy to all ports between and including 23 (Telnet) and 53 (DNS), enter the following range 23 53. The first port number in the range must be lower than the last number in the range.</td>
</tr>
</tbody>
</table>

The <source-port-number> and <destination-port-number> for the tcp-udp-operator is the number of the port.
TABLE 113 Syntax descriptions (Continued)

<table>
<thead>
<tr>
<th>Arguments...</th>
<th>Description...</th>
</tr>
</thead>
</table>
| ipv6-operator | Allows you to filter the packets further by using one of the following options:
 • dscp – The policy applies to packets that match the traffic class value in the traffic class field of the IPv6 packet header. This operator allows you to filter traffic based on TOS or IP precedence. You can specify a value from 0 – 63.
 • fragments – The policy applies to fragmented packets that contain a non-zero fragment offset. |

NOTE
This option is not applicable to filtering based on source or destination port, TCP flags, and ICMP flags.

 • routing – The policy applies only to IPv6 source-routed packets.
 • This option is not applicable to filtering based on source or destination port, TCP flags, and ICMP flags.

802.1p-priority-matching <number>
If you want to match only those packets that have the same 802.1p priorities as specified in the ACL. Enter 0 – 7.

dscp-marking <number>
Use the dscp-marking <number> parameter to specify a new QoS value to the packet. If a packet matches the filters in the ACL statement, this parameter assigns the DSCP value that you specify to the packet. Enter 0 – 63.

802.1p-priority-marking <number>
Use the 802.1p-priority-marking <number> parameter to specify a new QoS value to the packet. If a packet matches the filters in the ACL statement, this parameter assigns the 802.1p priority that you specify to the packet. Enter 0 – 7.

internal-priority-marking <number>
Use the internal-priority-marking <number> parameter to specify a new QoS value to the packet. If a packet matches the filters in the ACL statement, this parameter assigns the internal priority that you specify to the packet. Enter 0 – 7.

dscp-marking <number>
Use the dscp-marking <number> parameter to specify a DSCP value and map that value to an internal QoS table to obtain the packet new QoS value. The following occurs when you use these parameters.
 • You enter 0 – 63 for the dscp-marking <number> parameter.
 • The dscp-cos-mapping parameter takes the DSCP value you specified and compares it to an internal QoS table, which is indexed by DSCP values. The corresponding 802.1p priority, internal forwarding priority, and DSCP value is assigned to the packet.

dscp-cos-mapping
Use dscp-cos-mapping if you want to use the DSCP value in the packet header to alter its QoS value. When you enter dscp-cos-mapping, the DSCP value in the packet header is compared to a column in the internal QoS table. The 802.1p priority, internal forwarding priority, and DSCP value that are mapped to the matching column is assigned to the packet.

ICMP message configurations

If you want to specify an ICMP message, you can enter one of the following:
 • beyond-scope
 • destination-unreachable
Applying an IPv6 ACL to an interface

To apply an IPv6 ACL to an interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# ipv6 traffic-filter access1 in
```

This example applies the IPv6 ACL “access1” to incoming IPv6 packets on Ethernet interface 3/1. As a result, Ethernet interface 3/1 denies all incoming packets from the site-local prefix fec0:0:0:2::/64 and the global prefix 2001:100:1::/48 and permits all other incoming packets.

Syntax: `ipv6 traffic-filter <ipv6-ACL-name> in`

NOTE

If you do not specify a message type, the ACL applies to all types ICMP messages types.

- echo-reply
- echo-request
- header
- hop-limit
- mld-query
- mld-reduction
- mld-report
- nd-na
- nd-ns
- next-header
- no-admin
- no-route
- packet-too-big
- parameter-option
- parameter-problem
- port-unreachable
- reassembly-timeout
- renum-command
- renum-result
- renum-seq-number
- router-advertisement
- router-renumbering
- router-solicitation
- sequence
- time-exceeded
- unreachable
For the `<ipv6-ACL-name>` parameter, specify the name of an IPv6 ACL created using the `ipv6 access-list` command.

The `in` keyword applies the specified IPv6 ACL to incoming IPv6 packets on the interface.

Adding a comment to an IPv6 ACL entry

Platform Support:
- FastIron X Series IPv6 devices running software release 04.2.00 and later – L2, BL3, L3

You can optionally add a comment to describe entries in an IPv6 ACL. The comment appears in the output of `show` commands that display ACL information.

You can add a comment by entering the `remark` command immediately preceding an ACL entry. For example, to enter comments preceding an ACL entry, enter commands such as the following.

```
FastIron(config)# ipv6 access-list rtr
FastIron(config-ipv6-access-list rtr)# remark This entry permits ipv6 packets from 3002::2 to any destination
FastIron(config-ipv6-access-list rtr)# permit ipv6 host 3000::2 any
FastIron(config-ipv6-access-list rtr)# remark This entry denies udp packets from any source to any destination
FastIron(config-ipv6-access-list rtr)# deny udp any any
FastIron(config-ipv6-access-list rtr)# remark This entry denies IPv6 packets from any source to any destination
FastIron(config-ipv6-access-list rtr)# deny ipv6 any any
FastIron(config-ipv6-access-list rtr)# write memory
```

Syntax: `remark <comment-text>`

The `<comment-text>` can be up to 256 characters in length.

The following shows the comment text for the ACL named “rtr” in a `show running-config` display.

```
FastIron# show running-config
ipv6 access-list rtr
  remark This entry permits ipv6 packets from 3002::2 to any destination
  permit ipv6 host 3000::2 any
  remark This entry denies udp packets from any source to any destination
  deny udp any any
  remark This entry denies IPv6 packets from any source to any destination
  deny ipv6 any any
```

Syntax: `show running-config`

Deleting a comment from an IPv6 ACL entry

Platform Support:
- FastIron X Series IPv6 devices running software release 04.2.00 and later – L2, BL3, L3

To delete a comment from an IPv6 ACL entry, enter commands such as the following.

```
FastIron(config)# ipv6 access-list rtr
FastIron(config-ipv6-access-list rtr)# no remark This entry permits ipv6 packets from 3002::2 to any destination
```

Syntax: No specific syntax for deleting comments.
Enabling ACL logging

You may want the software to log entries in the Syslog for packets that are denied by ACL filters. ACL logging is disabled by default; it must be explicitly enabled on a port. Refer to “Enabling ACL logging” on page 652.

Displaying IPv6 ACLs

To display the IPv6 ACLs configured on a device, enter the `show ipv6 access-list` command. Here is an example.

```
FastIron# show ipv6 access-list
ipv6 access-list v6-ACL1: 1 entries
    deny ipv6 any any
ipv6 access-list v6-ACL2: 1 entries
    permit ipv6 any any
ipv6 access-list v6-ACL3: 2 entries
    deny ipv6 2001:aa:10::/64 any
    permit ipv6 any any
ipv6 access-list v6-ACL4: 2 entries
    deny ipv6 2002:aa::/64 any
    permit ipv6 any any
ipv6 access-list v6-ACL5: 8 entries
    permit tcp 2002:bb::/64 any
    permit ipv6 2001:aa:101::/64 any
    permit ipv6 2001:aa:10::/64 2001:aa:102::/64
dscp-marking 63 dscp-cos-mapping
    permit ipv6 any any dscp-matching 63 dscp-cos-mapping
    permit ipv6 any any fragments
```

Syntax: `show ipv6 access-list`

To display a specific IPv6 ACL configured on a device, enter the `show ipv6 access-list` command followed by the ACL name. The following example shows the ACL named "rtr".

```
FastIron# show ipv6 access-list rtr
ipv6 access-list rtr: 3 entries
    remark This entry permits ipv6 packets from 3002::2 to any destination
    permit ipv6 host 3000::2 any
    remark This entry denies udp packets from any source to any destination
    deny udp any any
    remark This entry denies IPv6 packets from any source to any destination
    deny ipv6 any any
```

Syntax: `show ipv6 access-list [<access-list-name>]`
For the `<access-list-name>` parameter, specify the name of an IPv6 ACL created using the `ipv6 access-list` command.
Power Over Ethernet overview

This section provides an overview of the requirements for delivering power over the LAN, as defined by the Institute of Electrical and Electronics Engineers Inc. (IEEE) in the 802.3af specification.

Brocade POE and POE+ devices provide Power over Ethernet, compliant with the standards described in the IEEE 802.3af specification for delivering in-line power. The 802.3af specification defines the standard for delivering power over existing network cabling infrastructure, enabling multicast-enabled full streaming audio and video applications for converged services, such as, Voice over IP (VoIP), WLAN access points, IP surveillance cameras, and other IP technology devices.

POE technology eliminates the need for an electrical outlet and dedicated UPS near IP powered devices. With power sourcing devices, such as Brocade FSX, power is consolidated and centralized in the wiring closets, improving the reliability and resiliency of the network. Because POE can provide power over Ethernet cable, power is continuous, even in the event of a power failure.

PoE Plus (PoE+) doubles the power available to powered devices. For the POE specifications for your device, see the appropriate hardware installation guide.

Terms used in this section

The following terms are introduced in this section:

- **Power sourcing device/equipment** - This is the source of the power, or the device that integrates the power onto the network. Power sourcing devices/equipment have embedded POE technology. In this case, the power sourcing device is Brocade POE or POE+ device.
- **IP powered device** or **Power consuming device** - This is the Ethernet device that requires power and is situated on the other end of the cable opposite the power sourcing equipment.

Methods for delivering POE and POE+

There are two methods for delivering power over the network, as defined in the 802.3af (POE) and 802.3at (POE+) specifications:

- **Endspan** - Power is supplied through the Ethernet ports on a power sourcing device. With the Endspan solution, power can be carried over the two data pairs (Alternative A) or the two spare pairs (Alternative B).
- **Midspan** - Power is supplied by an intermediate power sourcing device placed between the switch and the powered device. With the Midspan solution, power is carried over the two spare pairs (Alternative B).

With both methods, power is transferred over four conductors, between the two pairs. 802.3af- or 802.3at-compliant powered devices are able to accept power from either pairs.

Brocade POE and POE+ devices use the Endspan method, compliant with the 802.3af and 802.3at standards.
The Endspan and Midspan methods are described in more detail in the following sections.

NOTE
All 802.3af- and 802.3at-compliant power consuming devices are required to support both application methods defined in the specifications.

Endspan

The POE Endspan method uses the Ethernet switch ports on power sourcing equipment, such as Brocade FSX POE, which has embedded POE technology to deliver power over the network.

With the Endspan solution, there are two supported methods of delivering power. In Alternative A, four wires deliver data and power over the network. Specifically, power is carried over the live wire pairs that deliver data, as illustrated in Figure 104. In Alternative B, the four wires of the spare pairs are used to deliver power over the network. Brocade POE and POE+ devices support Alternative A.

The Endspan method is illustrated in Figure 104.

FIGURE 104 POE Endspan delivery method

Midspan

The POE Midspan solution uses an intermediate device, usually a powered device, to inject power into the network. The intermediate device is positioned between the switch and the powered device and delivers power over the network using the spare pairs of wires (Alternative B). The intermediate device has multiple channels (typically 6 to 24), and each of the channels has data input and a data plus power RJ-45 output connector.

The Midspan method is illustrated in Figure 105.
POE Midspan Delivery Method

Autodiscovery

POE and POE+ autodiscovery is a detection mechanism that identifies whether or not an installed device is 802.3af- or 802.3at-compatible. When you plug a device into an Ethernet port that is capable of providing in-line power, the autodiscovery mechanism detects whether or not the device requires power and how much power is needed. The autodiscovery mechanism also has a disconnect protection mechanism that shuts down the power once a powered device has been disconnected from the network or when a faulty powered device has been detected. This feature enables safe installation and prevents high-voltage damage to equipment.

POE autodiscovery is achieved by periodically transmitting current or test voltages that can detect when a powered device is attached to the network. When an 802.3af- or 802.3at-compatible device is plugged into a POE port, the powered device reflects test voltage back to the power sourcing device (the Brocade device), ultimately causing the power to be switched ON. Non-compatible devices do not reflect test voltage back to the power sourcing device.

Power class

Different power classes determine the amount of power a POE powered device receives. When a valid powered device is detected, the Brocade POE device performs power classification by inducing a specific voltage and measuring the current consumption of the powered device. Depending on the measured current, the Brocade device assigns the appropriate class to the powered device. Powered devices that do not support classification are assigned a class of 0 (zero). Brocade supports POE+ for class 4 devices only. Table 115 shows the different power classes and their respective power consumption needs.
Power specifications

The actual implementation of the 802.3af standard limits power to 15.4W (44V to 57V) from the power sourcing device. This is in compliance with safety standards and existing wiring limitations. Though limited by the 802.3af standard, 15.4 watts of power is ample, as most powered devices consume an average of 5 to 12 watts of power. IP phones, wireless LAN access points, and network surveillance cameras each consume an average of 3.5 to 9 watts of power.

Brocade FastIron CX HPOE (POE+) class 4 devices support the implementation of the 802.3at standard, which nearly doubles the available power. For specification information, see the Brocade FastIron CX Switch Hardware Installation Guide.

The 48-volt power supply for FSX devices (part number SX-POE-AC-PWR) provides power to the POE daughter card, and ultimately to POE power-consuming devices. The number of POE power-consuming devices that one 48-volt power supply can support depends on the number of watts required by each power-consuming device. Each 48-volt power supply can provide 1080 watts of power, and each POE port supports a maximum of 15.4 watts of power per POE power-consuming device. For example, if each POE power-consuming device attached to the FSX consumes 10 watts of power, one 48-volt supply will power up to 108 POE ports. You can install a second 48-volt supply for additional POE power. Power supply specifications are covered in the Foundry FastIron X Series Chassis Hardware Installation Guide and in the Foundry FastIron Stackable Hardware Installation Guide.

CAUTION

The SX-POE-AC-PWR power supply is designed exclusively for use with the FSX POE devices. The power supply produces extensive power to support 802.3af applications. Installing the power supply in a device other than the FSX POE will cause extensive damage to your equipment.

Cabling requirements

The 802.3af standard currently supports POE on 10/100/1000 Mbps Ethernet ports operating over standard Category 5 unshielded twisted pair (UTP) cable or better. If your network uses cabling categories less than 5, you cannot implement POE without first upgrading your cables to CAT 5 UTP or better.

Supported powered devices

Brocade POE and POE+ devices support the following types of IP powered devices:
• Voice over IP (VoIP) phones
• Wireless LAN access points
• IP surveillance cameras

The following sections briefly describe these IP powered devices.

VoIP

Voice over IP (VoIP) is the convergence of traditional telephony networks with data networks, utilizing the existing data network infrastructure as the transport system for both services. Traditionally, voice is transported on a network that uses circuit-switching technology, whereas data networks are built on packet-switching technology. To achieve this convergence, technology has been developed to take a voice signal, which originates as an analog signal and transport it within a digital medium. This is done by devices, such as VoIP Telephones, which receive the originating tones and place them in UDP packets, the size and frequency of which is dependant on the Coding / Decoding (CODEC) technology that has been implemented in the VoIP Telephone / device. The VoIP control packets use the TCP/IP format.

Wireless LAN access points

Wireless LANs enable you to establish and maintain a wireless network connection within or between buildings, without the constraints of wires or cables as imposed by a wired LAN. Wireless LAN access points provide the link between the wired LAN and the wireless LAN.

Brocade IronPoint Access Point allows wireless clients to connect to your enterprise network. It is a full-featured access point that can be managed as a single device by IronView Network Manager, a network management tool that manages several Brocade devices in a network. For more information about Brocade IronPoint Access Point, refer to the IronPoint Wireless LAN Configuration Guide.

One of the main concerns with wireless LAN access points is the additional protection needed to secure the network. To help ensure continuous security against unauthorized Wireless LAN Access Points deployment, and deliver advanced security for entry-level WLAN Access Points, the Brocade POE and POE+ devices include IEEE 802.1x support for a flexible and dynamic security implementation. All switch ports can be configured as secured, requiring 802.1x authentication, or unsecured, requiring no authentication. For more information about this feature, refer to Chapter 42, “Configuring 802.1X Port Security”.

IP surveillance cameras

IP surveillance technology provides digital streaming of video over Ethernet, providing real-time, remote access to video feeds from cameras.

The main benefit of using IP surveillance cameras on the network is that you can view surveillance images from any computer on the network. If you have access to the Internet, you can securely connect from anywhere in the world to view a chosen facility or even a single camera from your surveillance system. By using a Virtual Private Network (VPN) or the company intranet, you can manage password-protected access to images from the surveillance system. Similar to secure payment over the Internet, images and information are kept secure and can be viewed only by approved personnel.
POE and CPU utilization

Depending on the number of POE-configured ports that have powered PDs, there may be a slight and noticeable increase of up to 15% in CPU utilization. In typical scenarios, this is normal behavior for PoE and does not affect the functionality of other features on the switch.

Enabling or disabling Power over Ethernet

To enable a port to receive in-line power for 802.3af-compliant and non-compliant power consuming devices, enter commands such as the following.

```
FastIron#config t
FastIron(config)#interface e 1/1
FastIron(config-if-e1000-1/1)#inline power
```

After entering the above commands, the console will display the following message.

```
FastIron(config-if-e1000-1/1)#PoE Info: Power enabled on port 1/1.
```

Syntax: `[no] inline power`

Use the `no` form of the command to disable the port from receiving in-line power.

NOTE

The FSX with POE can automatically detect whether or not a power consuming device is 802.3af-compliant. Therefore, the CLI command `inline power legacy-powerdevice`, which is used on FES POE devices to configure 802.3af non-compliant devices, does not apply on the FSX POE.

Disabling support for POE legacy power consuming devices

This feature is supported on FastIron X Series POE devices running software release 03.0.00 or later.

Brocade POE devices automatically support most legacy power consuming devices (non-802.3af compliant devices), as well as all 802.3af-compliant devices. In releases prior to 03.0.00, support for legacy devices is always enabled on Brocade POE devices and cannot be disabled. Starting with release 03.0.00, if desired, you can disable and re-enable support for legacy POE power consuming devices on a global basis (on the entire device) or on individual slots (chassis devices only). When you disable legacy support, 802.3af-compliant devices are not affected.

To disable support for legacy power consuming devices on a global basis, enter the following command at the Global CONFIG level of the CLI.

```
FastIron(config)#no legacy-inline-power
```

On chassis devices (FSX, FSX 800, and FSX 1600), you can disable support for legacy power consuming devices per slot. To disable support on a slot, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#no legacy-inline-power 2
```

The above command disables legacy support on all ports in slot 2.

Syntax: `[no] legacy-inline-power [<slotnum>]/`
To re-enable support for legacy power consuming devices after it has been disabled, enter the `legacy-inline-power` command (without the `no` parameter).

`<slotnum>` is required on chassis devices when disabling or re-enabling legacy support on a slot.

Use the `show run` command to view whether support for POE legacy power consuming devices is enabled or disabled.

Enabling the detection of POE power requirements advertised through CDP

Many power consuming devices, such as Cisco VOIP phones and other vendors’ devices, use CDP to advertise their power requirements to power sourcing devices, such as Brocade POE devices. Brocade power consuming devices are compatible with Cisco and other vendors’ power consuming devices, in that they can detect and process power requirements for these devices automatically.

Configuration considerations

- This feature is supported in FSX POE devices running software release 02.2.00 or later
- If you configure a port with a maximum power level or a power class for a power consuming device, the power level or power class takes precedence over the CDP power requirement. Therefore, if you want the device to adhere to the CDP power requirement, do not configure a power level or power class on the port.
- The FSX POE will adjust a port power only if there are available power resources on the device.

Command syntax

To enable the Brocade device to detect CDP power requirements, enter the following commands.

```
FastIron#config t
FastIron(config)#cdp run
```

Syntax: `[no] cdp run`

Use the `no` form of the command to disable the detection of CDP power requirements.

Setting the maximum power level for a POE power consuming device

When POE is enabled on a port to which a power consuming device is attached, by default, the Brocade POE device will supply 15.4 watts of power at the RJ45 jack, minus any power loss through the cables. For example, a POE port with a default maximum power level of 15.4 watts will receive a maximum of 12.95 watts of power after 2.45 watts of power loss through the cable. This is compliant with the IEEE 802.3af specification for delivering in-line power. Devices that are configured to receive less POE power, for example, 4.0 watts of power, will experience a lower rate of power loss through the cable.
If desired, you can manually configure the maximum amount of power that the Brocade POE device will supply at the RJ45 jack. You can specify from 1 to 15.4 watts of maximum power for each power consuming device connected to the switch.

Configuration notes

- This feature is supported for FSX POE devices running release 02.2.00 or later, FGS, FLS devices, and FWS devices running software release 04.3.01 and later, and FCX devices running software release 06.0.00 and later.
- There are two ways to configure the power level for a POE power consuming device. The first method is discussed in this section. The other method is provided in the section “Setting the power class for a POE power consuming device” on page 700. For each POE port, you can configure either a maximum power level or a power class. You cannot configure both. You can, however, configure a maximum power level on one port and a power class on another port.
- The CLI commands for this feature differ on the FSX POE compared to the FES POE. On the FES POE, there are separate CLI commands for 802.3af-compliant versus 802.3-af non-compliant power consuming devices. On the FSX, there is one command for all power consuming devices. The command syntax is also different on the FSX. To configure your device, refer to the appropriate section, below.

Command syntax

To configure the maximum power level for a power consuming device, enter commands such as the following.

```
FastIron#config t
FastIron(config)#interface e 1/1
FastIron(config-if-e1000-1/1)#inline power power-limit 14000
```

These commands enable in-line power on interface e 1 in slot 1 and set the POE power level to 14,000 milliwatts (14 watts).

Syntax: `inline power power-limit <power level>`

where `<power level>` is the number of milliwatts, between 1000 and 15400. The default is 15400.

For information about resetting the maximum power level, refer to “Resetting POE parameters” on page 703.

Setting the power class for a POE power consuming device

A power class specifies the maximum amount of power that a Brocade POE device will supply to a power consuming device. **Table 115** shows the different power classes and their respective maximum power allocations.

<table>
<thead>
<tr>
<th>Class</th>
<th>Maximum power (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.4 (default)</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Setting the power class for a POE power consuming device

By default, the power class for all power consuming devices is zero (0). As shown in Table 115, a power consuming device with a class of 0 receives 15.4 watts of power.

Configuration notes

- This feature is supported for FSX POE devices running release 02.2.00 or later. It is also supported for FGS, FLS devices, and FWS devices running software release 04.3.01 and later.
- The power class sets the maximum power level for a power consuming device. Alternatively, you can set the maximum power level as instructed in the section “Setting the maximum power level for a POE power consuming device” on page 699. For each POE port, you can configure either a power class or a maximum power level. You cannot configure both. You can, however, configure a power level on one port and power class on another port.
- The power class includes any power loss through the cables. For example, a POE port with a default power class of 0 (15.4 watts) will receive a maximum of 12.95 watts of power after 2.45 watts of power loss through the cable. This is compliant with the IEEE 802.3af specification for delivering in-line power. Devices that are configured to receive less POE power, for example, class 1 devices (4.0 watts), will experience a lower rate of power loss through the cable.
- The CLI commands for this feature differ on the FSX POE compared to the FES POE. On the FES POE, there are separate CLI commands for 802.3af-compliant versus 802.3-af non-compliant power consuming devices. On the FSX, there is one command for all power consuming devices. The command syntax is also different on the FSX.

Command syntax

To configure the power class for a POE power consuming device, enter commands such as the following.

```
FastIron(config-if-e1000-1/1)#inline power power-by-class 2
```

These commands enable in-line power on interface e 1 in slot 1 and set the power class to 2.

Syntax: `inline power power-by-class <class value>`

where `<class value>` is the power class. Enter a value from 0 – 3. Refer to Table 115 for the power classes and their respective maximum power allocations. The default is 0 (15.4 watts).

For information about resetting the power class, refer to “Resetting POE parameters” on page 703.
Setting the in-line power priority for a POE port

Each FSX POE (48V) power supply provides a maximum of 1080 watts of power, and each POE port receives a default maximum value of 15.4 watts of power, minus any power loss through the cable. The power capacity of one or two POE power supplies is shared among all POE power consuming devices attached to the FSX POE.

In a configuration where POE power consuming devices collectively have a greater demand for power than the POE power supply or supplies can provide, the FSX must place the POE ports that it cannot power in standby or denied mode (waiting for power) until the available power increases. The available power increases when one or more POE ports are powered down, or, if applicable, when an additional POE power supply is installed in the FSX.

When POE ports are in standby or denied mode (waiting for power) and the FSX receives additional power resources, by default, the FSX will allocate newly available power to the standby ports in ascending order, by slot number then by port number, provided enough power is available for the ports. For example, POE port 1/11 should receive power before POE port 2/1. However, if POE port 1/11 needs 12 watts of power and POE port 2/1 needs 10 watts of power, and 11 watts of power become available on the device, the FSX will allocate the power to port 2/1 since it does not have sufficient power for port 1/11.

You can configure an in-line power priority on POE ports, whereby ports with a higher in-line power priority will take precedence over ports with a low in-line power priority. For example, if a new POE port comes on-line and the port is configured with a high priority, if necessary (if power is already fully allocated to power consuming devices), the FSX will remove power from a POE port or ports that have a lower priority and allocate the power to the POE port that has the higher value.

Ports that are configured with the same in-line power priority are given precedence based on the slot number and port number in ascending order, provided enough power is available for the port. For example, if both POE port 1/2 and POE port 2/1 have a high in-line power priority value, POE port 1/2 will receive power before POE port 2/1. However, if POE port 1/2 needs 12 watts of power and POE port 2/1 needs 10 watts of power, and 11 watts of power become available on the device, the FSX will allocate the power to POE port 2/1 since it does not have sufficient power for port 1/2. By default, all ports are configured with a low in-line power priority.

Command syntax

To configure an in-line power priority for a POE port on a FSX, enter commands such as the following.

```
FastIron(config-if-e1000-1/1)#inline power priority 2
```

These commands enable in-line power on interface e 1 in slot 1 and set the in-line power priority level to high.

Syntax: `[no] inline power priority <priority num>

where **priority** <priority num> is the in-line power priority number. The default is 3 (low priority). You can specify one of the following values:

- 3 – low priority
- 2 – high priority
- 1 – critical priority
Use the **inline power** command (without a priority number) to reset a port priority to the default (low) priority.

Use the **no inline power** command to disable the port from receiving in-line power.

For information about resetting the in-line power priority, refer to "Resetting POE parameters" on page 703.

To view the in-line power priority for all POE ports, issue the **show inline power** command at the Privileged EXEC level of the CLI. Refer to “Displaying POE operational status” on page 703.

Resetting POE parameters

NOTE
This feature applies to the FSX POE only.

To override or reset POE port parameters including power priority, power class, and maximum power level, you must specify each POE parameter in the CLI command line. This section provides some examples.

Example
To change a POE port power priority from high to low (the default value) and keep the current maximum configured power level of 3000, enter commands such as the following.

```
FastIron#config t
FastIron(config)#interface e 1/1
FastIron(config-if-e1000-1/1)#inline power priority 3 power-limit 3000
```

Note that you must specify both the inline power priority and the maximum power level (**power-limit** command), even though you are keeping the current configured maximum power level at 3000. If you do not specify the maximum power level, the device will apply the default value of 15400 (15.4 watts). Also, you must specify the inline power priority before specifying the power limit.

Example
To change a port power class from 2 (4 watts max) to 3 (7 watts max) and keep the current configured power priority of 2, enter commands such as the following.

```
FastIron#config t
FastIron(config)#interface e 1/1
FastIron(config-if-e1000-1/1)#inline power priority 2 power-by-class 3
```

Note that you must specify both the power class and the inline power priority, even though you are not changing the power priority. If you do not specify the power priority, the device will apply the default value of 3 (low priority). Also, you must specify the inline power priority before specifying the power class.

Displaying power over Ethernet information

This section lists the CLI commands for viewing POE information.

Displaying POE operational status

The **show inline power** command displays operational information about Power over Ethernet.
You can view the POE operational status for the entire device, for a specific POE module only, or for a specific interface only. In addition you can use the `show inline power detail` command to display in depth information about POE power supplies.

The following shows an example of the `show inline power` display output on a FastIron POE device.

FastIron#show inline power

Power Capacity: Total is 2160000 mWatts. Current Free is 18800 mWatts.

Power Allocations: Requests Honored 769 times

... some lines omitted for brevity...

<table>
<thead>
<tr>
<th>Port</th>
<th>Admin State</th>
<th>Oper State</th>
<th>---Power(mWatts)---</th>
<th>PD Type</th>
<th>PD Class</th>
<th>Pri</th>
<th>Fault/Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>On</td>
<td>On</td>
<td>5070</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/2</td>
<td>On</td>
<td>On</td>
<td>1784</td>
<td>9500</td>
<td>Legacy</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/3</td>
<td>On</td>
<td>On</td>
<td>2347</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/4</td>
<td>On</td>
<td>On</td>
<td>2441</td>
<td>9500</td>
<td>Legacy</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/5</td>
<td>On</td>
<td>On</td>
<td>6667</td>
<td>9500</td>
<td>802.3af</td>
<td>Class 3</td>
<td>3</td>
</tr>
<tr>
<td>4/6</td>
<td>On</td>
<td>On</td>
<td>2723</td>
<td>9500</td>
<td>802.3af</td>
<td>Class 2</td>
<td>3</td>
</tr>
<tr>
<td>4/7</td>
<td>On</td>
<td>On</td>
<td>2347</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/8</td>
<td>On</td>
<td>On</td>
<td>2347</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/9</td>
<td>On</td>
<td>On</td>
<td>2347</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/10</td>
<td>On</td>
<td>On</td>
<td>4976</td>
<td>9500</td>
<td>802.3af</td>
<td>Class 3</td>
<td>3</td>
</tr>
<tr>
<td>4/11</td>
<td>On</td>
<td>On</td>
<td>4882</td>
<td>9500</td>
<td>802.3af</td>
<td>Class 3</td>
<td>3</td>
</tr>
<tr>
<td>4/12</td>
<td>On</td>
<td>On</td>
<td>4413</td>
<td>9500</td>
<td>802.3af</td>
<td>Class 1</td>
<td>3</td>
</tr>
<tr>
<td>4/13</td>
<td>On</td>
<td>On</td>
<td>7793</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/14</td>
<td>On</td>
<td>On</td>
<td>7512</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/15</td>
<td>On</td>
<td>On</td>
<td>8075</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/16</td>
<td>On</td>
<td>On</td>
<td>4131</td>
<td>9500</td>
<td>802.3af</td>
<td>Class 1</td>
<td>3</td>
</tr>
<tr>
<td>4/17</td>
<td>On</td>
<td>On</td>
<td>2347</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/18</td>
<td>Off</td>
<td>On</td>
<td>0</td>
<td>9500</td>
<td>n/a</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/19</td>
<td>On</td>
<td>On</td>
<td>5352</td>
<td>9500</td>
<td>Legacy</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/20</td>
<td>On</td>
<td>On</td>
<td>7981</td>
<td>9500</td>
<td>802.3af</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>4/21</td>
<td>On</td>
<td>On</td>
<td>12958</td>
<td>13000</td>
<td>802.3af</td>
<td>Class 3</td>
<td>3</td>
</tr>
<tr>
<td>4/22</td>
<td>On</td>
<td>On</td>
<td>12958</td>
<td>13000</td>
<td>802.3af</td>
<td>Class 3</td>
<td>3</td>
</tr>
<tr>
<td>4/23</td>
<td>On</td>
<td>On</td>
<td>13052</td>
<td>13000</td>
<td>802.3af</td>
<td>Class 3</td>
<td>3</td>
</tr>
<tr>
<td>4/24</td>
<td>On</td>
<td>On</td>
<td>12864</td>
<td>13000</td>
<td>802.3af</td>
<td>Class 3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 137367 242000

... some lines omitted for brevity...

Grand Total 1846673 2127400

Syntax: `show inline power [<slotnum>] | [<slotnum>/<portnum>]`

Table 116 provides definitions for the statistics.

<table>
<thead>
<tr>
<th>TABLE 116</th>
<th>Field definitions for the show inline power command</th>
</tr>
</thead>
<tbody>
<tr>
<td>This column...</td>
<td>Displays...</td>
</tr>
<tr>
<td>Power Capacity</td>
<td>The total POE power supply capacity and the amount of available power (current free) for POE power consuming devices. Both values are shown in milliwatts.</td>
</tr>
<tr>
<td>Power Allocations</td>
<td>The number of times the FSX fulfilled POE requests for power.</td>
</tr>
</tbody>
</table>
TABLE 116 Field definitions for the show inline power command (Continued)

<table>
<thead>
<tr>
<th>This column...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The slot number and port number.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Specifies whether or not Power over Ethernet has been enabled on the port. This value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ON – The inline power command was issued on the port.</td>
</tr>
<tr>
<td></td>
<td>• OFF – The inline power command has not been issued on the port.</td>
</tr>
<tr>
<td>Oper State</td>
<td>Shows the status of in-line power on the port. This value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ON – The POE power supply is delivering in-line power to the powered device.</td>
</tr>
<tr>
<td></td>
<td>• OFF – The POE power supply is not delivering in-line power to the powered device.</td>
</tr>
<tr>
<td></td>
<td>• DENIED – The port is in standby mode (waiting for power) because the FSX does not currently have enough available power for the port.</td>
</tr>
<tr>
<td></td>
<td>NOTE: In FSX software release 03.2.00 and later, when you enable a port using the CLI, it may take 12 or more seconds before the operational state of that port is displayed correctly in a show inline power output.</td>
</tr>
<tr>
<td>Power Consumed</td>
<td>The number of current, actual milliwatts that the powered device is consuming.</td>
</tr>
<tr>
<td>Power Allocated</td>
<td>The number of milliwatts allocated to the port. This value is either the default or configured maximum power level, or the power class that was automatically detected by the device.</td>
</tr>
<tr>
<td>PD Type</td>
<td>The type of powered device connected to the port. This value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• 802.3AF-PD – The powered device connected to this port is 802.3af-compliant.</td>
</tr>
<tr>
<td></td>
<td>• LEGACY – The powered device connected to this port is a legacy product (not 802.3af-compliant).</td>
</tr>
<tr>
<td></td>
<td>• N/A – Power over Ethernet is configured on this port, and one of the following is true:</td>
</tr>
<tr>
<td></td>
<td>• The device connected to this port is a non-powered device.</td>
</tr>
<tr>
<td></td>
<td>• No device is connected to this port.</td>
</tr>
<tr>
<td></td>
<td>• The port is in standby or denied mode (waiting for power).</td>
</tr>
<tr>
<td>PD Class</td>
<td>Determines the maximum amount of power a powered device receives. This value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Class0 – Receives 15.4 watts maximum.</td>
</tr>
<tr>
<td></td>
<td>• Class1 – Receives 4 watts maximum</td>
</tr>
<tr>
<td></td>
<td>• Class2 – Receives 7 watts maximum</td>
</tr>
<tr>
<td></td>
<td>• Class3 – Receives 15.4 watts maximum</td>
</tr>
<tr>
<td></td>
<td>• Class 4 - Receives 30 watts maximum</td>
</tr>
<tr>
<td></td>
<td>• Unknown – The device attached to the port cannot advertise its class.</td>
</tr>
<tr>
<td>Pri</td>
<td>The port in-line power priority, which determines the order in which the port will receive power while in standby mode (waiting for power). Ports with a higher priority will receive power before ports with a low priority. This value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• 3 – low priority</td>
</tr>
<tr>
<td></td>
<td>• 2 – high priority</td>
</tr>
<tr>
<td></td>
<td>• 1 – critical priority</td>
</tr>
</tbody>
</table>
Displaying detailed information about POE power supplies

The show inline power detail command displays detailed operational information about the POE power supplies in FastIron POE devices.

To display detailed POE statistics, enter the following command.
FastIron#show inline power detail

Power Supply Data:
++++++++++++++++++

Power Supply #1:
 Firmware Ver: 0.2
 Date: 3/15/5
 H/W Status: 807
 Max Curr: 26.5 Amps
 Voltage: 50.0 Volts
 Capacity: 1325 Watts
 Consumption: 1144 Watts

Power Supply #2:
 Firmware Ver: 0.2
 Date: 3/15/5
 H/W Status: 807
 Max Curr: 26.5 Amps
 Voltage: 50.0 Volts
 Capacity: 1325 Watts
 Consumption: 949 Watts

General PoE Data:
+++++++++++++++++

Slot Firmware Version

 1 04.0.0
 2 04.0.0
 3 04.0.0
 4 04.0.0
 5 04.0.0
 6 04.0.0
 7 04.0.0
 8 04.0.0

... continued on next page...
Displaying power over Ethernet information

... continued from previous page...

Cumulative Port State Data:

<table>
<thead>
<tr>
<th>Slot</th>
<th>#Ports Admin-On</th>
<th>#Ports Admin-Off</th>
<th>#Ports Oper-On</th>
<th>#Ports Oper-Off</th>
<th>#Ports Off-Denied</th>
<th>#Ports Off-No-PD</th>
<th>#Ports Off-Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total: 192 0 190 2 0 2 1

Cumulative Port Power Data:

<table>
<thead>
<tr>
<th>Slot</th>
<th>#Ports Pri: 1</th>
<th>#Ports Pri: 2</th>
<th>#Ports Pri: 3</th>
<th>Power Consumption</th>
<th>Power Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>310.146 W</td>
<td>312.0 W</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>308.454 W</td>
<td>312.0 W</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>108.727 W</td>
<td>172.500 W</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>137.366 W</td>
<td>232.500 W</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>56.991 W</td>
<td>145.400 W</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>309.112 W</td>
<td>312.0 W</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>308.548 W</td>
<td>312.0 W</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>307.796 W</td>
<td>312.0 W</td>
</tr>
</tbody>
</table>

Total: 72 0 120 1847.140 W 2110.400 W

Syntax: show inline power detail

Table 116 provides definitions for the statistics displayed in the show inline power detail command.

TABLE 117 Field definitions for the show inline power detail command

<table>
<thead>
<tr>
<th>This column...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply data</td>
<td></td>
</tr>
<tr>
<td>Firmware ver</td>
<td>The POE power supply firmware version.</td>
</tr>
<tr>
<td>Date</td>
<td>The POE power supply firmware test date in the format mm/dd/yyyy.</td>
</tr>
<tr>
<td>H/W Status</td>
<td>The POE power supply hardware status code. This field is used by Brocade Technical Support for troubleshooting.</td>
</tr>
<tr>
<td>Max Curr</td>
<td>The POE power supply maximum current capacity.</td>
</tr>
<tr>
<td>Voltage</td>
<td>The POE power supply current input voltage.</td>
</tr>
<tr>
<td>Capacity</td>
<td>The POE power supply total power capacity (in watts).</td>
</tr>
<tr>
<td>Consumption</td>
<td>The total number of watts consumed by POE power consuming devices and POE modules in the system, minus any internal or cable power loss.</td>
</tr>
</tbody>
</table>
TABLE 117 Field definitions for the show inline power detail command (Continued)

<table>
<thead>
<tr>
<th>This column...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>General POE data</td>
<td></td>
</tr>
<tr>
<td>Slot</td>
<td>The Interface module / slot number</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>The Interface module / slot number firmware version.</td>
</tr>
<tr>
<td>Cumulative port state data</td>
<td></td>
</tr>
<tr>
<td>NOTE: In FSX software release 03.2.00 and later, when you enable a port using the CLI, it may take 12 or more seconds before the operational state of that port is displayed correctly in a show inline power output.</td>
<td></td>
</tr>
<tr>
<td>Slot</td>
<td>The Interface module / slot number</td>
</tr>
<tr>
<td>#Ports Admin-On</td>
<td>The number of ports on the Interface module on which the inline power command was issued.</td>
</tr>
<tr>
<td>#Ports Admin-Off</td>
<td>The number of ports on the Interface module on which the inline power command was not issued.</td>
</tr>
<tr>
<td>#Ports Oper-On</td>
<td>The number of ports on the Interface module that are receiving in-line power from the POE power supply.</td>
</tr>
<tr>
<td>#Ports Oper-Off</td>
<td>The number of ports on the Interface module that are not receiving in-line power from the POE power supply.</td>
</tr>
<tr>
<td>#Ports Off-Denied</td>
<td>The number of ports on the Interface module that were denied power because of insufficient power.</td>
</tr>
<tr>
<td>#Ports Off-No-PD</td>
<td>The number of ports on the Interface module to which no powered devices are connected.</td>
</tr>
<tr>
<td>#Ports Off-Fault</td>
<td>The number of ports on the Interface module that are not receiving power because of a subscription overload.</td>
</tr>
<tr>
<td>Total</td>
<td>The totals for all of the fields in the Cumulative Port State Data report.</td>
</tr>
<tr>
<td>Cumulative port power data</td>
<td></td>
</tr>
<tr>
<td>Slot</td>
<td>The Interface module / slot number</td>
</tr>
<tr>
<td>#Ports Pri: 1</td>
<td>The number of POE ports on the Interface module that have a POE port priority of 1.</td>
</tr>
<tr>
<td>#Ports Pri: 2</td>
<td>The number of POE ports on the Interface module that have a POE port priority of 2.</td>
</tr>
<tr>
<td>#Ports Pri: 3</td>
<td>The number of POE ports on the Interface module that have a POE port priority of 3.</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>The total number of watts consumed by both POE power consuming devices and the POE module (daughter card) attached to the Interface module.</td>
</tr>
<tr>
<td>Power Allocation</td>
<td>The number of watts allocated to the Interface module POE ports. This value is the sum of the ports’ default or configured maximum power levels, or power classes automatically detected by the FSX.</td>
</tr>
<tr>
<td>Total</td>
<td>The totals for all of the fields in the Cumulative Port Power Data report.</td>
</tr>
</tbody>
</table>
Displaying power over Ethernet information
TCAM entries in FWS devices

The Layer 2 with Base Layer 3 software image contains all the system-level features in the Layer 2 images, along with the following:

- Static IP routes
- RIPv1 and RIPv2 (see note, below)
- Routing between directly connected subnets
- RIP advertisements of the directly connected subnets
- Virtual interfaces
- VRRP

NOTES:

- Layer 2 with Base Layer 3 images provide static RIP support. The device does not learn RIP routes from other Layer 3 devices. However, the device does advertise directly connected routes and can be configured to dynamically learn default routes. Brocade recommends that you deploy these devices only at the edge of your network, since incoming traffic can learn directly-connected routes advertised by the Brocade device, but outgoing traffic to other devices must use statically configured or default routes.
- The Base Layer 3 images do not support IP multicasting, OSPF, or BGP4.
- Base Layer 3 feature support has been added to FGS and FLS devices effective with release 04.0.00.
- The FWSX devices are Layer 2 switches only. They do not support Base Layer 3 and full Layer 3 features.
- The TurboIron X Series devices do not support Base Layer 3 images.

The size of the TCAM in FWS devices is limited to 1024 routing entries. When this limit is reached, the following warning message is displayed:

No free TCAM entry available. System will be unstable. Please reboot system.

At the same time, the following Syslog is generated:

System: No Free Tcam Entry available. System will be unstable.

You must reboot the device when you see these messages.

Adding a static IP route

Platform Support:

- FastIron X Series devices – all L3 software releases
Adding a static ARP entry

Static entries are useful in cases where you want to pre-configure an entry for a device that is not connected to the Brocade device, or you want to prevent a particular entry from aging out. The software removes a dynamic entry from the ARP cache if the ARP aging interval expires before the entry is refreshed. Static entries do not age out, regardless of whether the Brocade device receives an ARP request from the device that has the entry address. The software places a static ARP entry into the ARP cache as soon as you create the entry.

To add a static ARP entry, enter a command such as the following at the global CONFIG level of the CLI.

FastIron(config)# arp 1 209.157.22.3 aaaa.bbbb.cccc ethernet 3

This command adds a static ARP entry that maps IP address 209.157.22.3 to MAC address aaaa.bbbb.cccc. The entry is for a MAC address connected to FastIron port 3.

Syntax: y[no] arp <num> <ip-addr> <mac-addr> ethernet [<stack-unit>/]<slotnum>[/]<portnum>
The `<num>` parameter specifies the entry number. You can specify a number from 1 up to the maximum number of static entries allowed on the device. You can allocate more memory to increase this amount. To do so, enter the `system-max ip-static-arp <num>` command at the global CONFIG level of the CLI.

The `<ip-addr>` command specifies the IP address of the device that has the MAC address of the entry.

The `<mac-addr>` parameter specifies the MAC address of the entry.

The `<stack-unit>` parameter is required on FGS and FLS devices running software version 2.5 and later, and on FGS-STK and FLS-STK devices running software version 5.0 and later.

The `<portnum>` command specifies the port number attached to the device that has the MAC address of the entry. If you are configuring a chassis device, specify the slot number as well as the port number (`<slotnum>/<portnum>`).

NOTE
The `clear arp` command clears learned ARP entries but does not remove any static ARP entries.

Modifying and displaying layer 3 system parameter limits

This section shows how to view and configure some of the Layer 3 system parameter limits.

Configuration notes

- Changing the system parameters reconfigures the device memory. Whenever you reconfigure the memory on a Brocade device, you must save the change to the startup-config file, then reload the software to place the change into effect.
- The Layer 3 system parameter limits for FastIron IPv6 models are automatically adjusted by the system and cannot be manually modified. Refer to “FastIron IPv6 models” on page 716.

FGS with base layer 3

NOTE
This section applies only to the FGS, FLS, FGS-STK and FLS-STK Base-L3 build. It does not apply to other platforms such as FESX or SuperX.

FGS Base-L3 uses TCAMs for IP routing, access list and MAC based vlan and some other features. The maximum value for TCAMs in FGS and FGS-STK devices is 1020, and 1019 for FWS devices.

You can set the number of TCAMs reserved for IP routing using the `system-max` command.

```
FGS(config)# system-max hw-ip-route-tcam ??
```

The range is from 64 to 1020 (1019 for FWS devices) and the default is 256.

The `show ip route` command displays the usage of TCAMs in routing.
Example

FGS# show ip route
Total number of IP routes: 29
Route TCAM: total 64, used 64, add HW route failure=34

<table>
<thead>
<tr>
<th>Start index: 1</th>
<th>D:Connected</th>
<th>R:RIP</th>
<th>S:Static</th>
<th>O:OSPF</th>
<th>*:Candidate default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>NetMask</td>
<td>Gateway</td>
<td>Port</td>
<td>Cost</td>
<td>Type</td>
</tr>
<tr>
<td>1</td>
<td>2.2.10.0</td>
<td>255.255.255.0</td>
<td>0.0.0.0</td>
<td>v10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2.2.11.0</td>
<td>255.255.255.0</td>
<td>0.0.0.0</td>
<td>v11</td>
<td>1</td>
</tr>
</tbody>
</table>

... In this example "add HW route failure" shows the number of failures in installing routing TCAM.

FGS Base L3 installs routing TCAMs for the interface subnet and static routes. A packet is routed in hardware if its destination IP address matches the interface or stack route subnet, and the nexthop or destination ARP is resolved. The unknown unicast packets have destination IP addresses that do not match any static route or interface subnets.

The handling of unknown unicast packets differs depending on TCAM availability. For example, for a system that never encounters out-of-TCAM situation, If the default route is not configured or its next hop ARP is not resolved, all unknown unicast packets are handled based on the default L2 behavior. They are either dropped in hardware if "route-only" is configured, or VLAN-flooded in hardware.

NOTE
FGS Base-L3 does not allow "route-only" config.

If the default route is configured and its next hop ARP is resolved, unknown unicast packets are hardware-routed to the next hop, and not VLAN-flooded.

Once the FGS runs out of TCAM, it traps the unknown unicast packets to CPU for processing. If the default route is defined and its next hop ARP is resolved, the packets are routed by CPU. Otherwise, they follow the default L2 behavior. Because FGS Base L3 does not allow "route-only" configurations, these packets are VLAN-flooded.

The system does not change this CPU handling behavior back to hardware switching even when TCAMs again become available.

FastIron IPv4 models

You can configure the following Layer 3 system parameters on FastIron IPv4 models:
- Number of IP next hops and IP route entries
- Number of hardware logical interfaces (physical port and VLAN pairs)
- Number of multicast output interfaces (clients)

These parameters are automatically enabled with pre-defined default values. You can however, adjust these values to conform with your network topology.

To display the current settings for the Layer 3 system parameters, use the `show default value` command. Refer to “Displaying layer 3 system parameter limits” on page 716.

To modify the default settings for the Layer 3 system parameters, use the `system max` command at the Global CONFIG level of the CLI. Refer to “Modifying layer 3 system parameter limits on IPv4 models” on page 715.
Modifying layer 3 system parameter limits on IPv4 models

The Layer 3 system parameter limits share the same hardware memory space and, by default, consume all of the hardware memory allocated for these Layer 3 limits. Therefore, to increase the limit for one of the parameters, you must first decrease one or both of the other parameters’ limits. If you enter a value that exceeds the memory limit, the CLI will display an error message and the configuration will not take effect.

For example, if the network topology has a smaller number of IP next hops and routes, but has numerous multicast output interfaces, you could decrease the number of IP next hops and routes, then increase the number of multicast output interfaces. To do so, enter commands such as the following.

```
FastIron(config)# system-max hw-ip-next-hop 1024
FastIron(config)# system-max hw-ip-mcast-mll 2048
FastIron(config)# write mem
FastIron(config)# reload
```

Likewise, if the network topology does not have a large number of VLANs, and the VLANs configured on physical ports are not widely distributed, you could decrease the number of hardware logical interfaces, then increase the number of IP next hops and multicast output interfaces. To do so, enter commands such as the following.

```
FastIron(config)# system-max hw-logical-interface 2048
FastIron(config)# system-max hw-ip-next-hop 3072
FastIron(config)# system-max hw-ip-mcast-mll 2048
FastIron(config)# write mem
FastIron(config)# reload
```

Syntax: `system max hw-ip-next-hop <num>`
Syntax: `system max hw-logical-interface <num>`
Syntax: `system max hw-ip-mcast-mll <num>`

NOTE
The above commands are not supported on IPv6 devices. Refer to “FastIron IPv6 models” on page 716.

The `hw-ip-next-hop <num>` parameter specifies the maximum number of IP next hops and routes supported on the device. Note that the maximum number includes unicast next hops and multicast route entries. Enter a number from 100 to 6144. The default is 2048.

The `hw-logical-interface <num>` parameter specifies the number of hardware logical interface pairs (physical port and VLAN pairs) supported on the device. Enter a number from 0 to 4096. When this parameter is set to 4096 (the maximum), the limit is not enforced. If you enter a number less than 4096, the limit is the total number of physical port and VLAN pairs that are IP-enabled in the system. The default is 4096.

The `hw-ip-mcast-mll <num>` parameter specifies the maximum number of multicast output interfaces (clients) supported on the device. If a given source or group has clients in `n` tagged VLANs on the router, then `n + 1` mll entries are consumed for that source or group entry. Enter a number from 0 to 4096. The default is 1024.
FastIron IPv6 models

FastIron IPv6 models support the same Layer 3 system parameters that use hardware memory, as do FastIron IPv4 models. However, there are some configuration differences for IPv6 models versus IPv4 models. The differences are as follows:

- Number of IP next hops and IP route entries – 6144 maximum and default value. The system automatically calculates this value, based on the maximum number of VLANs supported system-wide.
- Number of hardware logical interfaces (physical port and VLAN pairs) – This value is the same as the maximum number of VLANs supported system-wide, so it is not configurable nor displayed in the `show default values` output in IPv6 models.
- Number of multicast output interfaces (clients) – 3072 maximum. This value is fixed in IPv6 models and cannot be modified. This system parameter occupies its own hardware memory space.

To display the current settings for the Layer 3 system parameters, use the `show default value` command. Refer to “Displaying layer 3 system parameter limits” on page 716.

Displaying layer 3 system parameter limits

To display the Layer 3 system parameter defaults, maximum values, and current values, enter the `show default value` command at any level of the CLI.

The following shows an example output on a FastIron X Series IPV4 device.

```
FastIron# show default value
sys log buffers:50         mac age time:300 sec       telnet sessions:5
ip arp age:10 min          bootp relay max hops:4     ip ttl:64 hops
ip addr per intf:24
igmp group memb.:140 sec   igmp query:60 sec
ospf dead:40 sec           ospf hello:10 sec          ospf retrans:5 sec
ospf transit delay:1 sec

System Parameters    Default    Maximum    Current
ip-arp               4000       64000      4000
ip-static-arp        512        1024       512
hw-ip-next-hop       2048       6144       2048
hw-logical-interface 4096       4096       4096
hw-ip-mcast-mll      1024       4096       1024
```

The following shows an example output on a FastIron X Series IPV6 device.
Configuring RIP

Platform Support:
- FastIron X Series devices running software release 02.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FGS and FLS devices running software release 05.0.00 and later
- FWS devices running software release 02.0.00 and later

NOTE
On TurboIron X Series devices, RIP version 2 is supported on devices running software release 04.2.00 and later.

RIP is disabled by default. If you want the Brocade device to use RIP, you must enable the protocol globally, then enable RIP on individual ports. When you enable RIP on a port, you also must specify the version (version 1 only, version 2 only, or version 1 compatible with version 2).

Optionally, you also can set or change the following parameters:
- Route redistribution – You can enable the software to redistribute static routes from the IP route table into RIP. Redistribution is disabled by default.
- Learning of default routes – The default is disabled.
- Loop prevention (split horizon or poison reverse) – The default is poison reverse.

Enabling RIP

RIP is disabled by default. To enable it, use the following CLI method. You must enable the protocol both globally and on the ports on which you want to use RIP.

```
FastIron# show default value
sys log buffers:50       mac age time:300 sec       telnet sessions:5
ip arp age:10 min        bootp relay max hops:4     ip ttl:64 hops
ip addr per intf:24
igmp group memb.:140 sec igmp query:60 sec
ospf dead:40 sec         ospf hello:10 sec         ospf retrans:5 sec
ospf transit delay:1 sec

System Parameters    Default    Maximum    Current
ip-arp               4000       64000      4000
ip-static-arp        512        1024       512

hw-ip-next-hop       6144       6144       6144
hw-ip-mcast-mll      1024       4096       1024
hw-traffic-condition  50        1024        50
```
To enable RIP globally, enter the following command.

```
FastIron(config)# router rip
```

Syntax: `[no] router rip`

To enable RIP on a port and specify the RIP version, enter commands such as the following.

```
FastIron(config-rip-router)# interface ethernet 1
FastIron(config-if-e1000-1)# ip rip v1-only
```

This command changes the CLI to the configuration level for port 1 and enables RIP version 1 on the interface. You must specify the version.

Syntax: `interface ethernet [<slotnum>/<portnum>]`

Syntax: `[no] ip rip v1-only | v1-compatible-v2 | v2-only`

Enabling redistribution of IP static routes into RIP

By default, the software does not redistribute the IP static routes in the route table into RIP. To configure redistribution, perform the following tasks:

- Configure redistribution filters (optional). You can configure filters to permit or deny redistribution for a route based on the route metric. You also can configure a filter to change the metric. You can configure up to 64 redistribution filters. The software uses the filters in ascending numerical order and immediately takes the action specified by the filter. Thus, if filter 1 denies redistribution of a given route, the software does not redistribute the route, regardless of whether a filter with a higher ID permits redistribution of that route.

NOTE
The default redistribution action is permit, even after you configure and apply a permit or deny filter. To deny redistribution of specific routes, you must configure a deny filter.

NOTE
The option to set the metric is not applicable to static routes.

- Enable redistribution.

NOTE
If you plan to configure redistribution filters, do not enable redistribution until you have configured the filters.

When you enable redistribution, all IP static routes are redistributed by default. If you want to deny certain routes from being redistributed into RIP, configure deny filters for those routes before you enable redistribution. You can configure up to 64 RIP redistribution filters. They are applied in ascending numerical order.

NOTE
The default redistribution action is still permit, even after you configure and apply redistribution filters to the port. If you want to tightly control redistribution, apply a filter to deny all routes as the last filter (filter ID 64), then apply filters with lower filter IDs to allow specific routes.

To configure a redistribution filter, enter a command such as the following.

```
FastIron(config-rip-router)# deny redistribute 1 static address 207.92.0.0 255.255.0.0
```
This command denies redistribution of all 207.92.x.x IP static routes.

Syntax:
\[no\] permit | deny redistribute \(<filter-num>\) static address \(<ip-addr>\) \(<ip-mask>\)
\[match-metric \(<value>\) | set-metric \(<value>\)\]

The \(<filter-num>\) specifies the redistribution filter ID. Specify a number from 1 – 64. The software uses the filters in ascending numerical order. Thus, if filter 1 denies a route from being redistributed, the software does not redistribute that route even if a filter with a higher ID permits redistribution of the route.

The address \(<ip-addr>\) \(<ip-mask>\) parameters apply redistribution to the specified network and subnet address. Use 0 to specify “any”. For example, “207.92.0.0 255.255.0.0” means “any 207.92.x.x subnet”. However, to specify any subnet (all subnets match the filter), enter “address 255.255.255.255 255.255.255.255”.

The match-metric \(<value>\) parameter applies redistribution to those routes with a specific metric value; possible values are from 1 – 15.

The set-metric \(<value>\) parameter sets the RIP metric value that will be applied to the routes imported into RIP.

NOTE
The set-metric parameter does not apply to static routes.

The following command denies redistribution of a 207.92.x.x IP static route only if the route metric is 5.

FastIron(config-rip-router)# deny redistribute 2 static address 207.92.0.0 255.255.0.0 match-metric 5

The following commands deny redistribution of all routes except routes for 10.10.10.x and 20.20.20.x.

FastIron(config-rip-router)# deny redistribute 64 static address 255.255.255.255 255.255.255.255
FastIron(config-rip-router)# permit redistribute 1 static address 10.10.10.0 255.255.255.0
FastIron(config-rip-router)# permit redistribute 2 static address 20.20.20.0 255.255.255.0

Enabling redistribution

After you configure redistribution parameters, you need to enable redistribution.

To enable RIP redistribution, enter the following command.

FastIron(config-rip-router)# redistribution

Syntax:
\[no\] redistribution

Enabling learning of default routes

By default, the software does not learn RIP default routes.

To enable learning of default RIP routes, enter commands such as the following.

FastIron(config)# interface ethernet 0/1/1
FastIron(config-if-e1000-1)# ip rip learn-default
Syntax: `interface ethernet [<stack-unit>]<slotnum>/]<portnum>`

Syntax: `[no] ip rip learn-default`

The `<stack-unit>` parameter is required on FGS and FLS devices, and on FGS-STK and FLS-STK devices running software release 05.0.00 and later.

The `<slotnum>`/ parameter applies to chassis devices only.

Changing the route loop prevention method

RIP can use the following methods to prevent routing loops:

- Split horizon – The Brocade device does not advertise a route on the same interface as the one on which it learned the route.
- Poison reverse – The Brocade device assigns a cost of 16 (“infinite” or “unreachable”) to a route before advertising it on the same interface as the one on which it learned the route. This is the default.

NOTE

These methods are in addition to RIP maximum valid route cost of 15.

To enable split horizon, enter commands such as the following.

```
FastIron(config)# interface ethernet 0/1/1
FastIron(config-if-e1000-1)# no ip rip poison-reverse
```

Syntax: `[no] ip rip poison-reverse`

Other layer 3 protocols

For information about other IP configuration commands in the Layer 2 with Base Layer 3 image that are not included in this chapter, refer to Chapter 30, “Configuring IP”.

For information about enabling or disabling Layer 3 routing protocols, refer to “Enabling or disabling routing protocols” on page 720. For complete configuration information about the routing protocols, refer to the other chapters in this book.

Enabling or disabling routing protocols

This section describes how to enable or disable routing protocols. For complete configuration information about the routing protocols, refer to the other chapters in this book.

FESX and FSX devices running full Layer 3 code support the following protocols:

- BGP4
- IGMP
- IP
- IP multicast (DVMRP, PIM-SM, PIM-DM)
- OSPF
- RIPV1 and V2
Enabling or disabling layer 2 switching

By default, Brocade Layer 3 Switches support Layer 2 switching. These devices switch the routing protocols that are not supported on the devices. If you want to disable Layer 2 switching, you can do so globally or on individual ports, depending on the version of software your device is running.

Configuration notes

- Make sure you really want to disable all Layer 2 switching operations before you use this option. Consult your reseller or Brocade for information.
- This feature is supported in the following configurations:
 - The FESX running software release 01.1.00 or prior, supports disabling Layer 2 switching on a global basis only. Starting in release 02.1.01, the FESX supports disabling Layer 2 switching on an individual interface as well as on a global basis.
 - The FSX running software release 02.2.00 and later supports disabling Layer 2 switching on an individual interface as well as on a global basis.
 - The TurboIron X Series devices running software release 04.2.00 and later supports disabling Layer 2 switching on an individual interface as well as on a global basis.

Command syntax

To globally disable Layer 2 switching on a Layer 3 Switch, enter commands such as the following.

```
FastIron(config)# route-only
FastIron(config)# exit
FastIron# write memory
FastIron# reload
```

To re-enable Layer 2 switching on a Layer 3 Switch, enter the following.

```
FastIron(config)# no route-only
FastIron(config)# exit
FastIron# write memory
FastIron# reload
```

Syntax: [no] route-only
Enabling or disabling layer 2 switching

To disable Layer 2 switching only on a specific interface, go to the Interface configuration level for that interface, then disable the feature. The following commands show how to disable Layer 2 switching on port 2.

```
FastIron(config)# interface ethernet 2
FastIron(config-if-e1000-2)# route-only
```

Syntax: `[no] route-only`

To re-enable Layer 2 switching, enter the command with "no", as in the following example.

```
FastIron(config-if-e1000-2)# no route-only
```

NOTE
For TurboIron, `route-only` will not disable Layer 2 switching on ports within a VLAN that has a VE configured.
Mirroring support by platform

The procedures in this chapter describe how to configure port mirroring on Brocade devices. Port mirroring is a method of monitoring network traffic that forwards a copy of each incoming or outgoing packet from one port on a network switch to another port where the packet can be analyzed. Port mirroring may be used as a diagnostic tool or debugging feature, especially for preventing attacks. Port mirroring can be managed locally or remotely.

Configure port mirroring by assigning a port from which to copy all packets, and a “mirror” port where the copies of the packets are sent (also known as the monitor port). A packet received on, or issued from, the first port is forwarded to the second port as well. Attach a protocol analyzer on the mirror port to monitor each segment separately. The analyzer captures and evaluates the data without affecting the client on the original port.

The mirror port may be a port on the same switch with an attached RMON probe, a port on a different switch in the same hub, or the switch processor.

Table 118 lists which Brocade devices support the mirroring features discussed in this chapter.

<table>
<thead>
<tr>
<th>Mirroring Feature</th>
<th>FESX</th>
<th>FSX</th>
<th>TIX</th>
<th>FGS, FWS, and FLS</th>
<th>FGS-STK and FLS-STK</th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Port Mirroring and Monitoring</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ACL-Based Inbound Mirroring</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MAC Filter-Based Mirroring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN-Based Mirroring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring port mirroring and monitoring

FastIron X Series devices support monitoring of both inbound and outbound traffic on individual ports (one mirror port per port region). FastIron GS and FLS, as well as Turbolron X Series devices support one mirror port per device. See the configuration notes in the next section for multi-stack mirroring for FGS-STK and FLS-STK, and FCX stacking devices.

To configure port monitoring, first specify the mirror port, then enable monitoring on the monitored port.

The mirror port is the port to which the monitored traffic is copied. Attach your protocol analyzer to the mirror port. The monitored port is the port whose traffic you want to monitor.
Configuration notes

Refer to the following rules when configuring port mirroring and monitoring:

- **Port monitoring and sFlow support:**
 - FastIron X Series devices support sFlow and inbound port monitoring together on the same device, however, these devices do not support port monitoring and sFlow together within the same port region. Refer to the section “About port regions” on page 361 for a list of valid port ranges on these devices.
 - FastIron GS and LS devices support sFlow and port monitoring together on the same port.
 - TurboIron X Series devices support sFlow and port monitoring together on the same port.
 - FCX devices support sFlow and port monitoring together on the same port.
 - If you configure both ACL mirroring and ACL based rate limiting on the same port, then all packets that match are mirrored, including the packets that exceed the rate limit.
 - Table 119 lists the number of mirror and monitor ports supported on the Brocade devices.

TABLE 119 Number of mirror and monitored ports supported

<table>
<thead>
<tr>
<th>Port type</th>
<th>Maximum number supported on...</th>
<th>FastIron GS and LS and FWS</th>
<th>FastIron X Series</th>
<th>TurboIron X Series</th>
<th>FGS-STK and FLS-STK</th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress mirror ports</td>
<td></td>
<td>1 mirror port</td>
<td>1 per port region</td>
<td>1</td>
<td>1 per port region (24 ports per region)</td>
<td>1 per port region (24 ports per region)</td>
</tr>
<tr>
<td>Egress mirror ports</td>
<td></td>
<td>1</td>
<td>1 per port region</td>
<td>1</td>
<td>1 per port region (24 ports per region)</td>
<td>1 per port region (24 ports per region)</td>
</tr>
<tr>
<td>Ingress monitored ports</td>
<td>no limit</td>
<td>no limit</td>
<td>no limit</td>
<td>no limit</td>
<td>no limit</td>
<td>no limit</td>
</tr>
<tr>
<td>Egress monitored ports</td>
<td>8</td>
<td>8</td>
<td>no limit</td>
<td>8</td>
<td>no limit</td>
<td>no limit</td>
</tr>
</tbody>
</table>

NOTE

FastIron X Series devices support multiple ingress and egress mirror ports. For 1 Gbps ports, ports in groups of 12 share one ingress mirror port and one egress mirror port. So ports 1 and 2 cannot have different mirror ports, but ports 1 and 13 can. Each 10 Gbps port can have one ingress mirror port and one egress mirror port.

NOTE

For devices other than the FastIron X Series, it is possible to configure more than 8 egress ports, although only the first 8 are operational. This is also true for mirrored VLANs - more than 8 can be configured, but only the first 8 are operational.

- You can configure a mirror port specifically as an ingress port, an egress port, or both.
- Mirror ports can run at any speed and are not related to the speed of the ingress or egress monitored ports.
- The same port cannot be both a monitored port and the mirror port.
- The same port can be monitored by one mirror port for ingress traffic and another mirror port for egress traffic.
- The mirror port cannot be a trunk port.
• The monitored port and its mirror port do not need to belong to the same port-based VLAN:
 • If the mirror port is in a different VLAN from the monitored port, the packets are tagged with the monitor port VLAN ID.
 • If the mirror port is in the same VLAN as the monitored port, the packets are tagged or untagged, depending on the mirror port configuration.

NOTE
FastIron GS and LS devices perform “as-is” mirroring. Mirrored packets are sent out of the mirror port in the VLAN tagged or untagged format in which they are received or sent on the monitor port. The VLAN tagged or untagged format is not changed.

• More than one monitored port can be assigned to the same mirror port.
• If the primary interface of a trunk is enabled for monitoring, the entire trunk will be monitored. You can also enable an individual trunk port for monitoring using the `config-trunk-ind` command.
• For stacked devices, if the ingress and egress analyzer ports are always network ports on the local device, each device may configure the ingress and egress analyzer port independently. However, if you need to mirror to a remote port, then only one ingress and one egress analyzer port are supported for the entire system.
• For ingress ACL mirroring, the previous ingress rule also applies. The analyzer port setting command `acl-mirror-port` must be specified for each port, even though the hardware only supports one port per device. This applies whether the analyzer port is on the local device or on a remote device. For example, when port mirroring is set to a remote device, any mirroring (ACL, MAC filter, or VLAN) enabled ports are globally set to a single analyzer port, as shown in the following example.

```
FCX648SHPOE Switch(config)# mirror ethernet 1/1/24
FCX648SHPOE Switch(config)# mirror ethernet 2/1/48
FCX648SHPOE Switch(config)# interface ethernet 1/1/1
FCX648SHPOE Switch(config)# interface ethernet 1/1/1)# monitor ethernet 2/1/48 both
```

The analyzer port (2/1/48) is set to all devices in the system

```
FCX648SHPOE Switch# interface ethernet 1/1/2
FCX648SHPOE Switch(interface ethernet 1/1/2)# ip access-group 101 in
FCX658SHPOE Switch# exit
FCX648SHPOE Switch# interface ethernet 1/1/1
FCX648SHPOE Switch(interface ethernet 1/1/1)# acl-mirror-port ethernet 2/1/48
```

The previous command is required even though the analyzer port is already set globally by the port mirroring command.

```
FCX648SHPOE Switch#interface ethernet 1/1/3
FCX648SHPOE Switch(interface ethernet 1/1/3)# ip access-group 101
FCX648SHPOE Switch(interface ethernet 1/1/3)# acl-mirror-port ethernet 2/1/48
FCX648SHPOE Switch(interface ethernet 1/1/3)# permit ip any any mirror
FCX648SHPOE Switch(interface ethernet 1/1/3)# ip access-group 102
FCX648SHPOE Switch(interface ethernet 1/1/3)# deny ip any any log
```

Monitoring a port

This section describes how to configure port mirroring and monitoring. To configure port monitoring on an individual port on a Brocade device, enter commands similar to the following.
Configuring port mirroring and monitoring

FastIron(config)#mirror-port ethernet 1/2/4
FastIron(config)#interface ethernet 1/2/11
FastIron(config-if-e1000-11)#monitor ethernet 1/2/4 both

Traffic on port e 1/2/11 will be monitored, and the monitored traffic will be copied to port e 1/2/4, the mirror port.

Syntax: [no] mirror-port ethernet [<stack-unit>/]<slotnum>/]<portnum> [input | output]
Syntax: [no] monitor ethernet [<stack-unit>/]<slotnum>/]<portnum> both | in | out

The <stack-unit> parameter is required on FastIron GS devices running software release 02.5.00 or later, and for FGS-STK and FLS-STK devices running software release 05.0.00 and later and acting as stack units in an IronStack.

The <slotnum> parameter is required on chassis devices and on FastIron GS devices running software release 02.5.00 or later.

The <portnum> parameter for mirror-port ethernet specifies the port to which the monitored traffic will be copied. The <portnum> parameter for monitor ethernet specifies the port on which traffic will be monitored.

The input and output parameters configure the mirror port exclusively for ingress or egress traffic. If you do not specify one, both types of traffic apply.

The both, in, and out parameters specify the traffic direction you want to monitor on the mirror port. There is no default.

To display the port monitoring configuration, enter the show monitor and show mirror commands.

Monitoring an individual trunk port

You can monitor the traffic on an individual port of a static trunk group. Monitoring an individual port of an LACP trunk group on FastIron X Series devices is supported starting in release FSX 04.3.00. Note that monitoring an LACP trunk port is not supported on TurboIron X Series devices.

By default, when you monitor the primary port in a trunk group, aggregated traffic for all the ports in the trunk group is copied to the mirror port. You can configure the device to monitor individual ports in a trunk group. You can monitor the primary port or a secondary port individually.

To configure port monitoring on an individual port in a trunk group, enter commands such as the following.

FastIron(config)#mirror-port ethernet 2/6
FastIron(config)#trunk e 2/2 to 2/5
FastIron(config-trunk-2/2-2/5)#config-trunk-ind
FastIron(config-trunk-2/2-2/5)#monitor ethernet 2/4 ethernet 2/6 in

Traffic on trunk port e 2/4 will be monitored, and the monitored traffic will be copied to port e 2/6, the mirror port.

Syntax: [no] mirror-port ethernet [<stack-unit>/]<slotnum>/]<portnum> [input | output]
Syntax: [no] config-trunk-ind

Syntect: [no] monitor ethernet [<slotnum>/]<portnum> both | in | out

The <stack-unit> parameter is required on FastIron GS devices running software release 02.5.00 or later, and for FGS-STK and FLS-STK devices running software release 05.0.00 and later and acting as stack units in an IronStack.
The `<slotnum>` parameter is required on chassis devices and on FastIron GS devices running software release 02.5.00 or later.

The `<portnum>` parameter for `mirror-port ethernet` specifies the port to which the monitored traffic will be copied. The `<portnum>` parameter for `monitor ethernet` specifies the port on which traffic will be monitored.

The `input` or `output` parameters configure the mirror port exclusively for ingress or egress traffic. If you do not specify one, both types of traffic apply.

The `config-trunk-ind` command enables configuration of individual ports in the trunk group. You enter the `config-trunk-ind` command only once in a trunk group. After you enter the command, all applicable port configuration commands apply to individual ports only.

NOTE
If you enter `no config-trunk-ind`, all port configuration commands are removed from the individual ports and the configuration of the primary port is applied to all the ports. Also, once you enter the `no config-trunk-ind` command, the enable, disable, and monitor commands are valid only on the primary port and apply to the entire trunk group.

The `both`, `in`, and `out` parameters specify the traffic direction you want to monitor on the mirror port. There is no default.

To display the port monitoring configuration, enter the `show monitor` and `show mirror` commands.

Configuring mirroring on an IronStack

You can configure mirroring on a Brocade IronStack. An IronStack consists of up to 8 FGS-STK or FLS-STK devices. The stack operates as a chassis. The following examples show how to configure mirroring for ports that are on different members of a stack, and for ports that are on the same stack member as the mirror port.

Configuration notes

The following mirroring configuration information applies to FGS-STK and FLS-STK devices connected in an IronStack topology:

- The input or output mirroring port can be on different ports
- An IronStack can have one mirroring port that monitors multiple ports, but cannot have multiple mirror ports for one monitored port.
- If the mirror port and the monitored ports are on different stack units, only one active mirror port is allowed for the entire IronStack.
- If the mirror port and the monitored ports are on the same port region, multiple active mirror ports are allowed for the entire IronStack. FGS-STK and FLS-STK devices support 24 ports per port region.
- The maximum number of monitored VLANs on an IronStack is 8.
Example 1. Configuring mirroring for ports on different members in an IronStack

In this example, although 2 ports are configured as active ports, only one active mirror port (port 1/1/24) is allowed for the entire stack since the mirror ports and the monitored ports are on different stack members.

```
FLS624 Switch(config)#mirror-port ethernet 1/1/24
FLS624 Switch(config)#mirror-port ethernet 2/1/24
FLS624 Switch(config)#interface ethernet 1/1/1
FLS624 Switch(config-if-e1000-1/1/1)#monitor ethernet 1/1/24 both
FLS624 Switch(config)#interface ethernet 2/1/1
FLS624 Switch(config-if-e1000-2/1/1)#monitor ethernet 1/1/24 both
FLS624 Switch(config)#int ethernet 4/1/1
FLS624 Switch(config-if-e1000-4/1/1)#monitor ethernet 1/1/24 both
```

Example 2. Configuring mirroring for ports on the same stack member in an IronStack

```
FLS624 Switch(config)#mirror-port ethernet 1/1/24
FLS624 Switch(config)#mirror-port ethernet 2/1/24
FLS624 Switch(config)#mirror-port ethernet 3/1/24
FLS624 Switch(config)#mirror-port ethernet 4/1/24
FLS624 Switch(config)#interface ethernet 1/1/1
FLS624 Switch(config-if-e1000-1/1/1)#monitor ethernet 1/1/24 both
FLS624 Switch(config)#interface ethernet 2/1/1
FLS624 Switch(config-if-e1000-2/1/1)#monitor ethernet 2/1/24 both
FLS624 Switch(config)#int ethernet 4/1/1
FLS624 Switch(config-if-e1000-4/1/1)#monitor ethernet 4/1/24 both
```

ACL-based inbound mirroring

This section describes how to configure ACL-based inbound mirroring for FastIron devices.

Creating an ACL-based inbound mirror clause for FGS, FGS-STK, FLS, FLS-STK, and FWS devices

Unlike a mirror-port per device or port region on FESX and SuperX devices, FGS, FLS, FGS-STK, FLS-STK, and FWS devices only support one system-wide ingress and one system-wide egress port per system. In other words, these devices do not support the concept of an ACL-mirror-port.

For these devices, as soon as an ACL with a mirror clause is applied to a port, the traffic matching the flow is mirrored (both deny, which is not supported in FESX, and permit).

The following example shows how to configure an ACL-based inbound mirror clause for FGS, FLS, FGS-STK, FLS-STK, and FWS devices.

1. Configure the mirror port.

   ```
   FGS624P Switch(config)#mirror-port ethernet 1/1/2
   System-wide ingress mirror port set to port 1/1/2.
   System-wide egress mirror port set to port 1/1/2.
   ```

2. Configure the ACL inbound mirror clause.

   ```
   FGS624P Switch(config)#access-list 101 permit ip any any mirror
   ```
At this point not all IP traffic will be mirrored to port 1/1/2, since the ACL has not yet been applied to any port.

3. Apply the ACL inbound clause to the monitor port.

 FGS624P Switch(config)#int e 1/1/5
 FGS624P Switch(config-if-e1000-1/1/5)#ip access-group 101 in

To display ACL mirror settings, enter the `show access-list all` command.

 FGS624P Switch#show access-list all
 Extended IP access list 101
 permit ip any any mirror

The configuration process is now complete.

Creating an ACL-based inbound mirror clause for TurboIron X Series devices

The following example shows how to configure an ACL-based inbound mirror clause for TurboIron X Series devices.

1. Configure the mirror port.

 TurboIron 24X(config)#mirror-port ethernet 2

2. Configure the ACL inbound mirror clause.

 TurboIron 24X(config)#access-list 101 permit ip any any mirror

 At this point not all IP traffic will be mirrored to port 2, since the ACL has not yet been applied to any port.

3. Apply the ACL inbound clause to the monitor port.

 TurboIron 24X(config)#int e 5
 TurboIron 24X(config-if-e1000-5)#ip access-group 101 in

4. Configure the monitor port to use the mirror port.

 TurboIron 24X(config-if-e1000-5)#acl-mirror-port ethernet 2

To display ACL mirror settings, enter the `show access-list all` command.

 TurboIron 24X#show access-list all
 Extended IP access list 101
 permit ip any any mirror

Creating an ACL-based inbound mirror clause for FastIron X Series devices

The `mirror` keyword has been added for inclusion in ACL clauses to direct traffic that meets the clause to be sent to mirror another port. In the following example, the ACL is used to direct traffic to a mirror port.

 FastIron(config)#access-list 101 permit ip any any mirror
ACL-based inbound mirroring

The `mirror` parameter directs selected traffic to the mirrored port. Traffic to be mirrored can only be selected using the permit clause and is only supported on Layer-3 ACLs for FastIron X Series devices. Deny traffic is dropped and not mirrored.

Specifying the destination mirror port

You can specify physical ports or a trunk to mirror traffic from. If you complete the rest of the configuration but do not specify a destination mirror port, the port-mirroring ACL will be non-operational. This can be useful if you want to be able to mirror traffic by a set criteria on-demand. With this configuration, you just configure a destination mirror port whenever you want the port-mirroring ACL to become operational.

The following sections describe how to specify a destination port for a port or a trunk as well as the special considerations required when mirroring traffic from a virtual interface.

Specifying the destination mirror port for physical ports

When you want traffic that has been selected by ACL-based Inbound Mirroring to be mirrored, you must configure a destination mirror port. This configuration is performed at the Interface Configuration of the port whose traffic you are mirroring. The destination port must be the same for all ports in a port region as described in “Ports from a port region must be mirrored to the same destination mirror port” on page 730.

In the following example, ACL mirroring traffic from port 1/1 is mirrored to port 1/3.

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e10000-1/1)#ACL-mirror-port ethernet 1/3
```

Syntax: `[no] ACL-mirror-port ethernet [<stack-unit>]/[<slotnum>]/<portnum>

The `[/<stack-unit>]/[<slotnum>]/<portnum>` variable specifies port to which ACL-mirror traffic from the configured interface will be mirrored.

The `<stack-unit>` parameter is required on FastIron GS and LS devices running software release 02.5.00 or later, and on FGS-STK and FLS-STK devices running software release 05.00 and later.

The `<slotnum>` parameter is required on chassis devices and on FastIron GS devices running software release 02.5.00 or later.

The `<portnum>` parameter specifies the mirror port to which the monitored port traffic will be copied.

Ports from a port region must be mirrored to the same destination mirror port

Port regions as described in “About port regions” on page 361 are important when defining a destination mirror port. This is because all traffic mirrored from any single port in a port region will be mirrored to the same destination mirror port as traffic mirrored from any other port in the same port region. For example, ports 1/1 to 1/12 are in the same port region. If you configure ports 1/1 and 1/2 to mirror their traffic, they should use the same destination mirror port as shown in the following configuration.

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e10000-1/1)#ACL-mirror-port ethernet 2/3
FastIron(config)#interface ethernet 1/2
FastIron(config-if-e10000-1/2)#ACL-mirror-port ethernet 2/3
```

If ports within the same port region are mirrored to different destination ports, an error message will be generated as shown in the following example, and the configuration will be disallowed.
ACL-based inbound mirroring

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e10000-1/1)#ACL-mirror-port ethernet 4/3
FastIron(config)#interface ethernet 1/2
FastIron(config-if-e10000-1/2)#ACL-mirror-port ethernet 4/7
```

Error - Inbound Mirror port 4/3 already configured for port region 1/1 - 1/12

When a destination port is configured for any port within a port region, traffic from any ACL with a mirroring clause assigned to any port in that port region will be mirrored to that destination port. This will occur even if a destination port is not explicitly configured for the port with the ACL configured. In the following example, an ACL with a mirroring clause (101) is applied to a port (1/1). Another port in the same region (1/3) has a destination port set (4/3). In this example, traffic generated from operation of ACL 101 is mirrored to port 4/3 even though a destination port has not explicitly been defined for traffic from port 1/1.

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e10000-1/1)#ip access-group 101 in
FastIron(config)#interface ethernet 1/3
FastIron(config-if-e10000-1/3)#ACL-mirror-port ethernet 4/3
```

NOTE

If a destination mirror port is not configured for any ports within the port region where the port-mirroring ACL is configured, the ACL will not mirror the traffic but the ACL will be applied to traffic on the port.

Specifying the destination mirror port for trunk ports

You can mirror the traffic that has been selected by ACL-based Inbound Mirroring from a trunk by configuring a destination port for the primary port within the trunk configuration as shown.

```
FastIron(config)#trunk ethernet 1/1 to 1/4
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e10000-1/1)#ACL-mirror-port ethernet 1/8
```

Using this configuration, all trunk traffic will be mirrored to port 1/8.

Limitations when configuring ACL-based mirroring with trunks

The `config-trunk-ind` option as described in "Disabling or re-enabling a trunk port" on page 562 cannot operate with ACL-Based Mirroring as described in the following:

- If a trunk is configured with the `config-trunk-ind` option, ACL-Based Mirroring will not be allowed.
- If the `config-trunk-ind` option is added to a trunk, any ports that are configured for ACL-based Mirroring will have monitoring removed and the following message will be displayed.

Trunk port monitoring, if any, has been removed.

If an individual port is configured for ACL-Based Mirroring, you cannot add it to a trunk. If you try to add a port that is configured for ACL-Based Mirroring to a trunk, the following message appears.

Note - ACL-mirror-port configuration is removed from port 2 in new trunk.

NOTE

If you want to add a port configured for ACL-Based Mirroring to a trunk, you must first remove the `ACL-mirror-port` from the port configuration. You can then add the port to a trunk that can then be configured for ACL-Based Trunk Mirroring.
ACL-based inbound mirroring

Behavior of ACL-based mirroring when deleting trunks

If you delete a trunk that has ACL-Based Mirroring configured, the ACL-Based Mirroring configuration will be configured on the individual ports that made up the trunk.

For example, if a trunk is configured as shown in the following example and is then deleted from the configuration as shown, each of the ports that previously were contained in the trunk will be configured for ACL-Based Mirroring.

```
FastIron(config)#trunk ethernet 4/1 to 4/2
FastIron(config)#trunk deploy
FastIron(config)#interface ethernet 4/1
FastIron(config-if-e10000)#ACL-mirror-port ethernet 5/3
```

To delete the trunk, enter the following command.

```
FastIron(config)#no trunk ethernet 4/1 to 4/2
```

Configuration for ACL-Based Mirroring on ports 4/1 and 4/2 that results from the trunk being deleted.

```
interface ethernet 4/1
  ACL-mirror-port ethernet 5/3
interface ethernet 4/2
  ACL-mirror-port ethernet 5/3
```

Configuring ACL-based mirroring for ACLs bound to virtual interfaces

For configurations that have an ACL configured for ACL-Based Mirroring bound to a virtual interface, you must configure the `ACL-mirror-port` command on a physical port that is a member of the same VLAN as the virtual interface. Additionally, only traffic that arrives at ports that belong to the same port group as the physical port where the `ACL-mirror-port` command is configured will be mirrored. This follows the same rules described in “Ports from a port region must be mirrored to the same destination mirror port” on page 730.

For example, in the following configuration ports 4/1, 4/2 and 5/2 are in VLAN 10 with ve 10. Ports 4/1 and 4/2 belong to the same port group while port 5/3 belongs to another port group.

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)#tagged ethernet 4/1 to 4/2
FastIron(config-vlan-10)#tagged ethernet 5/3
FastIron(config-vlan-10)#router-interface ve 10

FastIron(config)#interface ethernet 4/1
FastIron(config-if-e10000-4/1)#ACL-mirror-port ethernet 5/1
FastIron(config)#interface ve 10
FastIron(config-vif-10)#ip address 10.10.10.254/24
FastIron(config-vif-10)#ip access-group 102 in
FastIron(config)#access-list 102 permit ip any any mirror
```

In this configuration, the `ACL-mirror-port` command is configured on port 4/1 which is a member of ve 10. Because of this, ACL-Based Mirroring will only apply to VLAN 10 traffic that arrives on ports 4/1 and 4/2. It will not apply to VLAN 10 traffic that arrives on port 5/3 because that port belongs to a different port group than ports 4/1 and 4/2. This is because if you apply ACL-Based Mirroring on an entire VE, and enable mirroring in only one port region, traffic that is in the same VE but on a port in a different port region will not be mirrored.

To make the configuration apply ACL-Based Mirroring to VLAN 10 traffic arriving on port 5/3, you must add the following command to the configuration.
MAC filter-based mirroring

This feature allows traffic entering an ingress port to be monitored from a mirror port connected to a data analyzer, based on specific source and destination MAC addresses. This feature supports mirroring of inbound traffic only. Outbound mirroring is not supported.

MAC-Filter-Based Mirroring allows a user to specify a particular stream of data for mirroring using a filter. This eliminates the need to analyze all incoming data to the monitored port. To configure MAC-Filter-Based Mirroring, the user must perform three steps:

• Define a mirror port
• Create a MAC filter with a mirroring clause
• Apply the MAC filter to an interface

The following sections describe these steps.

Configuring MAC filter-based mirroring on FGS, FLS, FWS, FGS-STK, and FLS-STK devices

1. Define a mirror port

To activate mirroring on a port, use the mirror command in the global configuration mode.

Example

FastIron(config)#mirror e 0/1/14

NOTE
If there is no input mirror port configured, MAC-Filter Based Mirroring does not take effect. It remains in the configuration, but is not activated.
FGS, FWS, and FLS devices support one ingress mirror and one egress mirror per system. These ports are shared by all mirroring features - Port-Based Mirroring, VLAN-Based Mirroring, ACL-Based Mirroring and MAC-Based Mirroring.

NOTE
Port-Based Mirroring, VLAN Mirroring, and MAC-Filter-Based Mirroring can be enabled on a port at the same time. In this case, the preference order is Port, VLAN, and MAC-Filter.

2. **Create a MAC filter with a mirroring clause**

The keyword `mirror` is added to MAC filter clauses to direct desired traffic to the mirror port. In the following examples, the MAC filter directs traffic to a mirror port.

```
FastIron(config)#mac filter 1 permit 0000.1111.2222.ffff.ffff.ffff
0000.2222.3333.ffff.ffff.fff mirror
```

In this example, any flow matching the SA (source address) 0000.1111.2222 and the DA (destination address) 0000.2222.3333 will be mirrored. Other flows will not be mirrored.

3. **Apply the MAC filter to an interface**

Apply the MAC filter to an interface using the `mac-filter-group` command, as shown.

```
FastIron(config)#interface ethernet 0/1/1
FastIron(config-if-e10000-0/1/1)#mac filter-group 1
```

NOTE
For the FLS-STK devices, an ACL-mirror-port is required.

Configuring MAC filter-based mirroring on TurboIron X Series devices

The following example shows how to configure MAC filter-based mirroring on TurboIron X Series devices.

1. **Configure the mirror port.**

 TurboIron 24X(config)#mirror-port ethernet 2

2. **Configure the MAC filter inbound mirror clause.**

 TurboIron 24X(config)#mac filter 1 permit 0000.0000.0010 ffff.ffff.ffff any mirror

3. **Apply the MAC filter inbound mirror clause to the monitor port.**

 TurboIron 24X(config)#int e 5
 TurboIron 24X(config-if-e10000-5)#mac filter-group 1

4. **Configure the monitor port to use the mirror port.**

 TurboIron 24X(config-if-e10000-5)#acl-mirror-port ethernet 2

To display ACL mirror settings, enter the `show access-list all` command.
VLAN-based mirroring

Platform Support:
- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later

The VLAN-Based Mirroring feature allows users to monitor all incoming traffic in one or more VLANs by sending a mirror image of that traffic to a configured mirror port. This feature meets the requirements of CALEA (Communications Assistance for Law Enforcement Act of 1994).

NOTE
The maximum number of monitored VLANs for FGS-STK and FLS-STK devices is 8.

Configuring VLAN-based mirroring

Configure this feature using the `monitor` command, in VLAN configuration mode.

FastIron(config-VLAN-20)#monitor

Syntax: `[no] monitor

Example
To enable mirroring on VLANs 10 and 20, to mirror port e 0/1/21, enter the following commands.

FastIron(config)#mirror-port ethernet 1/1/21 input
FastIron(config)#vlan 10
FastIron(config-VLAN-10)#monitor ethernet 1/1/21
FastIron(config)#vlan 20
FastIron(config-VLAN-20)#monitor ethernet 1/1/21
FastIron(config-VLAN-20)#end

NOTE
For FGS-STK and FLS-STK devices, since it is possible to have multiple mirror ports, monitor ports must specify which mirror port they are monitoring.

To disable mirroring on VLAN 20, enter the following commands.

FastIron(config)#vlan 20
FastIron(config-VLAN-20)#no monitor
FastIron(config-VLAN-20)#end

Displaying VLAN mirroring status

The `show vlan` command displays the VLAN mirroring status.

FastIron#show vlans
Total PORT-VLAN entries: 4
Maximum PORT-VLAN entries: 4060
VLAN-based mirroring

Legend: [Stk=Stack-Unit, S=Slot]

<table>
<thead>
<tr>
<th>PORT-VLAN 1, Name DEFAULT-VLAN, Priority level 0, Spanning tree On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untagged Ports: (Stk0/S1) 3 4 5 6 7 8 9 10 11 12 13 14</td>
</tr>
<tr>
<td>Untagged Ports: (Stk0/S1) 15 16 17 18 19 20 21 22 23 24 25 26</td>
</tr>
<tr>
<td>Untagged Ports: (Stk0/S1) 27 28 29 30 31 32 33 34 35 36 37 38</td>
</tr>
<tr>
<td>Untagged Ports: (Stk0/S1) 39 40 41 42 43 44 45 46 47 48</td>
</tr>
<tr>
<td>Untagged Ports: (Stk0/S2) 1 2</td>
</tr>
<tr>
<td>Tagged Ports: None</td>
</tr>
<tr>
<td>Uplink Ports: None</td>
</tr>
<tr>
<td>DualMode Ports: None</td>
</tr>
<tr>
<td>Mac-Vlan Ports: None</td>
</tr>
</tbody>
</table>

Monitoring: Disabled

<table>
<thead>
<tr>
<th>PORT-VLAN 10, Name [None], Priority level 10, Spanning tree On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untagged Ports: (Stk0/S1) 1</td>
</tr>
<tr>
<td>Tagged Ports: None</td>
</tr>
<tr>
<td>Uplink Ports: None</td>
</tr>
<tr>
<td>DualMode Ports: None</td>
</tr>
<tr>
<td>Mac-Vlan Ports: None</td>
</tr>
</tbody>
</table>

Monitoring: Enabled

<table>
<thead>
<tr>
<th>PORT-VLAN 20, Name [None], Priority level 10, Spanning tree On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untagged Ports: (Stk0/S1) 2</td>
</tr>
<tr>
<td>Tagged Ports: None</td>
</tr>
<tr>
<td>Uplink Ports: None</td>
</tr>
<tr>
<td>DualMode Ports: None</td>
</tr>
<tr>
<td>Mac-Vlan Ports: None</td>
</tr>
</tbody>
</table>

Monitoring: Disabled

Configuration notes

The following rules apply to VLAN-Based Mirroring configurations.

1. A VLAN must have at least one port member configured before “monitor” can be configured.

2. Multiple VLANs can have monitor enabled at the same time, and the maximum number of monitor-configured VLANs is 8.

3. FGS, FWS, and FLS and FGS-STK and FLS-STK devices support one ingress and one egress mirror per system. These mirror ports are shared by all mirroring features; Port-Based Mirroring, VLAN-Based Mirroring, ACL-Based Mirroring, and MAC-Filter-Based Mirroring.

4. The mirror port is subject to the same scheduling and bandwidth management as the other ports in the system. If the amount of traffic being sent to the mirror port exceeds the available bandwidth, some of that traffic may be dropped.

5. All incoming traffic (tagged and untagged) in the VLAN is mirrored. Mirroring is “as-is”, and is not affected by the configuration of the mirror port itself. Incoming tagged traffic is sent out tagged and incoming untagged traffic is sent out untagged, regardless of which VLANs the mirror port belongs to, and whether the mirror port is tagged or untagged.

This feature is supported on Layer 2 and Layer 3 images.
Classification

Quality of Service (QoS) features are used to prioritize the use of bandwidth in a switch. When QoS features are enabled, traffic is classified as it arrives at the switch, and processed through on the basis of configured priorities. Traffic can be dropped, prioritized for guaranteed delivery, or subject to limited delivery options as configured by a number of different mechanisms.

This chapter describes how QoS is implemented and configured in FastIron and TurboIron devices. Classification is the process of selecting packets on which to perform QoS, reading the QoS information and assigning a priority to the packets. The classification process assigns a priority to packets as they enter the switch. These priorities can be determined on the basis of information contained within the packet or assigned to the packet as it arrives at the switch. Once a packet or traffic flow is classified, it is mapped to a forwarding priority queue.

Packets on Brocade devices are classified in up to eight traffic classes with values between 0 and 7. Packets with higher priority classifications are given a precedence for forwarding.

Processing of classified traffic

The trust level in effect on an interface determines the type of QoS information the device uses for performing QoS. The Brocade device establishes the trust level based on the configuration of various features and if the traffic is switched or routed. The trust level can be one of the following:

- Ingress port default priority
- Static MAC address
- Layer 2 Class of Service (CoS) value – This is the 802.1p priority value in the Ethernet frame. It can be a value from 0 – 7. The 802.1p priority is also called the Class of Service.
- Layer 3 Differentiated Service codepoint (DSCP) – This is the value in the six most significant bits of the IP packet header 8-bit DSCP field. It can be a value from 0 – 63. These values are described in RFCs 2472 and 2475. The DSCP value is sometimes called the DiffServ value. The device automatically maps a packet's DSCP value to a hardware forwarding queue. Refer to “Viewing QoS settings” on page 752”.
- ACL keyword – An ACL can also prioritize traffic and mark it before sending it along to the next hop. This is described in the ACL chapter in the section “QoS options for IP ACLs” on page 663.

Given the variety of different criteria, there are multiple possibilities for traffic classification within a stream of network traffic. For this reason, the priority of packets must be resolved based on which criteria takes precedence. Precedence follows the scheme illustrated in Figure 106.
Determining the trust level of a packet

Figure 106 illustrates how the Brocade device determines the trust level of a packet.

FIGURE 106 Determining a packet trust level

1. Packet received on ingress port
2. Does the packet match an ACL that defines a priority? Yes/No
 - Yes: Trust the DSCP-CoS-mapping or the DSCP-marking
 - No: Does the port have Trust DSCP enable? Yes/No
 - Yes: Trust the DSCP/ToS value
 - No: Is the packet tagged? Yes/No
 - Yes: Trust the 802.1p CoS value
 - No: Does the MAC address match a static entry? Yes/No
 - Yes: Trust the priority of the static MAC entry
 - No: Does the port have a default priority? Yes/No
 - Yes: Trust the port’s default priority
 - No: Use the default priority of 0
As shown in the figure, the first criteria considered is whether the packet matches on an ACL that defines a priority. If this is not the case and the packet is tagged, the packet is classified with the 802.1p CoS value. If neither of these are true, the packet is next classified based on the static MAC address, ingress port default priority, or the default priority of zero (0).

Once a packet is classified by one of the procedures mentioned, it is mapped to an internal forwarding queue. There are eight queues designated as 0 to 7. The internal forwarding priority maps to one of these eight queues as shown in Table 120 through Table 123. The mapping between the internal priority and the forwarding queue cannot be changed.

Table 120 through Table 123 show the default QoS mappings that are used if the trust level for CoS or DSCP is enabled.

TABLE 120 Default QoS mappings, columns 0 to 15

<table>
<thead>
<tr>
<th>DSCP value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>802.1p (COS) Value</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Internal Forwarding Priority</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Forwarding Queue</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 121 Default QoS mappings, columns 16 to 31

<table>
<thead>
<tr>
<th>DSCP value</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>802.1p (COS) Value</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Internal Forwarding Priority</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Forwarding Queue</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE 122 Default QoS mappings, columns 32 to 47

<table>
<thead>
<tr>
<th>DSCP value</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>802.1p (COS) Value</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Internal Forwarding Priority</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Forwarding Queue</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Mapping between DSCP value and Forwarding Queue cannot be changed. However, mapping between DSCP values and the other properties can be changed as follows:

- **DSCP to internal forwarding priority mapping** – You can change the mapping between the DSCP value and the Internal Forwarding priority value from the default values shown in Table 120 through Table 123. This mapping is used for COS marking and determining the internal priority when the trust level is DSCP. Refer to “Changing the DSCP –> internal forwarding priority mappings” on page 746.

- **Internal forwarding priority to forwarding queue** – You can reassign an internal forwarding priority to a different hardware forwarding queue. Refer to “Changing the internal forwarding priority –> hardware forwarding queue mappings” on page 747.

QoS for Brocade stackable devices

Brocade FGS-STK and FLS-STK devices support QoS. Units in a stack communicate the stack topology information and other proprietary control information through the stacking links. For more information about stacking links and IronStack technology, refer to Chapter 5, “Brocade Stackable Devices”.

In addition to control information, the stacking links also carry user network data packets. In an IronStack topology, the priority of stacking-specific control packets is elevated above that of data path packets, preventing loss of control packets, and timed retries that affect performance. This prioritization also prevents stack topology changes that may occur if enough stack topology information packets are lost.

IronStack technology reserves one QoS profile to provide a higher priority for stack topology and control traffic.

Stacking QoS profile restrictions

In a stacking topology, since CoS level 7 is reserved for stacking, quality profiles for QP7 cannot be configured. If an attempt is made to configure a profile for Q7, the system ignores the configuration.

NOTE

This applies only when the device is operating in stacking mode. It does not apply to standalone devices.
QoS behavior for trusting layer 2 (802.1p) in an IronStack

By default, layer 2 Trust is turned on. Since priority 7 is reserved for stacking control packets, any ingress data traffic with priority 7 is mapped to internal hardware queue 6. All other priorities are mapped to their corresponding queues.

QoS behavior for trusting layer 3 (DSCP) in an IronStack

When trust dscp is enabled, packets arriving with DSCP values 56 to 63 are mapped to internal hardware queue 6. All other DSCP values are mapped to their corresponding internal hardware queues.

QoS behavior on port priority and VLAN priority in an IronStack

Port Priority and VLAN Priority has a higher precedence that the 802.1p priority examination. If Port Priority is set to 7, all incoming traffic is mapped to internal hardware queue 6.

When stacking is not enabled on a device, all priorities are mapped to their corresponding queues without restrictions.

QoS behavior for 802.1p marking in an IronStack

By default in stacking mode, 802.1p marking is not enabled. Outgoing tagged traffic is not marked with 802.1p in the VLAN tag based on the internal hardware queue into which ingress traffic was classified.

When stacking is disabled on a device, outgoing traffic is marked with 802.1p based on the internal hardware queue.

QoS queues

Brocade devices support the eight QoS queues (qosp0 – qosp7) listed in Table 124.

<table>
<thead>
<tr>
<th>QoS Priority Level</th>
<th>QoS Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>qosp0 (lowest priority queue)</td>
</tr>
<tr>
<td>1</td>
<td>qosp1</td>
</tr>
<tr>
<td>2</td>
<td>qosp2</td>
</tr>
<tr>
<td>3</td>
<td>qosp3</td>
</tr>
<tr>
<td>4</td>
<td>qosp4</td>
</tr>
<tr>
<td>5</td>
<td>qosp5</td>
</tr>
<tr>
<td>6</td>
<td>qosp6</td>
</tr>
<tr>
<td>7</td>
<td>qosp7 (highest priority queue)</td>
</tr>
</tbody>
</table>
The queue names listed above are the default names. If desired, you can rename the queues as instructed in "Renaming the queues" on page 749.

Packets are classified and assigned to specific queues based on the criteria shown in Figure 106.

Assigning QoS priorities to traffic

By default, all traffic is in the best-effort queue (qosp0) and is honored on tagged ports on all FastIron and TurboIron switches. You can assign traffic to a higher queue based on the following:

- Incoming port (sometimes called the ingress port)
- Static MAC entry

The following sections describe how to change the priority for each of the items listed above.

Although it is possible for a packet to qualify for an adjusted QoS priority based on more than one of the criteria listed in the section above, the system always gives a packet the highest priority for which it qualifies. Thus, if a packet is entitled to the premium queue because of its IP source and destination addresses, but is entitled only to the high queue because of its incoming port, the system places the packet in the premium queue on the outgoing port.

When you apply a QoS priority to one of the items listed above, you specify a number from 0 – 7. The priority number specifies the IEEE 802.1 equivalent to one of the eight QoS queues on Brocade devices. The numbers correspond to the queues as shown in Table 120.

Changing a port priority

To change the QoS priority of port 1 to the premium queue (qosp7), enter the following commands.

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-e1000-1/1)#priority 7
```

The device will assign priority 7 to untagged switched traffic received on port 1.

Syntax: `[no] priority <num>`

The `<num>` parameter can be from 0 – 7 and specifies the IEEE 802.1 equivalent to one of eight QoS queues listed in Table 120.

Assigning static MAC entries to priority queues

By default, all MAC entries are in the best effort queue. When you configure a static MAC entry, you can assign the entry to a higher QoS level.

To configure a static MAC entry and assign the entry to the premium queue, enter commands such as the following.

```
FastIron(config)#vlan 9
FastIron(config-vlan-9)#static-mac-address 1145.1163.67FF ethernet 1/1 priority 7
FastIron(config-vlan-9)#write memory
```

Syntax: `[no] static-mac-address <mac-addr> ethernet [<stack-unit> | <slotnum>/]<portnum> [priority <num>] [host-type | router-type | fixed-host]`

The `<slotnum>` parameter applies to the FSX only.

The `priority <num>` parameter can be from 0 – 7 and specifies the IEEE 802.1 equivalent to one of the eight QoS queues.
NOTE
The location of the static-mac-address command in the CLI depends on whether you configure port-based VLANs on the device. If the device does not have more than one port-based VLAN (VLAN 1, which is the default VLAN containing all ports), the static-mac-address command is at the global CONFIG level of the CLI. If the device has more than one port-based VLAN, then the static-mac-address command is not available at the global CONFIG level. In this case, the command is available at the configuration level for each port-based VLAN.

Buffer allocation/threshold for QoS queues

By default, Brocade Ironware software allocates a certain number of buffers to the outbound transport queue for each port based on QoS priority. The buffers control the total number of packets permitted in the outbound queue for the port. If desired, you can increase or decrease the maximum number of outbound transmit buffers allocated to all QoS queues, or to specific QoS queues on a port or group of ports. On FastIron devices, this feature is called dynamic buffer allocation. For more information, refer to “Dynamic buffer allocation for QoS priorities for FastIron X Series devices” on page 386. On TurboIron X Series devices, this feature is called egress buffer threshold. For more information, refer to “Egress buffer thresholds for QoS priorities” on page 393.

NOTE
This feature is not supported for FCX devices.

Marking

Marking is the process of changing the packet QoS information (the 802.1p and DSCP information in a packet) for the next hop. For example, for traffic coming from a device that does not support DiffServ, you can change the packet IP Precedence value into a DSCP value before forwarding the packet.

You can mark a packet Layer 2 CoS value, its Layer 3 DSCP value, or both values. The Layer 2 CoS or DSCP value the device marks in the packet is the same value that results from mapping the packet QoS value into a Layer 2 CoS or DSCP value.

Marking is optional and is disabled by default. Marking is performed using ACLs. When marking is not used, the device still performs the mappings listed in “Classification” on page 737 for scheduling the packet, but leaves the packet QoS values unchanged when the device forwards the packet.

For configuration syntax, rules, and examples of QoS marking, refer to “QoS options for IP ACLs” on page 663.

Configuring DSCP-based QoS

Brocade IronWare releases support basic DSCP-based QoS (also called Type of Service (ToS) based QoS) as described in this chapter. However, the FastIron and TurboIron X Series family of switches do not support other advanced DSCP-based QoS features as described in the Foundry Enterprise Configuration and Management Guide.
Brocade IronWare releases also support marking of the DSCP value. The software can read Layer 3 Quality of Service (QoS) information in an IP packet and select a forwarding queue for the packet based on the information. The software interprets the value in the six most significant bits of the IP packet header 8-bit ToS field as a Diffserv Control Point (DSCP) value, and maps that value to an internal forwarding priority.

The internal forwarding priorities are mapped to one of the eight forwarding queues (qosp0 – qosp7) on the Brocade device. During a forwarding cycle, the device gives more preference to the higher numbered queues, so that more packets are forwarded from these queues. So for example, queue qosp7 receives the highest preference while queue qosp0, the best-effort queue, receives the lowest preference.

Application notes

- DSCP-based QoS is not automatically honored for routed and switched traffic. The default is 802.1p to CoS mapping. To honor DSCP-based QoS, you must change the priority mapping to DSCP to CoS mapping. Refer to “Using ACLs to honor DSCP-based QoS” on page 744.
- When DSCP marking is enabled, the device changes the contents of the inbound packet ToS field to match the DSCP-based QoS value. This differs from the BigIron, which marks the outbound packet ToS field.

Using ACLs to honor DSCP-based QoS

This section shows how to configure Brocade devices to honor DSCP-based QoS for routed and switched traffic.

FGS, FLS, FWS, FGS-STK, FLS-STK, and TurboIron X Series Devices

These devices support DSCP-based QoS on a per-port basis. DSCP-based QoS is not automatically honored for switched traffic. The default is 802.1p to CoS mapping. To honor DSCP-based QoS, enter the following command at the interface level of the CLI.

```
FastIron(config-if-e1000-11)trust dscp
```

When `trust dscp` is enabled, the interface honors the Layer 3 DSCP value. By default, the interface honors the Layer 2 CoS value.

FastIron X Series devices

FastIron X Series devices require the use of an ACL to honor DSCP-based QoS for routed traffic in the Layer 3 image, or for switched traffic in the Layer 2 image. To enable DSCP-based QoS on these devices, apply an ACL entry such as the following.

```
FastIron(config)#access-list 101 permit ip any any dscp-cos-mapping
```

NOTE

Use the `bridged-routed` keyword in the ACL to honor DSCP for switched traffic in the Layer 3 image. Refer to “Enabling ACL support for switched traffic in the router image” on page 655.
Configuring the QoS mappings

You can optionally change the following QoS mappings:

- DSCP \rightarrow{} internal forwarding priority
- Internal forwarding priority \rightarrow{} hardware forwarding queue

The mappings are globally configurable and apply to all interfaces.

Default DSCP \rightarrow{} Internal forwarding priority mappings

The DSCP values are described in RFCs 2474 and 2475. Table 125 list the default mappings of DSCP values to internal forwarding priority values.

TABLE 125 Default DSCP to internal forwarding priority mappings

<table>
<thead>
<tr>
<th>Internal forwarding priority</th>
<th>DSCP value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (lowest priority queue)</td>
<td>0 – 7</td>
</tr>
<tr>
<td>1</td>
<td>8 – 15</td>
</tr>
<tr>
<td>2</td>
<td>16 – 23</td>
</tr>
<tr>
<td>3</td>
<td>24 – 31</td>
</tr>
<tr>
<td>4</td>
<td>32 – 39</td>
</tr>
<tr>
<td>5</td>
<td>40 – 47</td>
</tr>
<tr>
<td>6</td>
<td>48 – 55</td>
</tr>
<tr>
<td>7 (highest priority queue)</td>
<td>56 – 63</td>
</tr>
</tbody>
</table>

Notice that DSCP values range from 0 – 63, whereas the internal forwarding priority values range from 0 – 7. Any DSCP value within a given range is mapped to the same internal forwarding priority value. For example, any DSCP value from 8 – 15 maps to priority 1.

After performing this mapping, the device maps the internal forwarding priority value to one of the hardware forwarding queues.

TABLE 126 Default mappings of internal forwarding priority values to the hardware forwarding queues.

<table>
<thead>
<tr>
<th>Internal forwarding priority</th>
<th>Forwarding queues</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (lowest priority queue)</td>
<td>qosp0</td>
</tr>
<tr>
<td>1</td>
<td>qosp1</td>
</tr>
<tr>
<td>2</td>
<td>qosp2</td>
</tr>
<tr>
<td>3</td>
<td>qosp3</td>
</tr>
<tr>
<td>4</td>
<td>qosp4</td>
</tr>
<tr>
<td>5</td>
<td>qosp5</td>
</tr>
<tr>
<td>6</td>
<td>qosp6</td>
</tr>
<tr>
<td>7 (highest priority queue)</td>
<td>qosp7</td>
</tr>
</tbody>
</table>
You can change the DSCP -> internal forwarding mappings. You also can change the internal forwarding priority-> hardware forwarding queue mappings.

Changing the DSCP –> internal forwarding priority mappings

To change the DSCP –> internal forwarding priority mappings for all the DSCP ranges, enter commands such as the following at the global CONFIG level of the CLI.

```plaintext
FastIron(config)#qos-tos map dscp-priority 0 2 3 4 to 1
FastIron(config)#qos-tos map dscp-priority 8 to 5
FastIron(config)#qos-tos map dscp-priority 16 to 4
FastIron(config)#qos-tos map dscp-priority 32 to 0
FastIron(config)#qos-tos map dscp-priority 40 to 7
FastIron(config)#qos-tos map dscp-priority 48 to 3
FastIron(config)#qos-tos map dscp-priority 56 to 6
FastIron(config)#ip rebind-ACL all
```

The first command in the above example maps priority 1 to DSCP values 0, 2, 3, and 4.

These commands configure the mappings displayed in the DSCP to forwarding priority portion of the QoS information display. To read this part of the display, select the first part of the DSCP value from the d1 column and select the second part of the DSCP value from the d2 row. For example, to read the DSCP to forwarding priority mapping for DSCP value 24, select 2 from the d1 column and select 4 from the d2 row. The mappings that are changed by the command above are shown below in bold type.

```plaintext
FastIron#show qos-tos
...portions of table omitted for simplicity...
```

DSCP-Priority map: (dscp = d1d2)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>d2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>d3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>d4</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>d5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>d6</td>
<td>7</td>
</tr>
</tbody>
</table>

Syntax: `[no] qos-tos map dscp-priority <dscp-value> [<dscp-value> ...] to <priority>`
The \texttt{<dscp-value> [<dscp-value> ...]} parameter specifies the DSCP value ranges you are remapping.

Starting with software releases FGS/FLS 04.1.00 and FSX 04.2.00, and on Turbolron X Series devices, you can specify up to eight DSCP values in the same command, to map to the same forwarding priority. For example FastIron(config)#qos-tos map dscp-priority 1 2 3 4 5 6 7 8 to 6. In releases prior to these, you can specify up to seven DSCP values in the same command.

The \texttt{<priority>} parameter specifies the internal forwarding priority.

Changing the internal forwarding priority \rightarrow hardware forwarding queue mappings

To reassign an internal forwarding priority to a different hardware forwarding queue, enter commands such as the following at the global CONFIG level of the CLI.

FastIron(config)#qos tagged-priority 2 qosp0

Syntax: \texttt{[no] qos tagged-priority <num> <queue>}

The \texttt{<num>} parameter can be from 0 – 7 and specifies the internal forwarding priority.

The \texttt{<queue>} parameter specifies the hardware forwarding queue to which you are reassigning the priority. The default queue names are as follows:

- qosp7
- qosp6
- qosp5
- qosp4
- qosp3
- qosp2
- qosp1
- qosp0

Scheduling

Scheduling is the process of mapping a packet to an internal forwarding queue based on its QoS information, and servicing the queues according to a mechanism.

This section describes the scheduling methods used on FastIron devices as well as on Turbolron X Series devices.

QoS Queuing methods

The following QoS queuing methods are supported in all IronWare releases for the FastIron and Turbolron devices:
• **Weighted round robin (WRR)** – WRR ensures that all queues are serviced during each cycle. A weighted fair queuing algorithm is used to rotate service among the eight queues on the FastIron and TurboIron devices. The rotation is based on the weights you assign to each queue. This method rotates service among the queues, forwarding a specific number of packets in one queue before moving on to the next one.

NOTE
In stacking mode QOSP7 queue is reserved as Strict Priority under weighted queuing. Attempts to change the QOSP7 setting will be ignored.

WRR is the default queuing method and uses a default set of queue weights. The number of packets serviced during each visit to a queue depends on the percentages you configure for the queues. The software automatically converts the percentages you specify into weights for the queues.

NOTE
Queue cycles on the FastIron and TurboIron devices are based on bytes. These devices service a given number of bytes (based on weight) in each queue cycle. FES and BI/FI queue cycles are based on packets. The bytes-based scheme is more accurate than a packets-based scheme if packets vary greatly in size.

• **Strict priority (SP)** – SP ensures service for high priority traffic. The software assigns the maximum weights to each queue, to cause the queuing mechanism to serve as many packets in one queue as possible before moving to a lower queue. This method biases the queuing mechanism to favor the higher queues over the lower queues.

For example, strict queuing processes as many packets as possible in qos3 before processing any packets in qos2, then processes as many packets as possible in qos2 before processing any packets in qos1, and so on.

• **Hybrid WRR and SP** – Starting with software release FSX 02.2.00, an additional configurable queuing mechanism combines both the strict priority and weighted round robin mechanisms. The combined method enables the Brocade device to give strict priority to delay-sensitive traffic such as VOIP traffic, and weighted round robin priority to other traffic types.

By default, when you select the combined SP and WRR queueing method, the Brocade device assigns strict priority to traffic in qos7 and qos6, and weighted round robin priority to traffic in qos0 through qos5. Thus, the Brocade device schedules traffic in queue 7 and queue 6 first, based on the strict priority queueing method. When there is no traffic in queue 7 and queue 6, the device schedules the other queues in round-robin fashion from the highest priority queue to the lowest priority queue.

NOTE
Brocade stack-capable devices that are operating as members of a stack reserve queue 6 and queue 7 for stacking functions. For more information, see <appropriate section>.

By default, when you specify the combined SP and WRR queueing method, the system balances the traffic among the queues as shown in Table 127. If desired, you can change the default bandwidth values as instructed in the section “Changing the bandwidth allocations of the hybrid WRR and SP queues” on page 751.
Selecting the QoS queuing method

By default, Brocade devices use the weighted fair queuing method of packet prioritization. To change the method to strict priority or back to weighted fair queuing, enter the following command at the Global CONFIG level of the CLI.

FastIron(config)#qos mechanism strict

To change the method back to weighted round robin, enter the following command.

FastIron(config)#qos mechanism weighted

Syntax: [no] qos mechanism strict | weighted

NOTE
The following combined method is supported in releases FSX 02.2.00 and later.

To change the queuing mechanism to the combined SP and WRR method, enter the following command at the Global CONFIG level of the CLI.

FastIron(config)#qos mechanism mixed-sp-wrr

Syntax: mechanism mixed-sp-wrr

Configuring the QoS queues

Each of the queues has the following configurable parameters:
- The queue name
- The minimum percentage of a port outbound bandwidth guaranteed to the queue

Renaming the queues

The default queue names are qos7, qos6, qos5, qos4, qos3, qos2, qos1, and qos0. You can change one or more of the names if desired.

To rename queue “qos3” to “92-octane”, enter the following command.

FastIron(config)#qos name qos3 92-octane

Syntax: qos name <old-name> <new-name>

TABLE 127 Default bandwidth for combined SP and WRR queueing methods

<table>
<thead>
<tr>
<th>Queue</th>
<th>Default bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos7</td>
<td>Strict priority (highest priority)</td>
</tr>
<tr>
<td>qos6</td>
<td>Strict priority</td>
</tr>
<tr>
<td>qos5</td>
<td>25%</td>
</tr>
<tr>
<td>qos4</td>
<td>15%</td>
</tr>
<tr>
<td>qos3</td>
<td>15%</td>
</tr>
<tr>
<td>qos2</td>
<td>15%</td>
</tr>
<tr>
<td>qos1</td>
<td>15%</td>
</tr>
<tr>
<td>qos0</td>
<td>15% (lowest priority)</td>
</tr>
</tbody>
</table>
The `<old-name>` parameter specifies the name of the queue before the change.

The `<new-name>` parameter specifies the new name of the queue. You can specify an alphanumeric string up to 32 characters long.

Changing the minimum bandwidth percentages of the WRR queues

If you are using the weighted round robin mechanism instead of the strict mechanism, you can change the weights for each queue by changing the minimum percentage of bandwidth you want each queue to guarantee for its traffic.

By default, the eight QoS queues on FastIron and TurboIron devices receive the following minimum guaranteed percentages of a port total bandwidth. Note that the defaults differ when jumbo frames are enabled.

<table>
<thead>
<tr>
<th>Queue</th>
<th>Default minimum percentage of bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without jumbo frames</td>
</tr>
<tr>
<td>qosp7</td>
<td>75%</td>
</tr>
<tr>
<td>qosp6</td>
<td>7%</td>
</tr>
<tr>
<td>qosp5</td>
<td>3%</td>
</tr>
<tr>
<td>qosp4</td>
<td>3%</td>
</tr>
<tr>
<td>qosp3</td>
<td>3%</td>
</tr>
<tr>
<td>qosp2</td>
<td>3%</td>
</tr>
<tr>
<td>qosp1</td>
<td>3%</td>
</tr>
<tr>
<td>qosp0</td>
<td>3%</td>
</tr>
</tbody>
</table>

When the queuing method is weighted round robin, the software internally translates the percentages into weights. The weight associated with each queue controls how many packets are processed for the queue at a given stage of a cycle through the weighted round robin algorithm.

NOTE
Queue cycles on the FastIron and TurboIron devices are based on bytes. These devices service a given number of bytes (based on the weight) in each queue cycle. FES and BI/FI queue cycles are based on packets. The bytes-based scheme is more accurate than a packets-based scheme if packets vary greatly in size.

The bandwidth allocated to each queue is based on the relative weights of the queues. You can change the bandwidth percentages allocated to the queues by changing the queue weights.

There is no minimum bandwidth requirement for a given queue. For example, queue qosp3 is not required to have at least 50% of the bandwidth.

Command syntax
To change the bandwidth percentages for the queues, enter commands such as the following. Note that this example uses the default queue names.
Scheduling

Syntax: \[no\] qos profile \(<queue>\) \(<\text{percentage}>\) \(<queue>\) \(<\text{percentage}>\) \(<queue>\) \(<\text{percentage}>\) \(<queue>\) \(<\text{percentage}>\) \(<queue>\) \(<\text{percentage}>\) \(<queue>\) \(<\text{percentage}>\) \(<queue>\) \(<\text{percentage}>\)

Each \(<queue>\) parameter specifies the name of a queue. You can specify the queues in any order on the command line, but you must specify each queue.

The \(<\text{percentage}>\) parameter specifies a number for the percentage of the device outbound bandwidth that is allocated to the queue. Brocade QoS queues require a minimum bandwidth percentage of 3% for each priority. When jumbo frames are enabled, the minimum bandwidth requirement is 8%. If these minimum values are not met, QoS may not be accurate.

Configuration notes

- The total of the percentages you enter must equal 100.
- FastIron and TurboIron devices do not adjust the bandwidth percentages you enter. BigIron QoS does adjust the bandwidth percentages to ensure that each queue has at least its required minimum bandwidth percentage.

On the FGS, FLS, FWS, and FGS-STK and FLS-STK, and FCX devices you can use QoS queue 1 for priority traffic, even when sFlow is enabled on the port. This differs from the FastIron X Series and TurboIron X Series devices, which support seven priorities instead of eight when sFlow is enabled. QoS queue 1 is reserved for sFlow and not used by other packets. Any non-sFlow packets assigned to QoS queue 1 will be directed to QoS queue 0.

Changing the bandwidth allocations of the hybrid WRR and SP queues

Platform Support:

- FastIron X Series devices running software release 02.2.00 and later
- TurboIron X Series devices running software release 04.1.00 and later
- FGS and FLS devices running software release 04.2.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FCX-S devices running software release 06.0.00 and later

To change the default bandwidth percentages for the queues when the device is configured to use the combined SP and WRR queuing mechanism, enter commands such as the following. Note that this example uses the default queue names.

FastIron(config)#qos profile qosp7 sp qosp6 sp qosp5 20 qosp4 16 qosp3 16 qosp2 16 qosp1 16 qosp0 6

Syntax: \[no\] qos profile \(<queue>\) sp \(<queue>\) sp | \(<\text{percentage}>\) \(<queue>\) sp | \(<\text{percentage}>\)
Each `<queue x>` parameter specifies the name of a queue. You can specify the queues in any order on the command line, but you must specify each queue. Note that queue 7 supports strict priority only, queue 6 supports both strict priority and WRR queuing mechanisms, and queues 0 – 5 support the WRR queuing mechanism only.

NOTE
Brocade stack-capable devices that are operating as members of a stack reserve queue 6 and queue 7 for stacking functions.

The `sp` parameter configures strict priority as the queuing mechanism. Note that only queue 7 and queue 6 support this method.

The `<percentage>` parameter configures WRR as the queuing mechanism and specifies the percentage of the device outbound bandwidth allocated to the queue. The queues require a minimum bandwidth percentage of 3% for each priority. When jumbo frames are enabled, the minimum bandwidth requirement is 8%. If these minimum values are not met, QoS may not be accurate.

NOTE
The percentages must add up to 100. The Brocade device does not adjust the bandwidth percentages you enter. In contrast, the BigIron QoS does adjust the bandwidth percentages to ensure that each queue has at least its required minimum bandwidth percentage.

Viewing QoS settings

To display the QoS settings for all of the queues, enter the `show qos-profiles` command.

The following shows an example display output on a FESX.

```
FastIron#show qos-profiles all
bandwidth scheduling mechanism: weighted priority
Profile qosp7     : Priority7   bandwidth requested  25% calculated  25%
Profile qosp6     : Priority6   bandwidth requested  15% calculated  15%
Profile qosp5     : Priority5   bandwidth requested  12% calculated  12%
Profile qosp4     : Priority4   bandwidth requested  12% calculated  12%
Profile qosp3     : Priority3   bandwidth requested  10% calculated  10%
Profile qosp2     : Priority2   bandwidth requested  10% calculated  10%
Profile qosp1     : Priority1   bandwidth requested  10% calculated  10%
Profile qosp0     : Priority0   bandwidth requested   6% calculated   6%
```

Syntax: `show qos-profiles all | <name>`

The `all` parameter displays the settings for all eight queues.

The `<name>` parameter displays the settings for the specified queue.

Viewing DSCP-based QoS settings

To display configuration information for DSCP-based QoS, enter the following command at any level of the CLI.
FastIron#show qos-tos
DSCP-->Traffic-Class map: (DSCP = d1d2: 00, 01...63)

<table>
<thead>
<tr>
<th>d2</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DSCP-priority map</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1 and d2</td>
<td>The DSCP to forwarding priority mappings that are currently in effect.</td>
</tr>
</tbody>
</table>

NOTE: The example above shows the default mappings. If you change the mappings, the command displays the changed mappings.

Traffic-Class-->802.1p-Priority map (use to derive DSCP-->802.1p-Priority):

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>802.1p Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Syntax: show qos-tos

This command shows the following information.

TABLE 129 DSCP-based QoS configuration information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP-priority map</td>
<td>The DSCP to forwarding priority mappings that are currently in effect.</td>
</tr>
</tbody>
</table>

NOTE: The example above shows the default mappings. If you change the mappings, the command displays the changed mappings.

Traffic class -> 802.1 priority map

<table>
<thead>
<tr>
<th>Traffic Class and 802.1p Priority</th>
<th>The traffic class to 802.1p Priority mappings that are currently in effect.</th>
</tr>
</thead>
</table>

NOTE: The example above shows the default mappings. If you change the mappings, the command displays the changed mappings.
Viewing DSCP-based QoS settings
Configuring Rate Limiting and Rate Shaping on the FastIron X Series, FCX Series, and TurboIron Series

Chapter 23

Configuring Rate Limiting and Rate Shaping on the FastIron X Series, FCX Series, and TurboIron Series

Rate limiting overview

This chapter describes how to configure rate limiting and rate shaping on Brocade TIX, FCX, FESX, FSX, and FWSX devices.

Rate limiting applies to inbound ports and rate shaping applies to outbound ports.

NOTE
To configure rate limiting on the FGS, FLS, FGS-STK, and FLS-STK, refer to Chapter 24, “Configuring Rate Limiting on FGS, FGS-STK, FLS, FLS-STK, and FWS Devices”.

Port-based fixed rate limiting is supported on inbound ports. This feature allows you to specify the maximum number of bytes a given port on a FastIron device can receive, or the maximum number of kilobits a given port on a TurboIron device can receive. The port drops bytes or kilobits that exceed the limit you specify. You can configure a Fixed Rate Limiting policy on a port inbound direction only. Fixed rate limiting applies to all traffic on the rate limited port.

Fixed rate limiting is at line rate and occurs in hardware. Refer to “Rate limiting in hardware” on page 755.

When you specify the maximum number of bytes or kilobits, you specify it in bits per second (bps). The Fixed Rate Limiting policy applies to one-second intervals and allows the port to receive the number of bytes or kilobits you specify in the policy, but drops additional bytes or kilobits. Unused bandwidth is not carried over from one interval to the next.

NOTE
Brocade recommends that you do not use Fixed Rate Limiting on ports that receive route control traffic or Spanning Tree Protocol (STP) control traffic. If the port drops control packets due to the Fixed Rate Limiting policy, routing or STP can be disrupted.

Rate limiting in hardware

Each Brocade device supports line-rate rate limiting in hardware. The device creates entries in Content Addressable Memory (CAM) for the rate limiting policies. The CAM entries enable the device to perform the rate limiting in hardware instead of sending the traffic to the CPU. The device sends the first packet in a given traffic flow to the CPU, which creates a CAM entry for the traffic flow. A CAM entry consists of the source and destination addresses of the traffic. The device uses the CAM entry for rate limiting all the traffic within the same flow. A rate limiting CAM entry remains in the CAM for two minutes before aging out.
How Fixed Rate Limiting works

Fixed Rate Limiting counts the number of bytes (FastIron devices) or kilobits (TurboIron devices) that a port receives, in one second intervals. If the number exceeds the maximum number you specify when you configure the rate, the port drops all further inbound packets for the duration of the one-second interval.

Once the one-second interval is complete, the port clears the counter and re-enables traffic.

Figure 107 shows an example of how Fixed Rate Limiting works. In this example, a Fixed Rate Limiting policy is applied to a port to limit the inbound traffic to 500000 bits (62500 bytes) a second. During the first two one-second intervals, the port receives less than 500000 bits in each interval. However, the port receives more than 500000 bits during the third and fourth one-second intervals, and consequently drops the excess traffic.

FIGURE 107 Fixed Rate Limiting

NOTE
The software counts the bytes or kilobits by polling statistics counters for the port every 100 milliseconds, which provides 10 readings each second. Due to the polling interval, the Fixed Rate Limiting policy has an accuracy of within 10% of the port's line rate. It is therefore possible for the policy to sometimes allow more traffic than the limit you specify, but the extra traffic is never more than 10% of the port's line rate.

Configuration notes

- Rate limiting is available only on inbound ports.
- Fixed rate limiting is not supported on 10 GbE ports on FastIron switches.
- Fixed rate limiting is supported on GbE and 10 GbE ports on TurboIron switches.
- Fixed rate limiting is not supported on tagged ports in the base Layer 3 and full Layer 3 images.
- The rate limit on IPv6 hardware takes several seconds to take effect at higher configured rate limit values. For example, if the configured rate limit is 750 Mbps, line-rate limiting could take up to 43 seconds to take effect.
Configuring a port-based rate limiting policy

To configure rate limiting on a FastIron port, enter commands such as the following.

```plaintext
FastIron(config)#interface ethernet 24
FastIron(config-if-e1000-24)#rate input fixed 500000
```

These commands configure a fixed rate limiting policy that allows port 24 to receive a maximum of 500000 bits per second (62500 bytes per second). If the port receives additional bytes during a given one-second interval, the port drops all inbound packets on the port until the next one-second interval starts.

To configure rate limiting on a TurboIron port, enter commands such as the following.

```plaintext
TurboIron(config)#interface ethernet 24
TurboIron(config-if-e1000-24)#rate input fixed 64
```

These commands configure a fixed rate limiting policy that allows port 24 to receive a maximum of 64 kilobits per second (65536 bytes per second). If the port receives additional bits during a given one-second interval, the port drops all inbound packets on the port until the next one-second interval starts.

Syntax: `[no] rate-limit input fixed <average-rate>`

For FastIron devices, the `<average-rate>` parameter specifies the maximum number of bits per second (bps) the port can receive. The minimum rate that can be configured is 64,000 bits per second.

For TurboIron devices, the `<average-rate>` parameter specifies the maximum number of kilobits per second (kbps) the port can receive. The minimum rate that can be configured is 64,000 bytes per second.

Configuring an ACL-based rate limiting policy

Platform Support:

- FastIron X Series devices running software release 02.3.03 and later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

IP ACL-based rate limiting of inbound traffic provides the facility to limit the rate for IP traffic that matches the permit conditions in extended IP ACLs. This feature is available in the Layer 2 and Layer 3 code.

To configure ACL-based rate limiting on a Brocade device, you create individual traffic policies, then reference the traffic policies in one or more ACL entries (also called clauses or statements). The traffic policies become effective on ports to which the ACLs are bound.

For configuration procedures for ACL-based rate limiting, refer to Chapter 25, “Configuring Traffic Policies”.

Displaying the fixed rate limiting configuration

To display the fixed rate limiting configuration on the device, enter the following command.
Rate shaping overview

Syntax: show rate-limit fixed

The command lists the ports on which fixed rate limiting is configured, and provides the information listed in Table 130 for each of the ports.

TABLE 130 CLI display of Fixed Rate Limiting information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total rate-limited interface count</td>
<td>The total number of ports that are configured for Fixed Rate Limiting.</td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Configured Input Rate</td>
<td>The maximum rate requested for inbound traffic. The rate is measured in bits per second (bps) for FastIron devices, or kilobits per second (kbps) for TurboIron devices.</td>
</tr>
<tr>
<td>Actual Input Rate</td>
<td>The actual maximum rate provided by the hardware. The rate is measured in bps for FastIron devices, or kilobits per second (kbps) for TurboIron devices.</td>
</tr>
</tbody>
</table>

Rate shaping overview

Platform Support:

- FastIron X Series devices running software release 03.0.00 and later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

Outbound Rate Shaping is a port-level feature that is used to shape the rate and control the bandwidth of outbound traffic on a port. This feature smooths out excess and bursty traffic to the configured maximum limit before it is sent out on a port. Packets are stored in available buffers and then forwarded at a rate no greater than the configured limit. This process provides for better control over the inbound traffic of neighboring devices.

The device has one global rate shaper for a port and one rate shaper for each port priority queue. Rate shaping is done on a single-token basis, where each token is defined to be 1 byte.

Configuration notes

The following rules apply when configuring outbound rate shapers:
- Outbound rate shapers can be configured only on physical ports, not on virtual or loopback ports.

- For trunk ports, the rate shaper must be configured on individual ports of a trunk using the `config-trunk-ind` command (trunk configuration level); you cannot configure a rate shaper for a trunk.

- When outbound rate shaping is enabled on a port on an IPv4 device, the port QoS queuing method (qos mechanism) will be strict mode. This applies to IPv4 devices only. On IPv6 devices, the QoS mechanism is whatever method is configured on the port, even when outbound rate shaping is enabled.

- You can configure a rate shaper for a port and for the individual priority queues of that port. However, if a port rate shaper is configured, that value overrides the rate shaper value of a priority queue if the priority queue rate shaper is greater than the rate shaper for the port.

- On FastIron X Series devices, configured rate shaper values are rounded up to the nearest multiple of 651 Kbps. The maximum configurable limit is 2665845 Kbps.

- On TurboIron X Series devices, configured rate shaper values are rounded up to the nearest values programmable by the hardware.

- On FastIron CX Series devices, configured rate shaper values are rounded up to the nearest values programmable by the hardware.

Configuring outbound rate shaping for a port

To configure the maximum rate at which outbound traffic is sent out on a port, enter commands such as the following.

```
FastIron(config)#interface e 1/2
FastIron(config-if-e1000-2)#rate-limit output shaping 1300
```

The above commands affect FastIron X Series, FastIron CX Series, and TurboIron X Series systems differently:

- On FastIron X Series devices, the configured 1300 Kbps outbound rate shaping on port 2 is rounded up to the nearest multiple of 651 Kbps, which is 1302 Kbps. This value is the actual limit on the port for outbound traffic.

- On TurboIron X Series devices, the configured 1300 Kbps outbound rate shaping on port 2 is rounded up to the nearest value programmable by the hardware, which is 1344 Kbps. This value is the actual limit on the port for outbound traffic.

- On FastIron CX Series devices, the configured outbound rate shaper of 651 Kbps on port 1/15 is rounded to 616 Kbps. The configured 1300 Kbps limit on port 15 is rounded to 1232 Kbps.

Syntax: `[no] rate-limit output shaping <value>`

On FastIron X Series devices, you can configure up to 2665845 Kbps for `<value>`.

On TurboIron X Series devices, you can specify a value up to the port line rate for `<value>`.

On FastIron CX Series devices, you can specify a value up to the port line rate for `<value>`.

Configuring outbound rate shaping for a specific priority

To configure the maximum rate at which outbound traffic is sent out on a port priority queue, enter commands such as the following.
Rate shaping overview

FastIron(config)#interface e 1/2
FastIron(config-if-e1000-2)#rate-limit output shaping 500 priority 7

The above commands affect FastIron X Series, FastIron CX Series, and TurboIron X Series systems differently:

- On FastIron X Series devices, the configured 500 Kbps limit for outbound traffic on Priority queue 7 on port 2 is rounded up to the nearest multiple of 651 Kbps, which is 651 Kbps.
- On TurboIron X Series devices, the configured 500 Kbps limit for outbound traffic on Priority queue 7 on port 2 is rounded up to the nearest multiple of 504 Kbps, which is 504 Kbps.
- On FastIron CX Series devices, the configured 500 Kbps limit for outbound traffic on priority queue 7 on port 2 is rounded to a value that is programmable by the hardware, which is 440 Kbps.

Syntax: `[no] rate-limit output shaping <value> priority <priority-queue>

On FastIron X Series devices, you can configure up to 2665845 Kbps for `<value>`. On TurboIron X Series devices, you can specify a value up to the port line rate for `<value>`. On FastIron CX Series devices, you can specify a value up to the port line rate for `<value>`. Specify 0-7 for `<priority-queue>`

Configuring outbound rate shaping for a trunk port

This feature is supported on individual ports of a static trunk group. It is also supported on LACP trunk ports on FastIron X Series devices starting in release FSX 04.3.00. However, it is not supported on LACP trunk ports on TurboIron X Series devices or for FastIron CX devices.

To configure the maximum rate at which outbound traffic is sent out on a trunk port, enter the following on each trunk port where outbound traffic will be shaped.

FastIron(config)#trunk e 1/13 to 1/16
FastIron(config-trunk-13-16)#config-trunk-ind
FastIron(config-trunk-13-16)#rate-limit output shaping ethe 1/15 651
FastIron(config-trunk-13-16)#rate-limit output shaping ethe 1/14 1300

The above commands configure an outbound rate shaper on port 1/14 and port 1/15. The commands affect FastIron X Series devices, FastIron CX Series devices, and TurboIron X Series devices differently:

- On FastIron X Series devices, the configured outbound rate shaper (651 Kbps) on port 1/15 is the maximum rate of outbound traffic that is sent out on that port, since 651 Kbps is a multiple of 651 Kbps. The configured 1300 Kbps limit on port 14 is rounded up to 1302 Kbps.
- On TurboIron X Series devices, the configured outbound rate shaper of 651 Kbps on port 1/15 is rounded up to 704 Kbps. The configured outbound rate shaper of 1300 on port 1/14 is rounded up to 1344 Kpbs.
- On FastIron CX Series devices, the configured outbound rate shaper (651 Kbps) on port 1/15 is the rounded to 616 Kbps. The configured 1300 Kbps limit on port 14 is rounded to 1232 Kbps.

Syntax: `[no] rate-limit output shaping ethernet [<stack-unit>/<slotnum>/]<portnum> <value>

The `<slotnum>` parameter is required on chassis devices.
The `<stack-unit>` parameter is required on stacking devices.
On FastIron X Series devices, you can configure up to 2665845 Kbps for `<value>`.
On TurboIron X Series devices, you can specify a <value> up to the port line rate. On FastIron CX Series devices, you can specify a <value> up to the port line rate.

Displaying rate shaping configurations

To display the configured outbound rate shaper on a device, enter the following command.

```
FastIron#show rate-limit output-shaping
```

```
Outbound Rate Shaping Limits in Kbps:

<table>
<thead>
<tr>
<th>Port</th>
<th>PortMax</th>
<th>Prio0</th>
<th>Prio1</th>
<th>Prio2</th>
<th>Prio3</th>
<th>Prio4</th>
<th>Prio5</th>
<th>Prio6</th>
<th>Prio7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>651</td>
</tr>
<tr>
<td>2</td>
<td>1302</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>651</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```

The display lists the ports on a device, the configured outbound rate shaper on a port and for a priority for a port.
Chapter 24

Configuring Rate Limiting on FGS, FGS-STK, FLS, FLS-STK, and FWS Devices

Overview

This chapter describes how to configure fixed rate limiting on inbound and outbound ports on FGS, FLS, FWS, FGS-STK, and FLS-STK devices using the CLI.

NOTE
This chapter applies to the FGS, FLS, FWS, FGS-STK, and FLS-STK devices. To configure rate limiting on a FastIron X Series device, refer to Chapter 23, “Configuring Rate Limiting and Rate Shaping on the FastIron X Series, FCX Series, and Turbolron Series”.

These devices support port-based fixed rate limiting on inbound ports and outbound ports.

Fixed Rate Limiting allows you to specify the maximum number of bytes a given port can send or receive. The port drops bytes that exceed the limit you specify. You can configure a Fixed Rate Limiting policy on a port inbound or outbound direction. Fixed rate limiting applies to all traffic on the rate limited port.

When you specify the maximum number of bytes, you specify it in kilobits per second (Kbps). The Fixed Rate Limiting policy applies to one-second intervals and allows the port to send or receive the number of bytes you specify in the policy, but drops additional bytes. Unused bandwidth is not carried over from one interval to the next.

NOTE
Brocade recommends that you do not use Fixed Rate Limiting on ports that send or receive route control traffic or Spanning Tree Protocol (STP) control traffic. If the port drops control packets due to the Fixed Rate Limiting policy, routing or STP can be disrupted.

Rate limiting in hardware

Each device supports line-rate rate limiting in hardware. The device creates entries in Content Addressable Memory (CAM) for the rate limiting policies. The CAM entries enable the device to perform the rate limiting in hardware instead of sending the traffic to the CPU. The device sends the first packet in a given traffic flow to the CPU, which creates a CAM entry for the traffic flow. A CAM entry consists of the source and destination addresses of the traffic. The device uses the CAM entry for rate limiting all the traffic within the same flow. A rate limiting CAM entry remains in the CAM for two minutes before aging out.

How fixed rate limiting works

Fixed Rate Limiting counts the number of bytes that a port either sends or receives, in one second intervals. The direction that the software monitors depends on the direction you specify when you configure the rate limit on the port. If the number of bytes exceeds the maximum number you specify when you configure the rate, the port drops all further packets for the rate-limited direction, for the duration of the one-second interval.
Once the one-second interval is complete, the port clears the counter and re-enables traffic.

Figure 108 shows an example of how Fixed Rate Limiting works. In this example, a Fixed Rate Limiting policy is applied to a port to limit the inbound traffic to 500000 bits (62500 bytes) a second. During the first two one-second intervals, the port receives less than 500000 bits in each interval. However, the port receives more than 500000 bits during the third and fourth one-second intervals, and consequently drops the excess traffic.

FIGURE 108 Fixed Rate Limiting

![Fixed Rate Limiting Diagram](image)

NOTE
The software counts the bytes by polling statistics counters for the port every 100 milliseconds, which provides 10 readings each second. Due to the polling interval, the Fixed Rate Limiting policy has an accuracy of within 10% of the port's line rate. It is therefore possible for the policy to sometimes allow more traffic than the limit you specify, but the extra traffic is never more than 10% of the port's line rate.

Configuring fixed rate limiting on inbound ports

Inbound rate limiting allows you to specify the maximum number of Kbps a given port can receive.

Minimum and maximum rates

Table 131 lists the minimum and maximum inbound rate limits on GbE and 10-GbE ports.

<table>
<thead>
<tr>
<th>Port type</th>
<th>Minimum rate</th>
<th>Maximum rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GbE</td>
<td>65 Kbps</td>
<td>1000000 Kbps</td>
</tr>
<tr>
<td>10-GbE</td>
<td>65 Kbps</td>
<td>10000000 Kbps</td>
</tr>
</tbody>
</table>
Configuration notes

Inbound rate limiting is **supported** on:

- GbE ports
- 10-GbE ports
- Trunk ports

Inbound rate limiting is **not supported** on:

- Ports on which LACP is enabled
- Virtual interfaces
- Loopback interfaces

Fixed rate limiting is **supported** on:

- inbound ports only

Fixed rate limiting is **not supported** on:

- 10 Gbps Ethernet ports
- Tagged ports in the base Layer 3 and full Layer 3 images

Configuration syntax

To configure inbound rate limiting on a port, enter commands such as the following.

```bash
FastIron(config)#interface ethernet 0/2/1
FastIron(config-if-e10000-0/2/1)#rate-limit input fixed 1000000
```

Rate Limiting on Port 0/2/1 - Config: 1000000 Kbps, Actual: 1000000 Kbps

The above commands configure a fixed rate limiting policy that allows port 0/2/1, a 10-GbE port, to receive a maximum of 1000000 kilobits per second. If the port receives additional bits during a given one-second interval, the port drops all inbound packets on the port until the next one-second interval starts.

```bash
FastIron(config)#interface ethernet 0/1/10
FastIron(config-if-e1000-0/1/10)#rate-limit input fixed 1000
```

Rate Limiting on Port 0/1/10 - Config: 1000 Kbps, Actual: 1000 Kbps

The above commands configure a fixed rate limiting policy that allows port 0/1/10, a GbE port, to receive a maximum of 1000 kilobits per second. If the port receives additional bits during a given one-second interval, the port drops all inbound packets on the port until the next one-second interval starts.

Syntax: `[no] rate-limit input fixed <average-rate>`

The `<average-rate>` parameter specifies the maximum number of kilobits per second (Kbps) the port can receive. **Table 131** lists the minimum and maximum rates.

Configuring fixed rate limiting on outbound ports

Outbound rate limiting allows you to specify the maximum number of kilobits a given port can transmit.
FGS, FLS, FWS, FGS-STK, and FLS-STK devices support the following types of outbound fixed rate limiting on Gbps and 10 Gbps Ethernet ports.

- **Port-based** – Limits the rate of outbound traffic on an individual physical port or trunk port, to a specified rate. Traffic that exceeds the maximum rate is dropped. Only one port-based outbound rate limiting policy can be applied to a port.

- **Port- and priority-based** – Limits the rate on an individual 802.1p priority queue on an individual physical port or trunk port. Traffic that exceeds the rate is dropped. Only one priority-based rate limiting policy can be specified per priority queue for a port. This means that a maximum of eight port- and priority-based policies can be configured on a port.

Minimum and maximum rates

Table 132 lists the minimum and maximum outbound rate limits on GbE and 10-GbE ports.

<table>
<thead>
<tr>
<th>Port type</th>
<th>Minimum rate</th>
<th>Maximum rate</th>
<th>Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GbE</td>
<td>65 Kbps</td>
<td>1000000 Kbps</td>
<td>65 Kbps</td>
</tr>
<tr>
<td>10-GbE</td>
<td>2500 Kbps</td>
<td>10000000 Kbps</td>
<td>2500 Kbps</td>
</tr>
</tbody>
</table>

Configuration notes

- Outbound rate limiting is supported on:
 - GbE ports
 - 10-GbE ports
 - Trunk ports
- Outbound rate limiting is not supported on:
 - Ports on which LACP is enabled
 - Virtual interfaces
 - Loopback interfaces
- Because of the hardware architecture of the FastIron GS and FastIron LS, the effect of outbound rate limiting differs on GbE ports compared to 10-GbE ports. For example, applying the same rate limiting value on GbE and 10-GbE ports will produce different results.
- You can configure both outbound port-base rate limiting and outbound port- and priority-based rate limiting on a single physical port or trunk port. However, if a priority-based limit for a given port is greater than the port-based rate limit, then the port-based rate limit will override the priority-based rate limit. Similarly, if the port-based rate limit is greater than the priority-based limit, then the priority-based rate limit will override the port-based rate limit.

Port-based rate limiting

To configure port-based fixed rate limiting on an outbound port, enter commands such as the following.

```
FastIron(config)#interface ethernet 0/1/34
FastIron(config-if-e1000-0/1/34)#rate-limit output fixed 32
```

Outbound Rate Limiting on Port 0/1/34 Config: 32 Kbps, Actual: 65 Kbps
The above commands configure a fixed rate limiting policy that allows port 0/1/34 to transmit 32 Kbps. Since port 0/1/34 is a GbE port and the minimum rate is 65 Kbps (refer to Table 132), the system will adjust the configured rate of 32 Kbps to an actual rate to 65 Kbps. If the port transmits additional bits during a given one-second interval, the port will drop all outbound packets on the port until the next one-second interval starts.

```
FastIron(config)#interface ethernet 0/2/1
FastIron(config-if-e1000-0/2/1)#rate-limit output fixed 32
```

Outbound Rate Limiting on Port 0/2/1 Config: 32 Kbps, Actual: 2500 Kbps

The above commands configure a fixed rate limiting policy that allows port 0/2/1 to transmit 32 Kbps per second. Since port 0/2/1 is a 10-GbE port and the minimum rate is 2500 Kbps (refer to Table 132), the system will adjust the configured rate of 32 Kbps to an actual rate of 2500 Kbps. If the port transmits additional bits during a given one-second interval, the port will drop all outbound packets on the port until the next one-second interval starts.

Syntax: `[no] rate-limit output fixed <average-rate>`

The `<average-rate>` parameter specifies the average number of kilobits per second (Kbps) the port can send. Table 132 lists the minimum and maximum rates for GbE and 10-GbE ports.

Port- and priority-based rate limiting

Port- and priority-based rate limiting limits the rate on an individual 802.1p priority queue on an individual physical port or trunk port.

To configure port- and priority-based fixed rate limiting on an outbound port, enter commands such as the following.

```
FastIron(config)#interface ethernet 0/1/35
FastIron(config-if-e1000-0/1/35)#rate-limit output fixed 1000 priority 7
```

Outbound Rate Limiting on Port 0/1/35 for Priority 7
Config: 1000 Kbps, Actual: 975 Kbps

The above commands configure a fixed rate limiting policy that allows traffic with a priority of 7 on port 0/1/35 to transmit 1000 Kbps per second. The system rounds the configured rate to 975 Kbps. If the port transmits additional bits during a given one-second interval, the port will drop all outbound packets on the port until the next one-second interval starts.

Configuring an ACL-based rate limiting policy

FGS, FLS, FWS, FGS-STK, and FLS-STK devices support IP ACL-based rate limiting of inbound traffic. ACL-based rate limiting provides the facility to limit the rate for IP traffic that matches the permit conditions in extended IP ACLs.

To configure ACL-based rate limiting, you create individual traffic policies, then reference the traffic policies in one or more ACL entries (also called clauses or statements). The traffic policies become effective on ports to which the ACLs are bound.

For configuration procedures for ACL-based rate limiting, refer to Chapter 25, “Configuring Traffic Policies”.
Displaying the fixed rate limiting configuration

You can display the fixed rate limiting configuration for inbound and outbound traffic.

Inbound ports

To display the fixed rate limiting configuration on inbound ports, enter the following command.

```
FastIron#show rate-limit fixed input
Total rate-limited interface count: 11.
Port    Configured Input Rate        Actual Input Rate
1          1000000                 1000000
3          10000000                10005000
7          10000000                10000000
9           7500000                7502000
11          8000000                 7999000
12          8000000                 7999000
13          8000000                 7999000
14          8000000                 7999000
15          8000000                 7999000
21          8000000                 8000000
25           7500000                7502000
```

Syntax: show rate-limit fixed input

The command lists the ports on which fixed rate limiting is configured, and provides the information listed in Table 133 for each of the ports.

TABLE 133 CLI display of Fixed Rate Limiting information on inbound ports

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total rate-limited interface count</td>
<td>The total number of ports that are configured for Fixed Rate Limiting.</td>
</tr>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Configured Input Rate</td>
<td>The maximum rate requested for inbound traffic. The rate is measured in bits per second (bps).</td>
</tr>
<tr>
<td>Actual Input Rate</td>
<td>The actual maximum rate provided by the hardware. The rate is measured in bps.</td>
</tr>
</tbody>
</table>

Outbound ports

To display the fixed rate limiting configuration on outbound ports, enter the following command.
Displaying the fixed rate limiting configuration

Syntax: `show rate-limit fixed output`

The command lists the ports on which fixed rate limiting is configured, and provides the information listed in Table 133 for each of the ports.

TABLE 134 CLI display of Fixed Rate Limiting information on outbound ports

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>PortMax</td>
<td>The maximum rate requested for outbound traffic. The rate is measured in bits per second (bps).</td>
</tr>
<tr>
<td>Prio0 – Prio7</td>
<td>The port- and priority-based rate limit maximum provided by the hardware. The rate is measured in bps.</td>
</tr>
</tbody>
</table>
Displaying the fixed rate limiting configuration
Chapter 25

Configuring Traffic Policies

About traffic policies

This chapter describes how traffic policies are implemented and configured in the FastIron and TurboIron X Series devices.

Brocade devices use traffic policies for the following:

- to rate limit inbound traffic
- to count the packets and bytes per packet to which ACL permit or deny clauses are applied

Traffic policies consist of policy names and policy definitions:

- **Traffic policy name** – This is a string of up to 8 alphanumeric characters that identifies individual traffic policy definitions.
- **Traffic policy definition (TPD)** – This is the command filter associated with a traffic policy name. A TPD can define any one of the following:
 - Rate limiting policy
 - ACL counting policy
 - Combined rate limiting and ACL counting policy

The maximum number of supported active TPDs is a system-wide parameter and depends on the device you are configuring. The total number of active TPDs cannot exceed the system maximum. Refer to “Maximum number of traffic policies supported on a device” on page 772.

When you apply a traffic policy to an interface, you do so by adding a reference to the traffic policy in an ACL entry, instead of applying the individual traffic policy to the interface. The traffic policy becomes an active traffic policy or active TPD when you bind its associated ACL to an interface.

To configure traffic policies for ACL-based rate limiting, refer to “Configuring ACL-based fixed rate limiting” on page 774 and “Configuring ACL-based adaptive rate limiting” on page 775.

To configure traffic policies for ACL counting, refer to “Enabling ACL statistics” on page 778.

Configuration notes and feature limitations

Note the following when configuring traffic policies:

- Traffic policies are supported on all TurboIron X Series, FastIron GS and FastIron LS devices, and on FastIron X Series devices running software release 02.3.03 or later.
- This feature is supported in the Layer 2 and Layer 3 code.
- This feature applies to IP ACLs only.
- Traffic policies are not supported on 10 Gbps Ethernet interfaces.
- The maximum number of supported active TPDs is a system-wide parameter and depends on the device you are configuring. The total number of active TPDs cannot exceed the system maximum. Refer to “Maximum number of traffic policies supported on a device” on page 772.
• The FastIron GS and FastIron LS devices do not support the use of traffic policies for ACL counting only.

• You can reference the same traffic policy in more than one ACL entry within an access list. For example, two or more ACL statements in ACL 101 can reference a TPD named TPD1.

• You can reference the same traffic policy in more than one access list. For example, ACLs 101 and 102 could both reference a TPD named TPD1.

• To modify or delete an active traffic policy, you must first unbind the ACL that references the traffic policy.

• When you define a TPD (when you enter the CLI command `traffic-policy`), explicit marking of CoS parameters, such as traffic class and 802.1p priority, are not available on the device. In the case of a TPD defining rate limiting, the device re-marks CoS parameters based on the DSCP value in the packet header and the determined conformance level of the rate limited traffic, as shown in Table 135.

Table 135 CoS parameters for packets that use rate limiting traffic policies

<table>
<thead>
<tr>
<th>If the packet conformance level is...</th>
<th>and the packet DSCP value is...</th>
<th>the device sets the traffic class and 802.1p priority to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Green) or 1 (Yellow)</td>
<td>0 – 7</td>
<td>0 (lowest priority queue)</td>
</tr>
<tr>
<td></td>
<td>8 – 15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>16 – 23</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>24 – 31</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>32 – 39</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>40 – 47</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>48 – 55</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>56 – 63</td>
<td>7 (highest priority queue)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>0 (lowest priority queue)</td>
</tr>
</tbody>
</table>

• When you define a TPD, reference the TPD in an ACL entry, then apply the ACL to a VE in the Layer 3 router code, the rate limit policy is accumulative for all of the ports in the port region. If the VE/VLAN contains ports that are in different port regions, the rate limit policy is applied per port region.

For example, TPD1 has a rate limit policy of 600M and is referenced in ACL 101. ACL 101 is applied to VE 1, which contains ports e 1/11 to e 1/14. Because ports e 1/11 and 1/12 are in a different port region than e 1/13 and 1/14, the rate limit policy will be 600M for ports e 1/11 and 1/12, and 600M for ports e 1/13 and 1/14.

Maximum number of traffic policies supported on a device

The maximum number of supported active traffic policies is a system-wide parameter and depends on the device you are configuring, as follows:

• By default, up to 1024 active traffic policies are supported on Layer 2 and on Layer 3 switches. This value is fixed on Layer 2 switches and cannot be modified.

• The number of active traffic policies supported on Layer 3 switches varies depending on the configuration and the available system memory. The default value and also the maximum number of traffic policies supported on Layer 3 switches is 1024.
Setting the maximum number of traffic policies supported on a Layer 3 device

If desired you can adjust the maximum number of active traffic policies that a Layer 3 device will support. To do so, enter commands such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)# system-max hw-traffic-conditioner 25
FastIron(config)# write memory
FastIron(config)# reload
```

NOTE
You must save the configuration and reload the software to place the change into effect.

Syntax: `[no] system-max hw-traffic-conditioner <num>`

`<num>` is a value from 0 to `n`, where 0 disables hardware resources for traffic policies, and `n` is a number up to 1024. The maximum number you can configure depends on the configuration and available memory on your device. If the configuration you enter causes the device to exceed the available memory, the device will reject the configuration and display a warning message on the console.

NOTE
Brocade does not recommend setting the system-max for traffic policies to 0 (zero), since this renders traffic policies ineffective.

ACL-based rate limiting using traffic policies

ACL-based rate limiting provides the facility to limit the rate for IP traffic that matches the permit conditions in extended IP ACLs. This feature is available in the Layer 2 and Layer 3 code.

To configure ACL-based rate limiting, you create individual traffic policies, then reference the traffic policies in one or more ACL entries (also called clauses or statements). The traffic policies become effective on ports to which the ACLs are bound. Refer to “About traffic policies” on page 771.

When you configure a traffic policy for rate limiting, the device automatically enables rate limit counting, similar to the two-rate three-color marker (trTCM) mechanism described in RFC 2698 for adaptive rate limiting, and the single-rate three-color marker (srTCM) mechanism described in RFC 2697 for fixed rate limiting. This feature counts the number of bytes and trTCM or srTCM conformance level per packet to which rate limiting traffic policies are applied. Refer to “ACL and rate limit counting” on page 778.

You can configure ACL-based rate limiting on the following interface types:

- physical Ethernet interfaces
- virtual interfaces
- trunk ports
- specific VLAN members on a port (New in 02.3.03 – refer to “Applying an IPv4 ACL to specific VLAN members on a port (Layer 2 devices only)” on page 657)
- a subset of ports on a virtual interface (New in 02.3.03 – refer to “Applying an IPv4 ACL to a subset of ports on a virtual interface (Layer 3 devices only)” on page 658.)
Support for fixed rate limiting and adaptive rate limiting

FastIron X Series and TurboIron X Series devices support the following types of ACL-based rate limiting:

- **Fixed rate limiting** – Enforces a strict bandwidth limit. The device forwards traffic that is within the limit but either drops all traffic that exceeds the limit, or forwards all traffic that exceeds the limit at the lowest priority level, according to the action specified in the traffic policy.

- **Adaptive rate limiting** – Enforces a flexible bandwidth limit that allows for bursts above the limit. You can configure Adaptive Rate Limiting to forward, modify the IP precedence of and forward, or drop traffic based on whether the traffic is within the limit or exceeds the limit.

NOTE
FCX devices do not support adaptive rate limiting.

Configuring ACL-based fixed rate limiting

Use the procedures in this section to configure ACL-based fixed rate limiting. Before configuring this feature, see what to consider in “Configuration notes and feature limitations” on page 771.

Fixed rate limiting enforces a strict bandwidth limit. The port forwards traffic that is within the limit. If the port receives more than the specified number of fragments in a one-second interval, the device either drops or forwards subsequent fragments in hardware, depending on the action you specify.

To implement the ACL-based fixed rate limiting feature, first create a traffic policy, then reference the policy in an extended ACL statement. Lastly, bind the ACL to an interface. Follow the steps below.

1. Create a traffic policy. Enter a command such as the following.

   ```
   FastIron(config)# traffic-policy TPD1 rate-limit fixed 100 exceed-action drop
   ```

2. Create an extended ACL entry or modify an existing extended ACL entry that references the traffic policy.

 Example

   ```
   FastIron(config)# access-list 101 permit ip host 210.10.12.2 any traffic-policy TPD1
   ```

3. Bind the ACL to an interface.

   ```
   FastIron(config)# int e 5
   FastIron(config-if-e5)# ip access-group 101 in
   FastIron(config-if-e5)# exit
   ```

The above commands configure a fixed rate limiting policy that allows port e5 to receive a maximum traffic rate of 100 kbps. If the port receives additional bits during a given one-second interval, the port drops the additional inbound packets that are received within that one-second interval.

Syntax:

- [no] traffic-policy `<TPD name>` rate-limit fixed `<cir value>` exceed-action `<action>` [count]
- access-list `<num>` permit | deny... traffic policy `<TPD name>`
- [no] ip access-group `<num>` in
NOTE
For brevity, some parameters were omitted from the above access-list syntax.

The software allows you to add a reference to a non-existent TPD in an ACL statement and to bind that ACL to an interface. The software does not issue a warning or error message for non-existent TPDs.

Use the no form of the command to delete a traffic policy definition. Note that you cannot delete a traffic policy definition if it is currently in use on a port. To delete a traffic policy, first unbind the associated ACL.

<TPD name> is the name of the traffic policy definition. This value can be 8 or fewer alphanumeric characters.

rate-limit fixed specifies that the traffic policy will enforce a strict bandwidth.

<cir value> is the committed information rate in kbps. This value can be from 64 – 1000000 Kbps.

exceed-action <action> specifies the action to be taken when packets exceed the configured cir value. Refer to “Specifying the action to be taken for packets that are over the limit” on page 777.

The count parameter is optional and enables ACL counting. Refer to “ACL and rate limit counting” on page 778.

Configuring ACL-based adaptive rate limiting

Use the procedures in this section to configure ACL-based adaptive rate limiting. Before configuring this feature, see what to consider in “Configuration notes and feature limitations” on page 771.

Table 136 lists the configurable parameters for ACL-based adaptive rate limiting.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committed Information Rate (CIR)</td>
<td>The guaranteed kilobit rate of inbound traffic that is allowed on a port.</td>
</tr>
<tr>
<td>Committed Burst Size (CBS)</td>
<td>The number of bytes per second allowed in a burst before some packets will exceed the committed information rate. Larger bursts are more likely to exceed the rate limit. The CBS must be a value greater than zero (0). Brocade recommends that this value be equal to or greater than the size of the largest possible IP packet in a stream. For TurboIron X Series devices, the CBS value is specified in kilobits.</td>
</tr>
<tr>
<td>Peak Information Rate (PIR)</td>
<td>The peak maximum kilobit rate for inbound traffic on a port. The PIR must be equal to or greater than the CIR.</td>
</tr>
<tr>
<td>Peak Burst Size (PBS)</td>
<td>The number of bytes per second allowed in a burst before all packets will exceed the peak information rate. The PBS must be a value greater than zero (0). Brocade recommends that this value be equal to or greater than the size of the largest possible IP packet in the stream. For TurboIron X Series devices, the PBS value is specified in kilobits.</td>
</tr>
</tbody>
</table>

If a port receives more than the configured bit or byte rate in a one-second interval, the port will either drop or forward subsequent data in hardware, depending on the action you specify.

To implement the ACL-based adaptive rate limiting feature, first create a traffic policy then reference the policy in an extended ACL statement. Lastly, bind the ACL to an interface. Follow the steps below.
1. Create a traffic policy. Enter a command such as the following.

```
FastIron(config)# traffic-policy TPDAfour rate-limit adaptive cir 10000 cbs 1600 pir 20000 pbs 4000 exceed-action drop
```

2. Create a new extended ACL entry or modify an existing extended ACL entry that references the traffic policy.

 Example

```
FastIron(config)# access-list 104 permit ip host 210.10.12.2 any traffic-policy TPDAfour
```

3. Bind the ACL to an interface.

```
FastIron(config)# int e7
FastIron(config-if-e7)# ip access-group 104 in
FastIron(config-if-e7)# exit
```

The above commands configure an adaptive rate limiting policy that enforces a guaranteed committed rate of 10000 kbps on port e7 and allows bursts of up to 1600 bytes. It also enforces a peak rate of 20000 kbps and allows bursts of 4000 bytes above the PIR limit. If the port receives additional bits during a given one-second interval, the port drops all packets on the port until the next one-second interval starts.

Syntax:

```
[no] traffic-policy <TPD name> rate-limit adaptive cir <cir value> cbs <cbs value> pir <pir value> pbs <pbs value> exceed-action <action> [count]
```

Syntax:

```
access-list <num> permit | deny.... traffic policy <TPD name>
```

Syntax:

```
[no] ip access-group <num> in
```

NOTE

For brevity, some parameters were omitted from the above access-list syntax.

The software allows you to add a reference to a non-existent TPD in an ACL statement and to bind that ACL to an interface. The software does not issue a warning or error message for non-existent TPDs.

Use the `no` form of the command to delete a traffic policy definition. Note that you cannot delete a traffic policy definition if it is currently in use on a port. To delete a traffic policy, first unbind the associated ACL.

<TPD name> is the name of the traffic policy definition. This value can be 8 or fewer alphanumeric characters.

rate-limit adaptive specifies that the policy will enforce a flexible bandwidth limit that allows for bursts above the limit.

<cir value> is the committed information rate in kbps. Refer to Table 136.

<cbs value> is the committed burst size in bytes. Refer to Table 136.

<pir value> is the peak information rate in kbps. Refer to Table 136.

<pbs value> is the peak burst size in bytes. Refer to Table 136.

exceed-action <action> specifies the action to be taken when packets exceed the configured values. Refer to “Specifying the action to be taken for packets that are over the limit” on page 777.

The count parameter is optional and enables ACL counting. Refer to “ACL and rate limit counting” on page 778.
Specifying the action to be taken for packets that are over the limit

You can specify the action to be taken when packets exceed the configured cir value for fixed rate limiting, or the cir, cbs, pir, and pbs values for adaptive rate limiting. You can specify one of the following actions:

- Drop packets that exceed the limit
- Permit packets that exceed the limit and forward them at the lowest priority level

Dropping packets that exceed the limit

This section shows some example configurations and provides the CLI syntax for configuring a port to drop packets that exceed the configured limits for rate limiting.

Example
The following shows an example fixed rate limiting configuration.

```
FastIron(config)# traffic-policy TPD1 rate-limit fixed 10000 exceed-action drop
```

The above command sets the fragment threshold at 10,000 per second. If the port receives more than 10,000 packet fragments in a one-second interval, the device drops the excess fragments.

Syntax: `traffic-policy <TPD name> rate-limit fixed <cir value> exceed-action drop`

Example
The following shows an example adaptive rate limiting configuration.

```
FastIron(config)# traffic-policy TPDAfour rate-limit adaptive cir 10000 cbs 1600
pir 20000 pbs 4000 exceed-action drop
```

The above commands configure an adaptive rate limiting policy that enforces a guaranteed committed rate of 10000 kbps on port e7 and allows bursts of up to 1600 bytes. It also enforces a peak rate of 20000 kbps and allows bursts of 4000 bytes above the PIR limit. If the port receives additional bits during a given one-second interval, the port drops all packets on the port until the next one-second interval starts.

Syntax: `traffic-policy rate-limit adaptive cir <cir value> cbs <cbs value> pir <pir value> pbs <pbs value> exceed-action drop`

Permitting packets that exceed the limit

This section shows some example configurations and provides the CLI syntax for configuring a port to permit packets that exceed the configured limit for rate limiting.

Example
The following shows an example fixed rate limiting configuration.

```
FastIron(config)# traffic-policy TPD1 rate-limit fixed 10000 exceed-action permit-at-low-pri
```

The above command sets the fragment threshold at 10,000 per second. If the port receives more than 10,000 packet fragments in a one-second interval, the device takes the specified action. The action specified with this command is to permit excess fragments and forward them at the lowest priority level.

Syntax: `[no] traffic-policy <TPD name> rate-limit fixed <cir value> exceed-action permit-at-low-pri`
Example

The following shows an example adaptive rate limiting configuration.

```
FastIron(config)# traffic-policy TPDAfour rate-limit adaptive cir 10000 cbs 1600
pir 20000 pbs 4000 exceed-action permit-at-low-pri
```

The above commands configure an adaptive rate limiting policy that enforces a guaranteed committed rate of 10000 kbps on port e7 and allows bursts of up to 1600 bytes. It also enforces a peak rate of 20000 kbps and allows bursts of 4000 bytes above the PIR limit. If the port receives additional bits during a given one-second interval, the port permits all packets on the port and forwards the packets at the lowest priority level.

Syntax: `traffic-policy rate-limit adaptive cir <cir value> cbs <cbs value> pir <pir value> pbs <pbs value> exceed-action permit-at-low-pri`

ACL and rate limit counting

Platform Support:
- FastIron X Series devices running software release 02.3.03 and later
- TurboIron X Series devices running software release 04.1.00 and later

ACL counting, also called **ACL statistics**, enables the Brocade device to count the number of packets and the number of bytes per packet to which ACL filters are applied.

Rate limit counting counts the number of bytes and conformance level per packet to which rate limiting traffic policies are applied. The device uses the counting method similar to the two-rate three-color marker (trTCM) mechanism described in RFC 2698 for adaptive rate limiting, and the single-rate three-color marker (srTCM) mechanism described in RFC 2697 for fixed rate limiting. Rate limit counting is automatically enabled when a traffic policy is enforced (active). You can view these counters using the show commands listed in “Viewing traffic policies” on page 781.

For more information about traffic policies, refer to “About traffic policies” on page 771.

Enabling ACL statistics

NOTE

ACL statistics and **ACL counting** are used interchangeably throughout this chapter and mean the same thing.

NOTE

The FastIron GS and FastIron LS do not support the use of traffic policies for ACL statistics only. However, these models do support the use of traffic policies for ACL statistics together with rate limiting traffic policies. Refer to “Enabling ACL statistics with rate limiting traffic policies” on page 779.

Use the procedures in this section to configure ACL statistics. Before configuring this feature, see what to consider in “Configuration notes and feature limitations” on page 771.

To enable ACL statistics on a FastIron X Series device, first create a traffic policy, then reference the traffic policy in an extended ACL entry. Lastly, bind the ACL to an interface. The ACL counting policy becomes effective on ports to which the ACLs are bound.
You also can enable ACL statistics when you create a traffic policy for rate limiting. Refer to “Enabling ACL statistics with rate limiting traffic policies” on page 779.

Follow the steps given below to implement the ACL counting feature.

1. Create a traffic policy. Enter a command such as the following

   ```
   FastIron(config)# traffic-policy TPD5 count
   ```

2. Create an extended ACL entry or modify an existing extended ACL entry that references the traffic policy definition.

 Example

   ```
   FastIron(config)# access-list 101 permit ip host 210.10.12.2 any traffic-policy TPD5
   ```

3. Bind the ACL to an interface.

   ```
   FastIron(config)# int e 4
   FastIron(config-if-e4)# ip access-group 101 in
   FastIron(config-if-e4)# exit
   ```

The above commands configure an ACL counting policy and apply it to port e4. Port e4 counts the number of packets and the number of bytes on the port that were permitted or denied by ACL filters.

Syntax: `[no] traffic-policy <TPD name> count

Syntax: `access-list <num> permit | deny.... traffic policy <TPD name>

Syntax: `[no] ip access-group <num> in

NOTE

For brevity, some parameters were omitted from the above access-list syntax.

The software allows you to add a reference to a non-existent TPD in an ACL statement and to bind that ACL to an interface. The software does not issue a warning or error message for non-existent TPDs.

Use the **no** form of the command to delete a traffic policy definition. Note that you cannot delete a traffic policy definition if it is currently in use on a port. To delete a traffic policy, first unbind the associated ACL.

`<TPD name>` is the name of the traffic policy definition. This value can be 8 alphanumeric characters or less.

Enabling ACL statistics with rate limiting traffic policies

NOTE

FCX devices do not support ACL statistics in software release 06.0.00.

The configuration example in the section “Enabling ACL statistics” on page 778 shows how to enable ACL counting without having to configure parameters for rate limiting. You also can enable ACL counting while defining a rate limiting traffic policy, as illustrated in the following configuration examples.

Example

To enable ACL counting while defining traffic policies for fixed rate limiting, enter commands such as the following at the Global CONFIG Level of the CLI.

ACL and rate limit counting

Syntax: [no] traffic-policy <TPD name> rate-limit fixed <cir value> exceed-action <action> count

Example

To enable ACL counting while defining traffic policies for adaptive rate limiting, enter commands such as the following at the Global CONFIG Level of the CLI.

```
traffic-policy TPDA4 rate-limit adaptive cir 10000 cbs 1600 pir 20000 pbs 4000
count exceed-action drop
traffic-policy TPDA5 rate-limit adaptive cir 10000 cbs 1600 pir 20000 pbs 4000
exceed-action permit-at-low-pri count
```

Syntax: traffic-policy rate-limit adaptive cir <cir value> cbs <cbs value> pir <pir value> pbs <pbs value> exceed-action <action> count

Viewing ACL and rate limit counters

When ACL counting is enabled on the Brocade device, you can use show commands to display the total packet count and byte count of the traffic filtered by ACL statements. The output of the show commands also display the rate limiting traffic counters, which are automatically enabled for active rate limiting traffic policies.

Use either the show access-list accounting command or the show statistics traffic-policy command to display ACL and traffic policy counters. The output of these commands are identical. The following shows an example output.

```
FastIron# show access-list accounting traffic-policy g_voip
Traffic Policy - g_voip:
General Counters:
Port Region#                  Byte Count             Packet Count
------------------   --------------------   ----------------------
7 (4/1 - 4/12)                   85367040                   776064
All port regions               84367040                   776064
Rate Limiting Counters:
Port Region#        Green Conformance  Yellow Conformance     Red Conformance
------------------  ------------------  ------------------  ------------------
7 (4/1 - 4/12)      329114195612139520   37533986897781760                   0
All port regions    329114195612139520   37533986897781760                   0
```

Syntax: show access-list accounting traffic-policy [<TPD name>]

or

Syntax: show statistics traffic-policy [<TPD name>]

Table 137 explains the output of the show access-list accounting and show statistics traffic-policy commands.

<table>
<thead>
<tr>
<th>TABLE 137</th>
<th>ACL and rate limit counting statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>This line...</td>
<td>Displays...</td>
</tr>
<tr>
<td>Traffic Policy</td>
<td>The name of the traffic policy.</td>
</tr>
<tr>
<td>General Counters</td>
<td></td>
</tr>
</tbody>
</table>
Clearing ACL and rate limit counters

The Brocade device keeps a running tally of the number of packets and the number of bytes per packet that are filtered by ACL statements and rate limiting traffic policies. You can clear these accumulated counters, essentially resetting them to zero. To do so, use either the `clear access-list account traffic-policy` or the `clear statistics traffic-policy` command.

To clear the counters for ACL counting and rate limit counting, enter commands such as the following.

```
FastIron(config)# clear access-list accounting traffic-policy CountOne
FastIron(config)# clear statistics traffic-policy CountTwo
```

Syntax:
- `clear access-list accounting traffic-policy <TPD name>`
- `clear statistics traffic-policy <TPD name>`

where `<TPD name>` is the name of the traffic policy definition for which you want to clear traffic policy counters.

VIEWING TRAFFIC POLICIES

To view traffic policies that are currently defined on the Brocade device, enter the `show traffic-policy` command. An example display output is shown below. **Table 138** defines the output.

```
FastIron# show traffic-policy t_voip
Traffic Policy - t_voip:
Metering Enabled, Parameters:
    Mode: Adaptive Rate-Limiting
cir: 100 kbps,  cbs: 2000 bytes,  pir: 200 kbps,  pbs: 4000 bytes
Counting Not Enabled
Number of References/Bindings:1
```

Syntax: `show traffic-policy [<TPD name>]`

To display all traffic policies, enter the `show traffic-policy` command without entering a TPD name.
View Traffic Policies

<table>
<thead>
<tr>
<th>This line...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Policy</td>
<td>The name of the traffic policy.</td>
</tr>
<tr>
<td>Metering</td>
<td>Shows whether or not rate limiting was configured as part of the traffic policy:</td>
</tr>
<tr>
<td></td>
<td>• Enabled – The traffic policy includes a rate limiting configuration.</td>
</tr>
<tr>
<td></td>
<td>• Disabled – The traffic policy does not include a rate limiting configuration</td>
</tr>
<tr>
<td>Mode</td>
<td>If rate limiting is enabled, this field shows the type of metering enabled on the port:</td>
</tr>
<tr>
<td></td>
<td>• Fixed Rate-Limiting</td>
</tr>
<tr>
<td></td>
<td>• Adaptive Rate-Limiting</td>
</tr>
<tr>
<td>cir</td>
<td>The committed information rate, in kbps, for the adaptive rate-limiting policy.</td>
</tr>
<tr>
<td>cbs</td>
<td>The committed burst size, in bytes per second, for the adaptive rate-limiting policy.</td>
</tr>
<tr>
<td>pir</td>
<td>The peak information rate, in kbps, for the adaptive rate-limiting policy.</td>
</tr>
<tr>
<td>pbs</td>
<td>The peak burst size, in bytes per second, for the adaptive rate-limiting policy.</td>
</tr>
<tr>
<td>Counting</td>
<td>Shows whether or not ACL counting was configured as part of the traffic policy:</td>
</tr>
<tr>
<td></td>
<td>• Enabled – Traffic policy includes an ACL counting configuration.</td>
</tr>
<tr>
<td></td>
<td>• Disabled – Traffic policy does not include an ACL traffic counting configuration.</td>
</tr>
<tr>
<td>Number of References/Bindings</td>
<td>The number of port regions to which this traffic policy applies. For example, if the traffic policy is applied to a trunk group that includes ports e 9/9, 9/10, 9/11, and 9/12, the value in this field would be 2, because these four trunk ports are in two different port regions.</td>
</tr>
</tbody>
</table>
Configuring IP Multicast Traffic Reduction for FastIron Devices

Chapter 26

IGMP snooping for FGS and FGS-STK, FLS and FLS-STK, FWS, and FCX devices

NOTE

- FGS and FLS devices running software release 03.0.00 and later
- FWS devices running software release 04.3.00 or later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FCX-S devices running software release 06.0.00 and later

NOTE
FastIron CX devices also support IGMP Proxy. For more information see “IGMP Proxy” on page 921.

IGMP snooping overview

When a device processes a multicast packet, by default, the device broadcasts the packets to all ports except the incoming port of a VLAN. Packets are flooded by hardware without going to the CPU. This behavior causes some clients to receive unwanted traffic.

IGMP snooping provides multicast containment by forwarding traffic to only the ports that have IGMP receivers for a specific multicast group (destination address). A device maintains the IGMP group membership information by processing the IGMP reports and leave messages, so traffic can be forwarded to ports receiving IGMP reports.

An IPv4 multicast address is a destination address in the range of 224.0.0.0 to 239.255.255.255. Addresses of 224.0.0.X are reserved. Because packets destined for these addresses may require VLAN flooding, devices do not do snooping in the reserved range. Data packets destined to addresses in reserved range are flooded to the entire VLAN by hardware, and mirrored to the CPU. Multicast data packets destined for the non-reserved range of addresses are snooped. A client must send IGMP reports in order to receive traffic. If an application outside the reserved range requires VLAN flooding, the user must configure a static group that applies to the entire VLAN. In addition, a static group with the drop option can discard multicast data packets to a specified group in hardware, including addresses in the reserved range.
An IGMP device is responsible for broadcasting general queries periodically, and sending group queries when it receives a leave message, to confirm that none of the clients on the port still want specific traffic before removing the traffic from the port. IGMPv2 lets clients specify what group (destination address) will receive the traffic but not to specify the source of the traffic. IGMPv3 is for source-specific multicast traffic, adding the capability for clients to INCLUDE or EXCLUDE specific traffic sources. An IGMPv3 device port state could be INCLUDE or EXCLUDE, and there are different types of group records for client reports.

The interfaces respond to general or group queries by sending a membership report that contains one or more of the following records associated with a specific group:

- Current-state record that indicates from which sources the interface wants to receive and not receive traffic. This record contains the source address of interfaces and whether or not traffic will be included (IS_IN) or not excluded (IS_EX) from this source.
- Filter-mode-change record. If the interface state changes from IS_IN to IS_EX, a TO_EX record is included in the membership report. Likewise, if the interface state changes from IS_EX to IS_IN, a TO_IN record appears in the membership report.
- An IGMPv2 leave report is equivalent to a TO_IN (empty) record in IGMPv3. This record means that no traffic from this group will be received regardless of the source.
- An IGMPv2 group report is equivalent to an IS_EX (empty) record in IGMPv3. This record means that all traffic from this group will be received regardless of source.
- Source-list-change record. If the interface wants to add or remove traffic sources from its membership report, the report can contain an ALLOW record, which includes a list of new sources from which the interface wishes to receive traffic. It can also contain a BLOCK record, which lists the current traffic sources from which the interface wants to stop receiving traffic.

IGMP protocols provide a method for clients and a device to exchange messages, and let the device build a database indicating which port wants what traffic. The protocols do not specify forwarding methods. They require IGMP snooping or multicast protocols such as PIM or DVMRP to handle packet forwarding. PIM and DVMRP can route multicast packets within and outside a VLAN, while IGMP snooping can switch packets only within a VLAN. Currently, FGS, FLS, FGS-STK, FLS-STK, FWS, and FCX devices do not support multicast routing.

If a VLAN is not IGMP snooping-enabled, it floods multicast data and control packets to the entire VLAN in hardware. When snooping is enabled, IGMP packets are trapped to the CPU. Data packets are mirrored to the CPU in addition to being VLAN flooded. The CPU then installs hardware resources, so that subsequent data packets can be switched to desired ports in hardware without going to the CPU. If there is no client report or port to queriers for a data stream, the hardware resource drops it. The hardware can either match the group address only (* G), or both the source and group (S G) of the data stream. If any IGMPv3 is configured in any port of a VLAN, this VLAN uses (S G) match; otherwise, it uses (* G). This is 32-bit IP address matching, not 23-bit multicast MAC address 01-00-5e-xx-xx-xx matching.

FGS, FLS, FGS-STK, FLS-STK, FWS, and FCX devices have 16K of hardware resources allocated to MAC learning, IGMP, and MLD snooping. If a data packet does not match any of these resources, it might be sent to the CPU, which increases the CPU burden. This can happen if the device runs out of hardware resource, or is unable to install resources for a specific matching address due to hashing collision. The hardware hashes addresses into 16K entries, with some addresses hashed into the same entry. If the collision number in an entry is more than the hardware chain length, the resource cannot be installed. The chain length can be configured using the hash-chain-length command.

```
FastIron(config)# hash-chain-length 8
```

Syntax: [no] hash-chain-length <num>
The `<num>` parameter range is 4 to 32, in multiples of 4. If the input value is not a multiple of 4, then it will be changed to the multiple of 4 lower than then the input value (e.g. 11 will be changed to 8). The default hash chain length is 4. A chain length of more than 4 may affect line rate switching.

NOTE
For this command to take effect, you must save the configuration and reload the switch.

The hardware resource limit applies only to the VLANs where IGMP snooping is enabled. Multicast streams are switched in hardware without using any pre-installed resources in a VLAN where snooping is not enabled.

FGS, FLS, FGS-STK, FLS-STK, FWS, and FCX devices support up to 32K of IGMP groups, which are produced by client membership reports.

Configuration notes

- Servers (traffic sources) are not required to send IGMP memberships.
- The default IGMP version is V2.
- Hardware resource is installed only when there is data traffic. If a VLAN is configured for IGMPv3, the hardware matches (S G), otherwise it matches (* G).
- A user can configure the maximum numbers of groups and hardware switched data streams.
- The device supports static groups that apply to the entire VLAN, or to just a few ports. The device acts as a proxy to send IGMP reports for the static groups when receiving queries. The static group has a drop option to discard multicast data packets in hardware.
- A user can configure static router ports to force all multicast traffic to these specific ports.
- The devices support fast leave for IGMPv2. Fast leave stops traffic immediately when the port receives a leave message.
- The devices support tracking and fast leave for IGMPv3, tracking all IGMPv3 clients. If the only client on a port leaves, traffic is stopped immediately.
- An IGMP device can be configured as a querier (active) or non-querier (passive). Queriers send queries. Non-queriers listen for queries and forward them to the entire VLAN.
- Every VLAN can be independently configured to be a querier or a non-querier.
- If a VLAN has a connection to a PIM/DVMRP-enabled port on another router, this VLAN should be configured as a non-querier (passive). When multiple snooping devices connect together and there is no connection to PIM/DVMRP ports, one device should be configured as a querier (active). If multiple devices are configured as active (queriers), only one will keep sending queries after exchanging queries.
- An IGMP device can be configured to rate-limit the forwarding IGMPv2 membership reports to queriers.
- The querier must configure an IP address to send out queries.

The implementation allows snooping on some VLANs or all VLANs. Each VLAN can independently enable or disable IGMP, or configure V2 or V3. In general, global configuration commands `ip multicast` apply to every VLAN except those that have local `multicast` configurations (which supersede the global configuration). IGMP also allows independent configuration of individual ports in a VLAN for either IGMPv2 or IGMPv3. Configuring a specific version on a port or a VLAN only applies to the device’s sent queries. The device always processes client reports of any version regardless of the configured version.
IGMP snooping requires hardware resources. If resources are inadequate, the data stream without a resource is mirrored to CPU in addition to being VLAN flooded, which can cause high CPU usage. Brocade recommends that you avoid global enabling of snooping unless necessary.

When any port in a VLAN is configured for IGMPv3, the VLAN matches both source and group (S G) in hardware switching. If no ports are configured for IGMPv3, the VLAN matches group only (* G). Matching (S G) requires more hardware resources than matching (* G) when there are multiple servers sharing the same group. For example, two data streams from different sources to the same group require two (S G) entries in IGMPv3, but only one (* G) in IGMPv2. To conserve resources, IGMPv3 should be used only in source-specific applications. When VLANs are be independently configured for versions, some VLANs can match (* G) while others match (S G).

IGMP snooping requires clients to send membership reports in order to receive data traffic. If a client application does not send reports, you must configure static groups to force traffic to client ports. A static group can apply to only some ports or to the entire VLAN.

Configuring queriers and non-queriers

An IGMP snooping-enabled device can be configured as a querier (active) or non-querier (passive). An IGMP querier sends queries; a non-querier listens for IGMP queries and forwards them to the entire VLAN. Starting in FGS software release 03.0.00, VLANs can be independently configured to be queriers or non-queriers. If a VLAN has a connection to a PIM/DVMRP-enabled port on another router, the VLAN should be configured as a non-querier. When multiple IGMP snooping devices are connected together, and there is no connection to a PIM/DVMRP-enabled port, one of the devices should be configured as a querier. If multiple devices are configured as queriers, after these devices exchange queries, then all except the winner stop sending queries. The device with the lowest address becomes the querier. Although the system will work when multiple devices are configured as queriers, Brocade recommends that only one device (preferably the one with the traffic source) is configured as a querier.

The non-queriers always forward multicast data traffic and IGMP messages to router ports which receive IGMP queries or PIM/DVMRP hellos. Brocade recommends that you configure the device with the data traffic source (server) as a querier. If a server is attached to a non-querier, the non-querier always forwards traffic to the querier regardless of whether there are any clients on the querier.

NOTE

In a topology of one or more connecting devices, at least one device must be running PIM/DVMRP, or configured as active. Otherwise, none of the devices can send out queries, and traffic cannot be forwarded to clients.

VLAN specific configuration

You can configure IGMP snooping on some VLANs or on all VLANs. Each VLAN can be independently enabled or disabled for IGMP snooping, and can be configured for IGMPv2 or IGMPv3. In general, the `ip multicast` commands apply globally to all VLANs except those configured with VLAN-specific `multicast` commands. The VLAN-specific multicast commands supersede the global `ip multicast` commands.
Using IGMPv2 with IGMPv3

IGMP snooping can be configured for IGMPv2 or IGMPv3 on individual ports on a VLAN. An interface or router sends the queries and reports that include its IGMP version specified on it. The version configuration only applies to sending queries. The snooping device recognizes and processes IGMPv2 and IGMPv3 packets regardless of the version configuration.

To avoid version deadlock, an interface retains its version configuration even when it receives a report with a lower version.

PIM SM traffic snooping overview

Platform Support:
- FGS and FLS devices running software release 02.6.00 and later
- FWS devices running software release 04.3.00 or later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FCX-S devices running software release 06.0.00 and later

When multiple PIM sparse routers connect through a snooping-enabled device, the device always forwards multicast traffic to these routers. For example, PIM sparse routers R1, R2 and R3 connect through a device. Assume R2 needs traffic, and R1 sends it to the device, which forwards it to both R2 and R3, even though R3 does not need it. A PIM snooping-enabled device listens to join and prune messages exchanged by PIM sparse routers, and stops traffic to the router that sends prune messages. This allows the device to forward the data stream to R2 only.

PIM SM traffic snooping requires IP multicast traffic reduction to be enabled on the device. IP multicast traffic reduction configures the device to listen for IGMP messages. PIM SM traffic snooping provides a finer level of multicast traffic control by configuring the device to listen specifically for PIM SM join and prune messages sent from one PIM SM router to another through the device.

Configuration notes

This feature applies only to PIM SM version 2 (PIM V2).

Application example

Figure 109 shows an example application of the PIM SM traffic snooping feature. In this example, a device is connected through an IP router to a PIM SM group source that is sending traffic for two PIM SM groups. The device also is connected to a receiver for each of the groups.
When PIM SM traffic snooping is enabled, the device starts listening for PIM SM join and prune messages and IGMP group membership reports. Until the device receives a PIM SM join message or an IGMP group membership report, the device forwards IP multicast traffic out all ports. Once the device receives a join message or group membership report for a group, the device forwards subsequent traffic for that group only on the ports from which the join messages or IGMP reports were received.

In this example, the router connected to the receiver for group 239.255.162.1 sends a join message toward the group source. Since PIM SM traffic snooping is enabled on the device, the device examines the join message to learn the group ID, then makes a forwarding entry for the group ID and the port connected to the receiver router. The next time the device receives traffic for 239.255.162.1 from the group source, the device forwards the traffic only on port 5/1, since that is the only port connected to a receiver for the group.

Notice that the receiver for group 239.255.162.69 is directly connected to the device. As result, the device does not see a join message on behalf of the client. However, since IP multicast traffic reduction also is enabled, the device uses the IGMP group membership report from the client to select the port for forwarding traffic to group 239.255.162.69 receivers.

The IP multicast traffic reduction feature and the PIM SM traffic snooping feature together build a list of groups and forwarding ports for the VLAN. The list includes PIM SM groups learned through join messages as well as MAC addresses learned through IGMP group membership reports. In this case, even though the device never sees a join message for the receiver for group 239.255.162.69, the device nonetheless learns about the receiver and forwards group traffic to the receiver.

The device stops forwarding IP multicast traffic on a port for a group if the port receives a prune message for the group.

Notice that the ports connected to the source and the receivers are all in the same port-based VLAN on the device. This is required for the PIM SM snooping feature. The devices on the edge of the Global Ethernet cloud are configured for IP multicast traffic reduction and PIM SM traffic snooping. Although this application uses multiple devices, the feature has the same requirements and works the same way as it does on a single device.
Configuring IGMP snooping

To configure IGMP snooping on an FGS, FLS, FGS-STK, FLS-STK, FWS, and FCX devices, you need to perform the following global and VLAN-specific tasks.

Global tasks

Perform the following global tasks:

- “Configuring the hardware and software resource limits” on page 789
- “Enabling or disabling transmission and receipt of IGMP packets on a port” on page 790
- “Configuring the global IGMP mode” on page 790 (Must be enabled for IGMP snooping)
- “Modifying the age interval” on page 790
- “Modifying the query interval (Active IGMP snooping mode only)” on page 791
- “Configuring the global IGMP version” on page 791
- “Configuring report control” on page 791 (rate limiting)
- “Modifying the wait time before stopping traffic when receiving a leave message” on page 792
- “Modifying the multicast cache age time” on page 792
- “Enabling or disabling error and warning messages” on page 792
- “Enabling or disabling PIM sparse snooping” on page 792

VLAN-specific tasks

Perform the following VLAN-specific tasks:

- “Configuring the IGMP mode for a VLAN” on page 793 (active or passive)
- “Disabling IGMP snooping for the VLAN” on page 793
- “Disabling PIM sparse mode snooping for the VLAN” on page 793
- “Configuring the IGMP version for the VLAN” on page 793
- “Configuring the IGMP version for individual ports” on page 794
- “Configuring static groups to the entire VLAN or to specific ports” on page 794
- “Configuring static router ports” on page 794
- “Turning off static group proxy” on page 795
- “Enabling IGMPv3 membership tracking and fast leave for the VLAN” on page 795
- “Configuring fast leave for IGMPv2” on page 796
- “Enabling fast convergence” on page 796

Configuring the hardware and software resource limits

The system supports up to 8K of hardware-switched multicast streams. The configurable range is from 256 to 8192 with a default of 4096. Enter a command such as the following to define the maximum number of IGMP snooping cache entries.

```
FastIron(config)# system-max igmp-snoop-mcache 8000
```

Syntax: `[no] system-max igmp-snoop-mcache <num>`
The system supports up to 32K of groups. The configurable range is 256 to 32768 and the default is 8192. The configured number is the upper limit of an expandable database. Client memberships exceeding the group limits are not processed. Enter a command such as the following to define the maximum number of IGMP group addresses.

```
FastIron(config)# system-max igmp-max-group-addr 1600
```

Syntax: `[no] system-max igmp-max-group-addr <num>`

Enabling or disabling transmission and receipt of IGMP packets on a port

When a VLAN is snooping-enabled, all IGMP packets are trapped to CPU without hardware VLAN flooding. The CPU can block IGMP packets to and from a multicast-disabled port, and does not add it to the output interfaces of hardware resources. This prevents the disabled port from receiving multicast traffic. However, if static groups to the entire VLAN are defined, the traffic from these groups is VLAN flooded, including to disabled ports. Traffic from disabled ports cannot be blocked in hardware, and is switched in the same way as traffic from enabled ports.

This command has no effect on a VLAN that is not snooping-enabled because all multicast traffic is VLAN flooded.

```
FastIron(config)# interface ethernet 0/1/3
FastIron(config-if-e1000-0/1/3)# ip-multicast-disable
```

Syntax: `[no] ip-multicast-disable`

Configuring the global IGMP mode

You can configure active or passive IGMP modes on an FGS, FWS, FLS, or FCX device. The default mode is passive. If you specify an IGMP mode for a VLAN, it overrides the global setting.

- **Active** - When active IGMP mode is enabled, an FGS, FWS, FLS, or FCX device actively sends out IGMP queries to identify multicast groups on the network, and makes entries in the IGMP table based on the group membership reports it receives.
- **Passive** - When passive IGMP mode is enabled, it forwards reports to the router ports which receive queries. IGMP snooping in the passive mode does not send queries. However, it forwards queries to the entire VLAN.

To globally set the IGMP mode to active, enter the following command.

```
FastIron(config)# ip multicast active
```

Syntax: `[no] ip multicast [active | passive]`

If you do not enter either `active` or `passive`, the passive mode is assumed.

Modifying the age interval

When the device receives a group membership report, it makes an entry for that group in the IGMP group table. The age interval specifies how long the entry can remain in the table before the device receives another group membership report. When multiple devices connect together, all devices should be configured for the same age interval, which should be at least twice the length of the query interval, so that missing one report won't stop traffic. Non-querier age intervals should be the same as the age interval of the querier.

To modify the age interval, enter a command such as the following.

```
FastIron(config)# ip multicast age-interval 280
```
Syntax: [no] ip multicast age-interval <interval>

The <interval> parameter specifies the aging time. You can specify a value from 20 - 7200 seconds. The default is 140 seconds.

Modifying the query interval (Active IGMP snooping mode only)

For a device with an active IGMP mode, you can modify the query interval to specify how often the device sends group membership queries. When multiple queriers connect together, they should all be configured with the same query interval.

To modify the query interval, enter a command such as the following.

FastIron(config)# ip multicast query-interval 120

Syntax: [no] ip multicast query-interval <interval>

The <interval> parameter specifies the time between queries. You can specify a value from 10 - 3600 seconds. The default is 60 seconds.

Configuring the global IGMP version

You can globally specify IGMPv2 or IGMPv3 for the device. The default is IGMPv2. For example, the following command causes the device to use IGMPv3.

FastIron(config)# ip multicast version 3

Syntax: [no] ip multicast version 2|3

You can also optionally specify the IGMP version for individual VLANs, or individual ports within VLANs. When no IGMP version is specified for a VLAN, the global IGMP version is used. When an IGMP version is specified for individual ports within a VLAN, the ports use that version, instead of the VLAN version or the global version. The default is IGMPv2.

Configuring report control

A device in passive mode forwards reports and leave messages from clients to the upstream router ports that are receiving queries.

You can configure report control to rate-limit report forwarding within the same group to no more than once every 10 seconds. This rate-limiting does not apply to the first report answering a group-specific query.

NOTE

This feature applies to IGMPv2 only. The leave messages are not rate limited.

IGMPv2 membership reports of the same group from different clients are considered to be the same and are rate-limited.

Use the following command to alleviate report storms from many clients answering the upstream router query.

FastIron(config)# ip multicast report-control

Syntax: [no] ip multicast report-control
The original command, `ip igmp-report-control`, has been renamed to `ip multicast report-control`. The original command is still accepted; however, it is renamed when you issue a `show configuration` command.

Modifying the wait time before stopping traffic when receiving a leave message

You can define the wait time before stopping traffic to a port when a leave message is received. The device sends group-specific queries once per second to ask if any client in the same port still needs this group. The value range is from 1 to 5, and the default is 2. Due to internal timer granularity, the actual wait time is between n and (n+1) seconds (n is the configured value).

```
FastIron(config)# ip multicast leave-wait-time 1
```

Syntax: `[no] ip multicast leave-wait-time <num>`

Modifying the multicast cache age time

You can set the time for an mcache to age out when it does not receive traffic. The traffic is hardware switched. One minute before aging out an mcache, the device mirrors a packet of this mcache to CPU to reset the age. If no data traffic arrives within one minute, this mcache is deleted.

A lower value quickly removes resources consumed by idle streams, but it mirrors packets to CPU often. A higher value is recommended only data streams are continually arriving. The range is 60 to 3600 seconds, and the default is 60 seconds.

```
FastIron(config)# ip multicast mcache-age 180
```

Syntax: `[no] ip multicast mcache-age <num>`

Enabling or disabling error and warning messages

The device prints error or warning messages when it runs out of software resources or when it receives packets with the wrong checksum or groups. These messages are rate-limited. You can turn off these messages by entering a command such as the following.

```
FastIron(config)# ip multicast verbose-off
```

Syntax: `[no] ip multicast verbose-off`

Enabling or disabling PIM sparse snooping

PIM snooping should be used only in topologies where multiple PIM sparse routers connect through a device. PIM snooping does not work on a PIM dense mode router which does not send join messages, and traffic to PIM dense ports is stopped. A PIM snooping-enabled device displays a warning if it receives PIM dense join/prune messages. Configure PIM sparse snooping by entering a command such as the following.

```
FastIron(config)# ip pimsm-snooping
```

Syntax: `[no] ip pimsm-snooping`

NOTE

The device must be in passive mode before it can be configured for PIM snooping.
Configuring the IGMP mode for a VLAN

You can configure a VLAN to use the active or passive IGMP mode. The default mode is passive. The setting specified for the VLAN overrides the global setting:

- **Active** - An active IGMP mode device actively sends out IGMP queries to identify multicast groups on the network, and makes entries in the IGMP table based on the group membership reports received.
- **Passive** - A passive IGMP mode device forwards reports to the router ports which receive queries. IGMP snooping in the passive mode forwards queries to the entire VLAN, but it does not send queries.

To set the IGMP mode for VLAN 20 to active, enter the following commands.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast active
```

Syntax: `[no] multicast active | passive`

Disabling IGMP snooping for the VLAN

When IGMP snooping is enabled globally, you can still disable it for a specific VLAN. For example, the following commands cause IGMP snooping to be disabled for VLAN 20. This setting overrides the global setting.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast disable-multicast-snoop
```

Syntax: `[no] multicast disable-multicast-snoop`

Enabling PIM sparse mode snooping for the VLAN

You can enable PIM snooping for a specific VLAN. For example, the following commands enable PIM snooping on VLAN 20.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast pimsm-snooping
```

Syntax: `[no] multicast pimsm-snooping`

Disabling PIM sparse mode snooping for the VLAN

When PIM snooping is enabled globally, you can still disable it for a specific VLAN. For example, the following commands disable PIM snooping for VLAN 20. This setting overrides the global setting.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast disable-pimsm-snoop
```

Syntax: `[no] multicast disable-pimsm-snoop`

Configuring the IGMP version for the VLAN

You can specify the IGMP version for a VLAN. For example, the following commands configure VLAN 20 to use IGMPv3.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast version 3
```
IGMP snooping for FGS and FGS-STK, FLS and FLS-STK, FWS, and FCX devices

Syntax: [no] multicast version 2 | 3

If no IGMP version is specified, then the globally-configured IGMP version is used. If an IGMP version is specified for individual ports, those ports use that version, instead of the VLAN version.

Configuring the IGMP version for individual ports

You can specify the IGMP version for individual ports in a VLAN. For example, the following commands configure ports 0/1/4, 0/1/5, 0/1/6 and 0/2/1 to use IGMPv3. The other ports either use the IGMP version specified with the multicast version command, or the globally-configured IGMP version.

FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast port-version 3 ethe 0/2/1 ethe 0/1/4 to 0/1/6

Syntax: [no] multicast port-version 2 | 3 <port-numbers>

Configuring static groups to the entire VLAN or to specific ports

A snooping-enabled VLAN cannot forward multicast traffic to ports that do not receive IGMP membership reports. If clients cannot send reports, you can configure a static group which applies to the entire VLAN or only to specific ports. The static group allows packets to be forwarded to the static group ports even though they have no client membership reports. The static group to the entire VLAN is used in VLAN flooding, which consumes less hardware resource than the static group to ports.

The static group drop option discards data traffic to a group in hardware. The group can be any multicast group including groups in the reserved range of 224.0.0.X. The drop option does not apply to IGMP packets, which are always trapped to CPU when snooping is enabled. The drop option applies to the entire VLAN, and cannot be configured for a port list. When the drop option is not specified, the group must exist outside the reserved range.

FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast static-group 224.1.1.1 count 2 ethe 0/1/3 ethe 0/1/5 to 0/1/7
FastIron(config-vlan-20)# multicast static-group 239.1.1.1 count 3 drop
FastIron(config-vlan-20)# multicast static-group 239.1.1.1

Syntax: [no] multicast static-group <ipv4-address> [count <num>] [<port-numbers> | drop]

The ipv4-address parameter is the address of the multicast group.

The count is optional, which allows a contiguous range of groups. Omitting the count <num> is equivalent to the count being 1.

If no <port-numbers> are entered, the static groups apply to the entire VLAN.

Configuring static router ports

FGS, FLS, FGS-STK, FLS-STK, FWS, and FCX devices forward all multicast control and data packets to router ports which receive queries. Although router ports are learned, you can force multicast traffic to specified ports even though these ports never receive queries. To configure static router ports, enter commands such as the following.

FastIron(config)# vlan 70
FastIron(config-vlan-70)# multicast router-port e 0/1/4 to 0/1/5 e 0/1/8

Syntax: [no] multicast router-port <port-numbers>
Turning off static group proxy

If a device has been configured for static groups, it acts as a proxy and sends membership reports for the static groups when it receives general or group-specific queries. When a static group configuration is removed, it is deleted from active group table immediately. However, leave messages are not sent to the querier, and the querier should age the group out. Proxy activity can be turned off. The default is on. To turn proxy activity off for VLAN 20, enter commands similar to the following.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast proxy-off
```

Syntax: \[no\] multicast proxy-off

Enabling IGMPv3 membership tracking and fast leave for the VLAN

Platform Support:
- FGS and FLS devices running software release 04.2.00 and later
- FWS devices running software release 04.3.00 or later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FCX-S devices running software release 06.0.00 and later

IGMPv3 gives clients membership tracking and fast leave capability. In IGMPv2, only one client on an interface needs to respond to a router's queries. This can leave some clients invisible to the router, making it impossible to track the membership of all clients in a group. When a client leaves the group, the device sends group-specific queries to the interface to see if other clients on that interface need the data stream of the client who is leaving. If no client responds, the device waits a few seconds before it stops the traffic. You can configure the wait time using the `ip multicast leave-wait-time` command.

IGMPv3 requires every client to respond to queries, allowing the device to track all clients. When tracking is enabled, and an IGMPv3 client sends a leave message and there is no other client, the device immediately stops forwarding traffic to the interface. This feature requires the entire VLAN be configured for IGMPv3 with no IGMPv2 clients. If a client does not send a report during the specified group membership time (the default is 140 seconds), that client is removed from the tracking list.

Every group on a physical port keeps its own tracking record. However, it can only track group membership; it cannot track by (source, group). For example, Client A and Client B belong to group1 but each receives traffic streams from different sources. Client A receives a stream from (source_1, group1) and Client B receives a stream from (source_2, group1). The device still waits for the configured leave-wait-time before it stops the traffic because these two clients are in the same group. If the clients are in different groups, then the waiting period is not applied and traffic is stopped immediately.

To enable the tracking and fast leave feature for VLAN 20, enter the following commands.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast tracking
```

Syntax: \[no\] multicast tracking

The membership tracking and fast leave features are supported for IGMPv3 only. If any port or any client is not configured for IGMPv3, then the multicast tracking command is ignored.
Configuring fast leave for IGMPv2

When a device receives an IGMPv2 leave message, it sends out multiple group-specific queries. If no other client replies within the waiting period, the device stops forwarding traffic. When fast-leave-v2 is configured, when the device receives a leave message, it immediately stops forwarding to that port. The device does not send group specific-queries. You must ensure that no snooping-enabled ports have multiple clients. When two devices connect together, the querier should not be configured for fast-leave-v2, since the port might have multiple clients through the non-querier. The number of queries, and the waiting period (in seconds) can be configured using the `ip multicast leave-wait-time` command. The default is 2 seconds. To configure fast leave for IGMPv2, enter the following commands.

```plaintext
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast fast-leave-v2
```

Syntax: `[no] multicast fast-leave-v2`

Enabling fast convergence

In addition to sending periodic general queries, an active device sends general queries when it detects a new port. However, because the device does not recognize the other device's port up event, multicast traffic might still require up to the query-interval time to resume after a topology change. Fast convergence allows the device to listen to topology change events in L2 protocols such as spanning tree, and then send general queries to shorten the convergence time.

If the L2 protocol cannot detect a topology change, fast convergence may not work in some cases. For example, if the direct connection between two devices switches from one interface to another, the rapid spanning tree protocol (802.1w) considers this optimization, rather than a topology change. In this example, other devices will not receive topology change notifications, and will be unable to send queries to speed up the convergence. Fast convergence works well with the regular spanning tree protocol in this case.

To enable fast-convergence, enter the following commands.

```plaintext
FastIron(config)# vlan 70
FastIron(config-vlan-70)# multicast fast-convergence
```

Syntax: `multicast fast-convergence`

Displaying IGMP snooping information

You can display the following IGMP snooping information:

- IGMP information
- Information about VLANs
- Group and forwarding information for VLANs
- PIM sparse snooping information
- IGMP memory pool usage
- Status of IGMP traffic
- IGMP information by VLAN
Displaying IGMP information

To display information about possible IGMP errors, enter the following command.

```
FastIron# show ip multicast error
snoop SW processed pkt: 173, up-time 160 sec
```

Syntax: show ip multicast error

The following table describes the output from the `show ip multicast error` command.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW processed pkt</td>
<td>The number of multicast packets processed by IGMP snooping.</td>
</tr>
<tr>
<td>up-time</td>
<td>The time since the IGMP snooping is enabled.</td>
</tr>
</tbody>
</table>

Displaying IGMP group information

To display information about IGMP groups, enter the following command.

```
FastIron# show ip multicast group
p-:physical, ST:static, QR:querier, EX:exclude, IN:include, Y:yes, N:no
VL70 : 3 groups, 4 group-port, tracking_enabled

<table>
<thead>
<tr>
<th>group</th>
<th>p-port</th>
<th>ST</th>
<th>QR</th>
<th>life</th>
<th>mode</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.1.1.2</td>
<td>0/1/33</td>
<td>no</td>
<td>yes</td>
<td>120</td>
<td>EX</td>
</tr>
<tr>
<td>2</td>
<td>224.1.1.1</td>
<td>0/1/33</td>
<td>no</td>
<td>yes</td>
<td>120</td>
<td>EX</td>
</tr>
<tr>
<td>3</td>
<td>226.1.1.1</td>
<td>0/1/35</td>
<td>yes</td>
<td>yes</td>
<td>100</td>
<td>EX</td>
</tr>
<tr>
<td>4</td>
<td>226.1.1.1</td>
<td>0/1/33</td>
<td>yes</td>
<td>yes</td>
<td>100</td>
<td>EX</td>
</tr>
</tbody>
</table>
```

In this example, an IGMPv2 group is in EXCLUDE mode with a source of 0. The group only excludes traffic from the 0 (zero) source list, which actually means that all traffic sources are included.

To display detailed IGMP group information, enter the following command.

```
FastIron# show ip multicast group 226.1.1.1 detail
Display group 226.1.1.1 in all interfaces in details.

<table>
<thead>
<tr>
<th>group</th>
<th>p-port</th>
<th>ST</th>
<th>QR</th>
<th>life</th>
<th>mode</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>226.1.1.1</td>
<td>0/1/35</td>
<td>yes</td>
<td>yes</td>
<td>120</td>
<td>EX</td>
</tr>
</tbody>
</table>
| group: 226.1.1.1, EX, permit 0 (source, life):
  life=120, deny 0: |
| 2     | 226.1.1.1 | 0/1/33 | yes  | yes  | 120  | EX     |
| group: 226.1.1.1, EX, permit 0 (source, life):
  life=120, deny 0: |
```

If the tracking and fast leave features are enabled, you can display the list of clients that belong to a particular group by entering the following command.
Syntax: show ip multicast group <group-address> [detail] [tracking]

If you want a report for a specific multicast group, enter that group's address for <group-address>.

Enter detail to display the source list of a specific VLAN.

Enter tracking for information on interfaces that have tracking enabled.

The following table describes the information displayed by the show ip multicast group command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>The address of the group (destination address in this case, 224.1.1.1)</td>
</tr>
<tr>
<td>p-port</td>
<td>The physical port on which the group membership was received.</td>
</tr>
<tr>
<td>ST</td>
<td>Yes indicates that the IGMP group was configured as a static group; No means the address was learned from reports.</td>
</tr>
<tr>
<td>QR</td>
<td>Yes means the port is a querier port; No means it is not. A port becomes a non-querier port when it receives a query from a source with a lower source IP address than the device.</td>
</tr>
<tr>
<td>life</td>
<td>The number of seconds the group can remain in EXCLUDE mode. An EXCLUDE mode changes to INCLUDE mode if it does not receive an "IS_EX" or "TO_EX" message during a certain period of time. The default is 140 seconds. There is no life displayed in INCLUDE mode.</td>
</tr>
<tr>
<td>mode</td>
<td>Indicates current mode of the interface: INCLUDE or EXCLUDE. If the interface is in INCLUDE mode, it admits traffic only from the source list. If an interface is in EXCLUDE mode, it denies traffic from the source list and accepts the rest.</td>
</tr>
<tr>
<td>source</td>
<td>Identifies the source list that will be included or excluded on the interface. For example, if an IGMPv2 group is in EXCLUDE mode with a source of 0, the group excludes traffic from the 0 (zero) source list, which actually means that all traffic sources are included.</td>
</tr>
</tbody>
</table>

Displaying IGMP snooping Mcache information

The IGMP snooping mcache contains multicast forwarding information for VLANs. To display information in the multicast forwarding mcache, enter the following command.

FastIron# show ip multicast mcache
Example: (S G) cnt=: cnt: SW proc. count
 OIF: 0/1/22 TR(0/1/32,0/1/33), TR is trunk, 0/1/32 primary, 0/1/33 output
 vlan 1, 1 caches. use 1 VIDX
 l (1.2.10.102 225.1.1.1) cnt=46
 OIF: 0/1/4
 age=0m up-time=45m vidx=4130 (ref-cnt=1)
 vlan 70, 1 caches. use 1 VIDX
 l (* 226.1.2.3) cnt=69
 OIF: 0/1/14
 age=0m up-time=59m vidx=4129 (ref-cnt=1)
Syntax: show ip multicast mcache

The following table describes the output of the `show ip multicast mcache` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(source group)</td>
<td>Source and group addresses of this data stream. (* group) means match group only; (source group) means match both.</td>
</tr>
<tr>
<td>cnt</td>
<td>The number of packets processed in software. Packets are switched in hardware in FGS software release 03.0.00, which increases this number slowly.</td>
</tr>
<tr>
<td>OIF</td>
<td>The output interfaces. If <code>entire vlan</code> is displayed, this indicates that static groups apply to the entire VLAN.</td>
</tr>
<tr>
<td>age</td>
<td>The mcache age. The mcache will be reset to 0 if traffic continues to arrive, otherwise the mcache will be aged out when it reaches the time defined by the <code>ip multicast mcache-age</code> command.</td>
</tr>
<tr>
<td>uptime</td>
<td>The up time of this mcache in minutes.</td>
</tr>
<tr>
<td>vidx</td>
<td>Vidx specifies output port list index. Range is from 4096 to 8191.</td>
</tr>
<tr>
<td>ref-cnt</td>
<td>The vidx is shared among mcaches having the same output interfaces. Ref-cnt indicates the number of mcaches using this vidx.</td>
</tr>
</tbody>
</table>

Displaying PIM sparse snooping information

PIM sparse mode snooping allows a device to listen for join/prune messages exchanged between PIM routers, which helps reduce unwanted traffic. To display PIM snooping information, enter the following command.

```
FastIron# show ip multicast pimsm-snooping
vlan 1, has 1 caches.
  1  (1.2.10.102 225.1.1.1) has 0 pim join ports out of 1 OIF
vlan 70, has 1 caches.
  1  (* 226.1.2.3) has 2 pim join ports out of 2 OIF
    0/1/14 (age=60), 0/1/13 (age=60),
    0/1/14 has 1 src: 1.1.30.99(60)
    0/1/13 has 1 src: 1.1.30.99(60)
```

This output shows the number of OIF due to PIM out of the total OIF. The join/prune messages are source-specific. In this case, if the mcache is in (* G), the display function will also print the traffic source information.

Displaying software resource usage for VLANs

To display information about the software resources used, enter the following command.

```
FastIron# show ip multicast resource
+-------------+----------+----------+--------+----------+----------+----------+----------+
|              | alloc    | in-use   | avail   | get-fail| limit    | get-mem  | size     | |
| igmp group   | 256      | 1        | 255     | 0       | 32000    | 1        | 16       | 256      |
| igmp phy port| 1024     | 1        | 1023    | 0       | 200000   | 1        | 22       | 1024     |
+-------------+----------+----------+----------+--------+----------+----------+----------+
| ... entries deleted ... |
+-------------+----------+----------+----------+--------+----------+----------+----------+
| snoop mcache entry | 128     | 2        | 126      | 0       | 8192     | 3        | 56       | 128      |
| total pool memory | 109056 bytes |
| has total 2 forwarding hash |
| VIDX sharing hash : size=2 anchor=997 2nd-hash=no fast-trav=no |
| Available vidx: 4060. IGMP/MLD use 2 |
```

FastIron and Turbolron 24X Configuration Guide
53-1001719-01

DRAFT: BROCADE CONFIDENTIAL
IGMP snooping for FGS and FGS-STK, FLS and FLS-STK, FWS, and FCX devices

Syntax: show ip multicast resource

The following table describes the output from the show ip multicast resource command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>alloc</td>
<td>The allocated number of units.</td>
</tr>
<tr>
<td>in-use</td>
<td>The number of units which are currently being used.</td>
</tr>
<tr>
<td>avail</td>
<td>The number of available units.</td>
</tr>
<tr>
<td>get-fail</td>
<td>This displays the number of resource failures. NOTE: It is important to pay attention to this field.</td>
</tr>
<tr>
<td>limit</td>
<td>The upper limit of this expandable field. The limit of multicast group is configured by the system-max igmp-max-group-addr command. The limit of snoop mcache entry is configured by the system-max multicast-snoop-mcache command.</td>
</tr>
<tr>
<td>get-mem</td>
<td>The number of memory allocation. This number should continue to increase.</td>
</tr>
<tr>
<td>size</td>
<td>The size of a unit (in bytes).</td>
</tr>
<tr>
<td>init</td>
<td>The initial allocated amount of memory. More memory may be allocated if resources run out.</td>
</tr>
<tr>
<td>Available vidx</td>
<td>The output interface (OIF) port mask used by mcache. The entire device has a maximum of 4096 vidx. Different mcaches with the same OIF share the same vidx. If vidx is not available, the stream cannot be hardware-switched.</td>
</tr>
</tbody>
</table>

Displaying status of IGMP snooping traffic

To display status information for IGMP snooping traffic, enter the following command.

```
FastIron# show ip multicast traffic
IGMP snooping: Total Recv: 22, Xmit: 26
Q: query, Qry: general Q, G-Qry: group Q, GSQry: group-source Q, Mbr: member
Recv QryV2 QryV3 G-Qry GSQry MbrV2 MbrV3 Leave
VL1 0 0 0 0 4 0 0
VL70 18 0 0 0 0 0 0
Recv IsIN IsEX ToIN ToEX ALLOW BLOCK Pkt-Err
VL1 0 4 0 0 0 0 0
VL70 0 0 0 0 0 0 0
Send QryV2 QryV3 G-Qry GSQry MbrV2 MbrV3
VL1 0 0 8 0 0 0
VL70 0 0 0 0 0 18
VL70 pimsm-snooping, Hello: 12, Join/Prune: 9
```

Syntax: show ip multicast traffic

The following table describes the information displayed by the show ip multicast traffic command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Query</td>
</tr>
<tr>
<td>Qry</td>
<td>General Query</td>
</tr>
<tr>
<td>QryV2</td>
<td>Number of general IGMPv2 queries received or sent.</td>
</tr>
<tr>
<td>QryV3</td>
<td>Number of general IGMPv3 queries received or sent.</td>
</tr>
<tr>
<td>G-Qry</td>
<td>Number of group-specific queries received or sent.</td>
</tr>
</tbody>
</table>
Displaying IGMP snooping information by VLAN

You can display IGMP snooping information for all VLANs or for a specific VLAN. For example, to display IGMP snooping information for VLAN 70, enter the following command.

```
FastIron# show ip multicast vlan 70
version=2, query-t=30, group-aging-t=140, max-resp-t=3, other-qr-present-t=63
VL70: dft V2, vlan cfg passive, , pimsm (vlan cfg), track, 0 grp, 1 (*G) cache,
rtr ports,
    router ports: 0/1/13(140) 1.1.70.3, 0/1/20(180) 1.1.70.2, 0/1/14(180)
0/1/13 has 0 groups, non-QR (passive), default V2
0/1/14 has 0 groups, non-QR (passive), default V2
0/1/20 has 0 groups, non-QR (passive), default V2
```

Syntax: `show ip multicast vlan [<vlan-id>]`

If you do not specify a `<vlan-id>`, information for all VLANs is displayed.

The following table describes the information displayed by the `show ip multicast vlan` command.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>The IGMP version number</td>
</tr>
<tr>
<td>query-t</td>
<td>How often a querier sends a general query on the interface.</td>
</tr>
<tr>
<td>group-aging-t</td>
<td>The number of seconds membership groups can be members of this group before aging out.</td>
</tr>
<tr>
<td>rtr-port</td>
<td>The router ports which are the ports receiving queries. The display router ports: 0/1/13(140) 1.1.70.3 means port 0/1/13 has a querier with 1.1.70.3 address, and a remaining life of 140 seconds.</td>
</tr>
<tr>
<td>max-resp-t</td>
<td>The maximum number of seconds a client waits before it replies to the query.</td>
</tr>
<tr>
<td>non-QR</td>
<td>Indicates that the port is a non-querier.</td>
</tr>
<tr>
<td>QR</td>
<td>Indicates that the port is a querier.</td>
</tr>
</tbody>
</table>
Clear IGMP snooping commands

The clear IGMP snooping commands should be used only in troubleshooting conditions, or to recover from errors.

Clear IGMP counters on VLANs

To clear IGMP snooping on error and traffic counters for all VLANs, enter the following command.

```
FastIron# clear ip multicast counters
Syntax: clear ip multicast counters
```

Clear IGMP mcache

To clear the mcache on all VLANs, enter the following command.

```
FastIron# clear ip multicast mcache
Syntax: clear ip multicast mcache
```

Clear mcache on a specific VLAN

To clear the mcache on a specific VLAN, enter the following command.

```
FastIron# clear ip multicast vlan <vlan-id> mcache
Syntax: clear ip multicast vlan <vlan-id> mcache
```

The `<vlan-id>` parameter specifies the specific VLAN to clear the cache.

Clear traffic on a specific VLAN

To clear the traffic counters on a specific VLAN, enter the following command.

```
FastIron# clear ip multicast vlan <vlan-id> traffic
Syntax: clear ip multicast vlan <vlan-id> traffic
```

The `<vlan-id>` parameter specifies the specific VLAN on which to clear the traffic counters.
Chapter 27

IGMP snooping overview

NOTE

When a device processes a multicast packet, by default, it broadcasts the packets to all ports except the incoming port of a VLAN. Packets are flooded by hardware without going to the CPU. This behavior causes some clients to receive unwanted traffic.

IGMP snooping provides multicast containment by forwarding traffic to only the ports that have IGMP receivers for a specific multicast group (destination address). A device maintains the IGMP group membership information by processing the IGMP reports and leave messages, so traffic can be forwarded to ports receiving IGMP reports.

An IPv4 multicast address is a destination address in the range of 224.0.0.0 to 239.255.255.255. Addresses of 224.0.0.X are reserved. Because packets destined for these addresses may require VLAN flooding, devices do not snoop in the reserved range. Data packets destined to addresses in the reserved range are flooded to the entire VLAN by hardware, and mirrored to the CPU. Multicast data packets destined for the non-reserved range of addresses are snooped. A client must send IGMP reports in order to receive traffic. If an application outside the reserved range requires VLAN flooding, the user must configure a static group that applies to the entire VLAN.

An IGMP device's responsibility is to broadcast general queries periodically, and to send group queries when receiving a leave message, to confirm that none of the clients on the port still want specific traffic before removing the traffic from the port. IGMP V2 lets clients specify what group (destination address) will receive the traffic but not to specify the source of the traffic. IGMP V3 is for source-specific multicast traffic, adding the capability for clients to INCLUDE or EXCLUDE specific traffic sources. An IGMP V3 device port state could be INCLUDE or EXCLUDE, and there are different types of group records for client reports.

The interfaces respond to general or group queries by sending a membership report that contains one or more of the following records associated with a specific group:

- **Current-state record** that indicates from which sources the interface wants to receive and not receive traffic. This record contains the source address of interfaces and whether or not traffic will be included (IS_IN) or not excluded (IS_EX) from this source.
- **Filter-mode-change record**. If the interface state changes from IS_IN to IS_EX, a TO_EX record is included in the membership report. Likewise, if the interface state changes from IS_EX to IS_IN, a TO_IN record appears in the membership report.
- An IGMP V2 leave report is equivalent to a TO_IN (empty) record in IGMP V3. This record means that no traffic from this group will be received regardless of the source.
- An IGMP V2 group report is equivalent to an IS_EX (empty) record in IGMP V3. This record means that all traffic from this group will be received regardless of source.
- Source-list-change record. If the interface wants to add or remove traffic sources from its membership report, the report can contain an ALLOW record, which includes a list of new sources from which the interface wishes to receive traffic. It can also contain a BLOCK record, which lists the current traffic sources from which the interface wants to stop receiving traffic.

IGMP protocols provide a method for clients and a device to exchange messages, and let the device build a database indicating which port wants what traffic. The protocols do not specify forwarding methods. They require IGMP snooping or multicast protocols such as PIM or DVMRP to handle packet forwarding. PIM and DVMRP can route multicast packets within and outside a VLAN, while IGMP snooping can switch packets only within a VLAN.

If a VLAN is not IGMP snooping-enabled, it floods multicast data and control packets to the entire VLAN in hardware. When snooping is enabled, IGMP packets are trapped to the CPU. Data packets are mirrored to the CPU in addition to being VLAN flooded. The CPU then installs hardware resources, so that subsequent data packets can be switched to desired ports in hardware without going to the CPU. If there is no client report or port to queriers for a data stream, the hardware resource drops it.

On TurboIron X Series devices, the hardware can either match the group address only (* G), or both the source and group (S G) of the data stream. If any IGMPv3 is configured in any port of a VLAN, this VLAN uses (S G) match; otherwise, it uses (* G). This is 32-bit IP address matching, not 23-bit multicast MAC address 01-00-5e-xx-xx-xx matching.

TurboIron X Series devices support up to 2K of IGMP groups, which are produced by client membership reports.

MAC-based implementation on FastIron X Series devices

NOTE
The MAC-based implementation applies to FastIron X Series devices only. This feature is not supported on TurboIron X Series devices.

On both switch and router software images, IGMP snooping is MAC-based. This differs from IGMP snooping on the BigIron router images, which match on both IP source and group (S,G) entries programmed in the Layer 4 CAM. In contrast, the FastIron X Series images match on Layer 2 destination MAC address entries (*,G).

When Layer 2 CAM is used, traffic is switched solely based on the destination MAC address. Consequently, traffic of the same group coming to the same port, regardless of its source, is switched in the same way. In addition, the lowest 23 bits of the group address are mapped to a MAC address. In this way, multiple groups (for example, 224.1.1.1 and 225.1.1.1) have the same MAC address. Groups having the same MAC address are switched to the same destination ports, which are the superset of individual group output ports. Thus, the use of Layer 2 CAM might cause unwanted packets to be sent to some ports. However, the switch generally needs far less Layer 2 CAM than it does Layer 4 CAM, which is required for each stream with a different source and group.

IGMP V1, V2, and V3 snooping support

Table 139 shows IGMP snooping version support by software release on FastIron X Series and TurboIron X Series devices.
Queriers and non-queriers

An IGMP snooping-enabled Brocade device can be configured as a querier (active) or non-querier (passive). An IGMP querier sends queries; a non-querier listens for IGMP queries and forwards them to the entire VLAN. VLANs can be independently configured to be queriers or non-queriers. If a VLAN has a connection to a PIM/DVMRP-enabled port on another router, the VLAN should be configured as a non-querier. When multiple IGMP snooping devices are connected together, and there is no connection to a PIM/DVMRP-enabled port, one of the devices should be configured as a querier. If multiple devices are configured as queriers, after these devices exchange queries, then all except the winner stop sending queries. The device with the lowest address becomes the querier. Although the system will work when multiple devices are configured as queriers, Brocade recommends that only one device (preferably the one with the traffic source) is configured as a querier.

The non-queriers always forward multicast data traffic and IGMP messages to router ports which receive IGMP queries or PIM/DVMRP hellos. Brocade recommends that you configure the device with the data traffic source (server) as a querier. If a server is attached to a non-querier, the non-querier always forwards traffic to the querier regardless of whether there are any clients on the querier.

NOTE
In a topology of one or more connecting devices, at least one device must be running PIM/DVMRP, or configured as active. Otherwise, none of the devices can send out queries, and traffic cannot be forwarded to clients.

IGMP snooping enhancements in software release 04.1.00

This section describes the enhancements to IGMP snooping in software release 04.1.00. These features are also supported on TurboIron X Series devices, except where noted.
Support for IGMP V3 snooping

Refer to “IGMP snooping overview” on page 803.

VLAN-specific configuration

IGMP snooping can be enabled on some VLANs or on all VLANs. Each VLAN can be independently configured to be a querier or non-querier and can be configured for IGMP V2 or IGMP V3. In general, the `ip multicast` commands apply globally to all VLANs except those configured with VLAN-specific `multicast` commands. The VLAN-specific multicast commands supersede the global `ip multicast` commands.

IGMP snooping can be configured for IGMP V2 or IGMP V3 on individual ports of a VLAN. An interface or router sends the queries and reports that include its IGMP version specified on it. The version configuration only applies to sending queries. The snooping device recognizes and processes IGMP V2 and IGMP V3 packets regardless of the version configuration.

To avoid version deadlock, an interface retains its version configuration even when it receives a report with a lower version.

Tracking and fast leave

Brocade devices support fast leave for IGMP V2, and tracking and fast leave for IGMP V3. Fast leave stops the traffic immediately when the port receives a leave message. Tracking traces all IGMP V3 clients. Refer to “IGMP V3 membership tracking and fast leave” on page 818 and “Fast leave for IGMP V2” on page 819.

IGMP snooping and layer 3 multicast routing together on the same device

NOTE
This feature is not supported on TurboIron X Series devices.

Software release FSX 04.1.00 adds support for global Layer 2 IP multicast traffic reduction (IGMP snooping) and Layer 3 multicast routing (DVMRP/PIM-Sparse/PIM-Dense) together on the same device in the full Layer 3 software image, as long as the Layer 2 feature configuration is at the VLAN level. Releases prior to FSX 04.1.00 support global Layer 2 IP multicast traffic reduction and Layer 3 multicast routing. However, they were mutually exclusive and configuring IGMP snooping on a VLAN together with DVMRP/PIM-Sparse/PIM-Dense was not allowed. Refer to “IP multicast protocols and IGMP snooping on the same device” on page 922.

Configuration notes and feature limitations for FastIron X Series devices

The following details apply to FastIron X Series devices:

- Layer 2 IGMP snooping is automatically enabled with Layer 3 multicast routing. If Layer 3 multicast routing is enabled on your system, do not attempt to enable Layer 2 IGMP snooping.
- The default IGMP version is V2.
- A user can configure the maximum numbers of group address entries.
• An IGMP device can be configured to rate-limit the forwarding IGMP V2 membership reports to queriers.
• The device supports static groups. The device acts as a proxy to send IGMP reports for the static groups when receiving queries.
• A user can configure static router ports to force all multicast traffic to these specific ports.
• If a VLAN has a connection to a PIM/DVMRP-enabled port on another router, the VLAN should be configured as a non-querier (passive). When multiple snooping devices connect together and there is no connection to PIM/DVMRP ports, one device should be configured as a querier (active). If multiple devices are configured as active (queriers), only one will keep sending queries after exchanging queries.
• The querier must configure an IP address to send out queries.
• IGMP snooping requires hardware resource. Hardware resource is installed only when there is data traffic. If resource is inadequate, the data stream without a resource is mirrored to the CPU in addition to being VLAN flooded, which can cause high CPU usage. Brocade recommends that you avoid global enabling of snooping unless necessary.
• IGMP snooping requires clients to send membership reports in order to receive data traffic. If a client application does not send reports, you must configure static groups on the snooping VLAN to force traffic to client ports. Note that servers (traffic sources) are not required to send IGMP memberships.

Configuration notes and feature limitations for TurboIron X Series devices

The following details apply to TurboIron X Series devices:
• Servers (traffic sources) are not required to send IGMP memberships.
• The default IGMP version is V2.
• Hardware resource is installed only when there is data traffic. If a VLAN is configured for IGMPv3, the hardware matches (S G), otherwise it matches (* G).
• A user can configure the maximum numbers of groups and hardware switched data streams.
• The device supports static groups that apply to the entire VLAN, or to just a few ports. The device acts as a proxy to send IGMP reports for the static groups when receiving queries.
• A user can configure static router ports to force all multicast traffic to these specific ports.
• Fast leave for IGMPv2 is supported. Fast leave stops traffic immediately when the port receives a leave message.
• Tracking and fast leave for IGMPv3 is supported. If the only client on a port leaves, traffic is stopped immediately.
• An IGMP device can be configured as a querier (active) or non-querier (passive). Queriers send queries. Non-queriers listen for queries and forward them to the entire VLAN.
• Every VLAN can be independently configured to be a querier or a non-querier.
• If a VLAN has a connection to a PIM/DVMRP-enabled port on another router, this VLAN should be configured as a non-querier (passive). When multiple snooping devices connect together and there is no connection to PIM/DVMRP ports, one device should be configured as a querier (active). If multiple devices are configured as active (queriers), only one will keep sending queries after exchanging queries.
PIM SM traffic snooping overview

When multiple PIM sparse routers connect through a snooping-enabled device, the Brocade device always forwards multicast traffic to these routers. For example, PIM sparse routers R1, R2 and R3 connect through a device. Assume R2 needs traffic, and R1 sends it to the device, which forwards it to both R2 and R3, even though R3 does not need it. A PIM SM snooping-enabled device listens to join and prune messages exchanged by PIM sparse routers, and stops traffic to the router that sends prune messages. This allows the device to forward the data stream to R2 only.

PIM SM traffic snooping requires IGMP snooping to be enabled on the device. IGMP snooping configures the device to listen for IGMP messages. PIM SM traffic snooping provides a finer level of multicast traffic control by configuring the device to listen specifically for PIM SM join and prune messages sent from one PIM SM router to another through the device.

PIM SM snooping support

Table 140 shows PIM SM snooping version support by software release on FastIron X Series and TurboIron X Series devices.

<table>
<thead>
<tr>
<th>Software release</th>
<th>Version support</th>
<th>Supported in software code...</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.2.00 to 04.0.01x</td>
<td>PIM SM V2 snooping</td>
<td>L2</td>
</tr>
</tbody>
</table>
Application examples

Figure 110 shows an example application of the PIM SM traffic snooping feature. In this example, a device is connected through an IP router to a PIM SM group source that is sending traffic for two PIM SM groups. The device also is connected to a receiver for each of the groups.

When PIM SM traffic snooping is enabled, the device starts listening for PIM SM join and prune messages and IGMP group membership reports. Until the device receives a PIM SM join message or an IGMP group membership report, the device forwards IP multicast traffic out all ports. Once the device receives a join message or group membership report for a group, the device forwards subsequent traffic for that group only on the ports from which the join messages or IGMP reports were received.

In this example, the router connected to the receiver for group 239.255.162.1 sends a join message toward the group source. Since PIM SM traffic snooping is enabled on the device, the device examines the join message to learn the group ID, then makes a forwarding entry for the group ID and the port connected to the receiver router. The next time the device receives traffic for 239.255.162.1 from the group source, the device forwards the traffic only on port 5/1, since that is the only port connected to a receiver for the group.

Notice that the receiver for group 239.255.162.69 is directly connected to the device. As result, the device does not see a join message on behalf of the client. However, since IGMP snooping also is enabled, the device uses the IGMP group membership report from the client to select the port for forwarding traffic to group 239.255.162.69 receivers.

The IGMP snooping feature and the PIM SM traffic snooping feature together build a list of groups and forwarding ports for the VLAN. The list includes PIM SM groups learned through join messages as well as MAC addresses learned through IGMP group membership reports. In this case, even though the device never sees a join message for the receiver for group 239.255.162.69, the device nonetheless learns about the receiver and forwards group traffic to the receiver.

The device stops forwarding IP multicast traffic on a port for a group if the port receives a prune message for the group.

Notice that the ports connected to the source and the receivers are all in the same port-based VLAN on the device. This is required for the PIM SM snooping feature. The devices on the edge of the Global Ethernet cloud are configured for IGMP snooping and PIM SM traffic snooping. Although this application uses multiple devices, the feature has the same requirements and works the same way as it does on a single device.

The following figure shows another example application for PIM SM traffic snooping. This example shows devices on the edge of a Global Ethernet cloud (a Layer 2 Packet over SONET cloud). Assume that each device is attached to numerous other devices such as other Layer 2 Switches and Layer 3 Switches (routers).

NOTE
This example assumes that the devices are actually Brocade devices running Layer 2 Switch software.
The devices on the edge of the Global Ethernet cloud are configured for IGMP snooping and PIM SM traffic snooping. Although this application uses multiple devices, the feature has the same requirements and works the same way as it does on a single device.

Configuration notes and limitations

- PIM SM snooping applies only to PIM SM version 2 (PIM SM V2).
- Starting with software release FSX 04.1.00, PIM SM traffic snooping is supported in the Layer 2, base Layer 3, and full Layer 3 code. Releases prior to FSX 04.1.00 support PIM SM traffic snooping in the Layer 2 code only.
- Turbolron X Series devices running software release TIX 04.1.00 support PIM SM traffic snooping in the Layer 2 code.
- IGMP snooping must be enabled on the device that will be running PIM SM snooping. The PIM SM traffic snooping feature requires IGMP snooping.

NOTE
Use the passive mode of IGMP snooping instead of the active mode. The passive mode assumes that a router is sending group membership queries as well as join and prune messages on behalf of receivers. The active mode configures the device to send group membership queries.
• All the device ports connected to the source and receivers or routers must be in the same port-based VLAN.

• The PIM SM snooping feature assumes that the group source and the device are in different subnets and communicate through a router. The source must be in a different IP subnet than the receivers. A PIM SM router sends PIM join and prune messages on behalf of a multicast group receiver only when the router and the source are in different subnet. When the receiver and source are in the same subnet, they do not need the router in order to find one another. They find one another directly within the subnet.

The device forwards all IP multicast traffic by default. Once you enable IGMP snooping and PIM SM traffic snooping, the device initially blocks all PIM SM traffic instead of forwarding it. The device forwards PIM SM traffic to a receiver only when the device receives a join message from the receiver. Consequently, if the source and the downstream router are in the same subnet, and PIM SM traffic snooping is enabled, the device blocks the PIM SM traffic and never starts forwarding the traffic. This is because the device never receives a join message from the downstream router for the group. The downstream router and group find each other without a join message because they are in the same subnet.

NOTE
If the “route-only” feature is enabled on a Layer 3 Switch, PIM SM traffic snooping will not be supported.

Configuring IGMP snooping

Configuring IGMP snooping on a Brocade device consists of the following global, VLAN-specific, and port-specific tasks:

Global tasks

Perform the following global tasks:

- “Configuring the IGMP V3 snooping software resource limits”
- “Enabling IGMP snooping globally on the device”
- “Configuring the global IGMP mode”
- “Configuring the global IGMP version”
- “Modifying the age interval for group membership entries”
- “Modifying the query interval (active IGMP snooping mode only)”
- “Modifying the maximum response time”
- “Configuring report control” (rate limiting)
- “Modifying the wait time before stopping traffic when receiving a leave message”
- “Modifying the multicast cache age time”
- “Enabling or disabling error and warning messages”

VLAN-specific tasks

Perform the following VLAN-specific tasks:

- “Configuring the IGMP mode for a VLAN” (active or passive)
- “Disabling IGMP snooping on a VLAN”
Configuring IGMP snooping

- “Configuring the IGMP version for a VLAN”
- “Configuring static router ports.”
- “Turning off static group proxy”
- “IGMP V3 membership tracking and fast leave”
- “Fast leave for IGMP V2”
- “Fast convergence”

Port-specific tasks
Perform the following port-specific tasks:
- “Disabling transmission and receipt of IGMP packets on a port”
- “Configuring the IGMP version for individual ports in a VLAN”

Configuring the IGMP V3 snooping software resource limits
By default, FastIron X Series devices support up to 512 IGMP snooping multicast cache (mcache) entries and a maximum of 8K IGMP group addresses. TurboIron X Series devices by default support up to 512 IGMP snooping multicast cache (mcache) entries and a maximum of 1K IGMP group addresses. If necessary, you can change the default values using the procedures in this section.

About IGMP snooping mcache entries and group addresses
An IGMP snooping group address entry is created when an IGMP join message is received for a group. An IGMP snooping mcache entry is created when data traffic is received for that group. Each mcache entry represents one data stream. The egress port list for the mcache entry is obtained from the IGMP group address entry. If there is no existing IGMP group address entry when an mcache entry is created, data traffic for that multicast group is dropped in hardware. If there is an existing IGMP group address entry when an mcache is created, data traffic for that multicast group is switched in hardware.

Changing the maximum number of supported IGMP snooping mcache entries
Platform Support:
- FastIron X Series devices running software release 04.1.00 or later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

When IGMP snooping is enabled, by default, the system supports up to 512 IGMP snooping mcache entries. If necessary, you can change the maximum number of IGMP snooping cache entries supported on the device. To do so, enter a command such as the following.

```
FastIron(config)# system-max igmp-snoop-mcache 2000
```

Syntax: `[no] system-max igmp-snoop-mcache <num>`
where `<num>` is a value between 256 and 8192 on FastIron X Series devices, or a value between 512 and 2048 on TurboIron X Series devices. The default for both device types is 512.

Setting the maximum number of IGMP group addresses
- FastIron X Series devices running software release 04.1.00 or later – L2, BL3, L3
• TurboIron X Series devices running software release 04.1.00 and later

When IGMP snooping is enabled, by default, FastIron X Series devices support up to 8K of IGMP group addresses, and the configurable range is from 256 to 32768. TurboIron X Series devices support up to 4K of IGMP group addresses by default, and the configurable range is from 4096 to 8192. The configured number is the upper limit of an expandable database. Client memberships exceeding the group limit are not processed. Enter a command such as the following to define the maximum number of IGMP group addresses.

```
FastIron(config)# system-max igmp-max-group-addr 1600
```

Syntax: `[no] system-max igmp-max-group-addr <num>`

where `<num>` is a value between 256 and 32768 on FastIron X Series devices, and the default is 8192. On TurboIron X Series devices, `<num>` is a value between 4096 and 8192 and the default is 4096.

Enabling IGMP snooping globally on the device

Use the procedures in this section to enable IGMP snooping on a global basis.

Configuration notes for layer devices

- If Layer 3 multicast routing is enabled on your system, do not attempt to enable Layer 2 IGMP snooping. Layer 2 IGMP snooping is automatically enabled with Layer 3 multicast routing.
- If the "route-only" feature is enabled on the Layer 3 Switch, then IP multicast traffic reduction will not be supported.
- IGMP snooping is not supported on the default VLAN of Layer 3 Switches.

Releases prior to FSX 04.1.00

Use the following command to globally enable IGMP snooping in releases prior to FSX 04.1.00.

```
FastIron(config)# ip multicast
```

The above command enables IGMP V2. Starting with software release 04.1.00, IGMP V3 is also supported. Refer to “Releases FSX and TIX 04.1.00 and later” on page 813.

Syntax: `[no] ip multicast`

Releases FSX and TIX 04.1.00 and later

In releases 04.1.00 and later, when you globally enable IGMP snooping, you can specify IGMP V2 or IGMP V3 for the device. The following command enables IGMP V3.

```
FastIron(config)# ip multicast version 3
```

Syntax: `[no] ip multicast version 2|3`

If you do not specify a version number, IGMP V2 is assumed.

Configuring the IGMP mode

You can configure active or passive IGMP modes on the Brocade device. The default mode is passive. If you specify an IGMP mode for a VLAN, it overrides the global setting.
• **Active** - When active IGMP mode is enabled, a Brocade device actively sends out IGMP queries to identify multicast groups on the network, and makes entries in the IGMP table based on the group membership reports it receives.

NOTE
Routers in the network generally handle this operation. Use the active IGMP mode only when the device is in a stand-alone Layer 2 Switched network with no external IP multicast router attachments. In this case, enable the active IGMP mode on only one of the devices and leave the other devices configured for passive IGMP mode.

• **Passive** - When passive IGMP mode is enabled, it forwards reports to the router ports which receive queries. IGMP snooping in the passive mode does not send queries. However, it forwards queries to the entire VLAN.

Configuring the global IGMP mode
To globally set the IGMP mode to active, enter the following command.

```
FastIron(config)# ip multicast active
```

Syntax: `[no] ip multicast [active | passive]`
If you do not enter either `active` or `passive`, the passive mode is assumed.

Configuring the IGMP mode for a VLAN

Platform Support:
• FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
• TurboIron X Series devices running software release 04.1.00 and later
If you specify an IGMP mode for a VLAN, it overrides the global setting.
To set the IGMP mode for VLAN 20 to active, enter the following commands.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast active
```

Syntax: `[no] multicast active | passive`

Configuring the IGMP version

Platform Support:
• FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
• TurboIron X Series devices running software release 04.1.00 and later

Configuring the global IGMP version
To globally specify IGMP V2 or IGMP V3, refer to “Releases FSX and TIX 04.1.00 and later” on page 813.
Configuring the IGMP version for a VLAN

You can specify the IGMP version for a VLAN. For example, the following commands configure VLAN 20 to use IGMP V3.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast version 3
```

Syntax: `[no] multicast version 2 | 3`

If no IGMP version is specified, then the globally-configured IGMP version is used. If an IGMP version is specified for individual ports, those ports use that version, instead of the VLAN version.

Configuring the IGMP version for individual ports in a VLAN

You can specify the IGMP version for individual ports in a VLAN. For example, the following commands configure ports 4, 5, and 6 to use IGMP V3. The other ports either use the IGMP version specified with the multicast version command, or the globally-configured IGMP version.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast port-version 3 ethe 2/4 to 2/6
```

Syntax: `[no] multicast port-version 2 | 3 <port-numbers>`

Disabling IGMP snooping on a VLAN

Platform Support:

- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

When IGMP snooping is enabled globally, you can still disable it for a specific VLAN. For example, the following commands cause IGMP snooping to be disabled for VLAN 20. This setting overrides the global setting.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast disable-multicast-snoop
```

Syntax: `[no] multicast disable-multicast-snoop`

Disabling transmission and receipt of IGMP packets on a port

When a VLAN is snooping-enabled, all IGMP packets are trapped to the CPU without hardware VLAN flooding. The CPU can block IGMP packets to and from a multicast-disabled port, and does not add it to the output interfaces of hardware resources. This prevents the disabled port from receiving multicast traffic. However, if static groups to the entire VLAN are defined, the traffic from these groups is VLAN flooded, including to disabled ports. Traffic from disabled ports cannot be blocked in hardware, and is switched in the same way as traffic from enabled ports.

This command has no effect on a VLAN that is not snooping-enabled because all multicast traffic is VLAN flooded.

To disable transmission and receipt of IGMP packets on a port, enter commands such as the following.
Configuring IGMP snooping

- FastIron(config)# interface ethernet 3
- FastIron(config-if-e1000-3)# ip-multicast-disable

The above commands disable IGMP snooping on port 1/5 but does not affect the state of IGMP on other ports.

Syntax: [no] ip-multicast-disable

Modifying the age interval for group membership entries

When the device receives a group membership report, it makes an entry for that group in the IGMP group table. The age interval specifies how long the entry can remain in the table before the device receives another group membership report. When multiple devices connect together, all devices should be configured for the same age interval, which should be at least twice the length of the query interval, so that missing one report won't stop traffic. Non-querier age intervals should be the same as the age interval of the querier.

To modify the age interval, enter a command such as the following.

- FastIron(config)# ip multicast age-interval 280

Syntax: [no] ip multicast age-interval <interval>

The <interval> parameter specifies the aging time. You can specify a value from 20 - 7200 seconds. The default is 260 seconds.

Modifying the query interval (active IGMP snooping mode only)

If IP multicast traffic reduction is set to active mode, you can modify the query interval to specify how often the device sends group membership queries. When multiple queriers connect together, they should all be configured with the same query interval.

To modify the query interval, enter a command such as the following.

- FastIron(config)# ip multicast query-interval 120

Syntax: [no] ip multicast query-interval <interval>

The <interval> parameter specifies the time between queries. You can specify a value from 10 - 3600 seconds. The default is 125 seconds.

Modifying the maximum response time

The maximum response time is the number of seconds that a client can wait before responding to a query sent by the switch. The default response time is 10 seconds maximum.

To change the maximum response time, enter a command such as the following.

- FastIron(config)# ip multicast max-response-time 5

Syntax: [no] ip multicast max-response-time <interval>

For <interval>, enter a value from 1 – 10 seconds. The default is 10 seconds.
Configuring report control

A device in passive mode forwards reports and leave messages from clients to the upstream router ports that are receiving queries.

You can configure report control to rate-limit report forwarding within the same group to no more than once every 10 seconds. This rate-limiting does not apply to the first report answering a group-specific query.

NOTE
This feature applies to IGMP V2 only. The leave messages are not rate limited.

IGMP V2 membership reports of the same group from different clients are considered to be the same and are rate-limited.

Use the following command to alleviate report storms from many clients answering the upstream router query.

FastIron(config)# ip multicast report-control

Syntax: `[no] ip multicast report-control`

The original command, `ip igmp-report-control`, has been renamed to `ip multicast report-control`. The original command is still accepted; however, it is renamed when you issue a `show configuration` command.

Modifying the wait time before stopping traffic when receiving a leave message

You can define the wait time before stopping traffic to a port when a leave message is received. The device sends group-specific queries once per second to ask if any client in the same port still needs this group. The value range is from 1 to 5, and the default is 2. Due to internal timer granularity, the actual wait time is between \(n \) and \((n+1)\) seconds (\(n\) is the configured value).

FastIron(config)# ip multicast leave-wait-time 1

Syntax: `[no] ip multicast leave-wait-time <num>`

\(<num>\) is the number of seconds from 1 to 5. The default is 2 seconds.

Modifying the multicast cache age time

You can set the time for an mcache to age out when it does not receive traffic. The traffic is hardware switched. One minute before aging out an mcache, the device mirrors a packet of this mcache to CPU to reset the age. If no data traffic arrives within one minute, this mcache is deleted. A lower value quickly removes resources consumed by idle streams, but it mirrors packets to CPU often. A higher value is recommended only data streams are continually arriving.

FastIron(config)# ip multicast mcache-age 180

Syntax: `[no] ip multicast mcache-age <num>`

\(<num>\) is the number of seconds from 60 to 3600. The default is 120 seconds.
Enabling or disabling error and warning messages

The device prints error or warning messages when it runs out of software resources or when it receives packets with the wrong checksum or groups. These messages are rate-limited. You can turn off these messages by entering a command such as the following.

```
FastIron(config)# ip multicast verbose-off
```

Syntax: `[no] ip multicast verbose-off`

Configuring static router ports

The Brocade device forwards all multicast control and data packets to router ports which receive queries. Although router ports are learned, you can force multicast traffic to specified ports even though these ports never receive queries. To configure static router ports, enter commands such as the following.

```
FastIron(config)# vlan 70
FastIron(config-vlan-70)# multicast router-port e 4 to 5 e 8
```

Syntax: `[no] multicast router-port <port-numbers>`

Turning off static group proxy

If a device has been configured for static groups, it acts as a proxy and sends membership reports for the static groups when it receives general or group-specific queries. When a static group configuration is removed, it is deleted from the active group table immediately. However, leave messages are not sent to the querier, and the querier should age out the group. Proxy activity can be turned off. The default is on. To turn proxy activity off for VLAN 20, enter commands similar to the following.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast proxy-off
```

Syntax: `[no] multicast proxy-off`

IGMP V3 membership tracking and fast leave

Platform Support:
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

IGMP V3 gives clients membership tracking and fast leave capability. In IGMP V2, only one client on an interface needs to respond to a router’s queries. This can leave some clients invisible to the router, making it impossible to track the membership of all clients in a group. When a client leaves the group, the device sends group-specific queries to the interface to see if other clients on that interface need the data stream of the client who is leaving. If no client responds, the device waits a few seconds before it stops the traffic. You can configure the wait time using the `ip multicast leave-wait-time` command.
IGMP V3 requires every client to respond to queries, allowing the device to track all clients. When tracking is enabled, and an IGMP V3 client sends a leave message and there is no other client, the device immediately stops forwarding traffic to the interface. This feature requires the entire VLAN be configured for IGMP V3 with no IGMP V2 clients. If a client does not send a report during the specified group membership time (the default is 260 seconds), that client is removed from the tracking list.

Every group on a physical port keeps its own tracking record. However, it can only track group membership; it cannot track by (source, group). For example, Client A and Client B belong to group1 but each receives traffic streams from different sources. Client A receives a stream from (source_1, group1) and Client B receives a stream from (source_2, group1). The device still waits for the configured leave-wait-time before it stops the traffic because these two clients are in the same group. If the clients are in different groups, then the waiting period is not applied and traffic is stopped immediately.

Enabling IGMP V3 membership tracking and fast leave for the VLAN

To enable the tracking and fast leave feature for VLAN 20, enter the following commands.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast tracking
```

Syntax: `[no] multicast tracking`

The membership tracking and fast leave features are supported for IGMP V3 only. If any port or any client is not configured for IGMP V3, then the multicast tracking command is ignored.

Fast leave for IGMP V2

Platform Support:

- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

When a device receives an IGMP V2 leave message, it sends out multiple group-specific queries. If no other client replies within the waiting period, the device stops forwarding traffic. When fast-leave-v2 is configured, when the device receives a leave message, it immediately stops forwarding to that port. The device does not send group specific-queries. You must ensure that no snooping-enabled ports have multiple clients. When two devices connect together, the querier should not be configured for fast-leave-v2, since the port might have multiple clients through the non-querier. The number of queries, and the waiting period (in seconds) can be configured using the `ip multicast leave-wait-time` command. The default is 2 seconds.

Enabling fast leave for IGMP V2

To configure fast leave for IGMP V2, enter the following commands.

```
FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast fast-leave-v2
```

Syntax: `[no] multicast fast-leave-v2`

Fast convergence

Platform Support:
Configuring PIM SM snooping

Configuring PIM SM snooping on a Brocade device consists of the following global and VLAN-specific tasks.

Global task
Perform the following global tasks:
- “Enabling or disabling PIM SM snooping”

VLAN-specific tasks
Perform the following VLAN-specific tasks:
- “Enabling PIM SM snooping on a VLAN”
- “Disabling PIM SM snooping on a VLAN”

Enabling or disabling PIM SM snooping

PIM SM snooping should be used only in topologies where multiple PIM sparse routers connect through a device. PIM SM snooping does not work on a PIM dense mode router which does not send join messages, and traffic to PIM dense ports is stopped. A PIM SM snooping-enabled device displays a warning if it receives PIM dense join/prune messages.

To enable PIM sparse snooping globally, enter a command such as the following.

```
FastIron(config)# ip pimsm-snooping
```

This command enables PIM SM traffic snooping. The PIM SM traffic snooping feature assumes that the network has routers that are running PIM SM.
NOTE
The device must be in passive mode before it can be configured for PIM SM snooping.

To disable the feature, enter the following command.

FastIron(config)# no ip pimsm-snooping

If you also want to disable IP multicast traffic reduction, enter the following command.

FastIron(config)# no ip multicast

Syntax: [no] ip pimsm-snooping

Enabling PIM SM snooping on a VLAN

You can enable PIM SM snooping for a specific VLAN. For example, the following commands enable PIM SM snooping on VLAN 20.

FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast pimsm-snooping

Syntax: [no] multicast pimsm-snooping

Disabling PIM SM snooping on a VLAN

When PIM SM snooping is enabled globally, you can still disable it for a specific VLAN. For example, the following commands disable PIM SM snooping for VLAN 20. This setting overrides the global setting.

FastIron(config)# vlan 20
FastIron(config-vlan-20)# multicast disable-pimsm-snoop

Syntax: [no] multicast disable-pimsm-snoop

IGMP snooping show commands

This section shows how to display information about IGMP snooping, including:

- "Displaying the IGMP snooping configuration"
- "Displaying IGMP snooping errors"
- "Displaying IGMP group information"
- "Displaying IGMP snooping mcache information"
- "Displaying usage of hardware resource by multicast groups"
- "Displaying software resource usage for VLANs"
- "Displaying the status of IGMP snooping traffic"

Displaying the IGMP snooping configuration

To display the global IGMP snooping configuration, enter the following command at any level of the CLI.
IGMP snooping show commands

To display the IGMP snooping information for a specific VLAN (release 04.1.00 or later), enter a command such as the following.

```
FastIron# show ip multicast vlan 10
Version=3, Intervals: Query=10, Group Age=260, Max Resp=10, Other Qr=30
VL10: cfg V3, vlan cfg passive, , pimsm (vlan cfg), 3 grp, 1 (SG) cache, no rtr
port,
  e2 has 3 groups, non-QR (passive), default V3
  **** Warning! has V2 client (life=240),
    group: 239.0.0.3, life = 240
    group: 224.1.1.2, life = 240
    group: 224.1.1.1, life = 240
  e4 has 0 groups, non-QR (passive), default V3
```

Syntax: `show ip multicast vlan [<vlan-id>]`

If you do not specify a `<vlan-id>`, information for all VLANs is displayed.

This display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>The global IGMP version. In this example, the device is configured for IGMP version 2.</td>
</tr>
<tr>
<td>Query</td>
<td>How often a querier sends a general query on the interface. In this example, the general queries are sent every 125 seconds.</td>
</tr>
<tr>
<td>Group Age</td>
<td>The number of seconds membership groups can be members of this group before aging out.</td>
</tr>
<tr>
<td>Max Resp</td>
<td>The maximum number of seconds a client waits before replying to a query.</td>
</tr>
<tr>
<td>Other Qr</td>
<td>How long it took a switch with a lower IP address to become a new querier. This value is 2 x Query + Max Resp.</td>
</tr>
<tr>
<td>cfg</td>
<td>The IGMP version for the specified VLAN. In this example, VL10: cfg V3 indicates that VLAN 10 is configured for IGMP V3.</td>
</tr>
<tr>
<td>vlan cfg</td>
<td>The IGMP configuration mode, which is either passive or active.</td>
</tr>
<tr>
<td>pimsm</td>
<td>Indicates that PIM SM is enabled on the VLAN.</td>
</tr>
<tr>
<td>rtr port</td>
<td>The router ports, which are the ports receiving queries.</td>
</tr>
</tbody>
</table>

Displaying IGMP snooping errors

To display information about possible IGMP errors, enter the following command.

```
FastIron# show ip multicast error
snoop SW processed pkt: 173, up-time 160 sec
```

Syntax: `show ip multicast error`

The following table describes the output from the `show ip multicast error` command.
IGMP snooping show commands

Displaying IGMP group information

Platform Support:

- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

To display information about IGMP groups, enter the following command.

```
FastIron# show ip multicast group
```

Syntax: `show ip multicast group` [`<group-address>`] [`detail`] [`tracking`]

This field Displays

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW processed pkt</td>
<td>The number of multicast packets processed by IGMP snooping.</td>
</tr>
<tr>
<td>up-time</td>
<td>The time since the IGMP snooping is enabled.</td>
</tr>
</tbody>
</table>

In this example, an IGMP V2 group is in EXCLUDE mode with a source of 0. The group only excludes traffic from the 0 (zero) source list, which actually means that all traffic sources are included.

To display detailed IGMP group information for a specific group, enter the following command.

```
FastIron# show ip multicast group 226.1.1.1 detail
```

If the tracking and fast leave features are enabled, you can display the list of clients that belong to a particular group by entering the following command.

```
FastIron# show ip multicast group 224.1.1.1 tracking
```

Syntax: `show ip multicast group [`<group-address>`] [`detail`] [`tracking`]`
If you want a report for a specific multicast group, enter that group’s address for `<group-address>`. Enter detail to display the source list of a specific VLAN. Enter tracking for information on interfaces that have tracking enabled.

The following table describes the information displayed by the `show ip multicast group` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>The address of the group (destination address in this case, 224.1.1.1)</td>
</tr>
<tr>
<td>p-port</td>
<td>The physical port on which the group membership was received.</td>
</tr>
<tr>
<td>ST</td>
<td>Yes indicates that the IGMP group was configured as a static group; No means the address was learned from reports.</td>
</tr>
<tr>
<td>QR</td>
<td>Yes means the port is a querier port; No means it is not. A port becomes a non-querier port when it receives a query from a source with a lower source IP address than the device.</td>
</tr>
<tr>
<td>life</td>
<td>The number of seconds the group can remain in EXCLUDE mode. An EXCLUDE mode changes to INCLUDE mode if it does not receive an "IS_EX" or "TO_EX" message during a certain period of time. The default is 260 seconds. There is no life displayed in INCLUDE mode.</td>
</tr>
<tr>
<td>mode</td>
<td>Indicates current mode of the interface: INCLUDE or EXCLUDE. If the interface is in INCLUDE mode, it admits traffic only from the source list. If an interface is in EXCLUDE mode, it denies traffic from the source list and accepts the rest.</td>
</tr>
<tr>
<td>source</td>
<td>Identifies the source list that will be included or excluded on the interface. For example, if an IGMP V2 group is in EXCLUDE mode with a source of 0, the group excludes traffic from the 0 (zero) source list, which actually means that all traffic sources are included.</td>
</tr>
</tbody>
</table>

Displaying IGMP snooping mcache information

Platform Support:
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

The IGMP snooping mcache contains multicast forwarding information for VLANs. To display information in the multicast forwarding mcache, enter the following command.

```
FastIron# show ip multicast mcache
```

Example: (S G) cnt=0: cnt is number of SW processed packets
- OIF: el/22 TR(1/32,1/33), TR is trunk, el/32 primary, el/33 output
- vlan 10, 1 caches. use 1 VIDX
 - 1 (10.10.10.2 239.0.0.3) cnt=0
 - OIF: tag e2
 - age=2s up-time=2s change=2s vidx=8191 (ref-cnt=1)

Syntax: show ip multicast mcache

The following table describes the output of the `show ip multicast mcache` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(source group)</td>
<td>Source and group addresses of this data stream. (+ group) means match group only; (source group) means match both.</td>
</tr>
<tr>
<td>cnt</td>
<td>The number of packets processed in software. Packets are switched in hardware, which increases this number slowly.</td>
</tr>
</tbody>
</table>
You can display how much hardware resource (CAM and FID) is currently being used by multicast groups by entering a command such as the following at any level of the CLI.

```
FastIron# show ip multicast hardware
Hw resource is shared by groups with the same lower 23 bits
VLAN ID 2
Total number of HW resource in vlan: 1
  Group: 0.1.1.1, HW-ref-cnt=1, vidx 8191
    Forwarding Port: 2
VLAN ID 1
Total number of HW resource in vlan: 0
```

If you want to display the amount of hardware resource that is currently being used by a specific group, enter a command such as the following at any level of the CLI.

```
FastIron# show ip multicast hardware 239.255.163.2
VLAN ID 100
  Group: 239.255.163.2, HW-ref-cnt=1, fid 08a9, cam 10, dma=8,
    Forwarding Port: 1 2
group 239.255.163.2 in 1 vlans
```

Syntax: `show ip multicast hardware [<group-address> | vlan <vlan-id>]`

Enter the address of a group for `<group-address>` if you want to display the hardware resource usage of a particular group.

Likewise, enter the ID of a VLAN for `<vlan-id>` if you want display the hardware resource usage of groups in a VLAN.

The display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>The port-based VLAN to which the information listed below applies.</td>
</tr>
<tr>
<td>Total number of HW resource in VLAN</td>
<td>The number of resources in the VLAN.</td>
</tr>
</tbody>
</table>
IGMP snooping show commands

Displaying software resource usage for VLANs

Platform Support:
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

To display information about the software resources used, enter the following command:

```
FastIron# show ip multicast resource
```

This field... Displays...
--- | --
Group | Address of the IP multicast group that is using the entry. In the display above, group “0.1.1.1” is using this entry. The field HW-ref-cnt shows the number of groups that are sharing this entry. Multiple groups could share one entry because only low 23 bits are significant.
NOTE: The vidx, fid, cam, and dma values are used by Brocade Technical Support for troubleshooting.

Forwarding Port | The forwarding ports for the IP multicast group.

This field... Displays...
--- | --
Group | Address of the IP multicast group that is using the entry. In the display above, group “0.1.1.1” is using this entry. The field HW-ref-cnt shows the number of groups that are sharing this entry. Multiple groups could share one entry because only low 23 bits are significant.
NOTE: The vidx, fid, cam, and dma values are used by Brocade Technical Support for troubleshooting.

Platform Support:
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

To display information about the software resources used, enter the following command.

```
FastIron# show ip multicast resource
```

This field... Displays...
--- | --
alloc in-use | The allocated number of units.
in-use | The number of units which are currently being used.
avail | The number of available units.
get-fail | This displays the number of resource failures.
NOTE: It is important to pay attention to this field.
limit | The upper limit of this expandable field. The limit of multicast group is configured by the system-max igmp-max-group-addr command. The limit of snoop mcache entry is configured by the system-max multicast-snoop-mcache command.
get-mem | The number of memory allocation. This number should continue to increase.
size | The size of a unit (in bytes).
init | The initial allocated amount of memory. More memory may be allocated if resources run out.
Available vidx | The output interface (OIF) port mask used by mcache. The entire device has a maximum of 4096 vidx. Different mcaches with the same OIF share the same vidx. If vidx is not available, the stream cannot be hardware-switched.

deleted ... | ... entries deleted ...
snoop mcache entry | 128 2 126 0 8192 3 56 128
total pool memory 109056 bytes
has total 2 forwarding hash
VIDX sharing hash : size=2 anchor=997 2nd-hash=no fast-trav=no
Available vidx: 4060. IGMP/MLD use 2

Syntax: show ip multicast resource

The following table describes the output from the `show ip multicast resource` command.

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alloc</td>
<td>The allocated number of units.</td>
</tr>
<tr>
<td>in-use</td>
<td>The number of units which are currently being used.</td>
</tr>
<tr>
<td>avail</td>
<td>The number of available units.</td>
</tr>
<tr>
<td>get-fail</td>
<td>This displays the number of resource failures.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>It is important to pay attention to this field.</td>
</tr>
<tr>
<td>limit</td>
<td>The upper limit of this expandable field.</td>
</tr>
<tr>
<td>get-mem</td>
<td>The number of memory allocation. This number should continue to increase.</td>
</tr>
<tr>
<td>size</td>
<td>The size of a unit (in bytes).</td>
</tr>
<tr>
<td>init</td>
<td>The initial allocated amount of memory. More memory may be allocated if</td>
</tr>
<tr>
<td></td>
<td>resources run out.</td>
</tr>
<tr>
<td>Available vidx</td>
<td>The output interface (OIF) port mask used by mcache. The entire device has</td>
</tr>
<tr>
<td></td>
<td>a maximum of 4096 vidx. Different mcaches with the same OIF share the same</td>
</tr>
<tr>
<td></td>
<td>vidx. If vidx is not available, the stream cannot be hardware-switched.</td>
</tr>
</tbody>
</table>
```

This field... Displays...
--- | --
Group | Address of the IP multicast group that is using the entry. In the display above, group “0.1.1.1” is using this entry. The field HW-ref-cnt shows the number of groups that are sharing this entry. Multiple groups could share one entry because only low 23 bits are significant.
NOTE: The vidx, fid, cam, and dma values are used by Brocade Technical Support for troubleshooting.

Forwarding Port | The forwarding ports for the IP multicast group.
Displaying the status of IGMP snooping traffic

Platform Support:
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- Turbolron X Series devices running software release 04.1.00 and later

To display status information for IGMP snooping traffic, enter the following command.

FastIron# show ip multicast traffic
IGMP snooping: Total Recv: 22, Xmit: 26
Q: query, Qry: general Q, G-Qry: group Q, GSQry: group-source Q, Mbr: member

<table>
<thead>
<tr>
<th></th>
<th>Recv</th>
<th>QryV2</th>
<th>QryV3</th>
<th>G-Qry</th>
<th>GSQry</th>
<th>MbrV2</th>
<th>MbrV3</th>
<th>Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VL70</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VL1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VL70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Send QryV2 QryV3 G-Qry GSQry MbrV2 MbrV3
VL1 0 0 8 0 0 0
VL70 0 0 0 0 0 18
VL70 pimsm-snooping, Hello: 12, Join/Prune: 9

Syntax: show ip multicast traffic

The following table describes the information displayed by the show ip multicast traffic command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Query</td>
</tr>
<tr>
<td>Qry</td>
<td>General Query</td>
</tr>
<tr>
<td>QryV2</td>
<td>Number of general IGMP V2 queries received or sent.</td>
</tr>
<tr>
<td>QryV3</td>
<td>Number of general IGMP V3 queries received or sent.</td>
</tr>
<tr>
<td>G-Qry</td>
<td>Number of group-specific queries received or sent.</td>
</tr>
<tr>
<td>GSQry</td>
<td>Number of group source-specific queries received or sent.</td>
</tr>
<tr>
<td>Mbr</td>
<td>The membership report.</td>
</tr>
<tr>
<td>MbrV2</td>
<td>The IGMP V2 membership report.</td>
</tr>
<tr>
<td>MbrV3</td>
<td>The IGMP V3 membership report.</td>
</tr>
<tr>
<td>IsIN</td>
<td>Number of source addresses that were included in the traffic.</td>
</tr>
<tr>
<td>IsEX</td>
<td>Number of source addresses that were excluded in the traffic.</td>
</tr>
<tr>
<td>ToIN</td>
<td>Number of times the interface mode changed from EXCLUDE to INCLUDE.</td>
</tr>
<tr>
<td>ToEX</td>
<td>Number of times the interface mode changed from INCLUDE to EXCLUDE.</td>
</tr>
<tr>
<td>ALLOW</td>
<td>Number of times that additional source addresses were allowed on the interface.</td>
</tr>
<tr>
<td>BLK</td>
<td>Number of times that sources were removed from an interface.</td>
</tr>
<tr>
<td>Pkt-Err</td>
<td>Number of packets having errors, such as checksum.</td>
</tr>
<tr>
<td>Pimsm-snooping hello, join, prune</td>
<td>Number of PIM sparse hello, join, and prune packets</td>
</tr>
</tbody>
</table>
PIM SM snooping show commands

This section shows how to display information about PIM SM snooping, including:

- “Displaying PIM SM snooping information”
- “Displaying PIM SM snooping information on a Layer 2 switch”
- “Displaying PIM SM snooping information for a specific group or source group pair”

Displaying PIM SM snooping information

To display PIM SM snooping information, enter the following command.

```
FastIron# show ip multicast pimsm-snooping
vlan 1, has 2 caches.
1  (* 230.1.1.1) has 1 pim join ports out of 1 OIF
   1 (age=60)
   1 has 1 src: 20.20.20.66(60)
2  (* 230.2.2.2) has 1 pim join ports out of 1 OIF
   1 (age=60)
   1 has 1 src: 20.20.20.66(60)
```

This output shows the number of PIM join outgoing interfaces (OIF) out of the total OIF. The join/prune messages are source-specific. In this case, if the mcache is in (* G), the display function will also print the traffic source information.

Syntax: show ip multicast pimsm-snooping [vlan-id]

Use the <vlan-id> parameter to display PIM SM snooping information for a specific VLAN.

Displaying PIM SM snooping information on a Layer 2 switch

You can display PIM SM snooping information for all groups by entering the following command at any level of the CLI on a Layer 2 Switch.
Syntax: show ip pimsm-snooping vlan <vlan-id>

Enter the ID of the VLAN for the vlan <vlan-id> parameter.

If you want to display PIM SM snooping information for one source or one group, enter a command as in the following example. The command also displays the (source, port) list of the group.

FastIron# show ip multicast pimsm-snooping vlan 100
VLAN ID 100, total 3 entries
PIMSM Neighbor list:
 1.100.100.12 : 3/3 expire 120 s
 1.100.100.10 : 3/2 expire 170 s
 1.100.100.7 : 3/1 expire 160 s
1 Group: 224.0.1.22, fid 08ac, NO cam
 Forwarding Port: 3/3
 PIMv2 Group Port: 3/3
 (Source, Port) list: 1 entries
2 Group: 239.255.162.2, fid 08aa, cam 8
 Forwarding Port: 3/1 3/2
 PIMv2 Group Port: 3/1 3/2
 (Source, Port) list: 3 entries
3 Group: 239.255.163.2, fid 08a9, cam 10
 Forwarding Port: 3/1 3/2
 PIMv2 Group Port: 3/1 3/2
 (Source, Port) list: 3 entries
VLAN ID 4008, total 0 entries
PIMSM Neighbor list:

Syntax: show ip pimsm-snooping <group-address> | <source-address>

If the address you entered is within the range of source addresses, then the router treats it as the source address. Likewise, if the address falls in the range of group addresses, then the router assumes that you are requesting a report for that group.

This display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>The port-based VLAN to which the information listed below apply and the number of members in the VLAN.</td>
</tr>
<tr>
<td>PIM SM Neighbor list</td>
<td>The PIM SM routers that are attached to the Layer 2 Switch ports. The value following “expires” indicates how many seconds the Layer 2 Switch will wait for a hello message from the neighbor before determining that the neighbor is no longer present and removing the neighbor from the list.</td>
</tr>
<tr>
<td>Multicast Group</td>
<td>The IP address of the multicast group.</td>
</tr>
</tbody>
</table>

NOTE: The fid and camindex values are used by Brocade Technical Support for troubleshooting.
Clear commands for IGMP snooping

Platform Support:

- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
• TurboIron X Series devices running software release 04.1.00 and later

The clear IGMP snooping commands should be used only in troubleshooting conditions, or to recover from errors.

Clearing the IGMP mcache

To clear the mcache on all VLANs, enter the following command.

FastIron# clear ip multicast mcache

Syntax: clear ip multicast mcache

Clearing the mcache on a specific VLAN

To clear the mcache on a specific VLAN, enter the following command.

FastIron# clear ip multicast vlan 10 mcache

Syntax: clear ip multicast vlan <vlan-id> mcache

The <vlan-id> parameter specifies the specific VLAN to clear the cache.

Clearing traffic on a specific VLAN

To clear the traffic counters on a specific VLAN, enter the following command.

FastIron# clear ip multicast vlan 10 traffic

Syntax: clear ip multicast vlan <vlan-id> traffic

The <vlan-id> parameter specifies the specific VLAN on which to clear the traffic counters.

Clearing IGMP counters on VLANs

To clear IGMP snooping on error and traffic counters for all VLANs, enter the following command.

FastIron# clear ip multicast counters

Syntax: clear ip multicast counters
Clear commands for IGMP snooping
Chapter 28

Configuring IP Multicast Protocols

This chapter describes how to configure Brocade Layer 3 Switches for Protocol Independent Multicast (PIM) and Distance Vector Multicast Routing Protocol (DVMRP). Brocade Layer 3 Switches support the following IP multicast versions:

- Internet Group Management Protocol (IGMP) V1 and V2
- Internet Group Management Protocol (IGMP) V3
- PIM Dense mode (PIM DM) V1 (draft-ietf-pim-dm-05) and V2 (draft-ietf-pim-v2-dm-03)
- PIM Sparse mode (PIM SM) V2 (RFC 2362)
- PIM Passive mode (multicast stub routing)
- DVMRP V2 (RFC 1075)
- Multiprotocol Source Discovery Protocol (MSDP)

NOTE
Each multicast protocol uses IGMP. IGMP is automatically enabled on an interface when you configure PIM or DVMRP and is disabled on the interface if you disable PIM or DVMRP.

NOTE
This chapter applies only to IP multicast routing. To configure Layer 2 multicast features, refer to Chapter 27, “Configuring IP Multicast Traffic Reduction for FastIron X Series and TurboIron Series Switches”.

Overview of IP multicasting

Multicast protocols allow a group or channel to be accessed over different networks by multiple stations (clients) for the receipt and transmit of multicast data.

Distribution of stock quotes, video transmissions such as news services and remote classrooms, and video conferencing are all examples of applications that use multicast routing.

IPv4 multicast group addresses

In IPv4 Multicast, host groups are identified by Class D addresses, i.e., those with “1110” as their higher-order four bits. In Internet standard “dotted decimal” notation, these group addresses range from 224.0.0.0 to 239.255.255.255. However, the IANA IPv4 Multicast Address Registry (referencing RFC 3171) stipulates that the range 224.0.0.0 through 224.0.0.255 should not be used for regular multicasting applications.

“The range of addresses between 224.0.0.0 and 224.0.0.255, inclusive, is reserved for the use of routing protocols and other low-level topology discovery or maintenance protocols, such as gateway discovery and group membership reporting. Multicast routers should not forward any multicast datagram with destination addresses in this range, regardless of its TTL.”
Mapping of IPv4 Multicast group addresses to Ethernet MAC addresses

The IANA owns a block of Ethernet MAC addresses for Multicast usage that are in the range 0100.5e00.0000 through 0100.5e7F.FFFF. For a given IPv4 Multicast group, there is a simple way of obtaining the appropriate Ethernet Destination MAC address that must be used in Layer 2 encapsulation. This is defined in RFC 1112, as follows:

“An IP host group address is mapped to an Ethernet multicast address by placing the low-order 23-bits of the IP address into the low-order 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex). Because there are 28 significant bits in an IP host group address, more than one host group address may map to the same Ethernet multicast address.”

NOTE

Since there are 5 bits in the IPv4 Group address that are not used in the mapping, there is a possibility for up to 32 IPv4 Multicast Groups to use the same Ethernet Destination MAC address. Taking this into account along with the reserved IPv4 Group address range, it is discouraged for applications to use IPv4 Multicast Group Addresses that may conflict with the reserved addresses at the Layer 2 level. This is because some devices may use just the Ethernet Destination MAC address to take actions on the packet.

Supported Layer 3 multicast routing protocols

Brocade Layer 3 Switches support two different multicast routing protocols—Distance Vector Multicast Routing Protocol (DVMRP) and Protocol-Independent Multicast (PIM) protocol along with the Internet Group Membership Protocol (IGMP).

PIM and DVMRP are broadcast and pruning multicast protocols that deliver IP multicast datagrams. The protocols employ reverse path lookup check and pruning to allow source-specific multicast delivery trees to reach all group members. DVMRP and PIM build a different multicast tree for each source and destination host group.

NOTE

Both DVMRP and PIM can concurrently operate on different ports of a Brocade Layer 3 Switch.

Multicast terms

The following are commonly used terms in discussing multicast-capable routers. These terms are used throughout this chapter:

- **Node**: Refers to a router or Layer 3 Switch.
- **Root Node**: The node that initiates the tree building process. It is also the router that sends the multicast packets down the multicast delivery tree.
- **Upstream**: Represents the direction from which a router receives multicast data packets. An upstream router is a node that sends multicast packets.
- **Downstream**: Represents the direction to which a router forwards multicast data packets. A downstream router is a node that receives multicast packets from upstream transmissions.
- **Group Presence**: Means that a multicast group has been learned from one of the directly connected interfaces. Members of the multicast group are present on the router.
- **Intermediate nodes**: Routers that are in the path between source routers and leaf routers.
• **Leaf nodes**: Routers that do not have any downstream routers.

• **Multicast Tree**: A unique tree is built for each source group (S,G) pair. A multicast tree is comprised of a root node and one or more nodes that are leaf or intermediate nodes.

Changing global IP multicast parameters

The following configurable parameters apply to PIM-DM, PIM-SM, and DVMRP:

- Maximum number of PIM or DVMRP groups – You can change the maximum number of groups of each type for which the software will allocate memory. By default, Layer 3 Switches support up to 1024 PIM groups and 1024 DVMRP groups.
- Internet Group Membership Protocol (IGMP) V1 and V2 parameters – You can change the query interval, group membership time, and maximum response time.
- Hardware forwarding of fragmented IP multicast packets – You can enable the Layer 3 Switch to forward all fragments of fragmented IP multicast packets in hardware.

Changing dynamic memory allocation for IP multicast groups

Layer 3 Switches support up to 1024 PIM groups and 1024 DVMRP groups by default. Memory for the groups is allocated dynamically as needed. For each protocol, previous releases support a maximum of 255 groups and 255 IGMP memberships.

NOTE
The number of interface groups you can configure for DVMRP and PIM is unlimited; therefore, the `system-max dvmrp-max-int-group` and the `system-max pim-max-int-group` commands that define their maximum table sizes have been removed.

The software allocates memory globally for each group, and also allocates memory separately for each interface IGMP membership in a multicast group. An interface becomes a member of a multicast group when the interface receives an IGMP group membership report. For example, if the Layer 3 Switch learns about one multicast group, global memory for one group is used. In addition, if three interfaces on the device receive IGMP group membership reports for the group, interface memory for three IGMP memberships also is used.

Since the same group can use multiple allocations of memory (one for the group itself and one for each interface membership in the group), you can increase the maximum number of IGMP memberships, up to 8192.

NOTE
The total for IGMP memberships applies to the device, not to individual interfaces. You can have up to 8192 IGMP memberships on all the individual interfaces, not up to 8192 IGMP memberships on each interface.

Increasing the number of IGMP memberships

To increase the number of IGMP membership interfaces for PIM, enter commands such as the following.
Changing global IP multicast parameters

FastIron(config)#system-max pim-max-int-group 4000
FastIron(config)#write memory

This command enables the device to have up to 4000 IGMP memberships for PIM.

NOTE
The **system-max pim-max-int-group** command is no longer available since you can configure an unlimited number of PIM interface groups for DVMRP.

Syntax: `[no] system-max pim-max-int-group <num>`

The `<num>` parameter specifies the maximum number of IGMP memberships for PIM, and can be from 256 – 8192.

To increase the number of IGMP memberships interfaces you can have for DVMRP, enter commands such as the following.

FastIron(config)#system-max dvmrp-max-int-group 3000
FastIron(config)#write memory

NOTE
The **system-max dvmrp-max-int-group** command is no longer available since you can configure an unlimited number of DVMRP interface groups.

Syntax: `[no] system-max dvmrp-max-int-group <num>`

The `<num>` parameter specifies the maximum number of IGMP memberships for DVMRP, and can be from 256 – 8192.

NOTE
You do not need to reload the software for these changes to take effect.

Defining the maximum number of DVMRP cache entries

The DVMRP cache system parameter defines the maximum number of repeated DVMRP traffic being sent from the same source address and being received by the same destination address. To define this maximum, enter a command such as the following.

FastIron(config)#system-max dvmrp-mcache 500

Syntax: `system-max dvmrp-mcache <num>`

The `<num>` parameter specifies the maximum number of multicast cache entries for DVMRP. Enter a number from 128 – 2048. The default is 512.

Defining the maximum number of PIM cache entries

The PIM cache system parameter defines the maximum number of repeated PIM traffic being sent from the same source address and being received by the same destination address. To define this maximum, enter a command such as the following.

FastIron(config)#system-max pim-mcache 999

Syntax: `system-max pim-mcache <num>`

The `<num>` parameter specifies the maximum number of multicast cache entries for PIM. Enter a number from 256 – 4096. The default is 1024.
Changing IGMP V1 and V2 parameters

IGMP allows Brocade routers to limit the multicast of IGMP packets to only those ports on the router that are identified as IP Multicast members. This section applies to Brocade devices that support IGMP versions 1 and 2.

The router actively sends out host queries to identify IP Multicast groups on the network, inserts the group information in an IGMP packet, and forwards the packet to IP Multicast neighbors.

The following IGMP V1 and V2 parameters apply to PIM and DVMRP:

- IGMP query interval – Specifies how often the Layer 3 Switch queries an interface for group membership. Possible values are 1 – 3600. The default is 60.
- IGMP group membership time – Specifies how many seconds an IP Multicast group can remain on a Layer 3 Switch interface in the absence of a group report. Possible values are 1 – 7200. The default is 60.
- IGMP maximum response time – Specifies how many seconds the Layer 3 Switch will wait for an IGMP response from an interface before concluding that the group member on that interface is down and removing the interface from the group. Possible values are 1 – 10. The default is 5.

To change these parameters, you must first enable IP multicast routing by entering the following CLI command at the global CLI level.

FastIron(config)#ip multicast-routing

Syntax: [no] ip multicast-routing

NOTE
You must enter the `ip multicast-routing` command before changing the global IP Multicast parameters. Otherwise, the changes do not take effect and the software uses the default values.

Modifying IGMP (V1 and V2) query interval period

The IGMP query interval period defines how often a router will query an interface for group membership. Possible values are 1-3, 600 seconds and the default value is 60 seconds.

To modify the default value for the IGMP (V1 and V2) query interval, enter the following.

FastIron(config)#ip igmp query 120

Syntax: `ip igmp query-interval <1-3600>`

Modifying IGMP (V1 and V2) membership time

Group membership time defines how long a group will remain active on an interface in the absence of a group report. Possible values are from 1 – 7200 seconds and the default value is 140 seconds.

To define an IGMP (V1 and V2) membership time of 240 seconds, enter the following.

FastIron(config)#ip igmp group-membership-time 240

Syntax: `ip igmp group-membership-time <1-7200>`
Modifying IGMP (V1 and V2) maximum response time

Maximum response time defines how long the Layer 3 Switch will wait for an IGMP (V1 and V2) response from an interface before concluding that the group member on that interface is down and removing the interface from the group. Possible values are 1 – 10. The default is 10.

To change the IGMP (V1 and V2) maximum response time, enter a command such as the following at the global CONFIG level of the CLI.

```plaintext
FastIron(config)#ip igmp max-response-time 8
```

Syntax: [no] ip igmp max-response-time <num>

The `<num>` parameter specifies the number of seconds and can be a value from 1 – 10. The default is 10.

Adding an interface to a multicast group

You can manually add an interface to a multicast group. This is useful in the following cases:

- Hosts attached to the interface are unable to add themselves as members of the group using IGMP.
- There are no members for the group attached to the interface.

When you manually add an interface to a multicast group, the Brocade device forwards multicast packets for the group but does not itself accept packets for the group.

You can manually add a multicast group to individual ports only. If the port is a member of a virtual routing interface, you must add the ports to the group individually.

To manually add a port to a multicast group, enter a command such as the following at the configuration level for the port.

```plaintext
FastIron(config-if-1/1)#ip igmp static-group 224.2.2.2
```

This command adds port 1/1 to multicast group 224.2.2.2.

To add a port that is a member of a virtual routing interface to a multicast group, enter a command such as the following at the configuration level for the virtual routing interface.

```plaintext
FastIron(config-vif-1)#ip igmp static-group 224.2.2.2 ethernet 5/2
```

This command adds port 5/2 in virtual routing interface 1 to multicast group 224.2.2.2.

Syntax: [no] ip igmp static-group <ip-addr> [ethernet <portnum>]

The `<ip-addr>` parameter specifies the group number.

The `ethernet <portnum>` parameter specifies the port number. Use this parameter if the port is a member of a virtual routing interface, and you are entering this command at the configuration level for the virtual routing interface.

Manually added groups are included in the group information displayed by the following commands:

- show ip igmp group
- show ip pim group
IP multicast boundaries

The multicast boundary feature is designed to selectively allow or disallow multicast flows to configured interfaces.

The **ip multicast-boundary** command allows you to configure a boundary on PIM enabled interface by defining which multicast groups may not forward packets over a specified interface. This includes incoming and outgoing packets. By default, all interfaces that are enabled for multicast are eligible to participate in a multicast flow provided they meet the multicast routing protocol criteria for participating in a flow.

Configuration considerations

- Only one ACL can be bound to any interface.
- Normal ACL restrictions apply as to how many software ACLs can be created, but there are no hardware restrictions on ACLs with this feature.
- Creation of a static IGMP client is allowed for a group on a port that may be prevented from participation in the group on account of an ACL bound to the port interface. In such a situation, the ACL would prevail and the port will not be added to the relevant entries.
- Only standard ACLs can be used with the multicast boundary feature. When a standard ACL is used, the address specified is treated as a group address and NOT a source address.
- When a boundary is applied to an ingress interface, all packets destined to a multicast group that is filtered out will be dropped by software. Currently, there is no support to drop such packets in hardware.

Configuring multicast boundaries

To define boundaries for PIM enabled interfaces, enter a commands such as the following.

```
FastIron(config)#interface ve 40
FastIron(config-vif-40)#ip multicast-boundary MyBrocadeAccessList
```

Syntax: `[no] ip multicast-boundary `<ACL-spec>`

Use the **ACL-spec** parameter to define the number or name identifying an access list that controls the range of group addresses affected by the boundary.

Use the **no ip multicast boundary** command to remove the boundary on a PIM enabled interface.

NOTE
The ACL, **MyBrocadeAccessList**, can be configured using standard ACL syntax which can be found in the ACL section.

Displaying multicast boundaries

To display multicast boundary information, use the **show ip pim interface** command.
NOTE
The above command displays a specified PIM enabled interface. The keyword **passive** specifies if the interface is Passive.

If no interface is specified, the `show ip pim interface` command displays information about all the PIM-enabled interfaces.

```
FastIron (config)# show ip pim interface ethernet 2
Interface e2
PIM Dense: V2[passive]
TTL Threshold: 1, Disabled, DR: itself
Local Address: 23.23.23.23

Interface e3
PIM Dense: V2
TTL Threshold: 1, Disabled, DR: itself
Local Address: 41.41.41.41

Interface v2
PIM Sparse[passive]
TTL Threshold: 1, Disabled, DR: itself
Local Address: 32.32.32.32
```

Syntax: `show ip pim interface [ethernet <slot>/<portnum> | ve <num>]`

PIM Dense

NOTE
This section describes the “dense” mode of PIM, described in RFC 1075. Refer to “PIM Sparse” on page 849 for information about PIM Sparse.

NOTE
On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

PIM was introduced to simplify some of the complexity of the routing protocol at the cost of additional overhead tied with a greater replication of forwarded multicast packets. PIM is similar to DVMRP in that PIM builds source-routed multicast delivery trees and employs reverse path check when forwarding multicast packets.

There are two modes in which PIM operates: Dense and Sparse. The Dense Mode is suitable for densely populated multicast groups, primarily in the LAN environment. The Sparse Mode is suitable for sparsely populated multicast groups with the focus on WAN.

PIM primarily differs from DVMRP by using the IP routing table instead of maintaining its own, thereby being routing protocol independent.
Initiating PIM multicasts on a network

Once PIM is enabled on each router, a network user can begin a video conference multicast from the server on R1 as shown in Figure 111. When a multicast packet is received on a PIM-capable router interface, the interface checks its IP routing table to determine whether the interface that received the message provides the shortest path back to the source. If the interface does provide the shortest path back to the source, the multicast packet is then forwarded to all neighboring PIM routers. Otherwise, the multicast packet is discarded and a prune message is sent back upstream.

In Figure 111, the root node (R1) is forwarding multicast packets for group 229.225.0.1, which it receives from the server, to its downstream nodes, R2, R3, and R4. Router R4 is an intermediate router with R5 and R6 as its downstream routers. Because R5 and R6 have no downstream interfaces, they are leaf nodes. The receivers in this example are those workstations that are resident on routers R2, R3, and R6.

Pruning a multicast tree

As multicast packets reach these leaf routers, the routers check their IGMP databases for the group. If the group is not in a router IGMP database, the router discards the packet and sends a prune message to the upstream router. The router that discarded the packet also maintains the prune state for the source, group (S,G) pair. The branch is then pruned (removed) from the multicast tree. No further multicast packets for that specific (S,G) pair will be received from that upstream router until the prune state expires. You can configure the PIM Prune Timer (the length of time that a prune state is considered valid).

For example, in Figure 111 the sender with address 207.95.5.1 is sending multicast packets to the group 229.225.0.1. If a PIM switch receives any groups other than that group, the switch discards the group and sends a prune message to the upstream PIM switch.

In Figure 112, switch S5 is a leaf node with no group members in its IGMP database. Therefore, the switch must be pruned from the multicast tree. S5 sends a prune message upstream to its neighbor switch S4 to remove itself from the multicast delivery tree and install a prune state, as seen in Figure 112. Switch S5 will not receive any further multicast traffic until the prune age interval expires.

When a node on the multicast delivery tree has all of its downstream branches (downstream interfaces) in the prune state, a prune message is sent upstream. In the case of S4, if both S5 and S6 are in a prune state at the same time, S4 becomes a leaf node with no downstream interfaces and sends a prune message to S1. With S4 in a prune state, the resulting multicast delivery tree would consist only of leaf nodes S2 and S3.

FIGURE 111 Transmission of multicast packets from the source to host group members
FIGURE 112 Pruning leaf nodes from a multicast tree
Grafts to a multicast Tree

A PIM switch restores pruned branches to a multicast tree by sending graft messages towards the upstream switch. Graft messages start at the leaf node and travel up the tree, first sending the message to its neighbor upstream switch.

In the example above, if a new 229.225.0.1 group member joins on switch S6, which was previously pruned, a graft is sent upstream to S4. Since the forwarding state for this entry is in a prune state, S4 sends a graft to S1. Once S4 has joined the tree, S4 and S6 once again receive multicast packets.

Prune and graft messages are continuously used to maintain the multicast delivery tree. No configuration is required on your part.

PIM DM versions

Brocade devices support PIM DM V1 and V2. The default is V2. You can specify the version on an individual interface basis.

The primary difference between PIM DM V1 and V2 is the methods the protocols use for messaging:

- PIM DM V1 – uses the Internet Group Management Protocol (IGMP) to send messages
- PIM DM V2 – sends messages to the multicast address 224.0.0.13 (ALL-PIM-ROUTERS) with protocol number 103
The CLI commands for configuring and managing PIM DM are the same for V1 and V2. The only difference is the command you use to enable the protocol on an interface.

NOTE
Version 2 is the default PIM DM version. The only difference between version 1 and version 2 is the way the protocol sends messages. The change is not apparent in most configurations. You can use version 2 instead of version 1 with no impact to your network. However, if you want to continue to use PIM DM V1 on an interface, you must change the version, then save the configuration.

NOTE
The note above does not mean you can run different PIM versions on devices that are connected to each other. The devices must run the same version of PIM. If you want to connect a Layer 3 Switch running PIM to a device that is running PIM V1, you must change the version on the Layer 3 Switch to V1 (or change the version on the device to V2, if supported).

Configuring PIM DM

NOTE
This section describes how to configure the “dense” mode of PIM, described in RFC 1075. Refer to “Configuring PIM Sparse” on page 851 for information about configuring PIM Sparse.

Enabling PIM on the router and an interface
By default, PIM is disabled. To enable PIM, perform the following:

• Enable the feature globally.
• Configure the IP interfaces that will use PIM.
• Enable PIM locally on the ports that have the IP interfaces you configured for PIM.

Suppose you want to initiate the use of desktop video for fellow users on a sprawling campus network. All destination workstations have the appropriate hardware and software but the Brocade routers that connect the various buildings need to be configured to support PIM multicasts from the designated video conference server as shown in Figure 111 on page 841.

PIM is enabled on each of the Brocade routers shown in Figure 111, on which multicasts are expected. You can enable PIM on each router independently or remotely from one of the routers with a Telnet connection. Follow the same steps for each router. A reset of the router is required when PIM is first enabled. Thereafter, all changes are dynamic.

Globally enabling and disabling PIM
To globally enable PIM, enter the following command.

FastIron(config)#router pim

Syntax: [no] router pim

The behavior of the [no] router pim command is as follows:

• Entering router pim command to enable PIM does not require a software reload.
• Entering a no router pim command removes all configuration for PIM multicast on a Layer 3 Switch (router pim level) only.
Globally Enabling and Disabling PIM without Deleting Multicast Configuration

As stated above entering a `no router pim` command deletes the PIM configuration. If you want to disable PIM without deleting any PIM configuration, enter the following command.

```
FastIron(config)#router pim
FastIron(config-pim-router)#disable-pim
```

Syntax: `[no] disable-pim`

Use the `[no]` version of the command to re-enable PIM.

Enabling a PIM version

Using the CLI

To enable PIM on an interface, globally enable PIM, then enable PIM on interface 3, enter the following commands.

```
FastIron(config)#router pim
FastIron(config)#int e 3
FastIron(config-if-e1000-3)#ip address 207.95.5.1/24
FastIron(config-if-e1000-3)#ip pim
```

Syntax: `[no] ip pim [version 1 | 2]`

The `version 1 | 2` parameter specifies the PIM DM version. The default version is 2.

If you have enabled PIM version 1 but need to enable version 2 instead, enter either of the following commands at the configuration level for the interface.

```
FastIron(config-if-1/1)#ip pim version 2
FastIron(config-if-1/1)#no ip pim version 1
```

To disable PIM DM on the interface, enter the following command.

```
FastIron(config-if-1/1)#no ip pim
```

Modifying PIM global parameters

PIM global parameters come with preset values. The defaults work well in most networks, but you can modify the following parameters if you need to:

- Neighbor timeout
- Hello timer
- Prune timer
- Prune wait timer
- Graft retransmit timer
- Inactivity timer

Modifying neighbor timeout

Neighbor timeout is the interval after which a PIM router will consider a neighbor to be absent. Absence of PIM hello messages from a neighboring router indicates that a neighbor is not present.

The default value is 180 seconds.

To apply a PIM neighbor timeout value of 360 seconds to all ports on the router operating with PIM, enter the following.
FastIron(config)#router pim
FastIron(config-pim-router)#nbr-timeout 360

Syntax: nbr-timeout <60-8000>
The default is 180 seconds.

Modifying hello timer
This parameter defines the interval at which periodic hellos are sent out PIM interfaces. Routers use hello messages to inform neighboring routers of their presence. The default rate is 60 seconds.

To apply a PIM hello timer of 120 seconds to all ports on the router operating with PIM, enter the following.

FastIron(config)#router pim
FastIron(config-pim-router)#hello-timer 120

Syntax: hello-timer <10-3600>
The default is 60 seconds.

Modifying prune timer
This parameter defines how long a Brocade PIM router will maintain a prune state for a forwarding entry.

The first received multicast interface is forwarded to all other PIM interfaces on the router. If there is no presence of groups on that interface, the leaf node sends a prune message upstream and stores a prune state. This prune state travels up the tree and installs a prune state.

A prune state is maintained until the prune timer expires or a graft message is received for the forwarding entry. The default value is 180 seconds.

To set the PIM prune timer to 90, enter the following.

FastIron(config)#router pim
FastIron(config-pim-router)#prune-timer 90

Syntax: prune-timer <10-3600>
The default is 180 seconds.

Modifying the prune wait timer
The CLI command prune-wait allows you to configure the amount of time a PIM router will wait before stopping traffic to neighbor routers that do not want the traffic. The value can be from zero to three seconds. The default is three seconds. A smaller prune wait value reduces flooding of unwanted traffic.

A prune wait value of zero causes the PIM router to stop traffic immediately upon receiving a prune message. If there are two or more neighbors on the physical port, then the prune-wait command should not be used because one neighbor may send a prune message while the other sends a join message at the during time or in less than three seconds.

To set the prune wait time to zero, enter the following commands.

FastIron(config)#router pim
FastIron(config-pim-router)#prune-wait 0

Syntax: prune-wait <time>
where <time> can be 0 - 3 seconds. A value of 0 causes the PIM router to stop traffic immediately upon receiving a prune message. The default is 3 seconds.

Viewing the prune wait time
To view the prune wait time, enter the `show ip pim dense` command at any level of the CLI.

```plaintext
FastIron# show ip pim dense
Global PIM Dense Mode Settings
Hello interval: 60, Neighbor timeout: 180
Graft Retransmit interval: 10, Inactivity interval: 180
Route Expire interval: 200, Route Discard interval: 340
Prune age: 180, Prune wait: 3
```

Modifying graft retransmit timer
The Graft Retransmit Timer defines the interval between the transmission of graft messages.

A graft message is sent by a router to cancel a prune state. When a router receives a graft message, the router responds with a Graft Ack (acknowledge) message. If this Graft Ack message is lost, the router that sent the graft message will resend it.

To change the graft retransmit timer from the default of 180 to 90 seconds, enter the following.

```plaintext
FastIron(config)#router pim
FastIron(config-pim-router)#graft-retransmit-timer 10
```

Syntax: `graft-retransmit-timer <2 -10>`
The default is 3 seconds.

Modifying inactivity timer
The router deletes a forwarding entry if the entry is not used to send multicast packets. The PIM inactivity timer defines how long a forwarding entry can remain unused before the router deletes it.

To apply a PIM inactivity timer of 90 seconds to all PIM interfaces, enter the following.

```plaintext
FastIron(config)#router pim
FastIron(config-pim-router)#inactivity-timer 90
```

Syntax: `inactivity-timer <10-3600>`
The default is 180 seconds.

Selection of shortest path back to source
By default, when a multicast packet is received on a PIM-capable router interface in a multi-path topology, the interface checks its IP routing table to determine the shortest path back to the source. If the alternate paths have the same cost, the first alternate path in the table is picked as the path back to the source. For example, in the table below, the first four routes have the same cost back to the source. However, 137.80.127.3 will be chosen as the path to the source since it is the first one on the list. The router rejects traffic from any port other than Port V11 on which 137.80.127.3 resides.
When the Highest IP RPF feature is enabled, the selection of the shortest path back to the source is based on which Reverse Path Forwarding (RPF) neighbor in the IP routing table has the highest IP address, if the cost of the routes are the same. For example, in the table above, Gateway 137.80.129.1 will be chosen as the shortest path to the source because it is the RPF neighbor with the highest IP address.

When choosing the RPF, the router first checks the Multicast Routing Table. If the table is not available, it chooses an RPF from the IP Routing Table. Multicast route is configured using the `ip mroute` command.

To enable the Highest IP RPF feature, enter commands such as the following.

```
FastIron(config)#router pim
FastIron(config-pim-router)#highest-ip-rpf
```

The command immediately enables the Highest IP RPF feature; there is no need to reboot the device.

Syntax: [no] highest-ip-rpf

Entering the `no` version of the command disables the feature; the shortest path back to the source will be based on the first entry in the IP routing table. If some PIM traffic paths were selected based on the highest IP RPF, these paths are changed immediately to use the first RPF in the routing table.

Failover time in a multi-path topology

When a port in a multi-path topology fails, and the failed port is the input port of the downstream router, a new path is re-established within a few seconds, depending on the routing protocol being used.

No configuration is required for this feature.

Modifying the TTL

The TTL defines the minimum value required in a packet for it to be forwarded out of the interface. For example, if the TTL for an interface is set at 10, it means that only those packets with a TTL value of 10 or more will be forwarded. Likewise, if an interface is configured with a TTL Threshold value of 1, all packets received on that interface will be forwarded. Possible TTL values are 1 to 31. The default TTL value is 1.
Configuration notes

- If the TTL for an interface is greater than 1, PIM packets received on the interface are always forwarded in software because each packet TTL must be examined. Therefore, Brocade does not recommend modifying the TTL under normal operating conditions.
- Multicast packets with a TTL value of 1 are switched within the same VLAN. These packets cannot be routed between different VLANs.

Configuration syntax

To configure a TTL of 24, enter the following.

```
FastIron(config-if-3/24)#ip pim ttl 24
```

Syntax: `ip pim ttl <1-31>`

Dropping PIM traffic in hardware

Unwanted PIM Dense or PIM Sparse multicast traffic can be dropped in hardware on Layer 3 Switches. This feature does not apply to DVMRP traffic. Refer to “Passive multicast route insertion” on page 895.

PIM Sparse

Brocade devices support Protocol Independent Multicast (PIM) Sparse version 2. PIM Sparse provides multicasting that is especially suitable for widely distributed multicast environments. The Brocade implementation is based on RFC 2362.

NOTE

On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

In a PIM Sparse network, a PIM Sparse router that is connected to a host that wants to receive information for a multicast group must explicitly send a join request on behalf of the receiver (host).

PIM Sparse routers are organized into domains. A PIM Sparse domain is a contiguous set of routers that all implement PIM and are configured to operate within a common boundary. Figure 113 shows a simple example of a PIM Sparse domain. This example shows three Layer 3 Switches configured as PIM Sparse routers. The configuration is described in detail following the figure.

FIGURE 113 Example of a PIM Sparse domain
PIM Sparse switch types

Switches that are configured with PIM Sparse interfaces also can be configured to fill one or more of the following roles:

- **PMBR** – A PIM switch that has some interfaces within the PIM domain and other interfaces outside the PIM domain. PBMRs connect the PIM domain to the Internet.

 NOTE

 You cannot configure a Brocade routing interface as a PMBR interface for PIM Sparse in the current software release.

- **BSR** – The Bootstrap Router (BSR) distributes RP information to the other PIM Sparse switches within the domain. Each PIM Sparse domain has one active BSR. For redundancy, you can configure ports on multiple switches as candidate BSRs. The PIM Sparse protocol uses an election process to select one of the candidate BSRs as the BSR for the domain. The BSR with the highest BSR priority (a user-configurable parameter) is elected. If the priorities result in a tie, then the candidate BSR interface with the highest IP address is elected. In the example in Figure 113, PIM Sparse switch B is the BSR. Port 2/2 is configured as a candidate BSR.

- **RP** – The RP is the meeting point for PIM Sparse sources and receivers. A PIM Sparse domain can have multiple RPs, but each PIM Sparse multicast group address can have only one active RP. PIM Sparse switches learn the addresses of RPs and the groups for which they are responsible from messages that the BSR sends to each of the PIM Sparse switches. In the example in Figure 113, PIM Sparse Switch B is the RP. Port 2/2 is configured as a candidate Rendezvous Point (RP).

To enhance overall network performance, Brocade Layer 3 Switches use the RP to forward only the first packet from a group source to the group receivers. After the first packet, the Layer 3 Switch calculates the shortest path between the receiver and source (the Shortest Path Tree, or SPT) and uses the SPT for subsequent packets from the source to the receiver. The Layer 3 Switch calculates a separate SPT for each source-receiver pair.
NOTE
Brocade recommends that you configure the same ports as candidate BSRs and RPs.

RP paths and SPT paths

Figure 113 shows two paths for packets from the source for group 239.255.162.1 and a receiver for the group. The source is attached to PIM Sparse Switch A and the recipient is attached to PIM Sparse Switch C. PIM Sparse Switch B in is the RP for this multicast group. As a result, the default path for packets from the source to the receiver is through the RP. However, the path through the RP sometimes is not the shortest path. In this case, the shortest path between the source and the receiver is over the direct link between Switch A and Switch C, which bypasses the RP (Switch B).

To optimize PIM traffic, the protocol contains a mechanism for calculating the Shortest Path Tree (SPT) between a given source and receiver. PIM Sparse switches can use the SPT as an alternative to using the RP for forwarding traffic from a source to a receiver. By default, Brocade Layer 3 Switches forward the first packet they receive from a given source to a given receiver using the RP path, but forward subsequent packets from that source to that receiver through the SPT. In Figure 113, Switch A forwards the first packet from group 239.255.162.1 source to the destination by sending the packet to Switch B, which is the RP. Switch B then sends the packet to Switch C. For the second and all future packets that Switch A receives from the source for the receiver, Switch A forwards them directly to Switch C using the SPT path.

Configuring PIM Sparse

To configure a Brocade Layer 3 Switch for PIM Sparse, perform the following tasks:

- Configure the following global parameter:
 - Enable the PIM Sparse mode of multicast routing.

- Configure the following interface parameters:
 - Configure an IP address on the interface
 - Enable PIM Sparse.
 - Identify the interface as a PIM Sparse border, if applicable.

NOTE
You cannot configure a Brocade routing interface as a PMBR interface for PIM Sparse in the current software release.

- Configure the following PIM Sparse global parameters:
 - Identify the Layer 3 Switch as a candidate PIM Sparse Bootstrap Router (BSR), if applicable.
 - Identify the Layer 3 Switch as a candidate PIM Sparse Rendezvous Point (RP), if applicable.
 - Specify the IP address of the RP (if you want to statically select the RP).

NOTE
Brocade recommends that you configure the same Layer 3 Switch as both the BSR and the RP.
Limitations in this release

The implementation of PIM Sparse in the current software release has the following limitations:

- PIM Border Routers (PMBRs) are not supported. Thus, you cannot configure a Brocade routing interface as a PMBR interface for PIM Sparse.
- PIM Sparse and regular PIM (dense mode) cannot be used on the same interface.
- You cannot configure or display PIM Sparse information using the Web Management Interface. (You can display some general PIM information, but not specific PIM Sparse information.)

Configuring Global PIM Sparse parameters

To configure the PIM Sparse global parameters, use either of the following methods.

To configure basic global PIM Sparse parameters, enter commands such as the following on each Layer 3 Switch within the PIM Sparse domain.

```
FastIron(config)#router pim
```

Syntax: [no] router pim

NOTE
You do not need to globally enable IP multicast routing when configuring PIM Sparse.

The command in this example enables IP multicast routing, and enables the PIM Sparse mode of IP multicast routing. The command does not configure the Layer 3 Switch as a candidate PIM Sparse Bootstrap Router (BSR) and candidate Rendezvous Point (RP). You can configure a Brocade Layer 3 Switch as a PIM Sparse switch without configuring the it as a candidate BSR and RP. However, if you do configure the Layer 3 Switch as one of these, Brocade recommends that you configure it as both. Refer to “Configuring BSRs” on page 853.

The behavior of the [no] router pim command is as follows:

- Entering no router pim command to disable PIM or DVMRP does not require a software reload.
- Entering a no router pim command removes all configuration for PIM multicast on a Layer 3 Switch (router pim level) only.

Globally enabling and disabling PIM without deleting the multicast configuration

As stated above entering a no router pim command deletes the PIM configuration. If you want to disable PIM without deleting any PIM configuration, enter the following command.

```
FastIron(config)#router pim
FastIron(config-pim-router)#disable-pim
```

Syntax: [no] disable-pim

Use the [no] version of the command to re-enable PIM.

Configuring PIM interface parameters

After you enable IP multicast routing and PIM Sparse at the global level, you must enable it on the individual interfaces connected to the PIM Sparse network. To do so, use the following CLI method.

To enable PIM Sparse mode on an interface, enter commands such as the following.
FastIron(config)#interface ethernet 2/2
FastIron(config-if-2/2)#ip address 207.95.7.1 255.255.255.0
FastIron(config-if-2/2)#ip pim-sparse

Syntax: [no] ip pim-sparse

The commands in this example add an IP interface to port 2/2, then enable PIM Sparse on the interface.

If the interface is on the border of the PIM Sparse domain, you also must enter the following command.

FastIron(config-if-2/2)#ip pim border

Syntax: [no] ip pim border

NOTE
You cannot configure a Brocade routing interface as a PMBR interface for PIM Sparse in the current software release.

Configuring BSRs

In addition to the global and interface parameters in the sections above, you need to identify an interface on at least one Layer 3 Switch as a candidate PIM Sparse Bootstrap router (BSR) and candidate PIM Sparse Rendezvous Point (RP).

NOTE
It is possible to configure the Layer 3 Switch as only a candidate BSR or RP, but Brocade recommends that you configure the same interface on the same Layer 3 Switch as both a BSR and an RP.

This section presents how to configure BSRs. Refer to “Configuring RPs” on page 854 for instructions on how to configure RPs.

To configure the Layer 3 Switch as a candidate BSR and RP, enter commands such as the following.

FastIron(config)#router pim
FastIron(config-pim-router)#bsr-candidate ethernet 2/2 30 255
BSR address: 207.95.7.1, hash mask length: 30, priority: 255

This command configures the PIM Sparse interface on port 2/2 as a BSR candidate, with a hash mask length of 30 and a priority of 255. The information shown in italics above is displayed by the CLI after you enter the candidate BSR configuration command.

Syntax: [no] bsr-candidate ethernet [<slotnum>/]<portnum> | loopback <num> | ve <num> <hash-mask-length> [<priority>]

The <slotnum> parameter is required on chassis devices.

The <portnum> | loopback <num> | ve <num> parameter specifies the interface. The Layer 3 Switch will advertise the specified interface IP address as a candidate BSR:

- Enter ethernet [<slotnum>/]<portnum> for a physical interface (port).
- Enter ve <num> for a virtual interface.
- Enter loopback <num> for a loopback interface.

The <hash-mask-length> parameter specifies the number of bits in a group address that are significant when calculating the group-to-RP mapping. You can specify a value from 1 – 32.
NOTE
Brocade recommends you specify 30 for IP version 4 (IPv4) networks.

The `<priority>` specifies the BSR priority. You can specify a value from 0 – 255. When the election process for BSR takes place, the candidate BSR with the highest priority becomes the BSR. The default is 0.

Configuring RPs

Enter a command such as the following to configure the Layer 3 Switch as a candidate RP.

```
FastIron(config-pim-router)#rp-candidate ethernet 2/2
```

Syntax: `[no] rp-candidate ethernet [slotnum]/portnum | loopback <num> | ve <num>

The `<slotnum>` parameter is required on chassis devices.

The `portnum` | loopback `<num>` | ve `<num>` parameter specifies the interface. The Layer 3 Switch will advertise the specified interface IP address as a candidate RP:

- Enter `ethernet [slotnum]/portnum` for a physical interface (port).
- Enter `ve <num>` for a virtual interface.
- Enter `loopback <num>` for a loopback interface.

By default, this command configures the Layer 3 Switch as a candidate RP for all group numbers beginning with 224. As a result, the Layer 3 Switch is a candidate RP for all valid PIM Sparse group numbers. You can change this by adding or deleting specific address ranges. The following example narrows the group number range for which the Layer 3 Switch is a candidate RP by explicitly adding a range.

```
FastIron(config-pim-router)#rp-candidate add 224.126.0.0 16
```

Syntax: `[no] rp-candidate add <group-addr> <mask-bits>

The `<group-addr>` `<mask-bits>` specifies the group address and the number of significant bits in the subnet mask. In this example, the Layer 3 Switch is a candidate RP for all groups that begin with 224.126. When you add a range, you override the default. The Layer 3 Switch then becomes a candidate RP only for the group address ranges you add.

You also can change the group numbers for which the Layer 3 Switch is a candidate RP by deleting address ranges. For example, to delete all addresses from 224.126.22.0 – 224.126.22.255, enter the following command.

```
FastIron(config-pim-router)#rp-candidate delete 224.126.22.0 24
```

Syntax: `rp-candidate delete <group-addr> <mask-bits>

The usage of the `<group-addr>` `<mask-bits>` parameter is the same as for the `rp-candidate add` command.

If you enter both commands shown in the example above, the net effect is that the Layer 3 Switch becomes a candidate RP for groups 224.126.0.0 – 224.126.21.255 and groups 224.126.23.0 – 224.126.255.255.

Updating PIM-Sparse forwarding entries with new RP configuration

If you make changes to your static RP configuration, the entries in the PIM-Sparse multicast forwarding table continue to use the old RP configuration until they are aged out.
The `clear pim rp-map` command allows you to update the entries in the static multicast forwarding table immediately after making RP configuration changes. This command is meant to be used with `rp-address` command.

To update the entries in a PIM sparse static multicast forwarding table with new RP configuration, enter the following command at the privileged EXEC level of the CLI.

```
FastIron#clear pim rp-map
```

Syntax: `clear pim rp-map`

Statically specifying the RP

Brocade recommends that you use the PIM Sparse protocol RP election process so that a backup RP can automatically take over if the active RP router becomes unavailable. However, if you do not want the RP to be selected by the RP election process but instead you want to explicitly identify the RP by its IP address, you can do using the following CLI method.

If you explicitly specify the RP, the Layer 3 Switch uses the specified RP for all group-to-RP mappings and overrides the set of candidate RPs supplied by the BSR.

NOTE

Specify the same IP address as the RP on all PIM Sparse routers within the PIM Sparse domain. Make sure the router is on the backbone or is otherwise well connected to the rest of the network.

To specify the IP address of the RP, enter commands such as the following.

```
FastIron(config)#router pim
FastIron(config-pim-router)#rp-address 207.95.7.1
```

Syntax: `[no] rp-address <ip-addr>`

The `<ip-addr>` parameter specifies the IP address of the RP.

The command in the example above identifies the router interface at IP address 207.95.7.1 as the RP for the PIM Sparse domain. The Layer 3 Switch will use the specified RP and ignore group-to-RP mappings received from the BSR.

Changing the Shortest Path Tree (SPT) threshold

In a typical PIM Sparse domain, there may be two or more paths from a DR (designated router) for a multicast source to a PIM group receiver:

- **Path through the RP** – This is the path the Layer 3 Switch uses the first time it receives traffic for a PIM group. However, the path through the RP may not be the shortest path from the Layer 3 Switch to the receiver.

- **Shortest Path** – Each PIM Sparse router that is a DR for a multicast source calculates a shortest path tree (SPT) to all the PIM Sparse group receivers within the domain, with the Layer 3 Switch itself as the root of the tree. The first time a Brocade Layer 3 Switch configured as a PIM router receives a packet for a PIM receiver, the Layer 3 Switch sends the packet to the RP for the group. The Layer 3 Switch also calculates the SPT from itself to the receiver. The next time the Layer 3 Switch receives a PIM Sparse packet for the receiver, the Layer 3 Switch sends the packet toward the receiver using the shortest route, which may not pass through the RP.

By default, the device switches from the RP to the SPT after receiving the first packet for a given PIM Sparse group. The Layer 3 Switch maintains a separate counter for each PIM Sparse source-group pair.
After the Layer 3 Switch receives a packet for a given source-group pair, the Layer 3 Switch starts a PIM data timer for that source-group pair. If the Layer 3 Switch does not receive another packet for the source-group pair before the timer expires, it reverts to using the RP for the next packet received for the source-group pair. In accordance with the PIM Sparse RFC recommendation, the timer is 210 seconds and is not configurable. The counter is reset to zero each time the Layer 3 Switch receives a packet for the source-group pair.

You can change the number of packets that the Layer 3 Switch sends using the RP before switching to using the SPT. To do so, use the following CLI method.

```
FastIron(config)#router pim
FastIron(config-pim-router)#spt-threshold 1000
```

Syntax: `[no] spt-threshold infinity | <num>

The `infinity | <num>` parameter specifies the number of packets. If you specify infinity, the Layer 3 Switch sends packets using the RP indefinitely and does not switch over to the SPT. If you enter a specific number of packets, the Layer 3 Switch does not switch over to using the SPT until it has sent the number of packets you specify using the RP.

Changing the PIM join and prune message interval

By default, the Layer 3 Switch sends PIM Sparse Join/Prune messages every 60 seconds. These messages inform other PIM Sparse routers about clients who want to become receivers (Join) or stop being receivers (Prune) for PIM Sparse groups.

You can change the Join/Prune message interval using the following CLI method.

```
NOTE
Use the same Join/Prune message interval on all the PIM Sparse routers in the PIM Sparse domain. If the routers do not all use the same timer interval, the performance of PIM Sparse can be adversely affected.
```

To change the Join/Prune interval, enter commands such as the following.

```
FastIron(config)#router pim
FastIron(config-pim-router)#message-interval 30
```

Syntax: `[no] message-interval <num>

The `<num>` parameter specifies the number of seconds and can from 1 – 65535. The default is 60.

Dropping PIM traffic in hardware

Unwanted PIM Dense or PIM Sparse multicast traffic can be dropped in hardware on Layer 3 Switches. This feature does not apply to DVMRP traffic. Refer to “Passive multicast route insertion” on page 895.

Anycast RP

Platform Support:

- FastIron X Series devices running software release FSX 05.1.00 and later
- TurboIron X Series devices running software release 04.2.00 and later
Anycast RP is a method of providing intra-domain redundancy and load-balancing between multiple Rendezvous Points (RP) in a Protocol Independent Multicast Sparse mode (PIM-SM) network. It is accomplished by configuring all RPs within a domain with the same anycast RP address which is typically a loopback IP address. Multicast Source Discovery Protocol (MSDP) is used between all of the RPs in a mesh configuration to keep all RPs in sync regarding the active sources.

PIM-SM routers are configured to register (statically or dynamically) with the RP using the same anycast RP address. Since multiple RPs have the same anycast address, an Interior Gateway Protocol (IGP) such as OSPF routes the PIM-SM router to the RP with the best route. If the PIM-SM routers are distributed evenly throughout the domain, the loads on RPs within the domain will be distributed. If the RP with the best route goes out of service, the PIM-SM router IGP changes the route to the closest operating RP that has the same anycast address.

This configuration works because MSDP is configured between all of the RPs in the domain. Consequently, all of the RPs share information about active sources.

Configuring anycast RP

To configure anycast RP, you must do the following:

- Configure a loopback interface with the anycast RP address on each of the RPs within the domain and enable PIM-SM on these interfaces.
- You must explicitly configure router-id. Refer to “RP 1 configuration” on page 858.
- Ensure that the anycast RP address is leaked into the IGP domain. This is typically done by enabling the IGP on the loopback interface (in passive mode) or redistributing the connected loopback IP address into the IGP.

NOTE
The anycast RP address *must* not be the IGP router-id.

- Enable PIM-SM on all interfaces on which multicast routing is desired.
- Enable an IGP on each of the loopback interfaces and physical interfaces configured for PIM-SM.
- Configure loopback interfaces with unique IP addresses on each of the RPs for MSDP peering. This loopback interface is also used as the MSDP originator-id.
- The non-RP PIM-SM routers may be configured to use the anycast RP address statically or dynamically (by the PIMv2 bootstrap mechanism).
- On TurboIron X Series devices running software release 04.2.00 and later, anycast RP is supported on a fully-meshed topology. Configure MSDP peers and configure mesh-groups that use a fully meshed peer topology. MSDP peering can be established between physical interfaces or loopback interfaces. MSDP is used between all intra-domain RPs in a full-mesh configuration to provide redundancy and backup of PIM-SM network.

Example to configure anycast RP - two directly connected RPs

The example shown in Figure 114 is a simple anycast-enabled network with two RPs and two PIM-SM routers. Loopback 1 in RP 1 and RP 2 have the same IP address. Loopback 2 in RP1 and Loopback 2 in RP2 have different IP addresses and are configured as MSDP peering IP addresses in a mesh configuration.
In the PIM configuration for PIM-SM routers PIMR1 and PIMR2 the RP address is configured to be the anycast RP address that was configured on the Loopback 1 interfaces on RP1 and RP2. OSPF is configured as the IGP for the network and all of the devices are in OSPF area 0.

Since PIMR1 has a lower cost path to RP1 and PIMR2 has a lower cost path to RP2 they will register with the respective RPs when both are up and running. This shares the load between the two RPs. If one of the RPs fails, the higher-cost path to the IP address of Loopback 1 on the RPs is used to route to the still-active RP.

The configuration examples demonstrate the commands required to enable this application.

FIGURE 114 Example of an anycast RP network

RP 1 configuration

The following commands provide the configuration for the RP 1 router in *Figure 114*.

```
RP1(config)#router ospf
RP1(config-ospf-router)# area 0
RP1(config-ospf-router)# exit
RP1(config)# interface loopback 1
RP1(config-lbif-1)# ip ospf area 0
RP1(config-lbif-1)# ip ospf passive
RP1(config-lbif-1)# ip address 10.0.0.1/32
RP1(config-lbif-1)# ip pim-sparse
RP1(config-lbif-1)# exit
RP1(config)# interface loopback 2
RP1(config-lbif-2)# ip ospf area 0
RP1(config-lbif-2)# ip ospf passive
RP1(config-lbif-2)# ip address 10.1.1.1/32
RP1(config-lbif-2)# exit
RP1(config)# interface ethernet 5/1
RP1(config-if-e1000-5/1)# ip ospf area 0
RP1(config-if-e1000-5/1)# ip address 192.1.1.1/24
RP1(config-if-e1000-5/1)# ip pim-sparse
RP1(config)# interface ethernet 5/2
```
RP1(config-if-e1000-5/2)# ip ospf area 0
RP1(config-if-e1000-5/2)# ip ospf cost 5
RP1(config-if-e1000-5/2)# ip address 192.2.1.1/24
RP1(config-if-e1000-5/2)# ip pim-sparse
RP1(config)# interface ethernet 5/3
RP1(config-if-e1000-5/3)# ip ospf area 0
RP1(config-if-e1000-5/3)# ip ospf cost 10
RP1(config-if-e1000-5/3)# ip address 192.3.1.1/24
RP1(config-if-e1000-5/3)# ip pim-sparse
RP1(config-if-e1000-5/3)# exit
RP1(config)# router pim
RP1(config-pim-router)# rp-candidate loopback 1
RP1(config-pim-router)# exit
RP1(config)# router msdp
RP1(config-msdp-router)# msdp-peer 10.1.1.2 connect-source loopback 2
RP1(config-msdp-router)# originator-id loopback 2
RP1(config)# ip router-id 10.1.1.1

RP 2 configuration
The following commands provide the configuration for the RP 2 router in Figure 114.

RP2(config)# router ospf
RP2(config-ospf-router)# area 0
RP2(config-ospf-router)# exit
RP2(config)# interface loopback 1
RP2(config-lbif-1)# ip ospf area 0
RP2(config-lbif-1)# ip ospf passive
RP2(config-lbif-1)# ip address 10.0.0.1/32
RP2(config-lbif-1)# ip pim-sparse
RP2(config-lbif-1)# exit
RP2(config)# interface loopback 2
RP2(config-lbif-2)# ip ospf area 0
RP2(config-lbif-2)# ip ospf passive
RP2(config-lbif-2)# ip address 10.1.1.2/32
RP2(config-lbif-2)# exit
RP2(config)# interface ethernet 5/1
RP2(config-if-e1000-5/1)# ip ospf area 0
RP2(config-if-e1000-5/1)# ip address 192.1.1.2/24
RP2(config-if-e1000-5/1)# ip pim-sparse
RP2(config)# interface ethernet 5/2
RP2(config-if-e1000-5/2)# ip ospf area 0
RP2(config-if-e1000-5/2)# ip ospf cost 5
RP2(config-if-e1000-5/2)# ip address 192.5.2.1/24
RP2(config-if-e1000-5/2)# ip pim-sparse
RP2(config)# interface ethernet 5/3
RP2(config-if-e1000-5/3)# ip ospf area 0
RP2(config-if-e1000-5/3)# ip ospf cost 10
RP2(config-if-e1000-5/3)# ip address 192.6.1.2/24
RP2(config-if-e1000-5/3)# ip pim-sparse
RP2(config-if-e1000-5/3)# exit
RP2(config)# router pim
RP2(config-pim-router)# rp-candidate loopback 1
RP2(config-pim-router)# exit
RP2(config)# router msdp
RP2(config-msdp-router)# msdp-peer 10.1.1.1 connect-source loopback 2
RP2(config-msdp-router)# originator-id loopback 2
RP2(config)# ip router-id 10.1.1.2
PIMR1 configuration

The following commands provide the configuration for the PIMR1 router in Figure 114.

```plaintext
PIMR1(config)# router ospf
PIMR1(config-ospf-router)# area 0
PIMR1(config-ospf-router)# exit
PIMR1(config)# interface ethernet 6/2
PIMR1(config-if-e1000-6/2)# ip ospf area 0
PIMR1(config-if-e1000-6/2)# ip ospf cost 5
PIMR1(config-if-e1000-6/2)# ip address 192.2.1.2/24
PIMR1(config-if-e1000-6/2)# ip pim-sparse
PIMR1(config)# interface ethernet 6/3
PIMR1(config-if-e1000-6/3)# ip ospf area 0
PIMR1(config-if-e1000-6/3)# ip ospf cost 10
PIMR1(config-if-e1000-6/3)# ip address 192.6.1.1/24
PIMR1(config-if-e1000-6/3)# ip pim-sparse
PIMR1(config)# interface ethernet 6/3
PIMR1(config-if-e1000-6/3)# ip ospf area 0
PIMR1(config-if-e1000-6/3)# ip ospf cost 10
PIMR1(config-if-e1000-6/3)# ip address 192.6.1.1/24
PIMR1(config-if-e1000-6/3)# ip pim-sparse
PIMR1(config)# router pim
PIMR1(config-pim-router)# rp-address 10.0.0.1
PIMR1(config-pim-router)# exit
```

PIMR2 configuration

The following commands provide the configuration for the PIMR2 router in Figure 114.

```plaintext
PIMR2(config)# router ospf
PIMR2(config-ospf-router)# area 0
PIMR2(config-ospf-router)# exit
PIMR2(config)# interface ethernet 1/2
PIMR2(config-if-e1000-1/2)# ip ospf area 0
PIMR2(config-if-e1000-1/2)# ip ospf cost 5
PIMR2(config-if-e1000-1/2)# ip address 192.5.2.2/24
PIMR2(config-if-e1000-1/2)# ip pim-sparse
PIMR2(config)# interface ethernet 1/3
PIMR2(config-if-e1000-1/3)# ip ospf area 0
PIMR2(config-if-e1000-1/3)# ip ospf cost 10
PIMR2(config-if-e1000-1/3)# ip address 192.3.1.2/24
PIMR2(config-if-e1000-1/3)# ip pim-sparse
PIMR2(config)# interface ethernet 1/3
PIMR2(config-if-e1000-1/3)# ip ospf area 0
PIMR2(config-if-e1000-1/3)# ip ospf cost 10
PIMR2(config-if-e1000-1/3)# ip address 192.3.1.2/24
PIMR2(config-if-e1000-1/3)# ip pim-sparse
PIMR2(config)# router pim
PIMR2(config-pim-router)# rp-address 10.0.0.1
PIMR2(config-pim-router)# exit
```

Example to configure anycast RP - triangular mesh topology

The example shown in Figure 115 is an anycast-enabled network with three RPs connected in a triangular mesh topology. Loopback 2 in RP 1, RP 2, and RP 3 have the same IP address, which is the anycast RP address. Loopback 1 in RP1, RP2, and RP3 have different IP addresses and are configured as MSDP peering IP addresses in a triangular mesh configuration.

OSPF is configured as the IGP for the network and all of the devices are in OSPF area 0. This example demonstrates only anycast RP configurations. Assuming a PIM-SM network with three anycast RPs configured, the RP address is configured to be the anycast RP address that was configured on Loopback interface 2 of RP1, RP2, and RP3. Based on the IGP routes, all routers in the network are registered to the shortest path anycast RP. This shares the load between all the RPs, and provides hot backup.
The configuration examples demonstrate the commands required to enable this application.

FIGURE 115 Anycast enabled network in a triangular mesh topology

RP 1 Configuration

The following commands provide the configuration for the RP 1 router in Figure 115.

```
RP1(config)#router ospf
RP1(config-ospf-router)# area 0
RP1(config-ospf-router)# exit
RP1(config)# interface loopback 1
RP1(config-lbif-1)# ip ospf area 0
RP1(config-lbif-1)# ip ospf passive
RP1(config-lbif-1)# ip address 100.1.1.1/32
RP1(config-lbif-1)# exit
RP1(config)# interface loopback 2
RP1(config-lbif-2)# ip ospf area 0
RP1(config-lbif-2)# ip ospf passive
RP1(config-lbif-2)# ip pim-sparse
RP1(config-lbif-2)# ip address 100.2.1.1/32
RP1(config-lbif-2)# exit
RP1(config)# interface ethernet 1
RP1(config-if-e1000-1)# ip ospf area 0
RP1(config-if-e1000-1)# ip ospf cost 2
RP1(config-if-e1000-1)# ip address 192.1.1.1/24
RP1(config-if-e1000-1)# ip pim-sparse
RP1(config)# interface ethernet 5
RP1(config-if-e1000-5)# ip ospf area 0
RP1(config-if-e1000-5)# ip address 192.3.1.1/24
RP1(config-if-e1000-5)# ip pim-sparse
RP1(config)# router pim
RP1(config-pim-router)# rp-address 100.2.1.1
RP1(config-pim-router)# exit
RP1(config)# router msdp
RP1(config-msdp-router)# msdp-peer 10.0.1.2 connect-source loopback 1
RP1(config-msdp-router)# msdp-peer 10.0.1.3 connect-source loopback 1
RP1(config-msdp-router)# mesh-group mesh1 100.1.1.2
RP1(config-msdp-router)# mesh-group mesh1 100.1.1.3
RP1(config-msdp-router)# originator-id loopback 1
RP1(config-msdp-router)# exit
RP1(config)# ip router-id 100.1.1.1
```
RP 2 Configuration

The following commands provide the configuration for the RP 2 router in Figure 115.

```
RP2(config)#router ospf
RP2(config-ospf-router)# area 0
RP2(config-ospf-router)# exit
RP2(config)# interface loopback 1
RP2(config-lbif-1)# ip ospf area 0
RP2(config-lbif-1)# ip ospf passive
RP2(config-lbif-1)# ip address 100.1.1.2/32
RP2(config-lbif-1)# exit
RP2(config)# interface loopback 2
RP2(config-lbif-2)# ip ospf area 0
RP2(config-lbif-2)# ip ospf passive
RP2(config-lbif-2)# ip address 100.2.1.1/32
RP2(config-lbif-2)# ip pim-sparse
RP2(config-lbif-2)# exit
RP2(config)# interface ethernet 1
RP2(config-if-e1000-1)# ip ospf area 0
RP2(config-if-e1000-1)# ip ospf cost 2
RP2(config-if-e1000-1)# ip address 192.1.1.2/24
RP2(config-if-e1000-1)# ip pim-sparse
RP2(config-if-e1000-1)# exit
RP2(config)# interface ethernet 3
RP2(config-if-e1000-3)# ip ospf area 0
RP2(config-if-e1000-3)# ip ospf cost 2
RP2(config-if-e1000-3)# ip address 192.2.1.2/24
RP2(config-if-e1000-3)# ip pim-sparse
RP2(config-if-e1000-3)# exit
RP2(config)# router pim
RP2(config-pim-router)# rp-address 100.2.1.1
RP2(config-pim-router)# exit
RP2(config)# router msdp
RP2(config-msdp-router)# msdp-peer 100.1.1.1 connect-source loopback 1
RP2(config-msdp-router)# msdp-peer 100.1.1.3 connect-source loopback 1
RP2(config-msdp-router)# mesh-group mesh1 100.1.1.1
RP2(config-msdp-router)# mesh-group mesh1 100.1.1.3
RP2(config-msdp-router)# originator-id loopback 1
RP2(config-msdp-router)# exit
RP2(config)# ip router-id 100.1.1.2
```

RP 3 Configuration

The following commands provide the configuration for the RP 3 router in Figure 115.

```
RP3(config)#router ospf
RP3(config-ospf-router)# area 0
RP3(config-ospf-router)# exit
RP3(config)# interface loopback 1
RP3(config-lbif-1)# ip ospf area 0
RP3(config-lbif-1)# ip ospf passive
RP3(config-lbif-1)# ip address 100.1.1.3/32
RP3(config-lbif-1)# exit
RP3(config)# interface loopback 2
RP3(config-lbif-2)# ip ospf area 0
RP3(config-lbif-2)# ip ospf passive
RP3(config-lbif-2)# ip address 100.2.1.1/32
RP3(config-lbif-2)# ip pim-sparse
RP3(config-lbif-2)# exit
RP3(config)# interface ethernet 3
RP3(config-if-e1000-3)# ip ospf area 0
RP3(config-if-e1000-3)# ip ospf cost 2
```
Sing a PIM Sparse configuration information
and statistics

You can display the following PIM Sparse information:

- Basic PIM Sparse configuration information
- Group information
- BSR information
- Candidate RP information
- RP-to-group mappings
- RP information for a PIM Sparse group
- RP set list
- PIM Neighbor information
- The PIM flow cache
- The PIM multicast cache
- PIM traffic statistics

Displaying basic PIM Sparse configuration information

To display basic configuration information for PIM Sparse, enter the following command at any CLI level.
FastIron# show ip pim sparse

Global PIM Sparse Mode Settings
Hello interval: 60, Neighbor timeout: 180
Bootstrap Msg interval: 130, Candidate-RP Advertisement interval: 60
Join/Prune interval: 60, SPT Threshold: 1

Interface Ethernet e3/8
TTL Threshold: 1, Enabled
Local Address: 207.95.8.1

Interface Ve 1
TTL Threshold: 1, Enabled
Local Address: 207.95.6.1

Syntax: show ip pim sparse

This example shows the PIM Sparse configuration information on PIM Sparse router A in Figure 113.

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 141</th>
<th>Output of show ip pim sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>Global PIM Sparse mode settings</td>
<td></td>
</tr>
<tr>
<td>Hello interval</td>
<td>How frequently the Layer 3 Switch sends PIM Sparse hello messages to its PIM Sparse neighbors. This field show the number of seconds between hello messages. PIM Sparse routers use hello messages to discover one another.</td>
</tr>
<tr>
<td>Neighbor timeout</td>
<td>How many seconds the Layer 3 Switch will wait for a hello message from a neighbor before determining that the neighbor is no longer present and removing cached PIM Sparse forwarding entries for the neighbor.</td>
</tr>
<tr>
<td>Bootstrap Msg interval</td>
<td>How frequently the BSR configured on the Layer 3 Switch sends the RP set to the RPs within the PIM Sparse domain. The RP set is a list of candidate RPs and their group prefixes. A candidate RP group prefix indicates the range of PIM Sparse group numbers for which it can be an RP. NOTE: This field contains a value only if an interface on the Layer 3 Switch is elected to be the BSR. Otherwise, the field is blank.</td>
</tr>
<tr>
<td>Candidate-RP Advertisement interval</td>
<td>How frequently the candidate PR configured on the Layer 3 Switch sends candidate RP advertisement messages to the BSR. NOTE: This field contains a value only if an interface on the Layer 3 Switch is configured as a candidate RP. Otherwise, the field is blank.</td>
</tr>
<tr>
<td>Join/Prune interval</td>
<td>How frequently the Layer 3 Switch sends PIM Sparse Join/Prune messages for the multicast groups it is forwarding. This field show the number of seconds between Join/Prune messages. The Layer 3 Switch sends Join/Prune messages on behalf of multicast receivers who want to join or leave a PIM Sparse group. When forwarding packets from PIM Sparse sources, the Layer 3 Switch sends the packets only on the interfaces on which it has received join requests in Join/Prune messages for the source group. You can change the Join/Prune interval if needed. Refer to “Changing the PIM join and prune message interval” on page 856.</td>
</tr>
<tr>
<td>SPT Threshold</td>
<td>The number of packets the Layer 3 Switch sends using the path through the RP before switching to using the SPT path.</td>
</tr>
</tbody>
</table>
Displaying a list of multicast groups

To display a list of the IP multicast groups the Layer 3 Switch is forwarding, enter the following command at any CLI level.

```
FastIron# show ip pim group
Total number of groups: 1
Index 1         Group 228.1.0.88
    Group member at  e2: v33 EX 0,
    Group member at  e13: v55 EX 0,
    Group member at  e1: v5 EX 0,
```

Syntax: `show ip pim group`

This display shows the following information.

TABLE 142 Output of `show ip pim group`

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of Groups</td>
<td>Lists the total number of IP multicast groups the Layer 3 Switch is forwarding. NOTE: This list can include groups that are not PIM Sparse groups. If interfaces on the Layer 3 Switch are configured for regular PIM (dense mode) or DVMRP, these groups are listed too.</td>
</tr>
<tr>
<td>Index</td>
<td>The index number of the table entry in the display.</td>
</tr>
<tr>
<td>Group</td>
<td>The multicast group address</td>
</tr>
<tr>
<td>Group member</td>
<td></td>
</tr>
<tr>
<td>Ports</td>
<td>The Layer 3 Switch ports connected to the receivers of the groups.</td>
</tr>
</tbody>
</table>

Displaying BSR information

To display BSR information, enter the following command at any CLI level.
FastIron# show ip pim bsr

PIMv2 Bootstrap information

This system is the elected Bootstrap Router (BSR)
 BSR address: 207.95.7.1
 Uptime: 00:33:52, BSR priority: 5, Hash mask length: 32
 Next bootstrap message in 00:00:20

Next Candidate-RP-advertisement in 00:00:10
 RP: 207.95.7.1
 group prefixes:
 224.0.0.0 / 4
Candidate-RP-advertisement period: 60

This example shows information displayed on a Layer 3 Switch that has been elected as the BSR.
The following example shows information displayed on a Layer 3 Switch that is not the BSR. Notice
that some fields shown in the example above do not appear in the example below.

FastIron# show ip pim bsr

PIMv2 Bootstrap information
 local BSR address = 207.95.7.1
 local BSR priority = 5

Syntax: show ip pim bsr

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 143</th>
<th>Output of show ip pim bsr</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
</tbody>
</table>
| BSR address or local BSR address | The IP address of the interface configured as the PIM Sparse Bootstrap Router (BSR).
 NOTE: If the word “local” does not appear in the field, this Layer 3 Switch is the BSR. If the word “local” does appear, this Layer 3 Switch is not the BSR. |
| Uptime | The amount of time the BSR has been running.
 NOTE: This field appears only if this Layer 3 Switch is the BSR. |
| BSR priority or local BSR priority | The priority assigned to the interface for use during the BSR election process. During BSR election, the priorities of the candidate BSRs are compared and the interface with the highest BSR priority becomes the BSR.
 NOTE: If the word “local” does not appear in the field, this Layer 3 Switch is the BSR. If the word “local” does appear, this Layer 3 Switch is not the BSR. |
| Hash mask length | The number of significant bits in the IP multicast group comparison mask. This mask determines the IP multicast group numbers for which the Layer 3 Switch can be a BSR.
The default is 32 bits, which allows the Layer 3 Switch to be a BSR for any valid IP multicast group number.
 NOTE: This field appears only if this Layer 3 Switch is the BSR. |
| Next bootstrap message in | Indicates how many seconds will pass before the BSR sends its next Bootstrap message.
 NOTE: This field appears only if this Layer 3 Switch is the BSR. |
| Next Candidate-RP-advertisement message in | Indicates how many seconds will pass before the BSR sends its next candidate PR advertisement message.
 NOTE: This field appears only if this Layer 3 Switch is the BSR. |
| RP | Indicates the IP address of the Rendezvous Point (RP).
 NOTE: This field appears only if this Layer 3 Switch is the BSR. |
Displaying Pim resources

To display the hardware resource information such as hardware allocation, availability, and limit for software data structure, enter the following command.

```
FastIron# show ip pim resource
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>group prefixes</td>
<td>Indicates the multicast groups for which the RP listed by the previous field is a candidate RP.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field appears only if this Layer 3 Switch is the BSR.</td>
</tr>
<tr>
<td>Candidate-RP-advertisement period</td>
<td>Indicates how frequently the BSR sends candidate RP advertisement messages.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field appears only if this Layer 3 Switch is the BSR.</td>
</tr>
</tbody>
</table>

TABLE 143 Output of show ip pim bsr (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>alloc</td>
<td>Indicates the number of Hardware (Hw) resources available for each software data structure.</td>
</tr>
<tr>
<td>in-use</td>
<td>NOTE: This field appears only if this Layer 3 Switch is the BSR.</td>
</tr>
<tr>
<td>avail</td>
<td>NOTE: This field appears only if this Layer 3 Switch is the BSR.</td>
</tr>
<tr>
<td>allo-fail</td>
<td>NOTE: This field appears only if this Layer 3 Switch is the BSR.</td>
</tr>
<tr>
<td>up-limit</td>
<td>NOTE: This field appears only if this Layer 3 Switch is the BSR.</td>
</tr>
<tr>
<td>get-mem</td>
<td>NOTE: This field appears only if this Layer 3 Switch is the BSR.</td>
</tr>
</tbody>
</table>

```
FastIron# show ip pim resource
alloc in-use avail allo-fail up-limit get-mem
NBR list 64 0 64 0 512 0
timer 256 0 256 0 4096 0
pimsm J/P elem 0 0 0 0 48960 0
pimsm group2rp 0 0 0 0 4096 0
pimsm L2 reg xmt 64 0 64 0 no-limit 0
mcache 256 0 256 0 1024 0
mcache hash link 997 0 997 0 no-limit 0
mcache 2nd hash 9 0 9 0 997 0
graft if no mcache 197 0 197 0 no-limit 0
pim/dvm global group 256 0 256 0 no-limit 0
pim/dvmrp prune 128 0 128 0 40960 0
Output intf-vlan 2000 0 2000 0 no-limit 0
group hash link 97 0 97 0 no-limit 0
2D vlan for nbr, glb 2000 0 2000 0 no-limit 0
Output intf. 1024 0 1024 0 no-limit 0
2D for glb grp 1024 0 1024 0 no-limit 0
pim/dvm config. intf 128 2 126 0 no-limit 2
Prune rate limit 256 0 256 0 no-limit 0
 Distributed add cpu 128 0 128 0 no-limit 0
L2 VIDX 256 0 256 0 4096 0
L2 VIDX hash 997 0 997 0 no-limit 0
igmp group 256 0 256 0 4096 0
igmp phy port 1024 0 1024 0 no-limit 0
igmp exist phy port 1024 0 1024 0 no-limit 4
igmp G/GS query 128 0 128 0 no-limit 0
igmp v3 source 2000 0 2000 0 500000 0
igmp v3 tracking 0 0 0 0 no-limit 0
igmp gbl sorted list 2000 0 2000 0 500000 0
```

Syntax: show ip pim resource

For the Turbolon devices, the number of Hardware (Hw) resources available are 2048.

For each software data structure listed in the output, the following information is shown.
To display candidate RP information, enter the following command at any CLI level.

```
FastIron# show ip pim rp-candidate
```

Next Candidate-RP-advertisement in 00:00:10
RP: 207.95.7.1
 group prefixes:
 224.0.0.0 / 4

Candidate-RP-advertisement period: 60

This example shows information displayed on a Layer 3 Switch that is a candidate RP. The following example shows the message displayed on a Layer 3 Switch that is not a candidate RP.

```
FastIron# show ip pim rp-candidate
```

This system is not a Candidate-RP.

Syntax: show ip pim rp-candidate

This display shows the following information.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate-RP-advertisement in</td>
<td>Indicates how many seconds will pass before the BSR sends its next RP</td>
</tr>
<tr>
<td></td>
<td>message.</td>
</tr>
<tr>
<td>NOTE: This field appears only if</td>
<td>This Layer 3 Switch is a candidate RP.</td>
</tr>
<tr>
<td>the Layer 3 Switch is a candidate</td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>Indicates the IP address of the Rendezvous Point (RP).</td>
</tr>
<tr>
<td>NOTE: This field appears only if</td>
<td>This Layer 3 Switch is a candidate RP.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Displaying RP-to-group mappings

To display RP-to-group mappings, enter the following command at any CLI level.

```
FastIron# show ip pim rp-map
Number of group-to-RP mappings: 6

Group address       RP address
---------------------
1 239.255.163.1  99.99.99.5
2 239.255.163.2  99.99.99.5
3 239.255.163.3  99.99.99.5
4 239.255.162.1  43.43.43.1
5 239.255.162.2  99.99.99.5
6 239.255.162.3  99.99.99.5
```

Syntax: `show ip pim rp-map`

This display shows the following information.

TABLE 145 Output of show ip pim rp-candidate (Continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>group prefixes</td>
<td>Indicates the multicast groups for which the RP listed by the previous field is a candidate RP.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field appears only if this Layer 3 Switch is a candidate RP.</td>
</tr>
<tr>
<td>Candidate-RP-advertisement period</td>
<td>Indicates how frequently the BSR sends candidate RP advertisement messages.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field appears only if this Layer 3 Switch is a candidate RP.</td>
</tr>
</tbody>
</table>

Displaying RP information for a PIM Sparse group

To display RP information for a PIM Sparse group, enter the following command at any CLI level.

```
FastIron# show ip pim rp-hash 239.255.162.1
   RP: 207.95.7.1, v2
       Info source: 207.95.7.1, through bootstrap
```

Syntax: `show ip pim rp-hash <group-addr>`

The `<group-addr>` parameter is the address of a PIM Sparse IP multicast group.

This display shows the following information.
Displaying the RP set list

To display the RP set list, enter the following command at any CLI level.

Syntax: show ip pim rp-set

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 147</th>
<th>Output of show ip pim rp-hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>RP</td>
<td>Indicates the IP address of the Rendezvous Point (RP) for the specified PIM Sparse group. Following the IP address is the port or virtual interface through which this Layer 3 Switch learned the identity of the RP.</td>
</tr>
<tr>
<td>Info source</td>
<td>Indicates the IP address on which the RP information was received. Following the IP address is the method through which this Layer 3 Switch learned the identity of the RP.</td>
</tr>
</tbody>
</table>

TABLE 148
Output of show ip pim rp-set

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of group prefixes</td>
<td>The number of PIM Sparse group prefixes for which the RP is responsible.</td>
</tr>
<tr>
<td>Group prefix</td>
<td>Indicates the multicast groups for which the RP listed by the previous field is a candidate RP.</td>
</tr>
<tr>
<td>RPs expected/received</td>
<td>Indicates how many RPs were expected and received in the latest Bootstrap message.</td>
</tr>
<tr>
<td>RP <num></td>
<td>Indicates the RP number. If there are multiple RPs in the PIM Sparse domain, a line of information for each of them is listed, and they are numbered in ascending numerical order.</td>
</tr>
<tr>
<td>priority</td>
<td>The RP priority of the candidate RP. During the election process, the candidate RP with the highest priority is elected as the RP.</td>
</tr>
<tr>
<td>age</td>
<td>The age (in seconds) of this RP-set. NOTE: If this Layer 3 Switch is not a BSR, this field contains zero. Only the BSR ages the RP-set.</td>
</tr>
</tbody>
</table>

Displaying multicast neighbor information

To display information about the Layer 3 Switch PIM neighbors, enter the following command at any CLI level.

FastIron# show ip pim rp-set
Group address Static-RP-address Override
--
Access-List 44 99.99.99.5 On
Number of group prefixes Learnt from BSR: 1
Group prefix = 239.255.162.0/24 #RPs expected: 1
#RPs received: 1
RP 1: 43.43.43.1 priority=0 age=0
This display shows the following information.

TABLE 149 Output of show ip pim nbr

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The interface through which the Layer 3 Switch is connected to the neighbor.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>The IP interface of the PIM neighbor interface.</td>
</tr>
</tbody>
</table>
| Holdtime sec | Indicates how many seconds the neighbor wants this Layer 3 Switch to hold the entry for this neighbor in memory. The neighbor sends the Hold Time in its Hello packets:
 • If the Layer 3 Switch receives a new Hello packet before the Hold Time received in the previous packet expires, the Layer 3 Switch updates its table entry for the neighbor.
 • If the Layer 3 Switch does not receive a new Hello packet from the neighbor before the Hold time expires, the Layer 3 Switch assumes the neighbor is no longer available and removes the entry for the neighbor. |
| Age sec | The number of seconds since the Layer 3 Switch received the last hello message from the neighbor. |
| UpTime sec | The number of seconds the PIM neighbor has been up. This timer starts when the Layer 3 Switch receives the first Hello messages from the neighbor. |

Displaying information about an upstream neighbor device

You can view information about the upstream neighbor device for a given source IP address for IP Protocol Independent Multicast (PIM) and Distance Vector Multicast Routing Protocol (DVMRP) packets. For PIM, the software uses the IP route table or multicast route table to lookup the upstream neighbor device. For DVMRP, the software uses the DVMRP route table to locate the upstream neighbor device.

Enter the following command at the Privileged EXEC level of the CLI.

```
FastIron# show ip pim rpf 1.1.20.2
directly connected or through an L2 neighbor
```

Syntax: `show ip pim | dvmrp rpf <IP address>`

where `<IP address>` is a valid source IP address

NOTE

If there are multiple equal cost paths to the source, the `show ip pim rpf` command output may not be accurate. If your system has multiple equal cost paths, use the command `show ip pim mcachewto view information about the upstream neighbor.`
Displaying the PIM flow cache

To display the PIM flow cache for FastIron devices, enter the following command at any CLI level.

FastIron# show ip pim flowcache 238.0.0.1

Multicast flow (24.1.1.100 238.0.0.1):
VIdx for source vlan forwarding: 2080
[mcastPrintMll]: vrId 0, ipGrp 238.0.0.1, grpPrefix 32, ipSrc 24.1.1.100, srcPre 32, nextHopIdx 0

1 flow printed

Syntax: show ip pim flowcache

This display shows the following information.

TABLE 150 Output of show ip pim flowcache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Indicates the source of the PIM Sparse group.</td>
</tr>
<tr>
<td>Group</td>
<td>Indicates the PIM Sparse group.</td>
</tr>
<tr>
<td>Parent</td>
<td>Indicates the port or virtual interface from which the Layer 3 Switch receives packets from the group source.</td>
</tr>
<tr>
<td>CamFlags</td>
<td>This field is used by Brocade technical support for troubleshooting.</td>
</tr>
<tr>
<td>CamIndex</td>
<td>This field is used by Brocade technical support for troubleshooting.</td>
</tr>
<tr>
<td>Fid</td>
<td>This field is used by Brocade technical support for troubleshooting.</td>
</tr>
<tr>
<td>Flags</td>
<td>This field is used by Brocade technical support for troubleshooting.</td>
</tr>
</tbody>
</table>

Displaying the PIM multicast cache

To display the PIM multicast cache, enter the following command at any CLI level.

FastIron# show ip pim mcache

(* 228.1.0.88) RP 1.1.1.1, in e21 (e21), cnt=0
Source is directly connected
Sparse Mode, RPT=1 SPT=0 REG=0 MSDP Adv=0 MSDP Create=0
L3 (SW) 3: e2(VL33), e1(VL5), TR(e13,e14)(VL55)
fast=1 slow=0 pru=1 graft
age=0s up-time=4123m HW=0

Syntax: show ip pim mcache

This display shows the following information.
TABLE 151 Output of show ip pim mcache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<source>, <group>)</td>
<td>The comma-separated values in parentheses is a source-group pair. The <source> is the PIM source for the multicast <group>. For example, the following entry means source 209.157.24.162 for group 239.255.162.1: (209.157.24.162,239.255.162.1) If the <source> value is * (asterisk), this cache entry uses the RP path. The * value means “all sources”. If the <source> is a specific source address, this cache entry uses the SPT path.</td>
</tr>
<tr>
<td>RP<ip-addr></td>
<td>Indicates the RP for the group for this cache entry. NOTE: The RP address appears only if the RPT flag is set to 1 and the SPT flag is set to 0 (see below).</td>
</tr>
<tr>
<td>forward port</td>
<td>The port through which the Layer 3 Switch reaches the source.</td>
</tr>
<tr>
<td>Count</td>
<td>The number of packets forwarded using this cache entry.</td>
</tr>
<tr>
<td>Sparse Mode</td>
<td>Indicates whether the cache entry is for regular PIM (dense mode) or PIM Sparse. This flag can have one of the following values: • 0 – The entry is not for PIM Sparse (and is therefore for the dense mode of PIM). • 1 – The entry is for PIM Sparse.</td>
</tr>
<tr>
<td>RPT</td>
<td>Indicates whether the cache entry uses the RP path or the SPT path. The RPT flag can have one of the following values: • 0 – The SPT path is used instead of the RP path. • 1 – The RP path is used instead of the SPT path. NOTE: The values of the RP and SPT flags are always opposite (one is set to 0 and the other is set to 1).</td>
</tr>
<tr>
<td>SPT</td>
<td>Indicates whether the cache entry uses the RP path or the SPT path. The SP flag can have one of the following values: • 0 – The RP path is used instead of the SPT path. • 1 – The SPT path is used instead of the RP path. NOTE: The values of the RP and SPT flags are always opposite (one is set to 0 and the other is set to 1).</td>
</tr>
<tr>
<td>Register Suppress</td>
<td>Indicates whether the Register Suppress timer is running. This field can have one of the following values: • 0 – The timer is not running. • 1 – The timer is running.</td>
</tr>
<tr>
<td>member ports</td>
<td>Indicates the Layer 3 Switch physical ports to which the receivers for the source and group are attached. The receivers can be directly attached or indirectly attached through other PIM Sparse routers.</td>
</tr>
<tr>
<td>virtual ports</td>
<td>Indicates the virtual interfaces to which the receivers for the source and group are attached. The receivers can be directly attached or indirectly attached through other PIM Sparse routers.</td>
</tr>
<tr>
<td>prune ports</td>
<td>Indicates the physical ports on which the Layer 3 Switch has received a prune notification (in a Join/Prune message) to remove the receiver from the list of recipients for the group.</td>
</tr>
<tr>
<td>virtual prune ports</td>
<td>Indicates the virtual interfaces ports on which the Layer 3 Switch has received a prune notification (in a Join/Prune message) to remove the receiver from the list of recipients for the group.</td>
</tr>
</tbody>
</table>
Displaying PIM traffic statistics

To display PIM traffic statistics, use the following CLI method.

FastIron# show ip pim traffic

<table>
<thead>
<tr>
<th>Port</th>
<th>Hello</th>
<th>J/P</th>
<th>Register</th>
<th>RegStop</th>
<th>Assert</th>
</tr>
</thead>
<tbody>
<tr>
<td>e3/8</td>
<td>19 Rx</td>
<td>32</td>
<td>0</td>
<td>37 Tx</td>
<td>0</td>
</tr>
<tr>
<td>v1</td>
<td>18 Rx</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v2</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 37 Rx 57 Tx 32 Rx 0 Tx 0 Rx 0 Tx 0 Rx 0 Tx 0 Rx 0 Tx

IGMP Statistics:
Total Recv/Xmit 85/110
Total Discard/chksum 0/0

Syntax: show ip pim traffic

NOTE
If you have configured interfaces for standard PIM (dense mode) on the Layer 3 Switch, statistics for these interfaces are listed first by the display.

This display shows the following information.

| TABLE 152 | Output of show ip pim traffic

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port or virtual interface on which the PIM interface is configured.</td>
</tr>
<tr>
<td>Hello</td>
<td>The number of PIM Hello messages sent or received on the interface.</td>
</tr>
<tr>
<td>J/P</td>
<td>The number of Join/Prune messages sent or received on the interface.</td>
</tr>
<tr>
<td>Register</td>
<td>The number of Register messages sent or received on the interface.</td>
</tr>
<tr>
<td>RegStop</td>
<td>The number of Register Stop messages sent or received on the interface.</td>
</tr>
<tr>
<td>Assert</td>
<td>The number of Assert messages sent or received on the interface.</td>
</tr>
<tr>
<td>Total Recv/Xmit</td>
<td>The total number of IGMP messages sent and received by the Layer 3 Switch.</td>
</tr>
<tr>
<td>Total Discard/chksum</td>
<td>The total number of IGMP messages discarded, including a separate counter for those that failed the checksum comparison.</td>
</tr>
</tbody>
</table>

Displaying and clearing PIM errors

If you want to determine how many PIM errors there are on the device, enter the following command.

FastIron# show ip pim error
**** Warning counter pim route change = 1
HW tagged replication enabled, SW processed pkts 0
Syntax: show ip pim error

This command displays the number of warnings and non-zero PIM errors on the device. This count can increase during transition periods such as reboots and topology changes; however, if the device is stable, the number of errors should not increase. If warnings keep increasing in a stable topology, then there may be a configuration error or problems on the device.

To clear the counter for PIM errors, enter the following command.

FastIron# clear pim counters

Syntax: clear pim counters

PIM Passive

Platform Support:

- FastIron X Series devices running software release FSX 05.1.00 and later

PIM Passive is used to reduce and minimize unnecessary PIM Hello and other PIM control messages.

PIM Passive allows you to specify that the interface is “passive” in regards to PIM. No PIM control packets are sent or processed (if received), but hosts can still send and receive multicast traffic and IGMP control traffic on that interface. Also, PIM Passive prevents any malicious router from taking over as the designated router (DR), which can prevent all hosts on the LAN from joining multicast traffic outside the LAN.

The following guidelines apply to PIM Passive on FESX/SX devices:

1. This is a Layer 3 interface [Ethernet/Ve] level feature.
2. Since the loopback interfaces are never used to form PIM neighbors, this feature is not supported on loopback interface.
3. Both PIM SM and PIM DM modes support this feature.
4. Applying the PIM Passive on an interface requires PIM to be enabled on that interface.
5. The sent and received statistics of a PIM Hello message are not changed for an interface, while it is configured as PIM passive.

To enable PIM Passive on an interface, enter the following command:

FastIron# config term
FastIron(config)# router pim
FastIron(config-pim-router)# exit
FastIron(config)# interface ethernet 2
FastIron(config-if-e1000-2)# ip pim
FastIron(config-if-e1000-2)# ip pim passive
FastIron(config-if-e1000-2)# exit
FastIron(config)# interface ve 2
FastIron(config-vif-2)# ip pim-sparse
FastIron(config-vif-2)# ip pim passive
FastIron(config-vif-2)# exit

Syntax: [no] ip pim passive

Use the show ip pim interface command to display multicast boundary information related to PIM passive. For example outputs, see “Displaying multicast boundaries” on page 839.
Multicast Source Discovery Protocol (MSDP)

Platform Support:
- FastIron X Series devices running software release FSX 05.1.00 and later
- TurboIron X Series devices running software release 04.2.00 and later

The Multicast Source Discovery Protocol (MSDP) is used by Protocol Independent Multicast (PIM) Sparse routers to exchange routing information for PIM Sparse multicast groups across PIM Sparse domains. Routers running MSDP can discover PIM Sparse sources that are in other PIM Sparse domains.

For TurboIron X Series devices running software release 04.2.00 and later, you must configure a fully meshed topology between MSDP peers. This is mandated for this release because of lack of any EGP that provides a peer RPF check for SA messages that are forwarded between MSDP peers.

PIM Sparse routers use MSDP to register PIM Sparse multicast sources in a domain with the Rendezvous Point (RP) for that domain.

Figure 116 shows an example of some PIM Sparse domains. For simplicity, this example shows only one Designated Router (DR), one group source, and one receiver for the group. Only one PIM Sparse router within each domain needs to run MSDP.

FIGURE 116 PIM Sparse domains joined by MSDP routers
In this example, the source for PIM Sparse multicast group 232.0.1.95 is in PIM Sparse domain 1. The source sends a packet for the group to its directly attached DR. The DR sends a Group Advertisement message for the group to the domain RP. The RP is configured for MSDP, which enables the RP to exchange source information with other PIM Sparse domains by communicating with RPs in other domains that are running MSDP.

The RP sends the source information to each of its peers by sending a Source Active message. The message contains the IP address of the source, the group address to which the source is sending, and the IP address of the RP interface with its peer. By default, the IP address included in the RP address field of the SA message is the IP address of the originating RP. However, if MSDP is instructed to use a specific address as the IP address of the RP in a Source Address message (CLI command `originator-id <type> <number>`), the Source Active message can be the IP address of any interface on the originating RP. The interface is usually a loopback interface.

In this example, the Source Active message contains the following information:

- Source address: 206.251.14.22
- Group address: 232.1.0.95
- RP address: 206.251.17.41
Figure 116 shows only one peer for the MSDP router (which is also the RP here) in domain 1, so the Source Active message goes to only that peer. When an MSDP router has multiple peers, it sends a Source Active message to each of those peers. Each peer sends the Source Advertisement to its other MSDP peers. The RP that receives the Source Active message also sends a Join message for the group if the RP that received the message has receivers for the group.

Peer Reverse Path Forwarding (RPF) flooding

When the MSDP router (also the RP) in domain 2 receives the Source Active message from its peer in domain 1, the MSDP router in domain 2 forwards the message to all its other peers. The propagation process is sometimes called “peer Reverse Path Forwarding (RPF) flooding”. This term refers to the fact that the MSDP router uses its PIM Sparse RPF tree to send the message to its peers within the tree. In Figure 116, the MSDP router floods the Source Active message it receives from its peer in domain 1 to its other peers, in domains 3 and 4.

Note that the MSDP router in domain 2 does not forward the Source Active back to its peer in domain 1, because that is the peer from which the router received the message. An MSDP router never sends a Source Active message back to the peer that sent it. The peer that sent the message is sometimes called the “RPF peer”. The MSDP router uses the unicast routing table for its Exterior Gateway Protocol (EGP) to identify the RPF peer by looking for the route entry that is the next hop toward the source. Often, the EGP protocol is Border Gateway Protocol (BGP) version 4.

NOTE

On FastIron devices, MSDP depends on BGP for interdomain operations.

The MSDP routers in domains 3 and 4 also forward the Source Active message to all their peers except the ones that sent them the message. Figure 116 does not show additional peers.

Source active caching

When an MSDP router that is also an RP receives a Source Active message, the RP checks its PIM Sparse multicast group table for receivers for the group. If the DR has a receiver for the group being advertised in the Source Active message, the DR sends a Join message for that receiver back to the DR in the domain from which the Source Active message came. Usually, the DR is also the MSDP router that sent the Source Active message.

In Figure 116, if the MSDP router and RP in domain 4 has a table entry for the receiver, the RP sends a Join message on behalf of the receiver back through the RPF tree to the RP for the source, in this case the RP in domain 1.

Some MSDP routers that are also RPs can cache Source Active messages. If the RP is not caching Source Active messages, the RP does not send a Join message unless it already has a receiver that wants to join the group. Otherwise, the RP does not send a Join message and does not remember the information in the Source Active message after forwarding it. If the RP receives a request from a receiver for the group, the RP and receiver must wait for the next Source Active message for that group before the RP can send a Join message for the receiver.

However, if Source Active caching is enabled on the MSDP and RP router, the RP caches the Source Active messages it receives. In this case, even if the RP does not have a receiver for a group when the RP receives the Source Active message for the group, the RP can immediately send a Join for a new receiver that wants to join the group, without waiting for the next Source Active message from the RP in the source domain.
The maximum size of the cache used to store MSDP Source Active messages is 8K and the default size is 4K.

Configuring MSDP

To configure MSDP on a Layer 3 Switch, perform the following tasks:

- Enable MSDP
- Configure the MSDP peers

NOTE
The PIM Sparse Rendezvous Point (RP) is also an MSDP peer.

NOTE
Routers that run MSDP must also run BGP. Also, the source address used by the MSDP router must be the same source address used by BGP. This limitation is not applicable to TurboIron device because BGP is not supported on the device.

Enabling MSDP

To enable MSDP, enter the following command.

```
FastIron(config)# router msdp
```

NOTE
When enabling and disabling MSDP, you do not need to save the configuration and reload the software. The configuration change takes effect immediately, as soon as you enter the CLI command.

Syntax: [no] router msdp

Configuring MSDP peers

On a Brocade device, you can configure a maximum of 15 MSDP peers. To configure an MSDP peer, enter a command such as the following at the MSDP configuration level.

```
FastIron(config-msdp-router)# msdp-peer 205.216.162.1
```

Syntax: [no] msdp-peer <ip-addr> [connect-source loopback <num>]

The `<ip-addr>` parameter specifies the IP address of the neighbor.

The `connect-source loopback <num>` parameter specifies the loopback interface you want to use as the source for sessions with the neighbor.

NOTE
It is strongly recommended that you use the `connect-source loopback <num>` parameter when issuing the `msdp-peer` command. If you do not use this parameter, the Layer 3 Switch uses the subnet interface configured on the port.

Also, make sure the IP address of the connect-source loopback is the same as the source IP address used by the MSDP router, the PIM-RP, and the BGP router. This limitation is not applicable to TurboIron device because BGP is not supported on the device.
The commands in the following example add an MSDP neighbor and specify a loopback interface as the source interface for sessions with the neighbor. By default, the Layer 3 Switch uses the subnet address configured on the physical interface where you configure the neighbor as the source address for sessions with the neighbor.

```
FastIron(config)# interface loopback 1
FastIron(config-lbif-1)# ip address 9.9.9.9/32
FastIron(config-lbif-1)# exit
FastIron(config)# router msdp
FastIron(config-msdp-router)# msdp-peer 2.2.2.99 connect-source loopback 1
```

Designating an interface IP address as the RP IP address

When an RP receives a Source Active message, it checks its PIM Sparse multicast group table for receivers for the group. If it finds a receiver, the RP sends a Join message for that receiver back to the RP that originated the Source Active message. The originator RP is identified by its RP address.

By default, the IP address included in the RP address field of the SA message is the IP address of the originating RP. Beginning with this release, an SA message can use the IP address of any interface on the originating RP. (The interface is usually a loopback interface.)

To designate an interface IP address to be the IP address of the RP, enter commands such as the following:

```
FastIron(config)# interface loopback 2
FastIron(config-lbif-2)# ip address 2.2.2.99/32
FastIron(config)# router msdp
FastIron(config-msdp-router)# originator-id loopback 2
FastIron(config-msdp-router)# exit
```

Syntax:

```
[no] originator-id <type> <number>
```

The `originator-id` parameter instructs MSDP to use the specified address as the IP address of the RP in an SA message. This address must be the address of the interface used to connect the RP to the source. There are no default originator-ids.

The `<type>` parameter indicates the type of interface used by the RP. Ethernet, loopback and virtual routing interfaces (ve) can be used.

The `<number>` parameter specifies the interface number (for example: loopback number, port number or virtual routing interface number.)

Filtering MSDP source-group pairs

The following commands allow you to filter individual source-group pairs in MSDP Source-Active messages:

- **`sa-filter in`** – Filters source-group pairs received in Source-Active messages from an MSDP neighbor
- **`sa-filter originate`** – Filters source-group pairs in Source-Active messages in advertisements to an MSDP neighbor
Filtering incoming source-active messages

The following example configures filters for incoming Source-Active messages from three MSDP neighbors:

- For peer 2.2.2.99, all source-group pairs in Source-Active messages from the neighbor are filtered out (dropped).
- For peer 2.2.2.97, all source-group pairs except those with 10.x.x.x as the source are permitted.
- For peer 2.2.2.96, all source-group pairs except those associated with RP 2.2.42.3 are permitted.

Example

The following commands configure an IP address on port 3/1. This is the port on which the MSDP neighbors will be configured.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-3/1)# ip address 2.2.2.98/24
FastIron(config-if-3/1)# exit
```

The following commands configure a loopback interface. The Layer 3 Switch will use this interface as the source address for communicating with the MSDP neighbors.

```
FastIron(config)# interface loopback 1
FastIron(config-lbif-1)# ip address 9.9.9.8/32
FastIron(config-lbif-1)# exit
```

The following commands configure extended ACLs. The ACLs will be used in route maps, which will be used by the Source-Active filters.

```
FastIron(config)# access-list 123 permit 10.0.0.0 0.255.255.255 any
FastIron(config)# access-list 124 permit 2.2.42.3 0.0.0.0 any
FastIron(config)# access-list 125 permit any any
```

The following commands configure the route maps.

```
FastIron(config)# route-map msdp_map deny 1
FastIron(config-route-map msdp_map)# match ip address 123
FastIron(config-route-map msdp_map)# exit
FastIron(config)# route-map msdp2_map permit 1
FastIron(config-route-map msdp2_map)# match ip address 125
FastIron(config-route-map msdp2_map)# exit
FastIron(config)# route-map msdp2_rp_map deny 1
FastIron(config-route-map msdp2_rp_map)# match ip route-source 124
FastIron(config-route-map msdp2_rp_map)# exit
```

The following commands enable MSDP and configure the MSDP neighbors on port 3/1.

```
FastIron(config)# router msdp
FastIron(config-msdp-router)# msdp-peer 2.2.2.99 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 2.2.2.97 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 2.2.2.96 connect-source loopback 1
FastIron(config-msdp-router)# exit
```
The following commands configure the Source-Active filters.

FastIron(config)# router msdp
FastIron(config-msdp-router)# sa-filter in 2.2.2.99
FastIron(config-msdp-router)# sa-filter in 2.2.2.97 route-map msdp_map
FastIron(config-msdp-router)# sa-filter in 2.2.2.96 route-map msdp2_map
rp-route-map msdp2_rp_map

The **sa-filter** commands configure the following filters:

- **sa-filter in 2.2.2.99** – This command drops all source-group pairs received from neighbor 2.2.2.99.

 NOTE
 The default action is to deny all source-group pairs from the specified neighbor. If you want to permit some pairs, use route maps.

- **sa-filter in 2.2.2.97 route-map msdp_map** – This command drops source-group pairs received from neighbor 2.2.2.97 if the pairs have source address 10.x.x.x and any group address.

- **sa-filter in 2.2.2.96 route-map msdp2_map rp-route-map msdp2_rp_map** – This command accepts all source-group pairs except those associated with RP 2.2.42.3.

CLI syntax

Syntax: `[no] sa-filter in <ip-addr> [route-map <map-tag>] [rp-route-map <rp-map-tag>]`

The `<ip-addr>` parameter specifies the IP address of the MSDP neighbor. The filter applies to Active-Source messages received from this neighbor.

The **route-map** `<map-tag>` parameter specifies a route map. The Layer 3 Switch applies the filter to source-group pairs that match the route map. Use the **match ip address** `<acl-id>` command in the route map to specify an extended ACL that contains the source and group addresses.

The **rp-route-map** `<rp-map-tag>` parameter specifies a route map to use for filtering based on Rendezvous Point (RP) address. Use this parameter if you want to filter Source-Active messages based on their origin. If you use the **route-map** parameter instead, messages are filtered based on source-group pairs but not based on origin. Use the **match ip route-source** `<acl-id>` command in the route map to specify the RP address.

NOTE
The default filter action is deny. If you want to permit some source-group pairs, use a route map. A permit action in the route map allows the Layer 3 Switch to receive the matching source-group pairs. A deny action in the route map drops the matching source-group pairs.

Filtering advertised source-active messages

The following example configures the Layer 3 Switch to advertise all source-group pairs except the ones that have source address 10.x.x.x.

Example

The following commands configure an IP address on port 3/1. This is the port on which the MSDP neighbors will be configured.

FastIron(config)# interface ethernet 3/1
FastIron(config-if-3/1)# ip address 2.2.2.98/24
FastIron(config-if-3/1)# exit
The following commands configure a loopback interface. The Layer 3 Switch will use this interface as the source address for communicating with the MSDP neighbors.

```
FastIron(config)# interface loopback 1
FastIron(config-lbif-1)# ip address 9.9.9.8/32
FastIron(config-lbif-1)# exit
```

The following command configures an extended ACL to specify the source and group addresses you want to filter.

```
FastIron(config)# access-list 123 permit 10.0.0.0 0.255.255.255 any
```

The following commands configure a route map. The map matches on source address 10.x.x.x and any group address. Since the action is deny, the Source-Active filter that uses this route map will remove the source-group pairs that match this route map from the Source-Active messages to the neighbor.

```
FastIron(config)# route-map msdp_map deny 1
FastIron(config-route-map msdp_map)# match ip address 123
FastIron(config-route-map msdp_map)# exit
```

The following commands enable MSDP and configure MSDP neighbors.

```
FastIron(config)# router msdp
FastIron(config-msdp-router)# msdp-peer 2.2.2.99 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 2.2.2.97 connect-source loopback 1
FastIron(config-msdp-router)# exit
```

The following commands configure the Source-Active filter.

```
FastIron(config)# router msdp
FastIron(config-msdp-router)# sa-filter originate route-map msdp_map
```

This filter removes source-group pairs that match route map msdp_map from Source-Active messages before sending them to MSDP neighbors.

CLI syntax

Syntax: `[no] sa-filter originate [route-map <map-tag>]`

The `route-map <map-tag>` parameter specifies a route map. The Layer 3 Switch applies the filter to source-group pairs that match the route map. Use the `match ip address <acl-id>` command in the route map to specify an extended ACL that contains the source and group addresses.

NOTE

The default filter action is deny. If you want to permit some source-group pairs, use a route map. A permit action in the route map allows the Layer 3 Switch to receive the matching source-group pairs. A deny action in the route map drops the matching source-group pairs.

MSDP mesh groups

A PIM Sparse domain can have several RPs that are connected to each other to form an MSDP mesh group. To qualify as a mesh group, the RPs have to be fully meshed; that is, each RP must be connected to all peer RPs in a domain. (See Figure 117.)
A mesh group reduces the forwarding of SA messages within a domain. Instead of having every RP in a domain forward SA messages to all the RPs within that domain, only one RP forwards the SA message. Since an MSDP mesh group is fully meshed, peers do not forward SA messages received in a domain from one member to every member of the group. The RP that originated the SA or the first RP in a domain that receives the SA message is the only one that can forward the message to the members of a mesh group. An RP can forward an SA message to any MSRP router as long as that peer is farther away from the originating RP than the current MSRP router.

Figure 117 shows an example of an MSDP mesh group. In a PIM-SM mesh group the RPs are configured to be peers of each other. They can also be peers of RPs in other domains.

Configuring an MSDP mesh group

To configure an MSDP mesh group, enter commands such as the following on each device that will be included in the mesh group:

```plaintext
FESX Router(config)# router msdp
FESX Router(config-msdp-router)# msdp-peer 1.1.3.1 connect-source loopback 1
FESX Router(config-msdp-router)# msdp-peer 1.1.4.1 connect-source loopback 1
FESX Router(config-msdp-router)# msdp-peer 1.1.2.1 connect-source loopback 1
FESX Router(config-msdp-router)# msdp-peer 17.17.17.7
FESX Router(config-msdp-router)# mesh-group 1234 1.1.4.1
FESX Router(config-msdp-router)# mesh-group 1234 1.1.3.1
FESX Router(config-msdp-router)# mesh-group 1234 1.1.2.1
FESX Router(config-msdp-router)# exit
```

Syntax:

```
[no] mesh-group <group-name> <peer-address>
```

The example configuration above reflects the configuration in Figure 117. On RP 1.1.1.1, you specify its peers within the same domain (1.1.3.1, 1.1.4.1, and 1.1.2.1).

You first configure the MSDP peers using the `msdp-peer` command to assign their IP addresses and the loopback interfaces. This information will be used as the source for sessions with the neighbor.

Next, place the MSDP peers within a domain into a mesh group. Use the `mesh-group` command. There are no default mesh groups.

The `group-name` parameter identifies the group. Enter up to 31 characters for group-name. You can have up to 4 mesh groups within a multicast network. Each mesh group can include up to 32 peers.

The `peer-address` parameter specifies the IP address of the MSDP peer that is being placed in the group.

NOTE

On each of the device that will be part of the mesh-group, there must be a mesh-group definition for all the peers in the mesh-group.

Up to 32 MSDP peers can be configured per mesh group.

Example configuration

In Figure 117, devices A, B, C, and D are in Mesh Group 1234. The example configuration following the figure shows how the devices are configured to be part of the MSDP mesh group. The example also shows the features that need to be enabled for the MSDP mesh group to work.

FIGURE 117 MSDP mesh group 1234
Configuration for Device A

The following set of commands configure the MSDP peers of Device A (1.1.1.1) that are inside and outside MSDP mesh group 1234. Device A peers inside the mesh group 1234 are 1.1.2.1, 1.1.3.1, and 1.1.4.1. Device 17.17.17.7 is a peer of Device A, but is outside mesh group 1234. Multicast is enabled on Device A interfaces. PIM and BGP are also enabled.

```
FastIron(config)# router pim
FastIron(config)# router msdp
FastIron(config-msdp-router)# msdp-peer 1.1.3.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.4.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.2.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 17.17.17.7
FastIron(config-msdp-router)# mesh-group 1234 1.1.4.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.3.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.2.1
FastIron(config-msdp-router)# exit

FastIron(config)# interface loopback 1
FastIron(config-lbif-1)# ip address 1.1.1.1 255.255.255.0
FastIron(config-lbif-1)# ip pim-sparse
FastIron(config-lbif-1)# exit

FastIron(config)# interface ethernet 1/1
FastIron(config-if-1/1)# ip address 14.14.14.1 255.255.255.0
FastIron(config-if-1/1)# ip pim-sparse
FastIron(config-if-1/1)# exit
```
FastIron(config)# interface ethernet 2/1
FastIron(config-if-2/1)# ip address 12.12.12.1 255.255.255.0
FastIron(config-if-2/1)# ip pim-sparse
FastIron(config-if-2/1)# exit

FastIron(config)# interface ethernet 2/20
FastIron(config-if-2/20)# ip address 159.159.159.1 255.255.255.0
FastIron(config-if-2/20)# ip pim-sparse
FastIron(config-if-2/20)# exit

FastIron(config)# interface ethernet 4/1
FastIron(config-if-4/1)# ip address 31.31.31.1 255.255.255.0
FastIron(config-if-4/1)# ip pim-sparse
FastIron(config-if-4/1)# exit

FastIron(config)# interface ethernet 4/8
FastIron(config-if-4/8)# ip address 17.17.17.1 255.255.255.0
FastIron(config-if-4/8)# ip pim-sparse
FastIron(config-if-4/8)# ip pim border
FastIron(config-if-4/8)# exit

FastIron(config)# router pim
FastIron(config-router-pim)# bsr-candidate loopback 1 1 31
FastIron(config-router-pim)# rp-candidate loopback 1
FastIron(config-router-pim)# exit

FastIron(config)# router bgp
FastIron(config-bgp-router)# local-as 111
FastIron(config-bgp-router)# neighbor 31.31.31.3 remote-as 333
FastIron(config-bgp-router)# neighbor 31.31.31.3 next-hop-self
FastIron(config-bgp-router)# neighbor 12.12.12.2 remote-as 222
FastIron(config-bgp-router)# neighbor 12.12.12.2 next-hop-self
FastIron(config-bgp-router)# neighbor 17.17.17.7 remote-as 777
FastIron(config-bgp-router)# neighbor 17.17.17.7 next-hop-self
FastIron(config-bgp-router)# redistribute connected
FastIron(config-bgp-router)# write memory

Configuration for Device B

The following set of commands configure the MSDP peers of Device B. All Device B peers (1.1.1.1, 1.1.3.1, and 1.1.4.1) are in the MSDP mesh group 1234. Multicast is enabled on Device B interfaces. PIM and BGP are also enabled.

FastIron(config)# router pim

FastIron(config)# router msdp
FastIron(config-msdp-router)# msdp-peer 1.1.3.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.1.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.4.1 connect-source loopback 1
FastIron(config-msdp-router)# mesh-group 1234 1.1.1.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.3.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.4.1
FastIron(config-msdp-router)# exit
FastIron(config)# interface loopback 1
FastIron(config-lbif-1)# ip address 1.1.2.1 255.255.255.0
FastIron(config-lbif-1)# ip pim-sparse
FastIron(config-lbif-1)# exit

FastIron(config)# interface ethernet 1/1
FastIron(config-if-1/1)# ip address 12.12.12.2 255.255.255.0
FastIron(config-if-1/1)# ip pim-sparse
FastIron(config-if-1/1)# exit

FastIron(config)# interface ethernet 1/12
FastIron(config-if-1/12)# ip address 165.165.165.1 255.255.255.0
FastIron(config-if-1/12)# ip pim-sparse
FastIron(config-if-1/12)# exit

FastIron(config)# interface ethernet 1/24
FastIron(config-if-1/24)# ip address 168.72.2.2 255.255.255.0
FastIron(config-if-1/24)# exit

FastIron(config)# interface ethernet 1/25
FastIron(config-if-1/25)# ip address 24.24.24.2 255.255.255.0
FastIron(config-if-1/25)# ip pim-sparse
FastIron(config-if-1/25)# exit

FastIron(config)# interface ethernet 8/1
FastIron(config-if-8/1)# ip address 32.32.32.2 255.255.255.0
FastIron(config-if-8/1)# ip pim-sparse
FastIron(config-if-8/1)# exit

FastIron(config)# router pim
FastIron(config-router-pim)# bsr-candidate loopback 1 2 32
FastIron(config-router-pim)# rp-candidate loopback 1
FastIron(config-router-pim)# exit

FastIron(config)# router bgp
FastIron(config-router-bgp)# local-as 222
FastIron(config-router-bgp)# neighbor 32.32.32.3 remote-as 333
FastIron(config-router-bgp)# neighbor 32.32.32.3 next-hop-self
FastIron(config-router-bgp)# neighbor 24.24.24.4 remote-as 444
FastIron(config-router-bgp)# neighbor 24.24.24.4 next-hop-self
FastIron(config-router-bgp)# neighbor 12.12.12.1 remote-as 111
FastIron(config-router-bgp)# neighbor 12.12.12.1 next-hop-self
FastIron(config-router-bgp)# redistribute connected
FastIron(config-router-bgp)# write memory

Configuration for Device C

The following set of commands configure the MSDP peers of Device C (1.1.3.1) that are inside and outside MSDP mesh group 1234. Device C peers inside the mesh group 1234 are 1.1.1.1, 1.1.2.1, and 1.1.4.1. Device 35.35.35.5 is a peer of Device C, but is outside mesh group 1234. Multicast is enabled on Device C interfaces. PIM and BGP are also enabled. This configuration is not applicable to TurboIron device because BGP is not supported on the device.

FastIron(config)# router pim

FastIron(config)# router msdp
FastIron(config-msdp-router)# msdp-peer 35.35.35.5
FastIron(config-msdp-router)# msdp-peer 1.1.2.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.4.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.1.1 connect-source loopback 1
FastIron(config-msdp-router)# mesh-group 1234 1.1.2.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.1.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.4.1
FastIron(config-msdp-router)# exit
FastIron(config)# interface loopback 1
FastIron(config-lbif-1)# ip address 1.1.3.1 255.255.255.0
FastIron(config-lbif-1)# ip pim-sparse
FastIron(config-lbif-1)# exit
FastIron(config)# interface ethernet 3/1
FastIron(config-if-3/1)# ip address 32.32.32.3 255.255.255.0
FastIron(config-if-3/1)# ip pim-sparse
FastIron(config-if-3/1)# exit
FastIron(config)# interface ethernet 10/1
FastIron(config-if-10/1)# ip address 31.31.31.3 255.255.255.0
FastIron(config-if-10/1)# ip pim-sparse
FastIron(config-if-10/1)# exit
FastIron(config)# interface ethernet 10/8
FastIron(config-if-10/8)# ip address 35.35.35.3 255.255.255.0
FastIron(config-if-10/8)# ip pim-sparse
FastIron(config-if-10/8)# ip pim border
FastIron(config-if-10/8)# exit
FastIron(config)# interface ethernet 12/2
FastIron(config-if-12/1)# ip address 34.34.34.3 255.255.255.0
FastIron(config-if-12/1)# ip pim-sparse
FastIron(config-if-12/1)# exit
FastIron(config)# interface ethernet 14/4
FastIron(config-if-14/4)# ip address 154.154.154.1 255.255.255.0
FastIron(config-if-14/4)# ip pim-sparse
FastIron(config-if-14/4)# exit
FastIron(config)# router pim
FastIron(config-router-pim)# bsr-candidate loopback 1 1 3
FastIron(config-router-pim)# rp-candidate loopback 1
FastIron(config-router-pim)# exit
FastIron(config)# router bgp
FastIron(config-router-bgp)# local-as 333
FastIron(config-router-bgp)# neighbor 35.35.35.5 remote-as 555
FastIron(config-router-bgp)# neighbor 35.35.35.5 next-hop-self
FastIron(config-router-bgp)# neighbor 32.32.32.2 remote-as 222
FastIron(config-router-bgp)# neighbor 32.32.32.2 next-hop-self
FastIron(config-router-bgp)# neighbor 34.34.34.4 remote-as 444
FastIron(config-router-bgp)# neighbor 34.34.34.4 next-hop-self
FastIron(config-router-bgp)# neighbor 31.31.31.1 remote-as 111
FastIron(config-router-bgp)# neighbor 31.31.31.1 next-hop-self
FastIron(config-router-bgp)# redistribute connected
FastIron(config-router-bgp)# write memory

Configuration for Device D
The following set of commands configure the MSDP peers of Device D (1.1.4.1) that are inside and outside MSDP mesh group 1234. Device D peers inside the mesh group 1234 are 1.1.1.1, 1.1.2.1, and 1.1.3.1. Device 48.48.48.8 and 134.134.134.13 are also peers of Device D, but are outside mesh group 1234. Multicast is enabled on Device D interfaces. PIM and BGP are also enabled. This configuration is not applicable to TurboIron device because BGP is not supported on the device.

FastIron(config)# router pim
FastIron(config)# router msdp
FastIron(config-msdp-router)# msdp-peer 1.1.3.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.1.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 1.1.2.1 connect-source loopback 1
FastIron(config-msdp-router)# msdp-peer 48.48.48.8
FastIron(config-msdp-router)# msdp-peer 134.134.134.13
FastIron(config-msdp-router)# mesh-group 1234 1.1.1.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.3.1
FastIron(config-msdp-router)# mesh-group 1234 1.1.2.1
FastIron(config-msdp-router)# exit
FastIron(config)# interface loopback 1
FastIron(config-lbif-)# ip address 1.1.4.1 255.255.255.0
FastIron(config-lbif-)# ip pim-sparse
FastIron(config-lbif-)# exit
FastIron(config)# interface ethernet 1/1
FastIron(config-if-)# ip address 24.24.24.4 255.255.255.0
FastIron(config-if-)# ip pim-sparse
FastIron(config-if-)# exit
FastIron(config)# interface ethernet 2/6
FastIron(config-if-)# ip address 156.156.156.1 255.255.255.0
FastIron(config-if-)# ip pim-sparse
FastIron(config-if-)# exit
FastIron(config)# interface ethernet 5/1
FastIron(config-if-)# ip address 34.34.34.4 255.255.255.0
FastIron(config-if-)# ip pim-sparse
FastIron(config-if-)# exit
FastIron(config)# interface ethernet 7/1
FastIron(config-if-)# ip address 14.14.14.4 255.255.255.0
FastIron(config-if-)# ip pim-sparse
FastIron(config-if-)# exit
FastIron(config)# interface ethernet 7/7
FastIron(config-if-)# ip address 134.134.134.4 255.255.255.0
FastIron(config-if-)# ip pim-sparse
FastIron(config-if-)# ip pim border
FastIron(config-if-)# exit
FastIron(config)# interface ethernet 7/8
FastIron(config-if-)# ip address 134.134.134.4 255.255.255.0
FastIron(config-if-)# ip pim-sparse
FastIron(config-if-)# ip pim border
FastIron(config-if-)# exit
FastIron(config)# router pim
FastIron(config-router-pim)# bsr-candidate loopback 1 14 34
FastIron(config-router-pim)# rp-candidate loopback 1
FastIron(config-router-pim)# exit
FastIron(config)# router bgp
FastIron(config-router-bsr)# local-as 444
FastIron(config-router-bsr)# neighbor 34.34.34.3 remote-as 333
FastIron(config-router-bsr)# neighbor 34.34.34.3 next-hop-self
FastIron(config-router-bsr)# neighbor 24.24.24.2 remote-as 222
FastIron(config-router-bsr)# neighbor 24.24.24.2 next-hop-self
FastIron(config-router-bsr)# neighbor 48.48.48.8 remote-as 888
FastIron(config-router-bsr)# neighbor 48.48.48.8 next-hop-self
FastIron(config-router-bsr)# neighbor 134.134.134.13 remote-as 1313
FastIron(config-router-bsr)# neighbor 134.134.134.13 next-hop-self
FastIron(config-router-bsr)# redistribute connected
FastIron(config-router-bsr)# write memory

Displaying MSDP information

You can display the following MSDP information:

- Summary information – the IP addresses of the peers, the state of the Layer 3 Switch MSDP session with each peer, and statistics for Keepalive, Source Active, and Notification messages sent to and received from each of the peers.
- Peer information – the IP address of the peer, along with detailed MSDP and TCP statistics.
- Source Active cache entries – the Source Active messages cached by the Layer 3 Switch.

Displaying summary information

To display summary MSDP information, enter the following command at any level of the CLI:

```shell
FastIron(config-msdp-router)# show ip msdp summary
```

Syntax: show ip msdp summary

MSDP Peer Status Summary

<table>
<thead>
<tr>
<th>Peer Address</th>
<th>State</th>
<th>KA In</th>
<th>KA Out</th>
<th>SA In</th>
<th>SA Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>206.251.17.30</td>
<td>ESTABLISH</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>640</td>
</tr>
<tr>
<td>206.251.17.41</td>
<td>ESTABLISH</td>
<td>0</td>
<td>3</td>
<td>651</td>
<td>0</td>
</tr>
</tbody>
</table>

Syntax: show ip msdp summary

This display shows the following information.

TABLE 153 MSDP summary information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer Address</td>
<td>The IP address of the peer interface with the Layer 3 Switch</td>
</tr>
<tr>
<td>State</td>
<td>The state of the MSDP router connection with the peer. The state can be one of the following: CONNECT – The session is in the active open state. ESTABLISH – The MSDP session is fully up. IDLE – The session is idle or inactive. LISTEN – The session is in the passive open state.</td>
</tr>
<tr>
<td>KA In</td>
<td>The number of MSDP Keepalive messages the MSDP router has received from the peer</td>
</tr>
<tr>
<td>KA Out</td>
<td>The number of MSDP Keepalive messages the MSDP router has sent to the peer</td>
</tr>
<tr>
<td>SA In</td>
<td>The number of Source Active messages the MSDP router has received from the peer</td>
</tr>
<tr>
<td>SA Out</td>
<td>The number of Source Active messages the MSDP router has sent to the peer</td>
</tr>
</tbody>
</table>
Displaying peer information

To display summary MSDP peer information, use the following CLI method.

```
FastIron(config-msdp-router)# show ip msdp peer

Total number of MSDP Peers: 2

IP Address           State
1 206.251.17.30        ESTABLISHED
Keep Alive Time  Hold Time
60               90

Message Sent      Message Received
Keep Alive         2                    3
Notifications      0                    0
Source-Active      0                    640

Last Connection Reset Reason:Reason Unknown
Notification Message Error Code Received:Unspecified
Notification Message Error SubCode Received:Not Applicable
Notification Message Error Code Transmitted:Unspecified
Notification Message Error SubCode Transmitted:Not Applicable

TCP Connection state: ESTABLISHED
Local host: 206.251.17.29, Local Port: 8270
Remote host: 206.251.17.30, Remote Port: 639
ISentSeq:  16927  SendNext:  685654  TotUnAck:  0
SendWnd:  16384  TotSent:  668727  ReTrans:  1
IRcvSeq:  45252428  RcvNext:  45252438  RcvWnd:  16384
TotalRcv:  10  RcvQue:  0  SendQue:  0
```

Syntax: `show ip msdp peer`

This display shows the following information.

TABLE 154 MSDP peer information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of MSDP peers</td>
<td>The number of MSDP peers configured on the Layer 3 Switch</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the peer interface with the Layer 3 Switch</td>
</tr>
</tbody>
</table>
| State | The state of the MSDP router connection with the peer. The state can be one of the following:
 • CONNECT – The session is in the active open state.
 • ESTABLISH – The MSDP session is fully up.
 • IDLE – The session is idle or inactive.
 • LISTEN – The session is in the passive open state. |
Multicast Source Discovery Protocol (MSDP)

TABLE 154 MSDP peer information (Continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep Alive Time</td>
<td>The keep alive time, which specifies how often this MSDP router sends keep</td>
</tr>
<tr>
<td></td>
<td>alive messages to the neighbor. The keep alive time is 60 seconds and is not</td>
</tr>
<tr>
<td></td>
<td>configurable.</td>
</tr>
<tr>
<td>Hold Time</td>
<td>The hold time, which specifies how many seconds the MSDP router will wait</td>
</tr>
<tr>
<td></td>
<td>for a KEEPALIVE or UPDATE message from an MSDP neighbor before deciding that</td>
</tr>
<tr>
<td></td>
<td>the neighbor is dead. The hold time is 90 seconds and is not configurable.</td>
</tr>
<tr>
<td>Keep Alive Message Sent</td>
<td>The number of Keep Alive messages the MSDP router has sent to the peer.</td>
</tr>
<tr>
<td>Keep Alive Message Received</td>
<td>The number of Keep Alive messages the MSDP router has received from the</td>
</tr>
<tr>
<td></td>
<td>peer.</td>
</tr>
<tr>
<td>Notifications Sent</td>
<td>The number of Notification messages the MSDP router has sent to the peer.</td>
</tr>
<tr>
<td>Notifications Received</td>
<td>The number of Notification messages the MSDP router has received from the</td>
</tr>
<tr>
<td></td>
<td>peer.</td>
</tr>
<tr>
<td>Source-Active Sent</td>
<td>The number of Source Active messages the MSDP router has sent to the peer.</td>
</tr>
<tr>
<td>Source-Active Received</td>
<td>The number of Source Active messages the MSDP router has received from the</td>
</tr>
<tr>
<td></td>
<td>peer.</td>
</tr>
<tr>
<td>Last Connection Reset Reason</td>
<td>The reason the previous session with this neighbor ended.</td>
</tr>
<tr>
<td>Notification Message Error Code Received</td>
<td>If the MSDP router receives a NOTIFICATION messages from the neighbor, the</td>
</tr>
<tr>
<td></td>
<td>message contains an error code corresponding to one of the following errors.</td>
</tr>
<tr>
<td></td>
<td>Some errors have subcodes that clarify the reason for the error. Where</td>
</tr>
<tr>
<td></td>
<td>applicable, the subcode messages are listed underneath the error code</td>
</tr>
<tr>
<td></td>
<td>messages:</td>
</tr>
<tr>
<td></td>
<td>• 1 – Message Header Error</td>
</tr>
<tr>
<td></td>
<td>• 2 – SA-Request Error</td>
</tr>
<tr>
<td></td>
<td>• 3 – SA-Message/SA-Response Error</td>
</tr>
<tr>
<td></td>
<td>• 4 – Hold Timer Expired</td>
</tr>
<tr>
<td></td>
<td>• 5 – Finite State Machine Error</td>
</tr>
<tr>
<td></td>
<td>• 6 – Notification</td>
</tr>
<tr>
<td></td>
<td>• 7 – Cease</td>
</tr>
<tr>
<td></td>
<td>For information about these error codes, see section 17 in the Internet</td>
</tr>
<tr>
<td></td>
<td>draft describing MSDP, "draft-ietf-msdp-spec".</td>
</tr>
<tr>
<td>Notification Message Error SubCode Received</td>
<td>See above.</td>
</tr>
<tr>
<td>Notification Message Error Code Transmitted</td>
<td>The error message corresponding to the error code in the NOTIFICATION</td>
</tr>
<tr>
<td></td>
<td>message this MSDP router sent to the neighbor. See the description for the</td>
</tr>
<tr>
<td></td>
<td>Notification Message Error Code Received field for a list of possible codes.</td>
</tr>
<tr>
<td>Notification Message Error SubCode Transmitted</td>
<td>See above.</td>
</tr>
</tbody>
</table>

TCP Statistics

TABLE 154 MSDP peer information (Continued)
TCP connection state: The state of the connection with the neighbor. The connection can have one of the following states:
- **LISTEN** – Waiting for a connection request.
- **SYN-SENT** – Waiting for a matching connection request after having sent a connection request.
- **SYN-RECEIVED** – Waiting for a confirming connection request acknowledgment after having both received and sent a connection request.
- **ESTABLISHED** – Data can be sent and received over the connection. This is the normal operational state of the connection.
- **FIN-WAIT-1** – Waiting for a connection termination request from the remote TCP, or an acknowledgment of the connection termination request previously sent.
- **FIN-WAIT-2** – Waiting for a connection termination request from the remote TCP.
- **CLOSE-WAIT** – Waiting for a connection termination request from the local user.
- **CLOSING** – Waiting for a connection termination request acknowledgment from the remote TCP.
- **LAST-ACK** – Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP (which includes an acknowledgment of its connection termination request).
- **TIME-WAIT** – Waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.
- **CLOSED** – There is no connection state.

Local host	The IP address of the MSDP router interface with the peer.
Local port	The TCP port the MSDP router is using for the BGP4 TCP session with the neighbor.
Remote host	The IP address of the neighbor.
Remote port	The TCP port number of the peer end of the connection.
ISentSeq	The initial send sequence number for the session.
SendNext	The next sequence number to be sent.
TotUnAck	The number of sequence numbers sent by the MSDP router that have not been acknowledged by the neighbor.
SendWnd	The size of the send window.
TotSent	The number of sequence numbers sent to the neighbor.
ReTrans	The number of sequence numbers that the MSDP router retransmitted because they were not acknowledged.
IRcvSeq	The initial receive sequence number for the session.
RcvNext	The next sequence number expected from the neighbor.
RcvWnd	The size of the receive window.
TotalRcv	The number of sequence numbers received from the neighbor.
RcvQue	The number of sequence numbers in the receive queue.
SendQue	The number of sequence numbers in the send queue.
Displaying source active cache information

To display the Source Actives in the MSDP cache, use the following CLI method.

FastIron(config-msdp-router)# show ip msdp sa-cache

<table>
<thead>
<tr>
<th>Index</th>
<th>SourceAddr</th>
<th>GroupAddr</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(100.100.1.254, 232.1.0.95), RP:206.251.17.41</td>
<td>Age:0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(100.100.1.254, 237.1.0.98), RP:206.251.17.41</td>
<td>Age:30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(100.100.1.254, 234.1.0.48), RP:206.251.17.41</td>
<td>Age:30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(100.100.1.254, 239.1.0.51), RP:206.251.17.41</td>
<td>Age:30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(100.100.1.254, 234.1.0.154), RP:206.251.17.41</td>
<td>Age:30</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(100.100.1.254, 236.1.0.1), RP:206.251.17.41</td>
<td>Age:30</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(100.100.1.254, 231.1.0.104), RP:206.251.17.41</td>
<td>Age:90</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(100.100.1.254, 239.1.0.157), RP:206.251.17.41</td>
<td>Age:30</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(100.100.1.254, 236.1.0.107), RP:206.251.17.41</td>
<td>Age:30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(100.100.1.254, 233.1.0.57), RP:206.251.17.41</td>
<td>Age:90</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 155 MSDP source active cache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Entry</td>
<td>The total number of entries the cache can hold.</td>
</tr>
<tr>
<td>Used</td>
<td>The number of entries the cache currently contains.</td>
</tr>
<tr>
<td>Free</td>
<td>The number of additional entries for which the cache has room.</td>
</tr>
<tr>
<td>Index</td>
<td>The cache entry number.</td>
</tr>
<tr>
<td>SourceAddr</td>
<td>The IP address of the multicast source.</td>
</tr>
<tr>
<td>GroupAddr</td>
<td>The IP multicast group to which the source is sending information.</td>
</tr>
<tr>
<td>RP</td>
<td>The RP through which receivers can access the group traffic from the source</td>
</tr>
<tr>
<td>Age</td>
<td>The number of seconds the entry has been in the cache</td>
</tr>
</tbody>
</table>

Clearing MSDP information

You can clear the following MSDP information:

- Peer information
- Source Active cache
- MSDP statistics

Clearing peer information

To clear MSDP peer information, enter the following command at the Privileged EXEC level of the CLI:

FastIron# clear ip msdp peer 205.216.162.1

Remote connection closed

Syntax: clear ip msdp peer <ip-addr>
The command in this example clears the MSDP peer connection with MSDP router 205.216.162.1. The CLI displays a message to indicate when the connection has been successfully closed.

Clearing the source active cache

To clear the entries from the Source Active cache, enter the following command at the Privileged EXEC level of the CLI:

```
FastIron# clear ip msdp sa-cache
```

Syntax: `clear ip msdp sa-cache [source-addr | group-addr]`

The command in this example clears all the cache entries. Use the `<source-addr>` parameter to clear only the entries for a specified course. Use the `<group-addr>` parameter to clear only the entries for a specific group.

Clearing MSDP statistics

To clear MSDP statistics, enter the following command at the Privileged EXEC level of the CLI:

```
FastIron# clear ip msdp statistics
```

Syntax: `clear ip msdp statistics [ip-addr]`

The command in this example clears statistics for all the peers. To clear statistics for a specific peer, enter the peer IP address.

Passive multicast route insertion

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later
- FCX-S devices running software release 06.0.00 and later
- TurboIron X Series devices running software release 04.2.00 and later

Passive Multicast Route Insertion (PMRI) enables a Layer 3 switch running PIM Sparse to create an entry for a multicast route (e.g., (S,G)), with no directly attached clients or when connected to another PIM router (transit network).

PMRI is critical for Service Providers wanting to deliver IP-TV services or multicast-based video services. Service Providers, who have transit networks, distribute multicast-based video services to other Service Providers, regardless of whether a client subscribes to a video service.

To configure PMRI, enter the following command at the `router pim` level of the CLI.

```
FastIron(config)# router pim
FastIron# (config-pim-router)# hardware-drop
```

NOTE

On FCX devices, hardware-drop is enabled by default.

Syntax: `[no] hardware-drop`
DVMRP overview

Brocade routers provide multicast routing with the Distance Vector Multicast Routing Protocol (DVMRP) routing protocol. DVMRP uses Internet Group Membership Protocol (IGMP) to manage the IP multicast groups.

DVMRP is a broadcast and pruning multicast protocol that delivers IP multicast datagrams to its intended receivers. The receiver registers the interested groups using IGMP. DVMRP builds a multicast delivery tree with the sender forming the root. Initially, multicast datagrams are delivered to all nodes on the tree. Those leaves that do not have any group members send prune messages to the upstream router, noting the absence of a group. The upstream router maintains a prune state for this group for the given sender. A prune state is aged out after a given configurable interval, allowing multicasts to resume.

DVMRP employs reverse path forwarding and pruning to keep source specific multicast delivery trees with the minimum number of branches required to reach all group members. DVMRP builds a multicast tree for each source and destination host group.

NOTE
FastIron CX devices do not support DVMRP.

Initiating DVMRP multicasts on a network

Once DVMRP is enabled on each router, a network user can begin a video conference multicast from the server on R1. Multicast Delivery Trees are initially formed by source-originated multicast packets that are propagated to downstream interfaces as seen in Figure 118. When a multicast packet is received on a DVMRP-capable router interface, the interface checks its DVMRP routing table to determine whether the interface that received the message provides the shortest path back to the source. If the interface does provide the shortest path, the interface forwards the multicast packet to adjacent peer DVMRP routers, except for the router interface that originated the packet. Otherwise, the interface discards the multicast packet and sends a prune message back upstream. This process is known as reverse path forwarding.

In Figure 118, the root node (R1) is forwarding multicast packets for group 229.225.0.2 that it receives from the server to its downstream nodes, R2, R3, and R4. Router R4 is an intermediate router with R5 and R6 as its downstream routers. Because R5 and R6 have no downstream interfaces, they are leaf nodes.

When you enable PMRI, the show ip pim mcache command output displays the multicast cache entry along with a drop flag, indicating that the device is dropping packets in hardware. If the HW flag is set to 1 (HW=1), it implies that the packets are being dropped in hardware. If the HW flag is set to 0, (HW=0), it indicates that the packets are being processed in software. The following shows an example display output.

FastIron# show ip pim mcache
1 (10.10.10.18 226.0.1.56) in v10 {e1}, cnt=2
Source is directly connected
Sparse Mode, RPT=0 SPT=1 REG=1 MSDP Adv=0 MSDP Create=0
fast=0 slow=0 pru=1 graft age drop
age=0s up-time=2m HW=1 L2-vidx=8191
The receivers in this example are those workstations that are resident on routers R2, R3, and R6.

Pruning a multicast tree

After the multicast tree is constructed, *pruning* of the tree will occur after IP multicast packets begin to traverse the tree.

As multicast packets reach leaf networks (subnets with no downstream interfaces), the local IGMP database checks for the recently arrived IP multicast packet address. If the local database does not contain the address (the address has not been learned), the router prunes (removes) the address from the multicast tree and no longer receives multicasts until the prune age expires.

In Figure 119, Router 5 is a leaf node with no group members in its local database. Consequently, Router 5 sends a prune message to its upstream router. This router will not receive any further multicast traffic until the prune age interval expires.

FIGURE 118 Downstream broadcast of IP multicast packets from source host

FIGURE 119 Pruning leaf nodes from a multicast tree
Grafts to a multicast tree

A DVMRP router restores pruned branches to a multicast tree by sending graft messages towards the upstream switch. Graft messages start at the leaf node and travel up the tree, first sending the message to its neighbor upstream switch.

In the example above, if a new 229.255.0.1 group member joins on switch S6, which had been pruned previously, a graft will be sent upstream to S4. Since the forwarding state for this entry is in a prune state, S4 sends a graft to S1. Once S4 has joined the tree, it and S6 will once again receive multicast packets.

You do not need to perform any configuration to maintain the multicast delivery tree. The prune and graft messages automatically maintain the tree.

Configuring DVMRP

Enabling DVMRP on the Layer 3 Switch and interface

Suppose you want to initiate the use of desktop video for fellow users on a sprawling campus network. All destination workstations have the appropriate hardware and software but the Layer 3 Switches that connect the various buildings need to be configured to support DVMRP multicasts from the designated video conference server as seen in Figure 118.
Configuring DVMRP

DVMRP is enabled on each of the Brocade Layer 3 Switches shown in Figure 118, on which multicasts are expected. You can enable DVMRP on each Layer 3 Switch independently or remotely from one Layer 3 Switch by a Telnet connection. Follow the same steps for each Layer 3 Switch.

Globally enabling and disabling DVMRP

To globally enable DVMRP, enter the following command.

Router1(config)#router dvmrp

Syntax: [no] router dvmrp

The behavior of the [no] router dvmrp command is as follows:

- Entering a router dvmrp command to enable DVMRP does not require a software reload.
- Entering a no router dvmrp command removes all configuration for PIM multicast on a Layer 3 Switch (router pim level) only.

Globally enabling or disabling DVMRP without deleting multicast configuration

As stated above enter no router dvmrp removed PIM configuration. If you want to disable or enable DVMRP without removing PIM configuration, enter the following command.

FastIron(config)#router dvmrp
FastIron(config-pim-router)#disable-dvmrp

Syntax: [no] disable-dvmrp

Use the [no] version of the command to re-enable DVMRP.

Enabling DVMRP on an interface

After globally enabling DVMRP on a Layer 3 Switch, enable it on each interface that will support the protocol.

To enable DVMRP on S1 and interface 3, enter the following.

Router1(config)#router dvmrp
Router1(config-dvmrp-router)#int e 3
Router1(config-if-3)#ip dvmrp

Modifying DVMRP global parameters

DVMRP global parameters come with preset values. The defaults work well in most networks, but you can modify the following global parameters if you need to:

- Neighbor timeout
- Route expire time
- Route discard time
- Prune age
- Graft retransmit time
- Probe interval
- Report interval
- Trigger interval
• Default route

Modifying neighbor timeout

The neighbor timeout specifies the period of time that a router will wait before it defines an attached DVMRP neighbor router as down. Possible values are 40 – 8000 seconds. The default value is 180 seconds.

To modify the neighbor timeout value to 100, enter the following.

```
FastIron(config-dvmrp-router)#nbr 100
```

Syntax: nbr-timeout <40-8000>

The default is 180 seconds.

Modifying Route Expires Time

The Route Expire Time defines how long a route is considered valid in the absence of the next route update. Possible values are from 20 – 4000 seconds. The default value is 200 seconds.

To modify the route expire setting to 50, enter the following.

```
FastIron(config-dvmrp-router)#route-expire-timeout 50
```

Syntax: route-expire-timeout <20-4000>

Modifying Route Discard Time

The Route Discard Time defines the period of time before a route is deleted. Possible values are from 40 – 8000 seconds. The default value is 340 seconds.

To modify the route discard setting to 150, enter the following.

```
FastIron(config-dvmrp-router)#route-discard-timeout 150
```

Syntax: route-discard-timeout <40-8000>

Modifying Prune Age

The Prune Age defines how long a prune state will remain in effect for a source-routed multicast tree. After the prune age period expires, flooding will resume. Possible values are from 20 – 3600 seconds. The default value is 180 seconds.

To modify the prune age setting to 150, enter the following.

```
FastIron(config-dvmrp-router)#prune 25
```

Syntax: prune-age <20-3600>

Modifying Graft Retransmit Time

The Graft Retransmit Time defines the initial period of time that a router sending a graft message will wait for a graft acknowledgement from an upstream router before re-transmitting that message.

Subsequent retransmissions are sent at an interval twice that of the preceding interval. Possible values are from 5 – 3600 seconds. The default value is 10 seconds.
To modify the setting for graft retransmit time to 120, enter the following.

```
FastIron(config-dvmrp-router)#graft 120
```

Syntax: `graft-retransmit-time <5-3600>`

Modifying Probe Interval

The Probe Interval defines how often neighbor probe messages are sent to the ALL-DVMRP-ROUTERS IP multicast group address. A router probe message lists those neighbor DVMRP routers from which it has received probes. Possible values are from 5 – 30 seconds. The default value is 10 seconds.

To modify the probe interval setting to 10, enter the following.

```
FastIron(config-dvmrp-router)#probe 10
```

Syntax: `probe-interval <5-30>`

Modifying Report Interval

The Report Interval defines how often routers propagate their complete routing tables to other neighbor DVMRP routers. Possible values are from 10 – 2000 seconds. The default value is 60 seconds.

To support propagation of DVMRP routing information to the network every 90 seconds, enter the following.

```
FastIron(config-dvmrp-router)#report 90
```

Syntax: `report-interval <10-2000>`

Modifying Trigger Interval

The Trigger Interval defines how often trigger updates, which reflect changes in the network topology, are sent. Example changes in a network topology include router up or down or changes in the metric. Possible values are from 5 – 30 seconds. The default value is 5 seconds.

To support the sending of trigger updates every 20 seconds, enter the following.

```
FastIron(config-dvmrp-router)#trigger-interval 20
```

Syntax: `trigger-interval <5-30>`

Modifying default route

To define the default gateway for DVMRP, enter the following.

```
FastIron(config-dvmrp-router)#default-gateway 192.35.4.1
```

Syntax: `default-gateway <ip-addr>`

Modifying DVMRP interface parameters

DVMRP global parameters come with preset values. The defaults work well in most networks, but you can modify the following interface parameters if you need to:

- **TTL**
• Metric
• Advertising

Modifying the TTL

The TTL defines the minimum value required in a packet in order for the packet to be forwarded out the interface. For example, if the TTL for an interface is set at 10 it means that only those packets with a TTL value of 10 or more are forwarded. Likewise, if an interface is configured with a TTL Threshold value of 1, all packets received on that interface are forwarded. Possible values are from 1 – 64. The default value is 1.

To set a TTL of 64, enter the following.

```
FastIron(config)#int e 1/4
FastIron(config-if-1/4)#ip dvmrp ttl 60
```

Syntax: `ttl-threshold <1-64>`

Modifying the metric

The router uses the metric when establishing reverse paths to some networks on directly attached interfaces. Possible values are from 1 – 31 hops. The default is 1.

NOTE

This command is not supported on Brocade Layer 2 Switches.

To set a metric of 15 for a DVMRP interface, enter the following.

```
FastIron(config)#interface 3/5
FastIron(config-if-3/5)#ip dvmrp metric 15
```

Syntax: `ip dvmrp metric <1-31>`

Enabling advertising

You can turn the advertisement of a local route on (enable) or off (disable) on the interface. By default, advertising is enabled.

To enable advertising on an interface, enter the following.

```
FastIron(config-if-1/4)#ip dvmrp advertise-local on
```

Syntax: `advertise-local on | off`

Displaying information about an upstream neighbor device

You can view information about the upstream neighbor device for a given source IP address for IP PIM packets. The software uses the IP route table or multicast route table to lookup the upstream neighbor device.

The following shows example messages that the Brocade device can display with this command.
Syntax: show ip dvmrp rpf <IP address>
where <IP address> is a valid source IP address

NOTE
If there are multiple equal cost paths to the source, the show ip dvmrp rpf command output may not be accurate. If your system has multiple equal cost paths, use the command show ip dvmrp mcache to view information about the upstream neighbor.

Configuring an IP tunnel

IP tunnels are used to send traffic through routers that do not support IP multicasting. IP Multicast datagrams are encapsulated within an IP packet and then sent to the remote address. Routers that are not configured for IP Multicast route the packet as a normal IP packet. When the IP Multicast router at the remote end of the tunnel receives the packet, the router strips off the IP encapsulation and forwards the packet as an IP Multicast packet.

NOTE
An IP tunnel must have a remote IP interface at each end. Also, for IP tunneling to work, the remote routers must be reachable by an IP routing protocol.

NOTE
Multiple tunnels configured on a router cannot share the same remote address.

Example
To configure an IP tunnel as seen in Figure 120, enter the IP tunnel destination address on an interface of the router.

To configure an IP address on Router A, enter the following.

FastIron(config)#int e1
FastIron(config-if-1)#ip tunnel 192.3.45.6

NOTE
The IP tunnel address represents the configured IP tunnel address of the destination router. In the case of Router A, its destination router is Router B. Router A is the destination router of Router B.

For router B, enter the following.

FastIron(config-if-1)#ip tunnel 192.58.4.1

FIGURE 120 IP in IP tunneling on multicast packets in a unicast network
Using ACLs to control multicast features

You can use ACLs to control the following multicast features:

- Limit the number of multicast groups that are covered by a static rendezvous point (RP)
- Control which multicast groups for which candidate RPs sends advertisement messages to bootstrap routers
- Identify which multicast group packets will be forwarded or blocked on an interface

Using ACLs to limit static RP groups

You can limit the number of multicast groups covered by a static RP using standard ACLs. In the ACL, you specify the group to which the RP address applies. The following examples set the RP address to be applied to multicast groups with some minor variations.

To configure an RP that covers multicast groups in 239.255.162.x, enter commands such as the following.

```
FastIron(config)#access-list 2 permit 239.255.162.0 0.0.0.255
FastIron(config)#router pim
FastIron(config-pim-router)#rp-address 43.43.43.1 2
```

To configure an RP that covers multicast groups in the 239.255.162.x range, except the 239.255.162.2 group, enter commands such as the following.

```
FastIron(config)#access-list 5 deny host 239.255.162.2
FastIron(config)#access-list 5 permit 239.255.0.0 0.0.255.255
FastIron(config)#router pim
FastIron(config-pim-router)#bsr-candidate ve 43 32 100
FastIron(config-pim-router)#rp-candidate ve 43
FastIron(config-pim-router)#rp-address 99.99.99.5 5
```

To configure an RP for multicast groups using the override switch, enter commands such as the following.

```
FastIron(config)#access-list 44 permit 239.255.162.0 0.0.0.255
FastIron(config)#router pim
FastIron(config-pim-router)#rp-address 43.43.43.1
FastIron(config-pim-router)#rp-address 99.99.99.5 44 override
```

Syntax: `[no] rp-address <ip-address> [access-list-num] [override]`
The access-list-num parameter is the number of the standard ACL that will filter the multicast group.

NOTE

Extended ACLs cannot be used to limit static RP groups.

The override parameter directs the Layer 3 Switch to ignore the information learned by a BSR if there is a conflict between the RP configured in this command and the information that is learned by the BSR. In previous releases, static RP configuration precedes the RP address learned from the PIM Bootstrap protocol. With this enhancement, an RP address learned dynamically from PIM Bootstrap protocol takes precedence over static RP configuration unless the override parameter is used.

You can use the `show ip pim rp-set` command to display the ACLs used to filter the static RP groups.

Example

```
FastIron#show ip pim rp-set
Group address Static-RP-address Override
---------------------------------------------------
Access-List 44 99.99.99.5 On
Number of group prefixes Learnt from BSR: 1
Group prefix = 224.0.0.0/4 #RPs: 1
  RP 1: 43.43.43.1 priority=0 age=0
```

In the example above, the display shows the following information:

- The Group Address table shows the static RP address that is covered by the access list, and whether or not the override parameter has been enabled.
- The Group prefix line shows the multicast group prefix for the static RP.
- The RP #line shows the configured IP address of the RP candidate.

The `show ip pim rp-map` command to show the group-to-RP mapping.

```
FastIron#show ip pim rp-map
Number of group-to-RP mappings: 6
  Group address  RP address
  ---------------------------
  1 239.255.163.1  43.43.43.1
  2 239.255.163.2  43.43.43.1
  3 239.255.163.3  43.43.43.1
  4 239.255.162.1  99.99.99.5
  5 239.255.162.2  99.99.99.5
  6 239.255.162.3  99.99.99.5
```

The display shows the multicast group addresses covered by the RP candidate and the IP address of the RP for the listed multicast group. In the example above, you see the following:

- The first three lines show the multicast group addresses that are covered by the RP candidate.
- The last three lines show the multicast group addresses covered by the static RP.
Using ACLs to limit PIM RP candidate advertisement

You can use standard ACLs to control the groups for which the candidate RP will send advertisement messages to the bootstrap router. For example, ACL 5 can be configured to be applied to the multicast groups within the IP address 239.x.x.x range. You can configure the Layer 3 Switch to advertise itself as a candidate RP to the bootstrap router only for groups in the range of 239.x.x.x. Enter commands such as the following.

```
FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#ip address 99.99.99.5 255.255.255.0
FastIron(config-if-1/1)#ip pim-sparse
FastIron(config-if-1/1)#exit
FastIron(config)#access-list 5 deny host 239.255.162.2
FastIron(config)#access-list 5 permit 239.0.0.0 0.0.255.255
FastIron(config)#router pim
FastIron(config-pim-router)#bsr-candidate ethernet 1/1 32 100
FastIron(config-pim-router)#rp-candidate ethernet 1/1 group-list 5
```

The example above shows a configuration for an Ethernet interface. To configure ACLs that are applied to a virtual routing interface, enter commands such as the following.

```
FastIron(config)#interface ve 16
FastIron(config-vif-16)#ip address 16.16.16.1 255.255.255.0
FastIron(config-vif-16)#ip pim-sparse
FastIron(config-vif-16)#exit
FastIron(config)#access-list 5 deny host 239.255.162.2
FastIron(config)#access-list 5 permit 239.255.0.0 0.0.255.255
FastIron(config)#router pim
FastIron(config-pim-router)#bsr-candidate ve 16 32 100
FastIron(config-pim-router)#rp-candidate ve 16 group-list 5
```

To configure ACLs that are applied to a loopback interface, enter commands such as the following.

```
FastIron(config)#interface loopback 1
FastIron(config-lbif-1)#ip address 88.88.88.8 255.255.255.0
FastIron(config-lbif-1)#ip pim-sparse
FastIron(config-lbif-1)#exit
FastIron(config)#access-list 5 deny host 239.255.162.2
FastIron(config)#access-list 5 permit 239.255.0.0 0.0.255.255
FastIron(config)#router pim
FastIron(config-pim-router)#bsr-candidate loopback 1 32 100
FastIron(config-pim-router)#rp-candidate loopback 1 group-list 5
```

Syntax: `[no] rp-candidate ethernet [<slotnum>/]<portnum> | loopback <num> | ve <num> [group-list <access-list-num>]`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` | `loopback <num>` | `ve <num>` parameter specifies the interface. The Layer 3 Switch will advertise the specified interface IP address as a candidate RP:

- Enter `ethernet [<slotnum>/]<portnum>` for a physical interface (port).
- Enter `ve <num>` for a virtual interface.
- Enter `loopback <num>` for a loopback interface.

The `group-list <access-list-num>` indicates that a standard ACL is used to filter for which multicast group the advertisement will be made.
Disabling CPU processing for select multicast groups

Platform Support:

- FESX and FSX devices running software release 04.1.00 and later – L2, BL3, L3

In IPv4 multicast, Brocade Layer 3 switches do not forward multicast packets with destination addresses in the range between 224.0.0.0 and 224.0.0.255. These group addresses are reserved for various routing protocols. By default, packets destined to these groups are processed by the CPU. However, when a large number of packets for these groups are received by the Brocade device all at once, CPU resources may be overloaded. To alleviate the load on the CPU, you could disable CPU processing of packets for these groups. When applied, this feature protects the CPU from traffic sent to IPv4 multicast addresses in the range 224.0.0.1 - 224.0.0.254, and instead floods these packets in hardware within the incoming VLAN.

This feature can be applied on a VLAN or a VLAN-group. If applied on a VLAN, traffic received on a port of the VLAN will be flooded to all other ports of the VLAN. If applied on a VLAN-group, traffic will be flooded only at the individual VLAN level. Once this feature is applied on a VLAN or VLAN-group, ports that are statically or dynamically added to the VLAN or VLAN-group will inherit the configuration. Likewise, ports that are statically or dynamically removed from the VLAN or VLAN-group will drop the configuration.

This feature can be enabled for packets destined to a multicast group or set of groups in the range 224.0.0.1 – 224.0.0.254, except for the reserved multicast addresses listed in the following table.

TABLE 156 Reserved multicast addresses

<table>
<thead>
<tr>
<th>Multicast address</th>
<th>Reserved for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.1</td>
<td>all nodes</td>
</tr>
<tr>
<td>224.0.0.2</td>
<td>PIM</td>
</tr>
<tr>
<td>224.0.0.3</td>
<td>DVMRP</td>
</tr>
<tr>
<td>224.0.0.4</td>
<td>DVMRP</td>
</tr>
<tr>
<td>224.0.0.5</td>
<td>OSPF</td>
</tr>
<tr>
<td>224.0.0.6</td>
<td>OSPF</td>
</tr>
<tr>
<td>224.0.0.9</td>
<td>RIP V2</td>
</tr>
<tr>
<td>224.0.0.13</td>
<td>PIM V2</td>
</tr>
<tr>
<td>224.0.0.18</td>
<td>VRRP</td>
</tr>
<tr>
<td>224.0.0.22</td>
<td>IGMP V3 reports</td>
</tr>
</tbody>
</table>

CLI command syntax

To disable CPU processing for selective multicast groups, enter commands such as the following.

```
FastIron# config t
FastIron(config)# vlan 5
FastIron(config-vlan-5)# disable multicast-to-cpu 224.0.0.5
FastIron(config-vlan-5)# disable multicast-to-cpu 224.0.0.14 224.0.0.230
```
Configuring a static multicast route

Static multicast routes allow you to control the network path used by multicast traffic. Static multicast routes are especially useful when the unicast and multicast topologies of a network are different. You can avoid the need to make the topologies similar by instead configuring static multicast routes.

NOTE
This feature is not supported for DVMRP.

You can configure more than one static multicast route. The Layer 3 Switch always uses the most specific route that matches a multicast source address. Thus, if you want to configure a multicast static route for a specific multicast source and also configure another multicast static route for all other sources, you can configure two static routes as shown in the examples below.
To add static routes to multicast router A (refer to Figure 121), enter commands such as the following.

PIMRouterA(config)#ip mroute 1 207.95.10.0 255.255.255.0 interface ethernet 1/2 distance 1
PIMRouterA(config)#ip mroute 2 0.0.0.0 0.0.0.0 interface ethernet 2/3 distance 1
PIMRouterA(config)#write memory

Syntax: mroute <route-num> <ip-addr> interface ethernet [slotnum]/<portnum> | ve <num> [distance <num>]

or

Syntax: mroute <route-num> <ip-addr> rpf_address <rpf-num>

The <route-num> parameter specifies the route number.
The <ip-addr> command specifies the PIM source for the route.

NOTE
In IP multicasting, a route is handled in terms of its source, rather than its destination.

You can use the ethernet [slotnum]/<portnum> parameter to specify a physical port or the ve <num> parameter to specify a virtual interface.

NOTE
The ethernet [slotnum]/<portnum> parameter does not apply to PIM SM.

The distance <num> parameter sets the administrative distance for the route. When comparing multiple paths for a route, the Layer 3 Switch prefers the path with the lower administrative distance.

NOTE
Regardless of the administrative distances, the Layer 3 Switch always prefers directly connected routes over other routes.

The rpf_address <rpf-num> parameter specifies an RPF number.

The example above configures two static multicast routes. The first route is for a specific source network, 207.95.10.0/24. If the Layer 3 Switch receives multicast traffic for network 207.95.10.0/24, the traffic must arrive on port 1/2. The second route is for all other multicast traffic. Traffic from multicast sources other than 207.95.10.0/24 must arrive on port 2/3.

Figure 121 shows an example of an IP Multicast network. The two static routes configured in the example above apply to this network. The commands in the example above configure PIM router A to accept PIM packets from 207.95.10.0/24 when they use the path that arrives at port 1/2, and accept all other PIM packets only when they use the path that arrives at port 2/3.

The distance parameter sets the administrative distance. This parameter is used by the software to determine the best path for the route. Thus, to ensure that the Layer 3 Switch uses the default static route, assign a low administrative distance value. When comparing multiple paths for a route, the Layer 3 Switch prefers the path with the lower administrative distance.

FIGURE 121 Example of multicast static routes
To add a static route to a virtual interface, enter commands such as the following.

```
FastIron(config)#mroute 3 0.0.0.0 0.0.0.0 int ve 1 distance 1
FastIron(config)#write memory
```

Tracing a multicast route

The Brocade implementation of Mtrace is based on “A ‘traceroute’ facility for IP Multicast”, an Internet draft by S. Casner and B. Fenner. To trace a PIM route, use the following CLI method.

NOTE

This feature is not supported for DVMRP.

To trace a PIM route to PIM source 209.157.24.62 in group 239.255.162.1, enter a command such as the following.

```
FastIron#mtrace source 209.157.24.62 group 239.255.162.1
```

Type `Control-c` to abort

Tracing the route for tree 209.157.23.188

```
0 207.95.7.2
0 207.95.7.2 Thresh 0
1 207.95.7.1 Thresh 0
2 207.95.8.1 Thresh 0
3 207.157.24.62
```

Syntax:
`mtrace source <ip-addr> group <multicast-group>`

The `source <ip-addr>` parameter specifies the address of the route source.

NOTE

In IP multicasting, a route is handled in terms of its source, rather than its destination. When you trace an IP route, you specify its destination, but when you trace a PIM route, you specify its source.

The `group <multicast-group>` parameter specifies the PIM group the source IP address is in.
Figure 122 shows an example of an IP multicast group. The command example shown above is entered on PIM router A.

FIGURE 122 Example of a PIM group

The command example above indicates that the source address 209.157.24.62 is three hops (three PIM switches) away from PIM Switch A. In PIM terms, each of the three switches has a forwarding state for the specified source address and multicast group. The value following “Thresh” in some of the lines indicates the TTL threshold. The threshold 0 means that all multicast packets are forwarded on the interface. If an administrator has set the TTL threshold to a higher value, only packets whose TTL is higher than the threshold are forwarded on the interface. The threshold is listed only for the PIM switch hops between the source and destination.

Displaying the multicast configuration for another multicast router

The Brocade implementation of Mrinfo is based on the DVMRP Internet draft by T. Pusateri, but applies to PIM and not to DVMRP. To display the PIM configuration of another PIM router, use the following CLI method.

NOTE
This feature is not supported for DVMRP.

To display another PIM router PIM configuration, enter a command such as the following.

```
FastIron#mrinfo 207.95.8.1
207.95.8.1 -> 207.95.8.10 [PIM/0 /1]
207.95.10.2 -> 0.0.0.0 [PIM/0 /1 /leaf]
209.157.25.1 -> 0.0.0.0 [PIM/0 /1 /leaf]
209.157.24.1 -> 0.0.0.0 [PIM/0 /1 /leaf]
207.95.6.1 -> 0.0.0.0 [PIM/0 /1 /leaf]
128.2.0.1 -> 0.0.0.0 [PIM/0 /1 /leaf]
```

Syntax: `mrinfo <ip-addr>`

The `<ip-addr>` parameter specifies the IP address of the PIM router.
The output in this example is based on the PIM group shown in Figure 122 on page 911. The output shows the PIM interfaces configured on PIM router C (207.95.8.1). In this example, the PIM router has six PIM interfaces. One of the interfaces goes to PIM router B. The other interfaces go to leaf nodes, which are multicast end nodes attached to the router PIM interfaces. (For simplicity, the figure shows only one leaf node.)

When the arrow following an interface in the display points to a router address, this is the address of the next hop PIM router on that interface. In this example, PIM interface 207.95.8.1 on PIM router 207.95.8.1 is connected to PIM router 207.95.8.10. The connection can be a direct one or can take place through non-PIM routers. In this example, the PIM routers are directly connected.

When the arrow following an interface address points to zeros (0.0.0.0), the interface is not connected to a PIM router. The interface is instead connected to a leaf node.

NOTE
This display shows the PIM interface configuration information, but does not show the link states for the interfaces.

The information in brackets indicates the following:

- The multicast interface type (always PIM; this display is not supported for DVMRP)
- The Time-to-Live (TTL) for the interface.
- The metric for the interface
- Whether the interface is connected to a leaf node (“leaf” indicates a leaf node and blank indicates another PIM router)

For example, the information for the first interface listed in the display is “PIM/0/1”. This information indicates that the interface is a PIM interface, has a TTL of 0, and a metric of 1. The interface is not a leaf node interface and thus is an interface to another PIM router.

The information for the second interface in the display is “PIM/0/1/leaf”. This information indicates that the interface is a PIM interface, has a TTL of 0 and a metric of 1, and is connected to a leaf node.

IGMP V3

Platform Support:

- FastIron X Series devices running software release 02.4.00 and later
- TurboIron X Series devices running software release 04.2.00 and later

The Internet Group Management Protocol (IGMP) allows an IPV4 interface to communicate IP Multicast group membership information to its neighboring routers. The routers in turn limit the multicast of IP packets with multicast destination addresses to only those interfaces on the router that are identified as IP Multicast group members. This release introduces the support of IGMP version 3 (IGMP V3) on Layer 3 Switches.

In IGMP V2, when a router sent a query to the interfaces, the clients on the interfaces respond with a membership report of multicast groups to the router. The router can then send traffic to these groups, regardless of the traffic source. When an interface no longer needs to receive traffic from a group, it sends a leave message to the router which in turn sends a group-specific query to that interface to see if any other clients on the same interface is still active.
In contrast, IGMP V3 provides selective filtering of traffic based on traffic source. A router running IGMP V3 sends queries to every multicast enabled interface at the specified interval. These queries determine if any interface wants to receive traffic from the router. The queries include the IP address of the traffic source (S) or the ID of the multicast group (G, or both).

The interfaces respond to these queries by sending a membership report that contains one or more of the following records that are associated with a specific group:

- Current-State Record that indicates from which sources the interface wants to receive and not receive traffic. The record contains source address of interfaces and whether or not traffic will be received or included (IS_IN) or not received or excluded (IS_EX) from that source.

- Filter-mode-change record. If the interface changes its current state from IS_IN to IS_EX, a TO_EX record is included in the membership report. Likewise, if an interface current state changes from IS_EX to IS_IN, a TO_IN record appears in the membership report.

IGMP V2 Leave report is equivalent to a TO_IN(empty) record in IGMP V3. This record means that no traffic from this group will be received regardless of the source.

An IGMP V2 group report is equivalent to an IS_EX(empty) record in IGMP V3. This record means that all traffic from this group will be received regardless of source.

- Source-List-Change Record. If the interface wants to add or remove traffic sources from its membership report, the membership report can have an ALLOW record, which contains a list of new sources from which the interface wishes to receive traffic. It can also contains a BLOCK record, which lists current traffic sources from which the interfaces wants to stop receiving traffic.

In response to membership reports from the interfaces, the router sends a Group-Specific or a Group-and-Source Specific query to the multicast interfaces. Each query is sent three times with a one-second interval in between each transmission to ensure the interfaces receive the query. For example, a router receives a membership report with a Source-List-Change record to block old sources from an interface. The router sends Group-and-Source Specific Queries to the source and group (S,G) identified in the record. If none of the interfaces is interested in the (S,G), it is removed from (S,G) list for that interface on the router.

Each IGMP V3-enabled router maintains a record of the state of each group and each physical port within a virtual routing interface. This record contains the group, group-timer, filter mode, and source records information for the group or interface. Source records contain information on the source address of the packet and source timer. If the source timer expires when the state of the group or interface is in Include mode, the record is removed.

Default IGMP version

IGMP V3 is available on devices running software release 02.4.00 and later; however, Brocade devices are shipped with IGMP V2 enabled. You must enable IGMP V3 globally or per interface.

Also, you must specify what version of IGMP you want to run on a device globally, on each interface (physical port or virtual routing interface), and on each physical port within a virtual routing interface. If you do not specify an IGMP version, IGMP V2 will be used.

Compatibility with IGMP V1 and V2

Different multicast groups, interfaces, and routers can run their own version of IGMP. Their version of IGMP is reflected in the membership reports that the interfaces send to the router. Routers and interfaces must be configured to recognized the version of IGMP you want them to process.
An interface or router sends the queries and reports that include its IGMP version specified on it. It may recognize a query or report that has a different version, but it may not process them. For example, an interface running IGMP V2 can recognize IGMP V3 packets, but cannot process them. Also, a router running IGMP V3 can recognize and process IGMP V2 packet, but when that router sends queries to an IGMP V2 interface, the host on that interface may not recognize the IGMP V3 queries. The interface or router does not automatically downgrade the IGMP version running on them to avoid version deadlock.

If an interface continuously receives queries from routers that are running versions of IGMP that are different from what is on the interface, the interface logs warning messages in the syslog every five minutes. Reports sent by interfaces to routers that contain different versions of IGMP do not trigger warning messages; however, you can see the versions of the packets using the `show ip igmp traffic` command.

The version of IGMP can be specified globally, per interface (physical port or virtual routing interface), and per physical port within a virtual routing interface. The IGMP version set on a physical port within a virtual routing interface supersedes the version set on a physical or virtual routing interface. Likewise, the version on a physical or virtual routing interface supersedes the version set globally on the device. The sections below present how to set the version of IGMP.

Globally enabling the IGMP version

Using the CLI

To globally identify the IGMP version on a Brocade device, enter the following command.

```
FastIron(config)# ip igmp version 3
```

Syntax: `ip igmp version <version-number>`

Enter 1, 2, or 3 for `<version-number>`. Version 2 is the default version.

Enabling the IGMP version per interface setting

To specify the IGMP version for a physical port, enter a command such as the following.

```
FastIron(config)# interface eth 1/5
FastIron(config-if-1/5)# ip igmp version 3
```

To specify the IGMP version for a virtual routing interface on a physical port, enter a command such as the following.

```
FastIron(config)# interface ve 3
FastIron(config-vif-1)# ip igmp version 3
```

Syntax: `[no] ip igmp version <version-number>`

Enter 1, 2, or 3 for `<version-number>`. Version 2 is the default version.

Enabling the IGMP version on a physical port within a virtual routing interface

To specify the IGMP version recognized by a physical port that is a member of a virtual routing interface, enter a command such as the following.
FastIron(config)# interface ve 3
FastIron(config-vif-3)# ip igmp version 2
FastIron(config-vif-3)# ip igmp port-version 3 e1/3-e1/7 e2/9

In this example, the second line sets IGMP V2 on virtual routing interface 3. However, the third line set IGMP V3 on ports 1/3 through 1/7 and port e2/9. All other ports in this virtual routing interface are configured with IGMP V2.

Syntax: ip igmp port-version <version-number> ethernet [<slotnum>/]<port-number>

Enter 1, 2, or 3 for <version-number>. IGMP V2 is the default version.

The ethernet <port-number> parameter specifies which physical port within a virtual routing interface is being configured. If you are entering this command on a chassis device, specify the slot number as well as the port number.

Enabling membership tracking and fast leave

IGMP V3 provides membership tracking and fast leave to clients. In IGMP V2, only one client on an interface needs to respond to a router queries; therefore, some of the clients may be invisible to the router, making it impossible for the router to track the membership of all clients in a group. Also, when a client leaves the group, the router sends group specific queries to the interface to see if other clients on that interface need the data stream of the client who is leaving. If no client responds, the router waits three seconds before it stops the traffic.

IGMP V3 contains the tracking and fast leave feature that you enable on virtual routing interfaces. Once enabled, all physical ports on that virtual routing interface will have the feature enabled. IGMP V3 requires all clients to respond to general and group specific queries so that all clients on an interface can be tracked. Fast leave allows clients to leave the group without the three second waiting period, if the following conditions are met:

- If the interface, to which the client belongs, has IGMP V3 clients only. Therefore, all physical ports on a virtual routing interface must have IGMP V3 enabled and no IGMP V1 or V2 clients can be on the interface. (Although IGMP V3 can handle V1 and V2 clients, these two clients cannot be on the interface in order for fast leave to take effect.)
- No other client on the interface is receiving traffic from the group to which the client belongs.

Every group on the physical interface of a virtual routing interface keeps its own tracking record. However, it can track group membership only; it cannot track by (source, group).

For example, two clients (Client A and Client B) belong to group1 but each is receiving traffic streams from different sources. Client A receives a stream from (source_1, group1) and Client B receives it from (source_2, group1). The router still waits for three seconds before it stops the traffic because the two clients are in the same group. If the clients are in different groups, then the three second waiting period is not applied and traffic is stopped immediately. The `show ip igmp group tracking` command displays that clients in a group that are being tracked.

If a client sends a leave message, the client is immediately removed from the group. If a client does not send a report during the the specified group membership time (the default is 140 seconds), that client is removed from the tracking list.

Using the CLI

To enable the tracking and fast leave feature, enter commands such as the following.

```
FastIron(config)# interface ve 13
FastIron(config-vif-13)# ip igmp tracking
```
Syntax: ip igmp tracking

Setting the query interval

The IGMP query interval period defines how often a router will query an interface for group membership. Possible values are 10 – 3,600 seconds and the default value is 60 seconds, but the value you enter must be a little more than twice the group membership time.

To modify the default value for the IGMP query interval, enter the following.

FastIron(config)# ip igmp query-interval 120

Syntax: ip igmp query-interval <10-3600>

The interval must be a little more than two times the group membership time.

Setting the group membership time

Group membership time defines how long a group will remain active on an interface in the absence of a group report. Possible values are from 20 – 7200 seconds and the default value is 140 seconds.

To define an IGMP membership time of 240 seconds, enter the following.

FastIron(config)# ip igmp group-membership-time 240

Syntax: ip igmp group-membership-time <20-7200>

Setting the maximum response time

The maximum response time defines the maximum number of seconds that a client can wait before it replies to the query sent by the router. Possible values are 1 – 10. The default is 10.

To change the IGMP maximum response time, enter a command such as the following at the global CONFIG level of the CLI.

FastIron(config)# ip igmp max-response-time 8

Syntax: [no] ip igmp max-response-time <num>

The <num> parameter specifies the maximum number of seconds for the response time. Enter a value from 1 – 10. The default is 10.

IGMP V3 and source specific multicast protocols

Enabling IGMP V3 enables source specific multicast (SSM) filtering for DVMRP and PIM Dense (PIM-DM) for multicast group addresses in the 224.0.1.0 through 239.255.255.255 address range. However, if PIM Sparse is used as the multicast protocol, the SSM protocol should be enabled if you want to filter unwanted traffic before the Shortest Path Tree protocol switchover occurs for groups in the 232/8 range. Not configuring the SSM protocol in PIM Sparse may cause the switch or router to leak unwanted packets with the same group, but containing undesired sources, to clients. After SPT switch over, the leak stops and source specific multicast works correctly even without configuring the SSM protocol.
If the SSM protocol is not enabled and before the SPT switchover, the multicast router creates one (*, G) entry for the entire multicast group, which can have many sources. If the SSM protocol is enabled, one (S,G) entry is created for every member of the multicast group, even for members with non-existent traffic. For example, if there are 1,000 members in the group, 1,000 (S,G) entries will be created. Therefore, enabling the SSM protocol for PIM-SM requires more resources than leaving the protocol disabled.

Enabling SSM

NOTE

On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

To enable the SSM protocol on a Brocade device running PIM-SM, enter a command such as the following.

```
FastIron(config)# router pim
FastIron(config-pim-router)# ssm-enable
```

Syntax: `[no] ssm-enable`

Enter the `ssm-enable` command under the `router pim` level to globally enable the SSM protocol on a Layer 3 Switch.

Displaying IGMP V3 information on Layer 3 Switches

The sections below present the `show` commands available for IGMP V3 on Layer 3 Switches. For show commands on Layer 2 Switches, use the `show ip multicast` commands which are discussed in the section “IGMP snooping show commands” on page 821.

Displaying IGMP group status

NOTE

This report is available on Layer 3 Switches.

To display the status of all IGMP multicast groups on a device, enter the following command.

```
FastIron# show ip igmp group
```

```
Interface v18 : 1 groups
  group        phy-port static querier life mode    #_src
  1     239.0.0.1        e4/20    no     yes          include 19
Interface v110 : 3 groups
  group        phy-port static querier life mode    #_src
  2     239.0.0.1        e4/5     no     yes          include 10
  3     239.0.0.1        e4/6     no     yes     100  exclude 13
  4     224.1.10.1       e4/5     no     yes          include 1
```

To display the status of one IGMP multicast group, enter a command such as the following.

```
FastIron# show ip igmp group 239.0.0.1
```

```
Interface v110 : 1 groups
  group        phy-port static querier life mode    #_src
  1     239.0.0.1        e4/5     no     yes          include 10
```

To display the status of one IGMP multicast group, enter a command such as the following.
If the tracking and fast leave feature is enabled, you can display the list of clients that belong to a particular group by entering commands such as the following.

FastIron#show ip igmp group 239.0.0.1 detail
Display group 239.0.0.1 in all interfaces.
Interface v18 : 1 groups
 group phy-port static querier life mode #_src
1 239.0.0.1 e4/20 no yes include 19
 group: 239.0.0.1, include, permit 19 (source, life):
 (3.3.3.1 40) (3.3.3.2 40) (3.3.3.3 40) (3.3.3.4 40) (3.3.3.5 40)
 (3.3.3.6 40) (3.3.3.7 40) (3.3.3.8 40) (3.3.3.9 40) (3.3.3.10 40)
 (3.3.3.11 40) (3.3.3.12 40) (3.3.3.13 40) (3.3.3.14 40) (3.3.3.15 40)
 (3.3.3.16 40) (3.3.3.17 40) (3.3.3.18 40) (3.3.3.19 40)
Interface v110 : 1 groups
 group phy-port static querier life mode #_src
2 239.0.0.1 e4/5 no yes include 10
 group: 239.0.0.1, include, permit 10 (source, life):
 (2.2.3.0 80) (2.2.3.1 80) (2.2.3.2 80) (2.2.3.3 80) (2.2.3.4 80)
 (2.2.3.5 80) (2.2.3.6 80) (2.2.3.7 80) (2.2.3.8 80) (2.2.3.9 80)

FastIron#show ip igmp group 224.1.10.1 tracking
Display group 224.1.10.1 in all interfaces with tracking enabled.
Interface v13 : 1 groups, tracking_enabled
 group phy-port static querier life mode #_src
1 224.1.10.1 e4/15 no yes include 3
 receive reports from 3 clients:
 110.110.110.7 110.110.110.8 110.110.110.9

Syntax: show ip igmp group [<group-address> [detail] [tracking]]

If you want a report for a specific multicast group, enter that group address for <group-address>. Omit the <group-address> if you want a report for all multicast groups.

Enter detail if you want to display the source list of the multicast group.

Enter tracking if you want information on interfaces that have tracking enabled.

The following table defines the statistics for the show ip igmp group command output.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>The address of the multicast group</td>
</tr>
<tr>
<td>Phy-port</td>
<td>The physical port on which the multicast group was received.</td>
</tr>
<tr>
<td>Static</td>
<td>A "yes" entry in this column indicates that the multicast group was configured as a static group; "No" means it was not. Static multicast groups can be configured in IGMP V2 using the ip igmp static command. In IGMP V3, static sources cannot be configured in static groups.</td>
</tr>
<tr>
<td>Querier</td>
<td>"Yes" means that the port is a querier port; "No" means it is not. A port becomes a non-querier port when it receives a query from a source with a lower source IP address than the port.</td>
</tr>
<tr>
<td>Life</td>
<td>Shows the number of seconds the interface can remain in exclude mode. An exclude mode changes to include mode if it does not receive an "IS_EX" or "TO_EX" message during a certain period of time. The default is 140 seconds. There is no "life" displayed in include mode.</td>
</tr>
</tbody>
</table>
Displaying the IGMP status of an interface

You can display the status of a multicast enabled port by entering a command such as the following.

NOTE

This report is available on Layer 3 Switches.

FastIron#show ip igmp interface
query interval = 60, max response time= 3, group membership time=140
v5: default V2, PIM dense, addr=1.1.1.2
 e4/12 has 0 groups, non-Querier (age=40), default V2
v18: default V2, DVMRP, addr=2.2.2.1
 e4/20 has 0 groups, Querier, default V2
v20: configured V3, PIM dense (port down), addr=1.1.20.1
v110: configured V3, PIM dense, addr=110.110.110.1
 e4/6 has 2 groups, Querier, default V3
 group: 239.0.0.1, exclude, life=100, deny 13
 group: 224.1.10.1, include, permit 2
 e4/5 has 3 groups, Querier, default V3
 group: 224.2.2.2, include, permit 100
 group: 239.0.0.1, include, permit 10
 group: 224.1.10.1, include, permit 1

Syntax: show ip igmp interface [ve | ethernet <number> <group-address>]

Enter ve and its <number> or ethernet and its <number> to display information for a specific virtual routing interface or ethernet interface.

Entering an address for <group-address> displays information for a specified group on the specified interface.

The report shows the following information.
Displaying IGMP traffic status

To display the traffic status on each virtual routing interface, enter the following command.

NOTE
This report is available on Layer 3 Switches.

```plaintext
FastIron#show ip igmp traffic
Recv QryV2 QryV3 G-Qry GSQry MbrV2 MbrV3 Leave IsIN IsEX ToIN ToEX ALLOW BLK
v5  29   0   0   0   0   0   0   0   0   0   0   0   0
v18  15   0   0   0   30   0   0   0   0   0   0   0   0
v110  0   0   0   0   97   0   142   37   2   2   3   2
Send QryV1 QryV2 QryV3 G-Qry GSQry
v5    0   2   0   0   0
v18   0   0   30   30   0
v110  0   0   30   44   11
```

Syntax: show ip igmp traffic

The report shows the following information.

TABLE 159 Output of show ip igmp traffic

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>QryV2</td>
<td>Number of general IGMP V2 query received or sent by the virtual routing interface.</td>
</tr>
<tr>
<td>QryV3</td>
<td>Number of general IGMP V3 query received or sent by the virtual routing interface.</td>
</tr>
<tr>
<td>G-Qry</td>
<td>Number of group specific query received or sent by the virtual routing interface.</td>
</tr>
<tr>
<td>GSQry</td>
<td>Number of source specific query received or sent by the virtual routing interface.</td>
</tr>
<tr>
<td>MbrV2</td>
<td>The IGMP V2 membership report.</td>
</tr>
<tr>
<td>MbrV3</td>
<td>The IGMP V3 membership report.</td>
</tr>
<tr>
<td>Leave</td>
<td>Number of IGMP V2 “leave” messages on the interface. (See ToEx for IGMP V3.)</td>
</tr>
<tr>
<td>IsIN</td>
<td>Number of source addresses that were included in the traffic.</td>
</tr>
<tr>
<td>IsEX</td>
<td>Number of source addresses that were excluded in the traffic.</td>
</tr>
</tbody>
</table>
Clearing IGMP statistics

To clear statistics for IGMP traffic, enter the following command.

```
FastIron# clear igmp traffic
```

Syntax: `clear igmp traffic`

This command clears all the multicast traffic information on all interfaces on the device.

IGMP Proxy

Platform Support:

- FastIron X Series devices running software release 03.2.00 or later
- FCX-S devices running software release 06.0.00 and later

IGMP Proxy provides a means for the FastIron X Series routers to receive any or all multicast traffic from an upstream device if the router is not able to run PIM.

IGMP Proxy enables the router to issue IGMP host messages on behalf of hosts that the router discovered through standard PIM interfaces. The router acts as a proxy for its hosts and performs the host portion of the IGMP task on the upstream interface as follows:

- When queried, the router sends group membership reports for the groups learned
- When one of its hosts joins a multicast address group to which none of its other hosts belong, the router sends unsolicited membership reports to that group.
- When the last of its hosts in a particular multicast group leaves the group, the FastIron X Series router sends an unsolicited leave group membership report to group for all routers (multicast IP address 244.0.0.2)

Configuration notes

When using IGMP Proxy, you must do the following.

1. Configure PIM on all multicast client ports to build the group membership table. The group membership table will be reported by the proxy interface. Refer to “Globally enabling and disabling PIM” on page 844.
2. Enable IP multicast on an interface to an upstream FastIron X Series router that will be the IGMP proxy interface and configure IGMP Proxy on that interface

Also note the following limitations:

- IGMP Proxy is available in full-Layer 3 images, starting with FSX software release 03.2.00.
IGMP Proxy cannot be enabled on the same interface on which PIM SM, PIM DM, or DVMRP is enabled.

IGMP Proxy is only supported in a PIM Dense environment where there are IGMP clients connected to the Brocade device. The Brocade device will not send IGMP reports on an IGMP proxy interface for remote clients connected to a PIM neighbor, as it will not be aware of groups that the remote clients are interested in.

Configuring IGMP Proxy

Follow the steps given below to configure IGMP Proxy.

1. Configure router PIM globally.

 FastIron(config)# router pim

2. Configure an IP address on the interface (physical or virtual routing interface) that will serve as the IGMP proxy for an upstream device by entering commands such as the following.

 FastIron(config)# int e 1/3
 FastIron(config-if-e1000-1/3)# ip address 207.95.5.1/24

3. Enable IGMP Proxy on the interface.

 FastIron(config-if-e1000-1/3)# ip igmp proxy

Syntex: `[no] ip igmp proxy`

Once IGMP Proxy is configured and the FastIron X Series router receives a query on an IGMP Proxy interface, the router sends a report in response to the query before the IGMP maximum response time expires.

Displaying IGMP Proxy traffic

Use the `show ip igmp traffic` command to see traffic for IGMP Proxy.

FastIron#show ip igmp traffic

<table>
<thead>
<tr>
<th>Recv</th>
<th>QryV2</th>
<th>QryV3</th>
<th>G-Qry</th>
<th>GSQry</th>
<th>MbrV2</th>
<th>MbrV3</th>
<th>Leave</th>
<th>IsIN</th>
<th>IsEX</th>
<th>ToIN</th>
<th>ToEX</th>
<th>ALLO</th>
<th>BLK</th>
</tr>
</thead>
</table>
e1/14| 0 | 0 | 0 | 0 | 27251 | 0 | 12 | 0 | 27251 | 12 | 0 | 0 | 0 |
v10| 250 | 0 | 0 | 0 | 244 | 0 | 0 | 244 | 0 | 0 | 0 | 0 | 0 |

<table>
<thead>
<tr>
<th>Send</th>
<th>QryV1</th>
<th>QryV2</th>
<th>QryV3</th>
<th>G-Qry</th>
<th>GSQry</th>
<th>MbrV1</th>
<th>Mbrv2</th>
<th>Leave</th>
</tr>
</thead>
</table>
e1/14| 0 | 1365 | 0 | 48 | 0 | 0 | 0 | 0 |
v10| 0 | 1 | 0 | 0 | 0 | 0 | 25602 | 1 |

Syntex: `show ip igmp traffic`

Refer to “Displaying IGMP traffic status” on page 920 to interpret the information in the output. The fields in bold show information for IGMP Proxy.

IP multicast protocols and IGMP snooping on the same device

Platform Support: FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
Software release FSX 04.1.00 adds support for global Layer 2 IP multicast traffic reduction (IGMP snooping) and Layer 3 multicast routing (DVMRP/PIM-Sparse/PIM-Dense) together on the same device in the full Layer 3 software image, as long as the Layer 2 feature configuration is at the VLAN level. Releases prior to FSX 04.1.00 support global Layer 2 IP multicast traffic reduction and Layer 3 multicast routing. However, they were mutually exclusive and configuring IGMP snooping on a VLAN together with DVMRP/PIM-Sparse/PIM-Dense was not allowed. For Layer 2 multicast traffic reduction, IGMP snooping is performed independently within all VLANs that have the feature configured. Layer 3 multicast routing is performed between the IP interfaces that are configured for DVMRP/PIM-Sparse/PIM-Dense. A Layer 3 interface could be a physical, loopback, or VE port configured with an IP address.

If there are two sources for a single group, where one source sends traffic into a VLAN with IGMP snooping enabled, while the other source sends traffic to a PIM enabled Layer 3 interface, a client for the group in the same VLAN as the first source will only receive traffic from that source. It will not receive traffic from the second source connected to the Layer 3 interface. Similarly, if there is another IP interface with a Layer 3 client or PIM/DVMRP neighbor that requests traffic for the same group, it will only receive traffic from the second source and not the first.

Configuration example

Figure 123 and Figure 124 show an example IGMP snooping and PIM forwarding configuration.

FIGURE 123 Example 1: IGMP Snooping and PIM forwarding

FIGURE 124 Example 2: IGMP Snooping and PIM Forwarding
CLI commands

The following are the CLI commands for the configuration example shown in Figure 123 and Figure 124.

1. On the FESXv4 device, configure IGMP Snooping on VLAN 10.

 FastIron(config)# vlan 10 by port
 FastIron(config-vlan-10)# untagged e 1 to 4
 Added untagged port(s) ethe 1 to 4 to port-vlan 10.
 FastIron(config-vlan-10)# router-interface ve 10
 FastIron(config-vlan-10)# ip multicast active
 FastIron(config-vlan-10)# interface ve 10
 FastIron(config-vif-10)# ip address 10.10.10.10/24

2. On the FESXv4 device, enable PIM routing between VLAN/VE 20 and Interface e 13.

 FastIron(config)# vlan 20 by port
 FastIron(config-vlan-20)# untagged e 21 to 24
 Added untagged port(s) ethe 21 to 24 to port-vlan 20.
 FastIron(config-vlan-20)# router-interface ve 20
 FastIron(config-vlan-20)# exit
 FastIron(config)# router pim
 FastIron(config-pim-router)# exit
 FastIron(config)# interface ve 20
 FastIron(config-vif-20)# ip address 20.20.20.10/24
 FastIron(config-vif-20)# ip pim
3. Configure the FES/FESX neighboring device.

 FastIron(config)# ip route 20.20.20.0 255.255.255.0 30.30.30.10
 FastIron(config)# router pim
 FastIron(config-pim-router)# exit
 FastIron(config)# interface ethernet 3
 FastIron(config-if-e1000-3)# ip address 30.30.30.20/24
 FastIron(config-if-e1000-3)# ip pim
 FastIron(config-if-e1000-3)# interface ethernet 4
 FastIron(config-if-e1000-4)# ip address 40.40.40.20/24
 FastIron(config-if-e1000-4)# ip pim
IP multicast protocols and IGMP snooping on the same device
Configuring LLDP and LLDP-MED

LLDP and LLDP-MED are supported in the following releases:

- FastIron X Series devices running software release 04.0.00 or later – L2, BL3, L3
- FGS and FLS devices running software release 04.0.00 or later – L2, BL3
- FWS devices running software release 04.3.00 or later
- Turbolron X Series devices running software release 04.1.00 or later
- FCX-S devices running software release 06.0.00 and later

NOTE
Turbolron X Series devices support LLDP only. LLDP-MED is not supported on these devices.

This chapter describes how to configure the following protocols:

Link layer discovery protocol (LLDP) – The Layer 2 network discovery protocol described in the IEEE 802.1AB standard, Station and Media Access Control Connectivity Discovery. This protocol enables a station to advertise its capabilities to, and to discover, other LLDP-enabled stations in the same 802 LAN segments.

LLDP media endpoint devices (LLDP-MED) – The Layer 2 network discovery protocol extension described in the ANSI/TIA-1057 standard, LLDP for Media Endpoint Devices. This protocol enables a switch to configure and manage connected Media Endpoint devices that need to send media streams across the network (e.g., IP telephones and security cameras).

LLDP enables network discovery between Network Connectivity devices (such as switches), whereas LLDP-MED enables network discovery at the edge of the network, between Network Connectivity devices and media Endpoint devices (such as IP phones).

The information generated by LLDP and LLDP-MED can be used to diagnose and troubleshoot misconfigurations on both sides of a link. For example, the information generated can be used to discover devices with misconfigured or unreachable IP addresses, and to detect port speed and duplex mismatches.

LLDP and LLDP-MED facilitate interoperability across multiple vendor devices. Brocade devices running LLDP can interoperate with third-party devices running LLDP.

The Brocade LLDP and LLDP-MED implementation adheres to the IEEE 802.1AB and TIA-1057 standards.

Terms used in this chapter

Endpoint device – An LLDP-MED device located at the network edge, that provides some aspect of IP communications service based on IEEE 802 LAN technology. An Endpoint device is classified in one of three class types (I, II, or III) and can be an IP telephone, softphone, VoIP gateway, or conference bridge, among others.
LLDP overview

LLDP enables a station attached to an IEEE 802 LAN/MAN to advertise its capabilities to, and to discover, other stations in the same 802 LAN segments.

The information distributed by LLDP (the advertisement) is stored by the receiving device in a standard Management Information Base (MIB), accessible by a Network Management System (NMS) using a management protocol such as the Simple Network Management Protocol (SNMP). The information also can be viewed from the CLI, using `show LLDP` commands.

Figure 125 illustrates LLDP connectivity.

LLDP agent – The protocol entity that implements LLDP for a particular IEEE 802 device. Depending on the configured LLDP operating mode, an LLDP agent can send and receive LLDP advertisements (frames), or send LLDP advertisements only, or receive LLDP advertisements only.

LLDPDU (LLDP Data Unit) – A unit of information in an LLDP packet that consists of a sequence of short variable length information elements, known as **TLVs**. LLDP pass-through is not supported in conformance to IEEE standard.

MIB (Management Information Base) – A virtual database that identifies each manageable object by its name, syntax, accessibility, and status, along with a text description and unique object identifier (OID). The database is accessible by a Network Management Station (NMS) using a management protocol such as the Simple Network Management Protocol (SNMP).

Network connectivity device – A forwarding 802 LAN device, such as a router, switch, or wireless access point.

Station – A node in a network.

TLV (Type-Length-Value) – An information element in an LLDPDU that describes the type of information being sent, the length of the information string, and the value (actual information) that will be transmitted.

TTL (Time-to-Live) – Specifies the length of time that the receiving device should maintain the information acquired through LLDP in its MIB.
Benefits of LLDP

LLDP provides the following benefits:

- **Network Management:**
 - Simplifies the use of and enhances the ability of network management tools in multi-vendor environments
 - Enables discovery of accurate physical network topologies such as which devices are neighbors and through which ports they connect
 - Enables discovery of stations in multi-vendor environments

- **Network Inventory Data:**
 - Supports optional system name, system description, system capabilities and management address
 - System description can contain the device product name or model number, version of hardware type, and operating system
 - Provides device capability, such as switch, router, or WLAN access port

- **Network troubleshooting:**
 - Information generated by LLDP can be used to detect speed and duplex mismatches
 - Accurate topologies simplify troubleshooting within enterprise networks
LLDP-MED overview

LLDP-MED is an extension to LLDP. This protocol enables advanced LLDP features in a Voice over IP (VoIP) network. Whereas LLDP enables network discovery between Network Connectivity devices, LLDP-MED enables network discovery between Network Connectivity devices and media Endpoints such as, IP telephones, softphones, VoIP gateways and conference bridges.

Figure 126 demonstrates LLDP-MED connectivity.

Benefits of LLDP-MED

LLDP-MED provides the following benefits:

- Vendor-independent management capabilities, enabling different IP telephony systems to interoperate in one network.
- Automatically deploys network policies, such as Layer 2 and Layer 3 QoS policies and Voice VLANs.
- Supports E-911 Emergency Call Services (ECS) for IP telephony
- Collects Endpoint inventory information
- Network troubleshooting
 - Helps to detect improper network policy configuration

LLDP-MED class

An LLDP-MED class specifies an Endpoint type and its capabilities. An Endpoint can belong to one of three LLDP-MED class types:

- **Class 1 (Generic endpoint)** – A Class 1 Endpoint requires basic LLDP discovery services, but does not support IP media nor does it act as an end-user communication appliance. A Class 1 Endpoint can be an IP communications controller, other communication-related server, or other device requiring basic LLDP discovery services.

- **Class 2 (Media endpoint)** – A Class 2 Endpoint supports media streams and may or may not be associated with a particular end user. Device capabilities include media streaming, as well as all of the capabilities defined for Class 1 Endpoints. A Class 2 Endpoint can be a voice/media gateway, conference, bridge, media server, etc..

- **Class 3 (Communication endpoint)** – A Class 3 Endpoint supports end user IP communication. Capabilities include aspects related to end user devices, as well as all of the capabilities defined for Class 1 and Class 2 Endpoints. A Class 3 Endpoint can be an IP telephone, softphone (PC-based phone), or other communication device that directly supports the end user.

 Discovery services defined in Class 3 include location identifier (ECS/E911) information and inventory management.

The LLDP-MED device class is advertised when LLDP-MED is enabled on a port. Figure 126 illustrates LLDP-MED connectivity and supported LLDP-MED classes.

General operating principles

LLDP and LLDP-MED use the services of the Data Link sublayers, Logical Link Control and Media Access Control, to transmit and receive information to and from other **LLDP Agents** (protocol entities that implement LLDP).

LLDP is a one-way protocol. An LLDP agent can transmit and receive information to and from another LLDP agent located on an adjacent device, but it cannot solicit information from another LLDP agent, nor can it acknowledge information received from another LLDP agent.

Operating modes

When LLDP is enabled on a global basis, by default, each port on the Brocade device will be capable of transmitting and receiving LLDP packets. You can disable a port’s ability to transmit and receive LLDP packets, or change the operating mode to one of the following:

- Transmit LLDP information only
- Receive LLDP information only
General operating principles

Transmit mode

An LLDP agent sends LLDP packets to adjacent LLDP-enabled devices. The LLDP packets contain information about the transmitting device and port.

An LLDP agent initiates the transmission of LLDP packets whenever the transmit countdown timing counter expires, or whenever LLDP information has changed. When a transmit cycle is initiated, the LLDP manager extracts the MIB objects and formats this information into TLVs. The TLVs are inserted into an LLDPDU, addressing parameters are prepended to the LLDPDU, and the information is sent out LLDP-enabled ports to adjacent LLDP-enabled devices.

Receive mode

An LLDP agent receives LLDP packets from adjacent LLDP-enabled devices. The LLDP packets contain information about the transmitting device and port.

When an LLDP agent receives LLDP packets, it checks to ensure that the LLDPDUs contain the correct sequence of mandatory TLVs, then validates optional TLVs. If the LLDP agent detects any errors in the LLDPDUs and TLVs, it drops them in software. TLVs that are not recognized but do not contain basic formatting errors, are assumed to be valid and are assigned a temporary identification index and stored for future possible after retrieval by network management. All validated TLVs are stored in the neighbor database.

LLDP packets

LLDP agents transmit information about a sending device/port in packets called LLDP Data Units (LLDPDUs). All the LLDP information to be communicated by a device is contained within a single 1500 byte packet. A device receiving LLDP packets is not permitted to combine information from multiple packets.

As shown in Figure 127, each LLDPDU has three mandatory TLVs, an End of LLDPDU TLV, plus optional TLVs as selected by network management.

FIGURE 127 LLDPDU packet format

<table>
<thead>
<tr>
<th>Chassis ID TLV</th>
<th>Port ID TLV</th>
<th>Time to Live TLV</th>
<th>Optional TLV</th>
<th>...</th>
<th>Optional TLV</th>
<th>End of LLDPDU TLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

M = mandatory TLV (required for all LLDPDUs)

Each LLDPDU consists of an untagged Ethernet header and a sequence of short, variable length information elements known as TLVs.

TLVs have Type, Length, and Value fields, where:

- **Type** identifies the kind of information being sent
- **Length** indicates the length (in octets) of the information string
- **Value** is the actual information being sent (for example, a binary bit map or an alpha-numeric string containing one or more fields).
TLV support

This section lists the LLDP and LLDP-MED TLV support.

LLDP TLVs

There are two types of LLDP TLVs, as specified in the IEEE 802.3AB standard:

- **Basic management TLVs** consist of both optional general system information TLVs as well as mandatory TLVs.

 Mandatory TLVs cannot be manually configured. They are always the first three TLVs in the LLDPDU, and are part of the packet header.

 General system information TLVs are optional in LLDP implementations and are defined by the Network Administrator.

Brocade devices support the following Basic Management TLVs:

- Chassis ID (mandatory)
- Port ID (mandatory)
- Time to Live (mandatory)
- Port description
- System name
- System description
- System capabilities
- Management address
- End of LLDPDU

- **Organizationally-specific TLVs** are optional in LLDP implementations and are defined and encoded by individual organizations or vendors. These TLVs include support for, but are not limited to, the IEEE 802.1 and 802.3 standards and the TIA-1057 standard.

Brocade devices support the following Organizationally-specific TLVs:

- **802.1 organizationally-specific TLVs**

 Port VLAN ID

 VLAN name TLV

- **802.3 organizationally-specific TLVs**

 MAC/PHY configuration/status

 Power through MDI

 Link aggregation

 Maximum frame size

LLDP-MED TLVs

Brocade devices honor and send the following LLDP-MED TLVs, as defined in the TIA-1057 standard:

- LLDP-MED capabilities
- Network policy
• Location identification
• Extended power-via-MDI

Mandatory TLVs

When an LLDP agent transmits LLDP packets to other agents in the same 802 LAN segments, the following mandatory TLVs are always included:

• Chassis ID
• Port ID
• Time to Live (TTL)

This section describes the above TLVs in detail.

Chassis ID

The Chassis ID identifies the device that sent the LLDP packets.

There are several ways in which a device may be identified. A chassis ID subtype, included in the TLV and shown in Table 160, indicates how the device is being referenced in the Chassis ID field.

<table>
<thead>
<tr>
<th>ID subtype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Chassis component</td>
</tr>
<tr>
<td>2</td>
<td>Interface alias</td>
</tr>
<tr>
<td>3</td>
<td>Port component</td>
</tr>
<tr>
<td>4</td>
<td>MAC address</td>
</tr>
<tr>
<td>5</td>
<td>Network address</td>
</tr>
<tr>
<td>6</td>
<td>Interface name</td>
</tr>
<tr>
<td>7</td>
<td>Locally assigned</td>
</tr>
<tr>
<td>8 – 255</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Brocade devices use chassis ID subtype 4, the base MAC address of the device. Other third party devices may use a chassis ID subtype other than 4. The chassis ID will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).

Chassis ID (MAC address): 0012.f233.e2c0

The chassis ID TLV is always the first TLV in the LLDPDU.

Port ID

The Port ID identifies the port from which LLDP packets were sent.

There are several ways in which a port may be identified, as shown in Figure 161. A port ID subtype, included in the TLV, indicates how the port is being referenced in the Port ID field.
Brocade devices use port ID subtype 3, the permanent MAC address associated with the port. Other third party devices may use a port ID subtype other than 3. The port ID appears similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

Port ID (MAC address): 0012.f233.e2d3

The LLDPDU format is shown in “LLDPDU packet format” on page 932.

The Port ID TLV format is shown below.

FIGURE 128 Port ID TLV packet format

<table>
<thead>
<tr>
<th>TLV Type = 3</th>
<th>TLV Information String Length = 2</th>
<th>Time to Live (TTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 bits</td>
<td>9 bits</td>
<td>2 octets</td>
</tr>
</tbody>
</table>

TTL value

The Time to Live (TTL) Value is the length of time the receiving device should maintain the information acquired by LLDP in its MIB.

The TTL value is automatically computed based on the LLDP configuration settings. The TTL value will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

Time to live: 40 seconds

If the TTL field has a value other than zero, the receiving LLDP agent is notified to completely replace all information associated with the LLDP agent/port with the information in the received LLDPDU.

If the TTL field value is zero, the receiving LLDP agent is notified that all system information associated with the LLDP agent/port is to be deleted. This TLV may be used, for example, to signal that the sending port has initiated a port shutdown procedure.

The LLDPDU format is shown in “LLDPDU packet format” on page 932.

The TTL TLV format is shown below.

TABLE 161 Port ID subtypes

<table>
<thead>
<tr>
<th>ID subtype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Interface alias</td>
</tr>
<tr>
<td>2</td>
<td>Port component</td>
</tr>
<tr>
<td>3</td>
<td>MAC address</td>
</tr>
<tr>
<td>4</td>
<td>Network address</td>
</tr>
<tr>
<td>5</td>
<td>Interface name</td>
</tr>
<tr>
<td>6</td>
<td>Agent circuit ID</td>
</tr>
<tr>
<td>7</td>
<td>Locally assigned</td>
</tr>
<tr>
<td>8 – 255</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
MIB support

Brocade devices support the following standard MIB modules:

- LLDP-MIB
- LLDP-EXT-DOT1-MIB
- LLDP-EXT-DOT3-MIB
- LLDP-EXT-MED-MIB

Syslog messages

Syslog messages for LLDP provide management applications with information related to MIB data consistency and general status. These Syslog messages correspond to the lldpRemTableTablesChange SNMP notifications. Refer to “Enabling LLDP SNMP notifications and syslog messages” on page 941.

Syslog messages for LLDP-MED provide management applications with information related to topology changes. These Syslog messages correspond to the lldpXMedTopologyChangeDetected SNMP notifications. Refer to “Enabling SNMP notifications and syslog messages for LLDP-MED topology changes” on page 954.

Configuring LLDP

This section describes how to enable and configure LLDP.

Table 162 lists the LLDP global-level tasks and the default behavior/value for each task.

<table>
<thead>
<tr>
<th>Table 162</th>
<th>LLDP global configuration tasks and default behavior / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global task</td>
<td>Default behavior / value when LLDP is enabled</td>
</tr>
<tr>
<td>Enabling LLDP on a global basis</td>
<td>Disabled</td>
</tr>
<tr>
<td>Specifying the maximum number of LLDP neighbors per device</td>
<td>Automatically set to 392 neighbors per device</td>
</tr>
<tr>
<td>Specifying the maximum number of LLDP neighbors per port</td>
<td>Automatically set to 4 neighbors per port</td>
</tr>
<tr>
<td>Enabling SNMP notifications and Syslog messages</td>
<td>Disabled</td>
</tr>
<tr>
<td>Changing the minimum time between SNMP traps and Syslog messages</td>
<td>Automatically set to 2 seconds when SNMP notifications and Syslog messages for LLDP are enabled</td>
</tr>
</tbody>
</table>
Confusing LLDP

TABLE 162 LLDP global configuration tasks and default behavior /value (Continued)

<table>
<thead>
<tr>
<th>Global task</th>
<th>Default behavior / value when LLDP is enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling and disabling TLV advertisements</td>
<td>When LLDP transmit is enabled, by default, the Brocade device will automatically advertise LLDP capabilities, except for the system description, VLAN name, and power-via-MDI information, which may be configured by the system administrator. Also, if desired, you can disable the advertisement of individual TLVs.</td>
</tr>
<tr>
<td>Changing the minimum time between LLDP transmissions</td>
<td>Automatically set to 2 seconds</td>
</tr>
<tr>
<td>Changing the interval between regular LLDP transmissions</td>
<td>Automatically set to 30 seconds</td>
</tr>
<tr>
<td>Changing the holdtime multiplier for transmit TTL</td>
<td>Automatically set to 4</td>
</tr>
<tr>
<td>Changing the minimum time between port reinitializations</td>
<td>Automatically set to 2 seconds</td>
</tr>
</tbody>
</table>

Configuration notes and considerations

- LLDP is supported on Ethernet interfaces only.
- If a port is 802.1X-enabled, the transmission and reception of LLDP packets will only take place while the port is authorized.
- Cisco Discovery Protocol (CDP) and Brocade Discovery Protocol (FDP) run independently of LLDP. Therefore, these discovery protocols can run simultaneously on the same device.
- By default, the Brocade device limits the number of neighbors per port to four, and staggers the transmission of LLDP packets on different ports, in order to minimize any high-usage spikes to the CPU.
- By default, the Brocade device forwards
- Ports that are in blocking mode (spanning tree) can still receive LLDP packets from a forwarding port.
- Auto-negotiation status indicates what is being advertised by the port for 802.3 auto-negotiation.

Enabling and disabling LLDP

LLDP is enabled by default on individual ports. However, to run LLDP, you must first enable it on a global basis (on the entire device).

To enable LLDP globally, enter the following command at the global CONFIG level of the CLI.

```plaintext
FastIron(config)#lldp run
```

Syntax: `[no] lldp run

Enabling support for tagged LLDP packets

Platform Support:

- FastIron X Series devices running software release 04.2.00 or later
By default, Brocade devices do not accept tagged LLDP packets from other vendors’ devices. To enable support, apply the command `lldp tagged-packets process` at the Global CONFIG level of the CLI. When enabled, the device will accept incoming LLDP tagged packets if the VLAN tag matches any of the following:

- a configured VLAN on the port
- the default VLAN for a tagged port
- the configured untagged VLAN for a dual-mode port

To enable support for tagged LLDP packets, enter the following command.

```
FastIron(config)#lldp tagged-packets process
```

Syntax: `[no] lldp tagged-packets process`

Changing a port LLDP operating mode

LLDP packets are not exchanged until LLDP is enabled on a global basis. When LLDP is enabled on a global basis, by default, each port on the Brocade device will be capable of transmitting and receiving LLDP packets. You can disable a port’s ability to transmit and receive LLDP packets, or change the operating mode to one of the following:

- Transmit LLDP information only
- Receive LLDP information only

You can configure a different operating mode for each port on the Brocade device. For example, you could disable the receipt and transmission of LLDP packets on port e 2/1, configure port e 2/3 to only receive LLDP packets, and configure port e 2/5 to only transmit LLDP packets.

The following sections show how to change the operating mode.

Enabling and disabling receive and transmit mode

To disable the receipt and transmission of LLDP packets on individual ports, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#no lldp enable ports e 2/4 e 2/5
```

The above command disables LLDP on ports 2/4 and 2/5. These ports will not transmit nor receive LLDP packets.

To enable LLDP on a port after it has been disabled, enter the following command.

```
FastIron(config)#lldp enable ports e 2/4
```

Syntax: `[no] lldp enable ports ethernet <port-list> | all`

Use the `[no]` form of the command to disable the receipt and transmission of LLDP packets on a port.

For `port-list`, specify the ports in one of the following formats:

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`
You can list all of the ports individually, use the keyword to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword all instead of listing the ports individually.

NOTE
When a port is configured to both receive and transmit LLDP packets and the MED capabilities TLV is enabled, LLDP-MED is enabled as well. LLDP-MED is not enabled if the operating mode is set to receive only or transmit only.

Enabling and disabling receive only mode

When LLDP is enabled on a global basis, by default, each port on the Brocade device will be capable of transmitting and receiving LLDP packets. To change the LLDP operating mode from receive and transmit mode to receive only mode, simply disable the transmit mode. Enter a command such as the following at the Global CONFIG level of the CLI.

```bash
FastIron(config)#no lldp enable transmit ports e 2/4 e 2/5 e 2/6
```

The above command changes the LLDP operating mode on ports 2/4, 2/5, and 2/6 from transmit and receive mode to receive only mode.

To change a port LLDP operating mode from transmit only to receive only, first disable the transmit only mode, then enable the receive only mode. Enter commands such as the following.

```bash
FastIron(config)#no lldp enable transmit ports e 2/7 e 2/8 e 2/9
FastIron(config)#lldp enable receive ports e 2/7 e 2/8 e 2/9
```

The above commands change the LLDP operating mode on ports 2/7, 2/8, and 2/9, from transmit only to receive only. Note that if you do not disable the transmit only mode, you will configure the port to both transmit and receive LLDP packets.

NOTE
LLDP-MED is not enabled when you enable the receive only operating mode. To enable LLDP-MED, you must configure the port to both receive and transmit LLDP packets. Refer to “Enabling and disabling receive and transmit mode” on page 938.

Syntax: `[no] lldp enable receive ports ethernet <port-list> | all`

Use the [no] form of the command to disable the receive only mode.

For `port-list`, specify the ports in one of the following formats:

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

You can list all of the ports individually, use the keyword to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword all instead of listing the ports individually.

Enabling and Disabling Transmit Only Mode

When LLDP is enabled on a global basis, by default, each port on the Brocade device will be capable of transmitting and receiving LLDP packets. To change the LLDP operating mode to transmit only mode, simply disable the receive mode. Enter a command such as the following at the Global CONFIG level of the CLI.

```bash
FastIron(config)#no lldp enable receive ports e 2/4 e 2/5 e 2/6
```
The above command changes the LLDP operating mode on ports 2/4, 2/5, and 2/6 from transmit and receive mode to transmit only mode. Any incoming LLDP packets will be dropped in software.

To change a port LLDP operating mode from receive only to transmit only, first disable the receive only mode, then enable the transmit only mode. For example, enter commands such as the following at the Global CONFIG level of the CLI.

FastIron(config)#no lldp enable receive ports e 2/7 e 2/8
FastIron(config)#lldp enable transmit ports e 2/7 e 2/8

The above commands change the LLDP operating mode on ports 2/7 and 2/8 from receive only mode to transmit only mode. Any incoming LLDP packets will be dropped in software. Note that if you do not disable receive only mode, you will configure the port to both receive and transmit LLDP packets.

NOTE
LLDP-MED is not enabled when you enable the transmit only operating mode. To enable LLDP-MED, you must configure the port to both receive and transmit LLDP packets. Refer to “Enabling and disabling receive and transmit mode” on page 938.

Syntax:
[no] lldp enable transmit ports ethernet <port-list> | all

Use the [no] form of the command to disable the transmit only mode.

For *port-list*, specify the ports in one of the following formats:

- FastIron chassis devices – *slotnum/portnum*
- FESX, and FWSX compact switches – *portnum*

You can list all of the ports individually, use the keyword **to** to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword **all** instead of listing the ports individually.

Specifying the maximum number of LLDP neighbors

You can change the limit of the number of LLDP neighbors for which LLDP data will be retained, per device as well as per port.

Per device

You can change the maximum number of neighbors for which LLDP data will be retained for the entire system.

For example, to change the maximum number of LLDP neighbors for the entire device to 26, enter the following command.

FastIron(config)#lldp max-total-neighbors 26

Syntax:
[no] lldp max-total-neighbors <value>

Use the [no] form of the command to remove the static configuration and revert to the default value of 392.

where `<value>` is a number between 16 and 65536. The default number of LLDP neighbors per device is 392.
Use the `show lldp` command to view the configuration.

Per port

You can change the maximum number of LLDP neighbors for which LLDP data will be retained for each port. By default, the maximum number is four and you can change this to a value between one and 64.

For example, to change the maximum number of LLDP neighbors to six, enter the following command.

```
FastIron(config)#lldp max-neighbors-per-port 6
```

Syntax: `[no] lldp max-neighbors-per-port <value>`

Use the `[no]` form of the command to remove the static configuration and revert to the default value of four.

where `<value>` is a number from 1 to 64. The default is number of LLDP neighbors per port is four.

Use the `show lldp` command to view the configuration.

Enabling LLDP SNMP notifications and syslog messages

SNMP notifications and Syslog messages for LLDP provide management applications with information related to MIB data updates and general status.

When you enable LLDP SNMP notifications, corresponding Syslog messages are enabled as well. When you enable LLDP SNMP notifications, the device will send traps and corresponding Syslog messages whenever there are changes to the LLDP data received from neighboring devices.

LLDP SNMP notifications and corresponding Syslog messages are disabled by default. To enable them, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#lldp enable snmp notifications ports e 4/2 to 4/6
```

The above command enables SNMP notifications and corresponding Syslog messages on ports 4/2 and 4/6. By default, the device will send no more than one SNMP notification and Syslog message within a five second period. If desired, you can change this interval. Refer to “Specifying the minimum time between SNMP traps and syslog messages” on page 942.

Syntax: `[no] lldp enable snmp notifications ports ethernet <port-list> | all`

For `port-list`, specify the ports in one of the following formats:

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually.
Configuring LLDP

Specifying the minimum time between SNMP traps and syslog messages

When SNMP notifications and Syslog messages for LLDP are enabled, the device will send no more than one SNMP notification and corresponding Syslog message within a five second period. If desired, you can throttle the amount of time between transmission of SNMP traps (lldpRemTablesChange) and Syslog messages from five seconds up to a value equal to one hour (3600 seconds).

NOTE
Because LLDP Syslog messages are rate limited, some LLDP information given by the system will not match the current LLDP statistics (as shown in the show lldp statistics command output).

To change the minimum time interval between traps and Syslog messages, enter a command such as the following.

FastIron(config)#lldp snmp-notification-interval 60

When the above command is applied, the LLDP agent will send no more than one SNMP notification and Syslog message every 60 seconds.

Syntax: [no] lldp snmp-notification-interval <seconds>

where <seconds> is a value between 5 and 3600. The default is 5 seconds.

Changing the minimum time between LLDP transmissions

The LLDP transmit delay timer limits the number of LLDP frames an LLDP agent can send within a specified time frame. When you enable LLDP, the system automatically sets the LLDP transmit delay timer to two seconds. If desired, you can change the default behavior from two seconds to a value between 1 and 8192 seconds.

NOTE
The LLDP transmit delay timer must not be greater than one quarter of the LLDP transmission interval (CLI command lldp transmit-interval).

The LLDP transmit delay timer prevents an LLDP agent from transmitting a series of successive LLDP frames during a short time period, when rapid changes occur in LLDP. It also increases the probability that multiple changes, rather than single changes, will be reported in each LLDP frame.

To change the LLDP transmit delay timer, enter a command such as the following at the Global CONFIG level of the CLI.

FastIron(config)#lldp transmit-delay 7

The above command causes the LLDP agent to wait a minimum of seven seconds after transmitting an LLDP frame and before sending another LLDP frame.

Syntax: [no] lldp transmit-delay <seconds>

where <seconds> is a value between 1 and 8192. The default is two seconds. Note that this value must not be greater than one quarter of the LLDP transmission interval (CLI command lldp transmit-interval).
Changing the interval between regular LLDP transmissions

The LLDP transmit interval specifies the number of seconds between regular LLDP packet transmissions. When you enable LLDP, by default, the device will wait 30 seconds between regular LLDP packet transmissions. If desired, you can change the default behavior from 30 seconds to a value between 5 and 32768 seconds.

To change the LLDP transmission interval, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#lldp transmit-interval 40
```

The above command causes the LLDP agent to transmit LLDP frames every 40 seconds.

Syntax: `[no] lldp transmit-interval <seconds>`
where `<seconds>` is a value from 5 to 32768. The default is 30 seconds.

NOTE
Setting the transmit interval or transmit holdtime multiplier, or both, to inappropriate values can cause the LLDP agent to transmit LLDPDUs with TTL values that are excessively high. This in turn can affect how long a receiving device will retain the information if it is not refreshed.

Changing the holdtime multiplier for transmit TTL

The holdtime multiplier for transmit TTL is used to compute the actual time-to-live (TTL) value used in an LLDP frame. The TTL value is the length of time the receiving device should maintain the information in its MIB. When you enable LLDP, the device automatically sets the holdtime multiplier for TTL to four. If desired, you can change the default behavior from four to a value between two and ten.

To compute the TTL value, the system multiplies the LLDP transmit interval by the holdtime multiplier. For example, if the LLDP transmit interval is 30 and the holdtime multiplier for TTL is 4, then the value 120 is encoded in the TTL field in the LLDP header.

To change the holdtime multiplier, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#lldp transmit-hold 6
```

Syntax: `[no] lldp transmit-hold <value>`
where `<value>` is a number from 2 to 10. The default value is 4.

NOTE
Setting the transmit interval or transmit holdtime multiplier, or both, to inappropriate values can cause the LLDP agent to transmit LLDPDUs with TTL values that are excessively high. This in turn can affect how long a receiving device will retain the information if it is not refreshed.

Changing the minimum time between port reinitializations

The LLDP re-initialization delay timer specifies the minimum number of seconds the device will wait from when LLDP is disabled on a port, until it will honor a request to re-enable LLDP on that port. When you enable LLDP, the system sets the re-initialization delay timer to two seconds. If desired, you can change the default behavior from two seconds to a value between one and ten seconds.
To set the re-initialization delay timer, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#lldp reinit-delay 5
```

The above command causes the device to wait five seconds after LLDP is disabled, before attempting to honor a request to re-enable it.

Syntax: `[no] lldp reinit-delay <seconds>`

where `<seconds>` is a value from 1 – 10. The default is two seconds.

LLDP TLVs advertised by the Brocade device

When LLDP is enabled on a global basis, the Brocade device will automatically advertise the following information, except for the features noted:

General system information:
- Management address
- Port description
- System capabilities
- System description (not automatically advertised)
- System name

802.1 capabilities:
- VLAN name (not automatically advertised)
- Untagged VLAN ID

802.3 capabilities:
- Link aggregation information
- MAC/PHY configuration and status
- Maximum frame size
- Power-via-MDI information (not automatically advertised)

The above TLVs are described in detail in the following sections.

NOTE
The system description, VLAN name, and power-via-MDI information TLVs are not automatically enabled. The following sections show how to enable these advertisements.

General system information

Except for the system description, the Brocade device will advertise the following system information when LLDP is enabled on a global basis:

- Management address
- Port description
- System capabilities
- System description (not automatically advertised)
- System name
Management Address
A management address is normally an IPv4 or IPv6 address that can be used to manage the device. Management address advertising has two modes: default, or explicitly configured. The default mode is used when no addresses are configured to be advertised for a given port. If any addresses are configured to be advertised for a given port, then only those addresses are advertised. This applies across address types, so for example, if just one IPv4 address is explicitly configured to be advertised for a port, then no IPv6 addresses will be advertised for that port (since none were configured to be advertised), even if IPv6 addresses are configured within the system.

NOTE
IPv6 management addresses are supported starting in release FSX 05.1.00.

If no management address is explicitly configured to be advertised, the Brocade device will use the first available IPv4 address and the first available IPv6 address (so it may advertise IPv4, IPv6 or both). A Layer 3 switch will select the first available address of each type from those configured on the following types of interfaces, in the following order of preference:

- Physical port on which LLDP will be transmitting the packet
- Virtual router interface (VE) on a VLAN that the port is a member of
- Dedicated management port
- Loopback interface
- Virtual router interface (VE) on any other VLAN
- Other physical port
- Other interface

For IPv6 addresses, link-local and anycast addresses will be excluded from these searches.

If no IP address is configured on any of the above, the port’s current MAC address will be advertised.

To advertise a IPv4 management address, enter a command such as the following:

```
FastIron(config)#lldp advertise management-address ipv4 209.157.2.1 ports e 1/4
```

The management address will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info):

```
Management address (IPv4): 209.157.2.1
```

Syntax:

```
[no] lldp advertise management-address ipv4 <ipv4 address> ports ethernet <port list> | all
```

To support an IPv6 management address, there is a similar command that has equivalent behavior as the IPv4 command.

To advertise an IPv6 management address, enter a command such as the following:

```
FastIron(config)#lldp advertise management-address ipv6 1234:5678::90 ports e 2/7
```

Syntax:

```
[no] lldp advertise management-address ipv6 <ipv6 address> ports ethernet <port list> | all
```

<ipv4 address> or <ipv6 address> or both are the addresses that may be used to reach higher layer entities to assist discovery by network management. In addition to management addresses, the advertisement will include the system interface number associated with the management address.
For `<port list>`, specify the port(s) in the format `<slotnum>/portnum>`, where `<slotnum>` is required on chassis devices only. You can list all of the ports individually; use the keyword to specify a range of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually.

Port description
The port description TLV identifies the port from which the LLDP agent transmitted the advertisement. The port description is taken from the ifDescr MIB object from MIB-II.

By default, the port description is automatically advertised when LLDP is enabled on a global basis. To disable advertisement of the port description, enter a command such as the following.

```
FastIron(config)#no lldp advertise port-description ports e 2/4 to 2/12
```

The port description will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).

```
Port description: “GigabitEthernet20”
```

Syntax: `[no] lldp advertise port-description ports ethernet `<port-list>` | all`

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

System capabilities
The system capabilities TLV identifies the primary functions of the device and indicates whether these primary functions are enabled. The primary functions can be one or more of the following (more than one for example, if the device is both a bridge and a router):

- Repeater
- Bridge
- WLAN access point
- Router
- Telephone
- DOCSIS cable device
- Station only (devices that implement end station capability)
- Other

System capabilities for Brocade devices are based on the type of software image in use (e.g., Layer 2 switch or Layer 3 router). The enabled capabilities will be the same as the available capabilities, except that when using a router image (base or full Layer 3), if the global route-only feature is turned on, the bridge capability will not be included, since no bridging takes place.
By default, the system capabilities are automatically advertised when LLDP is enabled on a global basis. To disable this advertisement, enter a command such as the following.

```
FastIron(config)#no lldp advertise system-capabilities ports e 2/4 to 2/12
```

The system capabilities will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (``show lldp local-info``).

```
System capabilities :   bridge
Enabled capabilities:   bridge
```

Syntax: `[no] lldp advertise system-capabilities ports ethernet <port-list> | all`

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword *to* to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword *all* instead of listing the ports individually. Note that using the keyword *all* may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

System description

The system description is the network entity, which can include information such as the product name or model number, the version of the system hardware type, the software operating system level, and the networking software version. The information corresponds to the sysDescr MIB object in MIB-II.

To advertise the system description, enter a command such as the following.

```
FastIron(config)#lldp advertise system-description ports e 2/4 to 2/12
```

The system description will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (``show lldp local-info``).

```
+ System description  : "Brocade Communications, Inc.,FESX424-PREM-PoE, IronWare Version 04.0.00b256T3e1 Compiled on Sep 04 2007 at 0\3:54:29 labeled as SXS04000b256"
```

NOTE

The contents of the show command output will vary depending on which TLVs are configured to be advertised.

Syntax: `[no] lldp advertise system-description ports ethernet <port-list> | all`

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`
You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

System name

The system name is the system administratively assigned name, taken from the `sysName` MIB object in MIB-II. The `sysName` MIB object corresponds to the name defined with the CLI command `hostname`. By default, the system name is automatically advertised when LLDP is enabled on a global basis. To disable this advertisement, enter a command such as the following.

```
FastIron(config)#no lldp advertise system-name ports e 2/4 to 2/12
```

The system name will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).

```
System name:  “FESX424_POE”
```

Syntax: `[no] lldp advertise system-name ports ethernet <port-list> [all]

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FEX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

802.1 capabilities

Except for the VLAN name, the Brocade device will advertise the following 802.1 attributes when LLDP is enabled on a global basis:

- VLAN name (not automatically advertised)
- Untagged VLAN ID

VLAN name

The VLAN name TLV contains the name and VLAN ID of a VLAN configured on a port. An LLDPDU may include multiple instances of this TLV, each for a different VLAN.

To advertise the VLAN name, enter a command such as the following.

```
FastIron(config)#lldp advertise vlan-name vlan 99 ports e 2/4 to 2/12
```
Configuring LLDP

The VLAN name will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

```
VLAN name (VLAN 99): “Voice-VLAN-99”
```

Syntax: `[no] lldp advertise vlan-name vlan <vlan ID> ports ethernet <port-list> | all

For `<vlan ID>`, enter the VLAN ID to advertise.

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

Untagged VLAN id

The port VLAN ID TLV advertises the Port VLAN Identifier (PVID) that will be associated with untagged or priority-tagged frames. If the port is not an untagged member of any VLAN (i.e., the port is strictly a tagged port), the value zero will indicate that.

By default, the port VLAN ID is automatically advertised when LLDP is enabled on a global basis. To disable this advertisement, enter a command such as the following.

```
FastIron(config)#no lldp advertise port-vlan-id ports e 2/4 to 2/12
```

The untagged VLAN ID will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

```
Port VLAN ID: 99
```

Syntax: `[no] lldp advertise port-vlan-id ports ethernet <port-list> | all

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.
802.3 capabilities

Except for Power-via-MDI information, the Brocade device will advertise the following 802.3 attributes when LLDP is enabled on a global basis:

- Link aggregation information
- MAC/PHY configuration and status
- Maximum frame size
- Power-via-MDI information (not automatically advertised)

Link aggregation

The link-aggregation TLV indicates the following:

- Whether the link is capable of being aggregated
- Whether the link is currently aggregated
- The primary trunk port

Brocade devices advertise link aggregation information about standard link aggregation (LACP) as well as static trunk configuration.

By default, link-aggregation information is automatically advertised when LLDP is enabled on a global basis. To disable this advertisement, enter a command such as the following.

```
FastIron(config)#no lldp advertise link-aggregation ports e 2/12
```

Syntax: `[no] lldp advertise link-aggregation ports ethernet <port-list> | all`

The link aggregation advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).

```
Link aggregation: not capable
```

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

MAC/PHY configuration status

The MAC/PHY configuration and status TLV includes the following information:

- Auto-negotiation capability and status
- Speed and duplex mode
- Flow control capabilities for auto-negotiation
- Port speed down-shift and maximum port speed advertisement
• If applicable, indicates if the above settings are the result of auto-negotiation during link initiation or of a manual set override action

The advertisement reflects the effects of the following CLI commands:

• speed-duplex
• flow-control
• gig-default
• link-config

By default, the MAC/PHY configuration and status information are automatically advertised when LLDP is enabled on a global basis. To disable this advertisement, enter a command such as the following.

```
FastIron(config)#no lldp advertise mac-phy-config-status ports e 2/4 to 2/12
```

The MAC/PHY configuration advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

```
+ 802.3 MACPHY : auto-negotiation enabled
  Advertised capabilities: 10baseT-HD, 10baseT-FD, 100baseTX-HD, 100baseTX-FD,
  fdxSPause, fdxBPause, 1000baseT-HD, 1000baseT-FD
  Operational MAU type: 100BaseTX-FD

Syntax: [no] lldp advertise mac-phy-config-status ports ethernet <port-list> | all
```

For `<port-list>`, specify the ports in one of the following formats:

• FastIron chassis devices – `<slotnum/portnum>`
• FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

Maximum frame size

The maximum frame size TLV provides the maximum 802.3 frame size capability of the port. This value is expressed in octets and includes the four-octet Frame Check Sequence (FCS). The default maximum frame size is 1522. The advertised value may change depending on whether the `aggregated-vlan` or `jumbo` CLI commands are in effect.

By default, the maximum frame size is automatically advertised when LLDP is enabled on a global basis. To disable this advertisement, enter a command such as the following.

```
FastIron(config)#no lldp advertise max-frame-size ports e 2/4 to 2/12
```

The maximum frame size advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

```
Maximum frame size: 1522 octets
```
Configuring LLDP

Syntax: [no] lldp advertise max-frame-size ports ethernet <port-list> | all

For <port-list>, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `all` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

Power-via-MDI

The power-via-MDI TLV provides general information about Power over Ethernet (POE) capabilities and status of the port. It indicates the following:

- POE capability (supported or not supported)
- POE status (enabled or disabled)
- Power Sourcing Equipment (PSE) power pair – indicates which pair of wires is in use and whether the pair selection can be controlled. The Brocade implementation always uses pair A, and cannot be controlled.
- Power class – Indicates the range of power that the connected powered device has negotiated or requested.

NOTE

The power-via-MDI TLV described in this section applies to LLDP. There is also a power-via-MDI TLV for LLDP-MED devices, which provides extensive POE information. Refer to “Extended power-via-MDI information” on page 964.

To advertise the power-via-MDI information, enter a command such as the following.

```
FastIron(config)#lldp advertise power-via-mdi ports e 2/4 to 2/12
```

The power-via-MDI advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).

```
+ 802.3 Power via MDI: PSE port, power enabled, class 0
  Power Pair : A (not controllable)
```

Syntax: [no] lldp advertise power-via-mdi ports ethernet <port-list> | all

For <port-list>, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`
You can list all of the ports individually, use the keyword `all` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

Configuring LLDP-MED

This section provides the details for configuring LLDP-MED.

NOTE
LLDP-MED is not supported on TurboIron X Series devices.

<table>
<thead>
<tr>
<th>Table 163</th>
<th>LLDP-MED configuration tasks and default behavior / value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Default behavior / value</td>
</tr>
<tr>
<td>Global CONFIG-level tasks</td>
<td></td>
</tr>
<tr>
<td>Enabling LLDP-MED on a global basis</td>
<td>Disabled</td>
</tr>
<tr>
<td>Enabling SNMP notifications and Syslog messages for LLDP-MED topology change</td>
<td>Disabled</td>
</tr>
<tr>
<td>Changing the Fast Start Repeat Count</td>
<td>The system automatically sets the fast start repeat count to 3 when a Network Connectivity Device receives an LLDP packet from an Endpoint that is newly connected to the network.</td>
</tr>
<tr>
<td>Interface-level tasks</td>
<td></td>
</tr>
<tr>
<td>Defining a location ID</td>
<td>Not configured</td>
</tr>
<tr>
<td>Defining a network policy</td>
<td>Not configured</td>
</tr>
</tbody>
</table>

Enabling LLDP-MED

When LLDP is enabled globally, LLDP-MED is enabled if the LLDP-MED capabilities TLV is also enabled. By default, the LLDP-MED capabilities TLV is automatically enabled. To enable LLDP, refer to “Enabling and disabling LLDP” on page 937.

NOTE
LLDP-MED is not enabled on ports where the LLDP operating mode is receive only or transmit only. LLDP-MED is enabled on ports that are configured to both receive and transmit LLDP packets and have the LLDP-MED capabilities TLV enabled.
Enabling SNMP notifications and syslog messages for LLDP-MED topology changes

SNMP notifications and Syslog messages for LLDP-MED provide management applications with information related to topology changes. For example, SNMP notifications can alert the system whenever a remote Endpoint device is connected to or removed from a local port. SNMP notifications identify the local port where the topology change occurred, as well as the device capability of the remote Endpoint device that was connected to or removed from the port.

When you enable LLDP-MED SNMP notifications, corresponding Syslog messages are enabled as well. When you enable LLDP-MED SNMP notifications, the device will send traps and Syslog messages when an LLDP-MED Endpoint neighbor entry is added or removed.

SNMP notifications and corresponding Syslog messages are disabled by default. To enable them, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#lldp enable snmp med-topo-change-notifications ports e 4/4 to 4/6
```

Syntax: `[no] lldp enable snmp med-topo-change-notifications ports ethernet <port-list> | all`

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

Changing the fast start repeat count

The fast start feature enables a Network Connectivity Device to initially advertise itself at a faster rate for a limited time when an LLDP-MED Endpoint has been newly detected or connected to the network. This feature is important within a VoIP network, for example, where rapid availability is crucial for applications such as emergency call service location (E911).

The fast start timer starts when a Network Connectivity Device receives the first LLDP frame from a newly detected Endpoint.

The **LLDP-MED fast start repeat count** specifies the number of LLDP packets that will be sent during the LLDP-MED fast start period. By default, the device will send three packets at one-second intervals. If desired, you can change the number of packets the device will send per second, up to a maximum of 10.

NOTE

The LLDP-MED fast start mechanism is only intended to run on links between Network Connectivity devices and Endpoint devices. It does not apply to links between LAN infrastructure elements, including between Network Connectivity devices, or to other types of links.
To change the LLDP-MED fast start repeat count, enter commands such as the following.

```
FastIron(config)#lldp med fast-start-repeat-count 5
```

The above command causes the device to send five LLDP packets during the LLDP-MED fast start period.

Syntax: `[no] lldp med fast-start-repeat-count <value>

where value is a number from 1 to 10, which specifies the number of packets that will be sent during the LLDP-MED fast start period. The default is 3.

Defining a location id

The LLDP-MED Location Identification extension enables the Brocade device to set the physical location that an attached Class III Endpoint will use for location-based applications. This feature is important for applications such as IP telephony, for example, where emergency responders need to quickly determine the physical location of a user in North America that has just dialed 911.

For each port, you can define one or more of the following location ID formats:

- Geographic location (coordinate-based)
- Civic address
- Emergency Call Services (ECS) Emergency Location Identification Number (ELIN)

The above location ID formats are defined in the following sections.

Coordinate-based location

Coordinate-based location is based on the IETF RFC 3825 [6] standard, which specifies a Dynamic Host Configuration Protocol (DHCP) option for the coordinate-based geographic location of a client.

When you configure an Endpoint location information using the coordinate-based location, you specify the latitude, longitude, and altitude, along with **resolution indicators** (a measure of the accuracy of the coordinates), and the reference **datum** (the map used for the given coordinates).

To configure a coordinate-based location for an Endpoint device, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#lldp med location-id coordinate-based latitude -78.303 resolution 20 longitude 34.27 resolution 18 altitude meters 50 resolution 16 wgs84
```

Syntax: `[no] lldp med location-id coordinate-based

- latitude <degrees> resolution <bits>
- longitude <degrees> resolution <bits>
- altitude floors <number> resolution <bits> | meters <number> resolution <bits> <datum>

latitude <degrees> is the angular distance north or south from the earth equator measured through 90 degrees. Positive numbers indicate a location north of the equator and negative numbers indicate a location south of the equator.

resolution <bits> specifies the precision of the value given for latitude. A smaller value increases the area within which the device is located. For latitude, enter a number between 1 and 34.
longitude \(<\text{degrees}>\) is the angular distance from the intersection of the zero meridian. Positive values indicate a location east of the prime meridian and negative numbers indicate a location west of the prime meridian.

resolution \(<\text{bits}>\) specifies the precision of the value given for longitude. A smaller value increases the area within which the device is located. For longitude resolution, enter a number between 1 and 34.

altitude floors \(<\text{number}>\) is the vertical elevation of a building above the ground, where 0 represents the floor level associated with the ground level at the main entrance and larger values represent floors that are above (higher in altitude) floors with lower values. For example, 2 for the 2nd floor. Sub-floors can be represented by non-integer values. For example, a mezzanine between floor 1 and floor 2 could be represented as 1.1. Similarly, the mezzanines between floor 4 and floor 5 could be represented as 4.1 and 4.2 respectively. Floors located below ground level could be represented by negative values.

resolution \(<\text{bits}>\) specifies the precision of the value given for altitude. A smaller value increases the area within which the device is located. For floors resolution, enter the value 0 if the floor is unknown, or 30 if a valid floor is being specified.

altitude meters \(<\text{number}>\) is the vertical elevation in number of meters, as opposed to floors.

resolution \(<\text{bits}>\) specifies the precision of the value given for altitude. A smaller value increases the area within which the device is located. For meters resolution, enter a value from 0 to 30.

\(<\text{Datum}>\) is the map used as the basis for calculating the location. Specify one of the following:

- \text{wgs84} – (geographical 3D) – World Geodesic System 1984, CRS Code 4327, Prime Meridian Name: Greenwich
- \text{nad83-navd88} – North American Datum 1983, CRS Code 4269, Prime Meridian Name: Greenwich; The associated vertical datum is the North American Vertical Datum of 1988 (NAVD88). Use this datum when referencing locations on land. If land is near tidal water, use \text{nad83-mllw} (below).
- \text{nad83-mllw} – North American Datum 1983, CRS Code 4269, Prime Meridian Name: Greenwich; The associated vertical datum is mean lower low water (MLLW). Use this datum when referencing locations on water, sea, or ocean.

Example coordinate-based location configuration
The following shows an example coordinate-based location configuration for the Sears Tower, at the following location.

103rd Floor
233 South Wacker Drive
Chicago, IL 60606

FastIron(config)#lldp med location-id coordinate-based latitude 41.87884
resolution 18 longitude 87.63602 resolution 18 altitude floors 103 resolution 30
wgs84

The above configuration shows the following:

- Latitude is 41.87884 degrees north (or 41.87884 degrees).
- Longitude is 87.63602 degrees west (or 87.63602 degrees).
- The latitude and longitude resolution of 18 describes a geo-location area that is latitude 41.8769531 to latitude 41.8789062 and extends from -87.6367188 to -87.6347657 degrees longitude. This is an area of approximately 373412 square feet (713.3 ft. x 523.5 ft.).
• The location is inside a structure, on the 103rd floor.
• The WGS 84 map was used as the basis for calculating the location.

Example coordinate-based location advertisement

The coordinate-based location advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (**show lldp local-info**).

```
+ MED Location ID
 Data Format: Coordinate-based
 Latitude Resolution : 20 bits
 Latitude Value      : -78.303 degrees
 Longitude Resolution: 18 bits
 Longitude Value     : 34.27 degrees
 Altitude Resolution : 16 bits
 Altitude Value      : 50. meters
 Datum               : WGS 84
```

Civic address location

When you configure a media Endpoint location using the address-based location, you specify the location the entry refers to, the country code, and the elements that describe the civic or postal address.

To configure a civic address-based location for LLDP-MED, enter commands such as the following at the Global CONFIG level of the CLI.

FastIron(config)#lldp med location-id civic-address refers-to client country US
elem 1 CA elem 3 “Santa Clara” elem 6 “4980 Great America Pkwy” elem 24 95054 elem
27 5 elem 28 551 elem 29 office elem 23 “John Doe”

Syntax: [no] lldp med location-id civic-address refers-to <elem> country <country code> elem <CA type> <value> [elem <CA type> <value>] [elem <CA type> <value>]....

referred-to <elem> describes the location that the entry refers to. Specify one of the following:

• client
• dhcp-server
• network-element

where **dhcp-server** or **network-element** should only be used if it is known that the Endpoint is in close physical proximity to the DHCP server or network element.

<country code> is the two-letter ISO 3166 country code in capital ASCII letters.

Example

• CA – Canada
• DE – Germany
• JP – Japan
• KR – Korea
• US – United States

<CA type> is a value from 0 – 255, that describes the civic address element. For example, a CA type of 24 specifies a postal or zip code. Valid elements and their types are listed in **Table 164**.
<value> is the actual value of the elem <CA type>, above. For example, 95123 for the postal or zip code. Acceptable values are listed in Table 164, below.

NOTE
If the value of an element contains one or more spaces, use double quotation marks (") at the beginning and end of the string. For example, `elem 3 "Santa Clara"`.

Table 164 Elements used with civic address

<table>
<thead>
<tr>
<th>Civic Address (CA) type</th>
<th>Description</th>
<th>Acceptable values / examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Language</td>
<td>The ISO 639 language code used for presenting the address information.</td>
</tr>
<tr>
<td>1</td>
<td>National subdivisions (state, canton, region, province, or prefecture)</td>
<td>Examples: Canada – Province Germany – State Japan – Metropolis Korea – Province United States – State</td>
</tr>
<tr>
<td>2</td>
<td>County, parish, gun (JP), or district (IN)</td>
<td>Examples: Canada – County Germany – County Japan – City or rural area Korea – County United States – County</td>
</tr>
<tr>
<td>3</td>
<td>City, township, or shi (JP)</td>
<td>Examples: Canada – City or town Germany – City Japan – Ward or village Korea – City or village United States – City or town</td>
</tr>
<tr>
<td>4</td>
<td>City division, borough, city district, ward, or chou (JP)</td>
<td>Examples: Canada – N/A Germany – District Japan – Town Korea – Urban district United States – N/A</td>
</tr>
<tr>
<td>5</td>
<td>Neighborhood or block</td>
<td>Examples: Canada – N/A Germany – N/A Japan – City district Korea – Neighborhood United States – N/A</td>
</tr>
<tr>
<td>6</td>
<td>Street</td>
<td>Examples: Canada – Street Germany – Street Japan – Block Korea – Street United States – Street</td>
</tr>
<tr>
<td>16</td>
<td>Leading street direction</td>
<td>N (north), E (east), S (south), W (west), NE, NW, SE, SW</td>
</tr>
<tr>
<td>17</td>
<td>Trailing street suffix</td>
<td>N (north), E (east), S (south), W (west), NE, NW, SE, SW</td>
</tr>
<tr>
<td>Civic Address (CA) type</td>
<td>Description</td>
<td>Acceptable values / examples</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>18</td>
<td>Street suffix</td>
<td>Acceptable values for the United States are listed in the United States Postal Service Publication 28 [18], Appendix C. Example: Ave, Place</td>
</tr>
<tr>
<td>19</td>
<td>House number</td>
<td>The house number (street address) Example: 1234</td>
</tr>
<tr>
<td>20</td>
<td>House number suffix</td>
<td>A modifier to the house number. It does not include parts of the house number. Example: A, 1/2</td>
</tr>
<tr>
<td>21</td>
<td>Landmark or vanity address</td>
<td>A string name for a location. It conveys a common local designation of a structure, a group of buildings, or a place that helps to locate the place. Example: UC Berkeley</td>
</tr>
<tr>
<td>22</td>
<td>Additional location information</td>
<td>An unstructured string name that conveys additional information about the location. Example: west wing</td>
</tr>
<tr>
<td>23</td>
<td>Name (residence and office occupant)</td>
<td>Identifies the person or organization associated with the address. Example: Textures Beauty Salon</td>
</tr>
<tr>
<td>24</td>
<td>Postal / zip code</td>
<td>The valid postal / zip code for the address. Example: 95054-1234</td>
</tr>
<tr>
<td>25</td>
<td>Building (structure)</td>
<td>The name of a single building if the street address includes more than one building or if the building name is helpful in identifying the location. Example: Law Library</td>
</tr>
<tr>
<td>26</td>
<td>Unit (apartment, suite)</td>
<td>The name or number of a part of a structure where there are separate administrative units, owners, or tenants, such as separate companies or families who occupy that structure. Common examples include suite or apartment designations. Example: Apt 27</td>
</tr>
<tr>
<td>27</td>
<td>Floor</td>
<td>Example: 4</td>
</tr>
<tr>
<td>28</td>
<td>Room number</td>
<td>The smallest identifiable subdivision of a structure. Example: 7A</td>
</tr>
<tr>
<td>29</td>
<td>Placetype</td>
<td>The type of place described by the civic coordinates. For example, a home, office, street, or other public space. Example: Office</td>
</tr>
<tr>
<td>30</td>
<td>Postal community name</td>
<td>When the postal community name is defined, the civic community name (typically CA type 3) is replaced by this value. Example: Alviso</td>
</tr>
<tr>
<td>31</td>
<td>Post office box (P.O. box)</td>
<td>When a P.O. box is defined, the street address components (CA types 6, 16, 17, 18, 19, and 20) are replaced with this value. Example: P.O. Box 1234</td>
</tr>
<tr>
<td>32</td>
<td>Additional code</td>
<td>An additional country-specific code that identifies the location. For example, for Japan, this is the Japan Industry Standard (JIS) address code. The JIS address code provides a unique address inside of Japan, down to the level of indicating the floor of the building.</td>
</tr>
</tbody>
</table>
Example civic address location advertisement
The Civic address location advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

Example:
```
+ MED Location ID
  Data Format: Civic Address
  Location of: Client
  Country    : "US"
  CA Type    : 1
  CA Value   : "CA"
  CA Type    : 3
  CA Value   : "Santa Clara"
  CA Type    : 6
  CA Value   : "4980 Great America Pkwy."
  CA Type    : 24
  CA Value   : "95054"
  CA Type    : 27
  CA Value   : "5"
  CA Type    : 28
  CA Value   : "551"
  CA Type    : 29
  CA Value   : "office"
  CA Type    : 23
  CA Value   : "John Doe"
```

Emergency call services
The Emergency Call Service (ECS) location is used specifically for Emergency Call Services applications.

When you configure a media Endpoint location using the emergency call services location, you specify the Emergency Location Identification Number (ELIN) from the North America Numbering Plan format, supplied to the Public Safety Answering Point (PSAP) for ECS purposes.

To configure an ECS-based location for LLDP-MED, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)#lldp med location-id ecs-elin 4082071700
```

Syntax: `[no] lldp med location-id ecs-elin <number> ports ethernet <port-list> | all

<number> is a number from 10 to 25 digits in length.

For `port-list`, specify the ports in one of the following formats:
Configuring LLDP-MED

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually.

Example ECS ELIN location advertisements
The ECS ELIN location advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).

```
+ MED Location ID
  Data Format: ECS ELIN
  Value : 4082071700
```

Defining an LLDP-MED network policy
An LLDP-MED network policy defines an Endpoint VLAN configuration (VLAN type and VLAN ID) and associated Layer 2 and Layer 3 priorities that apply to a specific set of applications on a port.

NOTE
This feature applies to applications that have specific real-time network policy requirements, such as interactive voice or video services. It is not intended to run on links other than between Network Connectivity devices and Endpoints, and therefore does not advertise the multitude of network policies that frequently run on an aggregated link.

To define an LLDP-MED network policy for an Endpoint, enter a command such as the following.

```
FastIron(config)#lldp med network-policy application voice tagged vlan 99
  priority 3 dscp 22 port e 2/6
```

The network policy advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).

```
+ MED Network Policy
  Application Type : Voice
  Policy Flags     : Known Policy, Tagged
  VLAN ID          : 99
  L2 Priority      : 3
  DSCP Value       : 22
```

NOTE
Endpoints will advertise a policy as “unknown” in the `show lldp neighbor detail` command output, if it is a policy that is required by the Endpoint and the Endpoint has not yet received it.

Configuration syntax
The CLI syntax for defining an LLDP-MED network policy differs for tagged, untagged, and priority tagged traffic. Refer to the appropriate syntax, below.
For tagged traffic
Syntax: [no] lldp med network-policy application <application type> tagged vlan <vlan ID> priority <0 – 7> dscp <0 – 63> ports ethernet <port-list> | all

For untagged traffic
Syntax: [no] lldp med network-policy application <application type> untagged dscp <0 – 63> ports ethernet <port-list> | all

For priority-tagged traffic
Syntax: [no] lldp med network-policy application <application type> priority-tagged priority <0 – 7> dscp <0 – 63> ports ethernet <port-list> | all

For port-list, specify the ports in one of the following formats:

- FastIron chassis devices – slotnum/portnum
- FESX, and FWSX compact switches – portnum

You can list all of the ports individually, use the keyword to to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword all instead of listing the ports individually.

<application type> indicates the primary function of the applications defined by this network policy. Application type can be one of the following:

- guest-voice – Limited voice service for guest users and visitors with their own IP telephony handsets or similar devices that support interactive voice services.
- guest-voice-signaling – Limited voice service for use in network topologies that require a different policy for guest voice signaling than for guest voice media.
- softphone-voice – Softphone voice service for use with multi-media applications that work in association with VoIP technology, enabling phone calls direct from a PC or laptop. Softphones do not usually support multiple VLANs, and are typically configured to use an untagged VLAN or a single tagged data-specific VLAN. Note that when a network policy is defined for use with an untagged VLAN, the Layer 2 priority field is ignored and only the DSCP value is relevant.
- streaming-video – Applies to broadcast- or multicast-based video content distribution and similar applications that support streaming video services requiring specific network policy treatment. Video applications that rely on TCP without buffering would not be an intended use of this application type.
- video-conferencing – Applies to dedicated video conferencing equipment and similar devices that support real-time interactive video/audio services.
- video-signaling – For use in network topologies that require a separate policy for video signaling than for video media. Note that this application type should not be advertised if all the same network policies apply as those advertised in the video conferencing policy TLV.
- voice – For use by dedicated IP telephony handsets and similar devices that support interactive voice services.
- voice-signaling – For use in network topologies that require a different policy for voice signaling than for voice media. Note that this application type should not be advertised if all the same network policies apply as those advertised in the voice policy TLV.
- tagged vlan <vlan id> specifies the tagged VLAN that the specified application type will use.
- untagged indicates that the device is using an untagged frame format.
• **priority-tagged** indicates that the device uses priority-tagged frames. In this case, the device uses the default VLAN (PVID) of the ingress port.

• **priority** \(<0 – 7>\) indicates the Layer 2 priority value to be used for the specified application type. Enter 0 to use the default priority.

• **dscp** \(<0 – 63>\) specifies the Layer 3 Differentiated Service codepoint priority value to be used for the specified application type. Enter 0 to use the default priority.

For \(<\text{port-list}>\), specify the ports in one of the following formats:

• FastIron GS and GmS-STK, FastIron LS and LS-STK and FastIron WS compact switches – \(<\text{stack-unit/slotnum/portnum}>\)

• FastIron chassis devices – \(<\text{slotnum/portnum}>\)

• FESX, and FWSX compact switches – \(<\text{portnum}>\)

You can list all of the ports individually, use the keyword to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword \textit{all} instead of listing the ports individually. Note that using the keyword \textit{all} may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

LLDP-MED attributes advertised by the Brocade device

LLDP-MED attributes are only advertised on a port if LLDP-MED is enabled (which is done by enabling the LLDP-MED capabilities TLV), the port operating mode is receive and transmit (the default), and the port has received an LLDP-MED advertisement from an Endpoint. By default, the Brocade device will automatically advertise the following LLDP-MED attributes when the above criteria are met:

• LLDP-MED capabilities

• Location ID

• Network policy

• Power-via-MDI information

NOTE

Although the Location ID and Network policy attributes are automatically advertised, they will have no effect until they are actually defined.

LLDP-MED capabilities

When enabled, LLDP-MED is enabled, and the LLDP-MED capabilities TLV is sent whenever any other LLDP-MED TLV is sent. When disabled, LLDP-MED is disabled and no LLDP-MED TLVs are sent.

The LLDP-MED capabilities advertisement includes the following information:

• The supported LLDP-MED TLVs

• The device type (Network Connectivity device or Endpoint (Class 1, 2, or 3))

By default, LLDP-MED information is automatically advertised when LLDP-MED is enabled. To disable this advertisement, enter a command such as the following.
LLDP-MED attributes advertised by the Brocade device

```
FastIron(config)#no lldp advertise med-capabilities ports e 2/4 to 2/12
```

NOTE
Disabling the LLDP-MED capabilities TLV disables LLDP-MED.

To re-enable the LLDP-MED Capabilities TLV (and LLDP-MED) after it has been disabled, enter a command such as the following.

```
FastIron(config)#lldp advertise med-capabilities ports e 2/4 to 2/12
```

The LLDP-MED capabilities advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (show lldp local-info).

```
+ MED capabilities: capabilities, networkPolicy, location, extendedPSE
MED device type : Network Connectivity
```

Syntax: `[no] lldp advertise med-capabilities ports ethernet `<port-list>` `| all`

For `<port-list>`, specify the ports in one of the following formats:

- **FastIron chassis devices** – `<slotnum/portnum>`
- **FESX, and FWSX compact switches** – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

Extended power-via-MDI information

The extended Power-via-MDI TLV enables advanced power management between LLDP-MED Endpoints and Network Connectivity Devices. This TLV provides significantly more information than the 802.1AB Power-via-MDI TLV referenced in “Power-via-MDI” on page 952. For example, this TLV enables an Endpoint to communicate a more precise required power level, thereby enabling the device to allocate less power to the Endpoint, while making more power available to other ports.

The LLDP-MED Power-via-MDI TLV advertises an Endpoint IEEE 802.3af power-related information, including the following:

- **Power type** – indicates whether the LLDP-MED device transmitting the LLPDU is a power sourcing device or a powered device:
 - **Power sourcing device/equipment (PSE)** – This is the source of the power, or the device that integrates the power onto the network. Power sourcing devices/equipment have embedded POE technology. In this case, the power sourcing device is the Brocade POE device.
 - **Powered device (PD)** – This is the Ethernet device that requires power and is situated on the other end of the cable opposite the power sourcing device.
- **Power source** – The power source being utilized by a PSE or PD, for example, primary power source, backup power source, or unknown.
For Endpoint devices, the power source information indicates the power capability of the Network Connectivity Device it is attached to. When the Network Connectivity device advertises that it is using its primary power source, the Endpoint should expect to have uninterrupted access to its available power. Likewise, if the Network Connectivity device advertises that it is using backup power, the Endpoint should not expect continuous power. The Endpoint may additionally choose to power down non-essential subsystems or to conserve power as long as the PSE is advertising that it is operating on backup power.

NOTE
Brocade devices always advertise the power source as “unknown”.

- **Power priority** – The in-line power priority level for the PSE or PD:
 - 3 – low
 - 2 – high
 - 1 – critical
 - unknown

- **Power level** – The total power, in tenths of watts, required by a PD from a PSE, or the total power a PSE is capable of sourcing over a maximum length cable based on its current configuration.

 If the exact power is not known for a PSE or PD, it will advertise the power level associated with its 802.3af power class (listed in Table 165).

TABLE 165 802.3af power classes

<table>
<thead>
<tr>
<th>Power class</th>
<th>Minimum power level output at the PSE</th>
<th>Maximum power levels at the PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.4 watts</td>
<td>0.44 – 12.95 watts</td>
</tr>
<tr>
<td>1</td>
<td>4.0 watts</td>
<td>0.44 – 3.84 watts</td>
</tr>
<tr>
<td>2</td>
<td>7.0 watts</td>
<td>3.84 – 6.49 watts</td>
</tr>
<tr>
<td>3</td>
<td>15.4 watts</td>
<td>6.49 – 12.95 watts</td>
</tr>
</tbody>
</table>

For a PD (Endpoint device), the power level represents the maximum power it can consume during normal operations in its current configuration, even if its actual power draw at that instance is less than the advertised power draw.

For a PSE (Network Connectivity device), the power level represents the amount of power that is available on the port at the time. If the PSE is operating in reduced power (i.e., it is using backup power), the reduced power capacity is advertised as long as the condition persists.

By default, LLDP-MED power-via-MDI information is automatically advertised when LLDP-MED is enabled, the port is a POE port, and POE is enabled on the port. To disable this advertisement, enter a command such as the following.

```
FastIron(config)#no lldp advertise med-power-via-mdi ports e 2/4 to 2/12
```

The LLDP-MED power-via-MDI advertisement will appear similar to the following on the remote device, and in the CLI display output on the Brocade device (`show lldp local-info`).
Syntax: `[no] lldp advertise med-power-via-mdi ports ethernet <port-list> | all`

For `<port-list>`, specify the ports in one of the following formats:

- FastIron chassis devices – `<slotnum/portnum>`
- FESX, and FWSX compact switches – `<portnum>`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually. Note that using the keyword `all` may cause undesirable effects on some ports. For example, if you configure all ports to advertise their VLAN name, and the configuration includes ports that are not members of any VLAN, the system will warn of the misconfigurations on non-member VLAN ports. The configuration will be applied to all ports, however, the ports that are not members of any VLAN will not send VLAN name advertisements.

Displaying LLDP statistics and configuration settings

You can use the following CLI `show` commands to display information about LLDP settings and statistics:

- `show lldp` – Displays a summary of the LLDP configuration settings.
- `show lldp statistics` – Displays LLDP global and per-port statistics.
- `show lldp neighbors` – Displays a list of the current LLDP neighbors.
- `show lldp neighbors detail` – Displays the details of the latest advertisements received from LLDP neighbors.
- `show lldp local-info` – Displays the details of the LLDP advertisements that will be transmitted on each port.

This above `show` commands are described in this section.

LLDP configuration summary

To display a summary of the LLDP configuration settings on the device, enter the `show lldp` command at any level of the CLI.

The following shows an example report.

```
+ MED Extended Power via MDI
  Power Type     : PSE device
  Power Source   : Unknown Power Source
  Power Priority : Low (3)
  Power Value    : 6.5 watts (PSE equivalent: 7005 mWatts)
```
FastIron#show lldp
LLDP transmit interval : 10 seconds
LLDP transmit hold multiplier : 4 (transmit TTL: 40 seconds)
LLDP transmit delay : 1 seconds
LLDP SNMP notification interval : 5 seconds
LLDP reinitialize delay : 1 seconds
LLDP-MED fast start repeat count : 3
LLDP maximum neighbors : 392
LLDP maximum neighbors per port : 4

Syntax: show lldp

The following table describes the information displayed by the show lldp statistics command.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP transmit interval</td>
<td>The number of seconds between regular LLDP packet transmissions.</td>
</tr>
<tr>
<td>LLDP transmit hold multiplier</td>
<td>The multiplier used to compute the actual time-to-live (TTL) value of an LLDP advertisement. The TTL value is the transmit interval multiplied by the transmit hold multiplier.</td>
</tr>
<tr>
<td>LLDP transmit delay</td>
<td>The number of seconds the LLDP agent will wait after transmitting an LLDP frame and before transmitting another LLDP frame.</td>
</tr>
<tr>
<td>LLDP SNMP notification interval</td>
<td>The number of seconds between transmission of SNMP LLDP traps (lldpRemTablesChange) and SNMP LLDP-MED traps (lldpXMedTopologyChangeDetected).</td>
</tr>
<tr>
<td>LLDP reinitialize delay</td>
<td>The minimum number of seconds the device will wait from when LLDP is disabled on a port, until a request to re-enable LLDP on that port will be honored.</td>
</tr>
<tr>
<td>LLDP-MED fast start repeat count</td>
<td>The number of seconds between LLDP frame transmissions when an LLDP-MED Endpoint is newly detected.</td>
</tr>
<tr>
<td>LLDP maximum neighbors</td>
<td>The maximum number of LLDP neighbors for which LLDP data will be retained, per device.</td>
</tr>
<tr>
<td>LLDP maximum neighbors per port</td>
<td>The maximum number of LLDP neighbors for which LLDP data will be retained, per port.</td>
</tr>
</tbody>
</table>

LLDP statistics

The **show lldp statistics** command displays an overview of LLDP neighbor detection on the device, as well as packet counters and protocol statistics. The statistics are displayed on a global basis.

The following shows an example report.
LLDP-MED attributes advertised by the Brocade device

FastIron#show lldp statistics
Last neighbor change time: 23 hours 50 minutes 40 seconds ago

Neighbor entries added : 14
Neighbor entries deleted : 5
Neighbor entries aged out : 4
Neighbor advertisements dropped : 0

Port Tx Pkts Total Rx Pkts Total Rx Pkts w/Errors Discarded Unrecognized Discarded Aged Out
1 60963 75179 0 0 0 0 0 4
2 0 0 0 0 0 0 0 0
3 60963 60963 0 0 0 0 0 0
4 60963 121925 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0
10 60974 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0

Syntax: show lldp statistics

NOTE
You can reset LLDP statistics using the CLI command clear LLDP statistics. Refer to “Resetting LLDP statistics” on page 973.

The following table describes the information displayed by the show lldp statistics command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last neighbor change time</td>
<td>The elapsed time (in hours, minutes, and seconds) since a neighbor last advertised information. For example, the elapsed time since a neighbor was last added, deleted, or its advertised information changed.</td>
</tr>
<tr>
<td>Neighbor entries added</td>
<td>The number of new LLDP neighbors detected since the last reboot or since the last time the clear lldp statistics all command was issued.</td>
</tr>
<tr>
<td>Neighbor entries deleted</td>
<td>The number of LLDP neighbors deleted since the last reboot or since the last time the clear lldp statistics all command was issued.</td>
</tr>
<tr>
<td>Neighbor entries aged out</td>
<td>The number of LLDP neighbors dropped on all ports after the time-to-live expired. Note that LLDP entries age out naturally when a port cable or module is disconnected or when a port becomes disabled. However, if a disabled port is re-enabled, the system will delete the old LLDP entries.</td>
</tr>
<tr>
<td>Neighbor advertisements dropped</td>
<td>The number of valid LLDP neighbors the device detected, but could not add. This can occur, for example, when a new neighbor is detected and the device is already supporting the maximum number of neighbors possible. This can also occur when an LLDPDU is missing a mandatory TLV or is not formatted correctly.</td>
</tr>
<tr>
<td>Port</td>
<td>The local port number.</td>
</tr>
<tr>
<td>Tx Pkts Total</td>
<td>The number of LLDP packets the port transmitted.</td>
</tr>
<tr>
<td>Rx Pkts Total</td>
<td>The number of LLDP packets the port received.</td>
</tr>
</tbody>
</table>
LLDP-MED attributes advertised by the Brocade device

The following shows an example report.

Syntax: show lldp neighbors

The following table describes the information displayed by the show lldp neighbors command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx Pkts w/Errors</td>
<td>The number of LLDP packets the port received that have one or more detectable errors.</td>
</tr>
<tr>
<td>Rx Pkts Discarded</td>
<td>The number of LLDP packets the port received then discarded.</td>
</tr>
<tr>
<td>Rx TLVs Unrecognz</td>
<td>The number of TLVs the port received that were not recognized by the LLDP local agent. Unrecognized TLVs are retained by the system and can be viewed in the output of the show LLDP neighbors detail command or retrieved through SNMP.</td>
</tr>
<tr>
<td>Rx TLVs Discarded</td>
<td>The number of TLVs the port received then discarded.</td>
</tr>
<tr>
<td>Neighbors Aged Out</td>
<td>The number of times a neighbor information was deleted because its TTL timer expired.</td>
</tr>
</tbody>
</table>

LLDP neighbors

The show lldp neighbors command displays a list of the current LLDP neighbors per port.

The following shows an example report.

FastIron#show lldp neighbors

<table>
<thead>
<tr>
<th>Lcl Port</th>
<th>Chassis ID</th>
<th>Port ID</th>
<th>Port Description</th>
<th>System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0004.1234.0fc0</td>
<td>0004.1234.0fc0</td>
<td>GigabitEthernet9/1</td>
<td>FastIron Supe~</td>
</tr>
<tr>
<td>1</td>
<td>00e0.5201.4000</td>
<td>00e0.5201.4000</td>
<td>GigabitEthernet0/1/1</td>
<td>FGS624XGP Swi~</td>
</tr>
<tr>
<td>3</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0203</td>
<td>GigabitEthernet4</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>4</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0202</td>
<td>GigabitEthernet3</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>4</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0210</td>
<td>GigabitEthernet17</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>15</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.020f</td>
<td>GigabitEthernet16</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>16</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.020e</td>
<td>GigabitEthernet15</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>17</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0211</td>
<td>GigabitEthernet18</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>18</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0210</td>
<td>GigabitEthernet17</td>
<td>FESX424+2XG S~</td>
</tr>
</tbody>
</table>

Syntax: show lldp neighbors
detail

The following shows an example report.

FastIron#show lldp neighbors
detail

<table>
<thead>
<tr>
<th>Lcl Port</th>
<th>Chassis ID</th>
<th>Port ID</th>
<th>Port Description</th>
<th>System Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0004.1234.0fc0</td>
<td>0004.1234.0fc0</td>
<td>GigabitEthernet9/1</td>
<td>FastIron Supe~</td>
</tr>
<tr>
<td>1</td>
<td>00e0.5201.4000</td>
<td>00e0.5201.4000</td>
<td>GigabitEthernet0/1/1</td>
<td>FGS624XGP Swi~</td>
</tr>
<tr>
<td>3</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0203</td>
<td>GigabitEthernet4</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>4</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0202</td>
<td>GigabitEthernet3</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>4</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0210</td>
<td>GigabitEthernet17</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>15</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.020f</td>
<td>GigabitEthernet16</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>16</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.020e</td>
<td>GigabitEthernet15</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>17</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0211</td>
<td>GigabitEthernet18</td>
<td>FESX424+2XG S~</td>
</tr>
<tr>
<td>18</td>
<td>00e0.5211.0200</td>
<td>00e0.5211.0210</td>
<td>GigabitEthernet17</td>
<td>FESX424+2XG S~</td>
</tr>
</tbody>
</table>

Syntax: show lldp neighbors
detail

The following table describes the information displayed by the show lldp neighbors detail command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lcl Port</td>
<td>The local LLDP port number.</td>
</tr>
<tr>
<td>Chassis ID</td>
<td>The identifier for the chassis. Brocade devices use the base MAC address of the device as the Chassis ID.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The identifier for the port. Brocade devices use the permanent MAC address associated with the port as the port ID.</td>
</tr>
<tr>
<td>Port Description</td>
<td>The description for the port. Brocade devices use the ifDescr MIB object from MIB-II as the port description.</td>
</tr>
<tr>
<td>System Name</td>
<td>The administratively-assigned name for the system. Brocade devices use the sysName MIB object from MIB-II, which corresponds to the CLI hostname command setting. NOTE: A tilde (~) at the end of a line indicates that the value in the field is too long to display in full and is truncated.</td>
</tr>
</tbody>
</table>
LLDP neighbors detail

The **show lldp neighbors detail** command displays the LLDP advertisements received from LLDP neighbors.

The following shows an example **show lldp neighbors detail** report.

```
NOTE
The **show lldp neighbors detail** output will vary depending on the data received. Also, values that are not recognized or do not have a recognizable format, may be displayed in hexadecimal binary form.

FastIron#show lldp neighbors detail ports e 1/9
Local port: 1/9
Neighbor: 0800.0f18.cc03, TTL 101 seconds
  + Chassis ID (network address): 10.43.39.151
  + Port ID (MAC address): 0800.0f18.cc03
  + Time to live: 120 seconds
  + Port description : "LAN port"
  + System name : "regDN 1015,MITEL 5235 DM"
  + System description : "regDN 1015,MITEL 5235 DM, h/w rev 2,ASIC rev 1, f/w\n    Boot 02.01.00.11, f/w Main 02.01.00.11"
  + System capabilities: bridge, telephone
    Enabled capabilities: bridge, telephone
  + Management address (IPv4): 10.43.39.151
  + 802.3 MACPHY : auto-negotiation enabled
    Advertised capabilities: 10BaseT-HD, 10BaseT-FD, 100BaseTX-HD, 100BaseTX-FD
    Operational MAU type : 100BaseTX-FD
  + MED capabilities: capabilities, networkPolicy, extendedPD
    MED device type : Endpoint Class III
    MED Network Policy
      Application Type : Voice
      Policy Flags : Known Policy, Tagged
      VLAN ID : 300
      L2 Priority : 7
      DSCP Value : 7
  + MED Extended Power via MDI
    Power Type : PD device
    Power Source : Unknown Power Source
    Power Priority : High (2)
    Power Value : 6.2 watts (PSE equivalent: 6656 mWatts)
  + MED Hardware revision : "PCB Version: 2"
  + MED Firmware revision : "Boot 02.01.00.11"
  + MED Software revision : "Main 02.01.00.11"
  + MED Serial number : ""
  + MED Manufacturer : "Mitel Corporation"
  + MED Model name : "MITEL 5235 DM"
  + MED Asset ID : ""
```

A backslash (\) at the end of a line indicates that the text continues on the next line.

Except for the following field, the fields in the above output are described in the individual TLV advertisement sections in this chapter.
LLDP-MED attributes advertised by the Brocade device

Syntax: `show lldp neighbors detail [ports ethernet <port-list> | all]`

If you do not specify any ports or use the keyword `all`, by default, the report will show the LLDP neighbor details for all ports.

For `port-list`, specify the ports in one of the following formats:

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

You can list all of the ports individually, use the keyword `all` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword `all` instead of listing the ports individually.

LLDP configuration details

The `show lldp local-info` command displays the local information advertisements (TLVs) that will be transmitted by the LLDP agent.

NOTE
The `show lldp local-info` output will vary based on LLDP configuration settings.

The following shows an example report.

```
FastIron#show lldp local-info ports e 20
Local port: 20
  + Chassis ID (MAC address): 0012.f233.e2c0
  + Port ID (MAC address): 0012.f233.e2d3
  + Time to live: 40 seconds
  + System name: "FESX424_POE"
  + Port description: "GigabitEthernet20"
  + System description : "Brocade Communications, Inc. FESX424-PREM-PoE, IronWare Version 04.0.00b256T3e1 Compiled on Sep 04 2007 at 03:54:29 labeled as SX5040000b256"
  + System capabilities : bridge
     Enabled capabilities: bridge
     802.3 MAC/PHY : auto-negotiation enabled
     Advertised capabilities: 10BaseT-HD, 10BaseT-FD, 100BaseTX-HD, 100BaseTX-FD, fdxSPause, fdxB Pause, 1000BaseT-HD, 1000BaseT-FD
     Operational MAU type: 100BaseTX-FD
  + 802.3 Power via MDI: PSE port, power enabled, class 2
     Power Pair : A (not controllable)
     Link aggregation: not capable
  + Maximum frame size: 1522 octets
  + MED capabilities: capabilities, networkPolicy, location, extendedPSE
    MED device type : Network Connectivity
    MED Network Policy
    Application Type : Voice
```

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor</td>
<td>The source MAC address from which the packet was received, and the remaining TTL for the neighbor entry.</td>
</tr>
</tbody>
</table>
LLDP-MED attributes advertised by the Brocade device

Policy Flags : Known Policy, Tagged
VLAN ID : 99
L2 Priority : 3
DSCP Value : 22
+ MED Network Policy
 Application Type : Video Conferencing
 Policy Flags : Known Policy, Tagged
 VLAN ID : 100
 L2 Priority : 5
 DSCP Value : 10
+ MED Location ID
 Data Format: Coordinate-based location
 Latitude Resolution : 20 bits
 Latitude Value : -78.303 degrees
 Longitude Resolution: 18 bits
 Longitude Value : 34.27 degrees
 Altitude Resolution : 16 bits
 Altitude Value : 50. meters
 Datum : WGS 84
+ MED Location ID
 Data Format: Civic Address
 Location of: Client
 Country : "US"
 CA Type : 1
 CA Value : "CA"
 CA Type : 3
 CA Value : "Santa Clara"
 CA Type : 6
 CA Value : "4980 Great America Pkwy."
 CA Type : 24
 CA Value : "95054"
 CA Type : 27
 CA Value : "5"
 CA Type : 28
 CA Value : "551"
 CA Type : 29
 CA Value : "office"
 CA Type : 23
 CA Value : "John Doe"
+ MED Location ID
 Data Format: ECS ELIN
 Value : "1234567890"
+ MED Extended Power via MDI
 Power Type : PSE device
 Power Source : Unknown Power Source
 Power Priority : Low (3)
 Power Value : 6.5 watts (PSE equivalent: 7005 mWatts) + Port VLAN ID: 99
 Management address (IPv4): 192.1.1.121
+ VLAN name (VLAN 99): "Voice-VLAN-99"

NOTE
The contents of the show output will vary depending on which TLVs are configured to be advertised.

A backslash (\) at the end of a line indicates that the text continues on the next line.

The fields in the above output are described in the individual TLV advertisement sections in this chapter.

Syntax: show lldp local-info [ports ethernet <port-list> | all]
If you do not specify any ports or use the keyword **all**, by default, the report will show the local information advertisements for all ports.

For **port-list**, specify the ports in one of the following formats:

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword **all** instead of listing the ports individually.

Resetting LLDP statistics

To reset LLDP statistics, enter the `clear lldp statistics` command at the Global CONFIG level of the CLI. The Brocade device will clear the global and per-port LLDP neighbor statistics on the device (refer to **“LLDP statistics”** on page 967).

```
FastIron#clear lldp statistics
```

Syntax: `clear lldp statistics [ports ethernet <port-list> | all]`

If you do not specify any ports or use the keyword **all**, by default, the system will clear lldp statistics on all ports.

For **port-list**, specify the ports in one of the following formats:

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

You can list all of the ports individually, use the keyword `to` to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword **all** instead of listing the ports individually.

Clearing cached LLDP neighbor information

The Brocade device clears cached LLDP neighbor information after a port becomes disabled and the LLDP neighbor information ages out. However, if a port is disabled then re-enabled before the neighbor information ages out, the device will clear the cached LLDP neighbor information when the port is re-enabled.

If desired, you can manually clear the cache. For example, to clear the cached LLDP neighbor information for port `e 20`, enter the following command at the Global CONFIG level of the CLI.

```
FastIron#clear lldp neighbors ports e 20
```

Syntax: `clear lldp neighbors [ports ethernet <port-list> | all]`

If you do not specify any ports or use the keyword **all**, by default, the system will clear the cached LLDP neighbor information for all ports.
Clearing cached LLDP neighbor information

For **port-list**, specify the ports in one of the following formats:

- FastIron chassis devices – `slotnum/portnum`
- FESX, and FWSX compact switches – `portnum`

You can list all of the ports individually, use the keyword **to** to specify ranges of ports, or a combination of both. To apply the configuration to all ports on the device, use the keyword **all** instead of listing the ports individually.
Basic configuration

NOTE
References to chassis-based Layer 3 Switches apply to the FastIron SuperX Switch.

NOTE
The terms Layer 3 Switch and router are used interchangeably in this chapter and mean the same thing.

IP is enabled by default. Basic configuration consists of adding IP addresses and, for Layer 3 Switches, enabling a route exchange protocol, such as Routing Information Protocol (RIP).

If you are configuring a Layer 3 Switch, refer to “Configuring IP addresses” on page 993 to add IP addresses, then refer to one or more of the following to enable and configure the route exchange protocols:

- Chapter 33, “Configuring RIP”
- Chapter 35, “Configuring OSPF Version 2 (IPv4)”
- Chapter 38, “Configuring BGP4”

If you are configuring a Layer 2 Switch, refer to “Configuring the management IP address and specifying the default gateway” on page 1060 to add an IP address for management access through the network and to specify the default gateway.

The rest of this chapter describes IP and how to configure it in more detail. Use the information in this chapter if you need to change some of the IP parameters from their default values or you want to view configuration information or statistics.

Overview

Brocade Layer 2 Switches and Layer 3 Switches support Internet Protocol (IP) version 4. IP support on Brocade Layer 2 Switches consists of basic services to support management access and access to a default gateway. IP support on Brocade Layer 3 Switches includes all of the following, in addition to a highly configurable implementation of basic IP services including Address Resolution Protocol (ARP), ICMP Router Discovery Protocol (IRDP), and Reverse ARP (RARP):

- Route exchange protocols:
 - Routing Information Protocol (RIP)
 - Open Shortest Path First (OSPF)
 - Border Gateway Protocol version 4 (BGP4)
- Multicast protocols:
 - Internet Group Membership Protocol (IGMP)
Overview

- Protocol Independent Multicast Dense (PIM-DM)
- Protocol Independent Multicast Sparse (PIM-SM)
- Distance Vector Multicast Routing Protocol (DVMRP)
- Router redundancy protocols:
 - Virtual Router Redundancy Protocol Extended (VRRPE)
 - Virtual Router Redundancy Protocol (VRRP)

IP interfaces

Brocade Layer 3 Switches and Layer 2 Switches allow you to configure IP addresses. On Layer 3 Switches, IP addresses are associated with individual interfaces. On Layer 2 Switches, a single IP address serves as the management access address for the entire device.

All Brocade Layer 3 Switches and Layer 2 Switches support configuration and display of IP address in classical subnet format (example: 192.168.1.1 255.255.255.0) and Classless Interdomain Routing (CIDR) format (example: 192.168.1.1/24). You can use either format when configuring IP address information. IP addresses are displayed in classical subnet format by default but you can change the display format to CIDR. Refer to “Changing the network mask display to prefix format” on page 1084.

Layer 3 Switches

Brocade Layer 3 Switches allow you to configure IP addresses on the following types of interfaces:
- Ethernet ports
- Virtual routing interfaces (used by VLANs to route among one another)
- Loopback interfaces

Each IP address on a Layer 3 Switch must be in a different subnet. You can have only one interface that is in a given subnet. For example, you can configure IP addresses 192.168.1.1/24 and 192.168.2.1/24 on the same Layer 3 Switch, but you cannot configure 192.168.1.1/24 and 192.168.1.2/24 on the same Layer 3 Switch.

You can configure multiple IP addresses on the same interface.

The number of IP addresses you can configure on an individual interface depends on the Layer 3 Switch model. To display the maximum number of IP addresses and other system parameters you can configure on a Layer 3 Switch, refer to the section “Displaying and modifying system parameter default settings” on page 380.

You can use any of the IP addresses you configure on the Layer 3 Switch for Telnet, Web management, or SNMP access.

Layer 2 Switches

You can configure an IP address on a Brocade Layer 2 Switch for management access to the Layer 2 Switch. An IP address is required for Telnet access, Web management access, and SNMP access.

You also can specify the default gateway for forwarding traffic to other subnets.
IP packet flow through a Layer 3 Switch

Figure 130 shows how an IP packet moves through a Brocade Layer 3 Switch.

FIGURE 130 IP Packet Flow through a Brocade Layer 3 Switch

Figure 130 shows the following packet flow:

1. When the Layer 3 Switch receives an IP packet, the Layer 3 Switch checks for filters on the receiving interface. If a deny filter on the interface denies the packet, the Layer 3 Switch discards the packet and performs no further processing, except generating a Syslog entry and SNMP message, if logging is enabled for the filter.

2. If the packet is not denied at the incoming interface, the Layer 3 Switch looks in the session table for an entry that has the same source IP address and TCP or UDP port as the packet. If the session table contains a matching entry, the Layer 3 Switch immediately forwards the packet, by addressing it to the destination IP address and TCP or UDP port listed in the session table entry and sending the packet to a queue on the outgoing ports listed in the session table. The Layer 3 Switch selects the queue based on the Quality of Service (QoS) level associated with the session table entry.

1. The filter can be an Access Control List (ACL) or an IP access policy.
3. If the session table does not contain an entry that matches the packet source address and TCP or UDP port, the Layer 3 Switch looks in the IP forwarding cache for an entry that matches the packet destination IP address. If the forwarding cache contains a matching entry, the Layer 3 Switch forwards the packet to the IP address in the entry. The Layer 3 Switch sends the packet to a queue on the outgoing ports listed in the forwarding cache. The Layer 3 Switch selects the queue based on the Quality of Service (QoS) level associated with the forwarding cache entry.

4. If the IP forwarding cache does not have an entry for the packet, the Layer 3 Switch checks the IP route table for a route to the packet destination. If the IP route table has a route, the Layer 3 Switch makes an entry in the session table or the forwarding cache, and sends the route to a queue on the outgoing ports:
 • If the running-config contains an IP access policy for the packet, the software makes an entry in the session table. The Layer 3 Switch uses the new session table entry to forward subsequent packets from the same source to the same destination.
 • If the running-config does not contain an IP access policy for the packet, the software creates a new entry in the forwarding cache. The Layer 3 Switch uses the new cache entry to forward subsequent packets to the same destination.

The following sections describe the IP tables and caches:
 • ARP cache and static ARP table
 • IP route table
 • IP forwarding cache
 • IP session table

The software enables you to display these tables. You also can change the capacity of the tables on an individual basis if needed by changing the memory allocation for the table.

ARP cache and static ARP table

The ARP cache contains entries that map IP addresses to MAC addresses. Generally, the entries are for devices that are directly attached to the Layer 3 Switch.

An exception is an ARP entry for an interface-based static IP route that goes to a destination that is one or more router hops away. For this type of entry, the MAC address is either the destination device MAC address or the MAC address of the router interface that answered an ARP request on behalf of the device, using proxy ARP.

ARP cache

The ARP cache can contain dynamic (learned) entries and static (user-configured) entries. The software places a dynamic entry in the ARP cache when the Layer 3 Switch learns a device MAC address from an ARP request or ARP reply from the device.

The software can learn an entry when the Layer 2 Switch or Layer 3 Switch receives an ARP request from another IP forwarding device or an ARP reply. Here is an example of a dynamic entry:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
<th>Age</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.95.6.102</td>
<td>0800.5afc.ea21</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Each entry contains the destination device IP address and MAC address.
Static ARP table
In addition to the ARP cache, Layer 3 Switches have a static ARP table. Entries in the static ARP table are user-configured. You can add entries to the static ARP table regardless of whether the device the entry is for is connected to the Layer 3 Switch.

NOTE
Layer 3 Switches have a static ARP table. Layer 2 Switches do not.

The software places an entry from the static ARP table into the ARP cache when the entry interface comes up.

Here is an example of a static ARP entry.

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>207.95.6.111</td>
<td>0800.093b.d210</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Each entry lists the information you specified when you created the entry.

To display ARP entries, refer to the following:

- “Displaying the ARP cache” on page 1091 – Layer 3 Switch
- “Displaying the static ARP table” on page 1092 – Layer 3 Switch only
- “Displaying ARP entries” on page 1101 – Layer 2 Switch

To configure other ARP parameters, refer to the following:

- “Configuring ARP parameters” on page 1005 – Layer 3 Switch only

To increase the size of the ARP cache and static ARP table, refer to the following:

- For dynamic entries, refer to the section “Displaying and modifying system parameter default settings” on page 380. The ip-arp parameter controls the ARP cache size.
- Static entries, “Changing the maximum number of entries the static ARP table can hold” on page 1010 – Layer 3 Switches only. The ip-static-arp parameter controls the static ARP table size.

IP route table
The IP route table contains paths to IP destinations.

NOTE
Layer 2 Switches do not have an IP route table. A Layer 2 Switch sends all packets addressed to another subnet to the default gateway, which you specify when you configure the basic IP information on the Layer 2 Switch.

The IP route table can receive the paths from the following sources:

- A directly-connected destination, which means there are no router hops to the destination
- A static IP route, which is a user-configured route
- A route learned through RIP
- A route learned through OSPF
- A route learned through BGP4

The IP route table contains the best path to a destination:
• When the software receives paths from more than one of the sources listed above, the software compares the administrative distance of each path and selects the path with the lowest administrative distance. The administrative distance is a protocol-independent value from 1 – 255.

• When the software receives two or more best paths from the same source and the paths have the same metric (cost), the software can load share traffic among the paths based on destination host or network address (based on the configuration and the Layer 3 Switch model).

Here is an example of an entry in the IP route table.

<table>
<thead>
<tr>
<th>Destination</th>
<th>NetMask</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
</tbody>
</table>

Each IP route table entry contains the destination IP address and subnet mask and the IP address of the next-hop router interface to the destination. Each entry also indicates the port attached to the destination or the next-hop to the destination, the route IP metric (cost), and the type. The type indicates how the IP route table received the route.

To display the IP route table, refer to “Displaying the IP route table” on page 1094 (Layer 3 Switch only)

To configure a static IP route, refer to “Configuring static routes” on page 1015 (Layer 3 Switch only)

To clear a route from the IP route table, refer to “Clearing IP routes” on page 1097 (Layer 3 Switch only)

To increase the size of the IP route table for learned and static routes, refer to the section “Displaying and modifying system parameter default settings” on page 380:

• For learned routes, modify the ip-route parameter.
• For static routes, modify the ip-static-route parameter.

IP forwarding cache

The IP forwarding cache provides a fast-path mechanism for forwarding IP packets. The cache contains entries for IP destinations. When a Brocade Layer 3 Switch has completed processing and addressing for a packet and is ready to forward the packet, the device checks the IP forwarding cache for an entry to the packet destination:

• If the cache contains an entry with the destination IP address, the device uses the information in the entry to forward the packet out the ports listed in the entry. The destination IP address is the address of the packet final destination. The port numbers are the ports through which the destination can be reached.

• If the cache does not contain an entry and the traffic does not qualify for an entry in the session table instead, the software can create an entry in the forwarding cache.

Each entry in the IP forwarding cache has an age timer. If the entry remains unused for ten minutes, the software removes the entry. The age timer is not configurable.
Here is an example of an entry in the IP forwarding cache.

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Next Hop</th>
<th>MAC Address</th>
<th>Type</th>
<th>Port</th>
<th>VLAN</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.11</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PU</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Each IP forwarding cache entry contains the IP address of the destination, and the IP address and MAC address of the next-hop router interface to the destination. If the destination is actually an interface configured on the Layer 3 Switch itself, as shown here, then next-hop information indicates this. The port through which the destination is reached is also listed, as well as the VLAN and Layer 4 QoS priority associated with the destination if applicable.

To display the IP forwarding cache, refer to “Displaying the forwarding cache” on page 1093.

NOTE

You cannot add static entries to the IP forwarding cache, although you can increase the number of entries the cache can contain. Refer to the section “Displaying and modifying system parameter default settings” on page 380.

To increase the size of the IP forwarding cache, refer to the section “Displaying and modifying system parameter default settings” on page 380.

Layer 4 session table

The Layer 4 session provides a fast path for forwarding packets. A session is an entry that contains complete Layer 3 and Layer 4 information for a flow of traffic. Layer 3 information includes the source and destination IP addresses. Layer 4 information includes the source and destination TCP and UDP ports. For comparison, the IP forwarding cache contains the Layer 3 destination address but does not contain the other source and destination address information of a Layer 4 session table entry.

The Layer 2 Switch or Layer 3 Switch selects the session table instead of the IP forwarding table for fast-path forwarding for the following features:

- Layer 4 Quality-of-Service (QoS) policies
- IP access policies

To increase the size of the session table, refer to the section “Displaying and modifying system parameter default settings” on page 380. The ip-qos-session parameter controls the size of the session table.

IP route exchange protocols

Brocade Layer 3 Switches support the following IP route exchange protocols:

- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)
- Border Gateway Protocol version 4 (BGP4)

NOTE

TurboIron devices do not support BGP4.

All these protocols provide routes to the IP route table. You can use one or more of these protocols, in any combination. The protocols are disabled by default. For configuration information, refer to the following:
IP multicast protocols

Brocade Layer 3 Switches also support the following Internet Group Membership Protocol (IGMP) based IP multicast protocols:

- Protocol Independent Multicast – Dense mode (PIM-DM)
- Protocol Independent Multicast – Sparse mode (PIM-SM)
- Distance Vector Multicast Routing Protocol (DVMRP)

For configuration information, refer to Chapter 28, “Configuring IP Multicast Protocols”.

NOTE
Brocade Layer 2 Switches support IGMP and can forward IP multicast packets. Refer to Chapter 27, “Configuring IP Multicast Traffic Reduction for FastIron X Series and Turbolron Series Switches”.

IP interface redundancy protocols

You can configure a Brocade Layer 3 Switch to back up an IP interface configured on another Brocade Layer 3 Switch. If the link for the backed up interface becomes unavailable, the other Layer 3 Switch can continue service for the interface. This feature is especially useful for providing a backup to a network default gateway.

Brocade Layer 3 Switches support the following IP interface redundancy protocols:

- Virtual Router Redundancy Protocol (VRRP) – A standard router redundancy protocol based on RFC 2338. You can use VRRP to configure Brocade Layer 3 Switches and third-party routers to back up IP interfaces on other Brocade Layer 3 Switches or third-party routers.
- Virtual Router Redundancy Protocol Extended (VRRPE) – A Brocade extension to standard VRRP that adds additional features and overcomes limitations in standard VRRP. You can use VRRPE only on Brocade Layer 3 Switches.

For configuration information, refer to the following:

- Virtual Router Redundancy Protocol Extended (VRRPE) – refer to Chapter 37, “Configuring VRRP and VRRPE”.
- Virtual Router Redundancy Protocol (VRRP) – refer to Chapter 37, “Configuring VRRP and VRRPE”.

Access Control Lists and IP access policies

Brocade Layer 3 Switches provide two mechanisms for filtering IP traffic:

- Access Control Lists (ACLs)
- IP access policies

Both methods allow you to filter packets based on Layer 3 and Layer 4 source and destination information.
ACLs also provide great flexibility by providing the input to various other filtering mechanisms such as route maps, which are used by BGP4.

IP access policies allow you to configure QoS based on sessions (Layer 4 traffic flows).

Only one of these filtering mechanisms can be enabled on a Brocade device at a time. Brocade devices can store forwarding information for both methods of filtering in the session table.

For configuration information, Chapter 17, “Configuring Rule-Based IP Access Control Lists (ACLs)”

Basic IP parameters and defaults – Layer 3 Switches

IP is enabled by default. The following IP-based protocols are all disabled by default:

- Routing protocols:
 - Routing Information Protocol (RIP) – refer to Chapter 33, “Configuring RIP”
 - Open Shortest Path First (OSPF) – refer to Chapter 35, “Configuring OSPF Version 2 (IPv4)”
 - Border Gateway Protocol version 4 (BGP4) – refer to Chapter 38, “Configuring BGP4”

- Multicast protocols:
 - Internet Group Membership Protocol (IGMP) – refer to “Changing global IP multicast parameters” on page 835
 - Protocol Independent Multicast Dense (PIM-DM) – refer to “PIM Dense” on page 840
 - Protocol Independent Multicast Sparse (PIM-SM) – refer to “PIM Sparse” on page 849
 - Distance Vector Multicast Routing Protocol (DVMRP) – refer to “DVMRP overview” on page 896

- Router redundancy protocols:
 - Virtual Router Redundancy Protocol Extended (VRRPE) – refer to Chapter 37, “Configuring VRRP and VRRPE”.
 - Virtual Router Redundancy Protocol (VRRP) – refer to Chapter 37, “Configuring VRRP and VRRPE”.

The following tables list the Layer 3 Switch IP parameters, their default values, and where to find configuration information.

NOTE

For information about parameters in other protocols based on IP, such as RIP, OSPF, and so on, refer to the configuration chapters for those protocols.

When parameter changes take effect

Most IP parameters described in this chapter are dynamic. They take effect immediately, as soon as you enter the CLI command or select the Web Management Interface option. You can verify that a dynamic change has taken effect by displaying the running-config. To display the running-config, enter the `show running-config` or `write terminal` command at any CLI prompt. (You cannot display the running-config from the Web Management Interface.)

To save a configuration change permanently so that the change remains in effect following a system reset or software reload, save the change to the startup-config file:
• To save configuration changes to the startup-config file, enter the write memory command from the Privileged EXEC level of any configuration level of the CLI.

• To save the configuration changes using the Web Management Interface, select the Save link at the bottom of the dialog. Select Yes when prompted to save the configuration change to the startup-config file on the device flash memory. You also can access the dialog for saving configuration changes by clicking on Command in the tree view, then clicking on Save to Flash.

Changes to memory allocation require you to reload the software after you save the changes to the startup-config file. When reloading the software is required to complete a configuration change described in this chapter, the procedure that describes the configuration change includes a step for reloading the software.
Table 166 lists the IP global parameters for Layer 3 Switches.

TABLE 166 IP global parameters – Layer 3 Switches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP state</td>
<td>The Internet Protocol, version 4</td>
<td>Enabled</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>NOTE: You cannot disable IP.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| IP address and mask notation | Format for displaying an IP address and its network mask information. You can enable one of the following:
• Class-based format; example: 192.168.1.1 255.255.255.0
• Classless Interdomain Routing (CIDR) format; example: 192.168.1.1/24 | Class-based | page 1084 |
| | **NOTE:** Changing this parameter affects the display of IP addresses, but you can enter addresses in either format regardless of the display setting. | | |
| Router ID | The value that routers use to identify themselves to other routers when exchanging route information. OSPF and BGP4 use router IDs to identify routers. RIP does not use the router ID. | The IP address configured on the lowest-numbered loopback interface. If no loopback interface is configured, then the lowest-numbered IP address configured on the device. | page 1002 |
| Maximum Transmission Unit (MTU) | The maximum length an Ethernet packet can be without being fragmented. | 1500 bytes for Ethernet II encapsulation
1492 bytes for SNAP encapsulation | page 1000 |
| Address Resolution Protocol (ARP) | A standard IP mechanism that routers use to learn the Media Access Control (MAC) address of a device on the network. The router sends the IP address of a device in the ARP request and receives the device MAC address in an ARP reply. | Enabled | page 1005 |
| ARP rate limiting | Lets you specify a maximum number of ARP packets the device will accept each second. If the device receives more ARP packets than you specify, the device drops additional ARP packets for the remainder of the one-second interval. | Disabled | page 1006 |
| ARP age | The amount of time the device keeps a MAC address learned through ARP in the device ARP cache. The device resets the timer to zero each time the ARP entry is refreshed and removes the entry if the timer reaches the ARP age. | Ten minutes | page 1007 |
| | **NOTE:** You also can change the ARP age on an individual interface basis. Refer to Table 167 on page 989. | | |
TABLE 166 IP global parameters – Layer 3 Switches (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy ARP</td>
<td>An IP mechanism a router can use to answer an ARP request on behalf of a host, by replying with the router own MAC address instead of the host.</td>
<td>Disabled</td>
<td>page 1008</td>
</tr>
<tr>
<td>Static ARP entries</td>
<td>An ARP entry you place in the static ARP table. Static entries do not age out.</td>
<td>No entries</td>
<td>page 1009</td>
</tr>
<tr>
<td>Time to Live (TTL)</td>
<td>The maximum number of routers (hops) through which a packet can pass before being discarded. Each router decreases a packet TTL by 1 before forwarding the packet. If decreasing the TTL causes the TTL to be 0, the router drops the packet instead of forwarding it.</td>
<td>64 hops</td>
<td>page 1011</td>
</tr>
<tr>
<td>Directed broadcast forwarding</td>
<td>A directed broadcast is a packet containing all ones (or in some cases, all zeros) in the host portion of the destination IP address. When a router forwards such a broadcast, it sends a copy of the packet out each of its enabled IP interfaces. NOTE: You also can enable or disable this parameter on an individual interface basis. Refer to Table 167 on page 989.</td>
<td>Disabled</td>
<td>page 1011</td>
</tr>
</tbody>
</table>
| Directed broadcast mode | The packet format the router treats as a directed broadcast. The following formats can be directed broadcast:
 • All ones in the host portion of the packet destination address.
 • All zeroes in the host portion of the packet destination address.

 NOTE: If you enable all-zeroes directed broadcasts, all-ones directed broadcasts remain enabled. | All ones | page 1013 |
| Source-routed packet forwarding | A source-routed packet contains a list of IP addresses through which the packet must pass to reach its destination. | Enabled | page 1012 |
| Internet Control Message Protocol (ICMP) messages | The Brocade Layer 3 Switch can send the following types of ICMP messages:
 • Echo messages (ping messages)
 • Destination Unreachable messages | Enabled | page 1013 |
| ICMP Router Discovery Protocol (IRDP) | An IP protocol a router can use to advertise the IP addresses of its router interfaces to directly attached hosts. You can enable or disable the protocol, and change the following protocol parameters:
 • Forwarding method (broadcast or multicast)
 • Hold time
 • Maximum advertisement interval
 • Minimum advertisement interval
 • Router preference level

 NOTE: You also can enable or disable IRDP and configure the parameters on an individual interface basis. Refer to Table 167 on page 989. | Disabled | page 1029 |
Basic IP parameters and defaults – Layer 3 Switches (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse ARP (RARP)</td>
<td>An IP mechanism a host can use to request an IP address from a directly attached router when the host boots.</td>
<td>Enabled</td>
<td>page 1031</td>
</tr>
<tr>
<td>Static RARP entries</td>
<td>An IP address you place in the RARP table for RARP requests from hosts.</td>
<td>No entries</td>
<td>page 1032</td>
</tr>
</tbody>
</table>
| | **NOTE:** You must enter the RARP entries manually.
The Layer 3 Switch does not have a mechanism for learning or dynamically generating RARP entries. | | |
| Maximum BootP relay hops | The maximum number of hops away a BootP server can be located from a router and still be used by the router clients for network booting. | Four | page 1037 |
| Domain name for Domain Name Server (DNS) resolver | A domain name (example: brocade.router.com) you can use in place of an IP address for certain operations such as IP pings, trace routes, and Telnet management connections to the router. | None configured | page 996 |
| DNS default gateway addresses | A list of gateways attached to the router through which clients attached to the router can reach DNSs. | None configured | page 996 |
| IP load sharing | A Brocade feature that enables the router to balance traffic to a specific destination across multiple equal-cost paths.
On FastIron X Series devices, IP load sharing uses a hashing algorithm based on the source IP address, destination IP address, and protocol field in the IP header.
NOTE: Load sharing is sometimes called Equal Cost Multi Path (ECMP). | Enabled | page 1025 |
| Maximum IP load sharing paths | The maximum number of equal-cost paths across which the Layer 3 Switch is allowed to distribute traffic. | Four | page 1028 |
| Origination of default routes | You can enable a router to originate default routes for the following route exchange protocols, on an individual protocol basis:
- RIP
- OSPF
- BGP4 | Disabled | page 1150, page 1202, page 1323 |
<p>| Default network route | The router uses the default network route if the IP route table does not contain a route to the destination and also does not contain an explicit default route (0.0.0.0 0.0.0.0 or 0.0.0.0/0). | None configured | page 1024 |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static route</td>
<td>An IP route you place in the IP route table.</td>
<td>No entries</td>
<td>page 1015</td>
</tr>
</tbody>
</table>
| Source interface| The IP address the router uses as the source address for Telnet, RADIUS, or TACACS/TACACS+ packets originated by the router. The router can select the source address based on either of the following:
 - The lowest-numbered IP address on the interface the packet is sent on.
 - The lowest-numbered IP address on a specific interface. The address is used as the source for all packets of the specified type regardless of interface the packet is sent on. | The lowest-numbered IP address on the interface the packet is sent on. | page 1003 |
IP interface parameters – Layer 3 Switches

Table 167 lists the interface-level IP parameters for Layer 3 Switches.

Table 167 IP interface parameters – Layer 3 Switches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP state</td>
<td>The Internet Protocol, version 4</td>
<td>Enabled</td>
<td>n/a</td>
</tr>
<tr>
<td>NOTE: You cannot disable IP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>A Layer 3 network interface address</td>
<td>None configured(^1)</td>
<td>page 993</td>
</tr>
<tr>
<td>NOTE: Layer 2 Switches have a single IP address used for management access to the entire device. Layer 3 Switches have separate IP addresses on individual interfaces.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encapsulation type</td>
<td>The format of the packets in which the router encapsulates IP datagrams. The encapsulation format can be one of the following: • Ethernet II • SNAP</td>
<td>Ethernet II</td>
<td>page 999</td>
</tr>
<tr>
<td>Maximum Transmission Unit (MTU)</td>
<td>The maximum length (number of bytes) of an encapsulated IP datagram the router can forward.</td>
<td>1500 for Ethernet II encapsulated packets 1492 for SNAP encapsulated packets</td>
<td>page 1001</td>
</tr>
<tr>
<td>ARP age</td>
<td>Locally overrides the global setting. Refer to Table 166 on page 985.</td>
<td>Ten minutes</td>
<td>page 1007</td>
</tr>
<tr>
<td>Metric</td>
<td>A numeric cost the router adds to RIP routes learned on the interface. This parameter applies only to RIP routes.</td>
<td>1 (one)</td>
<td>page 1146</td>
</tr>
<tr>
<td>Directed broadcast forwarding</td>
<td>Locally overrides the global setting. Refer to Table 166 on page 985.</td>
<td>Disabled</td>
<td>page 1011</td>
</tr>
<tr>
<td>ICMP Router Discovery Protocol (IRDP)</td>
<td>Locally overrides the global IRDP settings. Refer to Table 166 on page 985.</td>
<td>Disabled</td>
<td>page 1030</td>
</tr>
<tr>
<td>DHCP gateway stamp</td>
<td>The router can assist DHCP/BootP Discovery packets from one subnet to reach DHCP/BootP servers on a different subnet by placing the IP address of the router interface that receives the request in the request packet Gateway field. You can override the default and specify the IP address to use for the Gateway field in the packets. NOTE: UDP broadcast forwarding for client DHCP/BootP requests (bootps) must be enabled (this is enabled by default) and you must configure an IP helper address (the server IP address or a directed broadcast to the server subnet) on the port connected to the client.</td>
<td>The lowest-numbered IP address on the interface that receives the request</td>
<td>page 1036</td>
</tr>
</tbody>
</table>
Basic IP parameters and defaults – Layer 2 Switches

IP is enabled by default. The following tables list the Layer 2 Switch IP parameters, their default values, and where to find configuration information.

NOTE
Brocade Layer 2 Switches also provide IP multicast forwarding, which is enabled by default. For information about this feature, refer to Chapter 27, “Configuring IP Multicast Traffic Reduction for FastIron X Series and Turbolron Series Switches”.

TABLE 167 IP interface parameters – Layer 3 Switches (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Client-Based Auto-Configuration</td>
<td>Allows the switch to obtain IP addresses from a DHCP host automatically, for either a specified (leased) or infinite period of time.</td>
<td>Enabled</td>
<td>page 1051</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>FastIron WS devices can be configured to function as DHCP servers.</td>
<td>Disabled</td>
<td>page 1037</td>
</tr>
<tr>
<td>UDP broadcast forwarding</td>
<td>The router can forward UDP broadcast packets for UDP applications such as BootP. By forwarding the UDP broadcasts, the router enables clients on one subnet to find servers attached to other subnets.</td>
<td>The router helps forward broadcasts for the following UDP application protocols:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: To completely enable a client UDP application request to find a server on another subnet, you must configure an IP helper address consisting of the server IP address or the directed broadcast address for the subnet that contains the server. See the next row.</td>
<td>• bootps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• netbios-dgm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• netbios-ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tacacs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tftp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• time</td>
<td></td>
</tr>
<tr>
<td>IP helper address</td>
<td>The IP address of a UDP application server (such as a BootP or DHCP server) or a directed broadcast address. IP helper addresses allow the router to forward requests for certain UDP applications from a client on one subnet to a server on another subnet.</td>
<td>None configured</td>
<td>page 1035</td>
</tr>
</tbody>
</table>

1. Some devices have a factory default, such as 209.157.22.154, used for troubleshooting during installation. For Layer 3 Switches, the address is on module 1 port 1 (or 1/1).
IP global parameters – Layer 2 Switches

Table 168 lists the IP global parameters for Layer 2 Switches.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
</table>
| IP address and mask notation | Format for displaying an IP address and its network mask information. You can enable one of the following:
 - Class-based format; example: 192.168.1.1 255.255.255.0
 - Classless Interdomain Routing (CIDR) format; example: 192.168.1.1/24 | Class-based | page 1084 |
| IP address | A Layer 3 network interface address | None configured | page 1060 |
| Default gateway | The IP address of a locally attached router (or a router attached to the Layer 2 Switch by bridges or other Layer 2 Switches). The Layer 2 Switch and clients attached to it use the default gateway to communicate with devices on other subnets. | None configured | page 1060 |
| Address Resolution Protocol (ARP) | A standard IP mechanism that networking devices use to learn the Media Access Control (MAC) address of another device on the network. The Layer 2 Switch sends the IP address of a device in the ARP request and receives the device MAC address in an ARP reply. | Enabled | n/a |
| ARP age | The amount of time the device keeps a MAC address learned through ARP in the device ARP cache. The device resets the timer to zero each time the ARP entry is refreshed and removes the entry if the timer reaches the ARP age. | Ten minutes | n/a |
| Time to Live (TTL) | The maximum number of routers (hops) through which a packet can pass before being discarded. Each router decreases a packet TTL by 1 before forwarding the packet. If decreasing the TTL causes the TTL to be 0, the router drops the packet instead of forwarding it. | 64 hops | page 1062 |
| Domain name for Domain Name Server (DNS) resolver | A domain name (example: brocade.router.com) you can use in place of an IP address for certain operations such as IP pings, trace routes, and Telnet management connections to the router. | None configured | page 1061 |
| DNS default gateway addresses | A list of gateways attached to the router through which clients attached to the router can reach DNSs. | None configured | page 1061 |
Interface IP parameters – Layer 2 Switches

Table 169 lists the interface-level IP parameters for Layer 2 Switches.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP gateway stamp</td>
<td>The device can assist DHCP/BootP Discovery packets from one subnet to reach DHCP/BootP servers on a different subnet by placing the IP address of the router interface that forwards the packet in the packet Gateway field. You can specify up to 32 gateway lists. A gateway list contains up to eight gateway IP addresses. You activate DHCP assistance by associating a gateway list with a port. When you configure multiple IP addresses in a gateway list, the Layer 2 Switch inserts the addresses into the DHCP Discovery packets in a round robin fashion.</td>
<td>None configured</td>
<td>page 1066</td>
</tr>
<tr>
<td>DHCP Client-Based Auto-Configuration</td>
<td>Allows the switch to obtain IP addresses from a DHCP host automatically, for either a specified (leased) or infinite period of time.</td>
<td>Enabled</td>
<td>page 1051</td>
</tr>
</tbody>
</table>

1. Some devices have a factory default, such as 209.157.22.154, used for troubleshooting during installation. For Layer 3 Switches, the address is on port 1 (or 1/1).

Configuring IP parameters – Layer 3 Switches

The following sections describe how to configure IP parameters. Some parameters can be configured globally while others can be configured on individual interfaces. Some parameters can be configured globally and overridden for individual interfaces.

NOTE

This section describes how to configure IP parameters for Layer 3 Switches. For IP configuration information for Layer 2 Switches, refer to "Configuring IP parameters – Layer 2 Switches" on page 1059.

TABLE 168
IP global parameters – Layer 2 Switches (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source interface</td>
<td>The IP address the Layer 2 Switch uses as the source address for Telnet, RADIUS, or TACACS/TACACS+ packets originated by the router. The Layer 2 Switch uses its management IP address as the source address for these packets.</td>
<td>The management IP address of the Layer 2 Switch.</td>
<td>n/a</td>
</tr>
</tbody>
</table>

TABLE 169
Interface IP parameters – Layer 2 Switches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP gateway stamp</td>
<td>You can configure a list of DHCP stamp addresses for a port. When the port receives a DHCP/BootP Discovery packet from a client, the port places the IP addresses in the gateway list into the packet Gateway field.</td>
<td>None configured</td>
<td>page 1066</td>
</tr>
</tbody>
</table>
Configuring IP addresses

You can configure an IP address on the following types of Layer 3 Switch interfaces:

- Ethernet port
- Virtual routing interface (also called a Virtual Ethernet or “VE”)
- Loopback interface

By default, you can configure up to 24 IP addresses on each interface.

On Compact Layer 3 Switches, you can increase this amount to up to 64 IP subnet addresses per port by increasing the size of the subnet-per-interface table.

On FWS devices, you can increase this to 128 IP addresses on each interface.

Refer to the section “Displaying and modifying system parameter default settings” on page 380.

NOTE

Once you configure a virtual routing interface on a VLAN, you cannot configure Layer 3 interface parameters on individual ports. Instead, you must configure the parameters on the virtual routing interface itself.

Brocade devices support both classical IP network masks (Class A, B, and C subnet masks, and so on) and Classless Interdomain Routing (CIDR) network prefix masks:

- To enter a classical network mask, enter the mask in IP address format. For example, enter “209.157.22.99 255.255.255.0” for an IP address with a Class-C subnet mask.
- To enter a prefix network mask, enter a forward slash (/) and the number of bits in the mask immediately after the IP address. For example, enter “209.157.22.99/24” for an IP address that has a network mask with 24 significant bits (ones).

By default, the CLI displays network masks in classical IP address format (example: 255.255.255.0). You can change the display to prefix format. Refer to “Changing the network mask display to prefix format” on page 1084.

Assigning an IP address to an Ethernet port

To assign an IP address to port 1/1, enter the following commands.

```bash
FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#ip address 192.45.6.1 255.255.255.0
```

You also can enter the IP address and mask in CIDR format, as follows.

```bash
FastIron(config-if-1/1)#ip address 192.45.6.1/24
```

Syntax: `[no] ip address <ip-addr> <ip-mask> [ospf-ignore | ospf-passive | secondary]

or

Syntax: `[no] ip address <ip-addr>/<mask-bits> [ospf-ignore | ospf-passive | secondary]

The `ospf-ignore` | `ospf-passive` parameters modify the Layer 3 Switch defaults for adjacency formation and interface advertisement. Use one of these parameters if you are configuring multiple IP subnet addresses on the interface but you want to prevent OSPF from running on some of the subnets:
• **ospf-passive** – This option disables adjacency formation with OSPF neighbors. By default, when OSPF is enabled on an interface, the software forms OSPF router adjacencies between each primary IP address on the interface and the OSPF neighbor attached to the interface.

• **ospf-ignore** – This option disables OSPF adjacency formation and also disables advertisement of the interface into OSPF. The subnet is completely ignored by OSPF.

NOTE
The **ospf-passive** option disables adjacency formation but does not disable advertisement of the interface into OSPF. To disable advertisement in addition to disabling adjacency formation, you must use the **ospf-ignore** option.

Use the **secondary** parameter if you have already configured an IP address within the same subnet on the interface.

NOTE
When you configure more than one address in the same subnet, all but the first address are secondary addresses and do not form OSPF adjacencies.

NOTE
Starting in software release FGS 05.0.00, all physical IP interfaces on IronStack devices share the same MAC address. For this reason, if more than one connection is made between two devices, one of which is an FGS-STK or FLS-STK device, Brocade recommends the use of virtual interfaces. It is not recommended to connect two or more physical IP interfaces between two routers.

NOTE
Starting in software release FSX 03.0.00, all physical IP interfaces on FastIron X Series Layer 3 devices share the same MAC address. For this reason, if more than one connection is made between two devices, one of which is a FastIron X Series Layer 3 device, Brocade recommends the use of virtual interfaces. It is not recommended to connect two or more physical IP interfaces between two routers.

Assigning an IP address to a loopback interface

Loopback interfaces are always up, regardless of the states of physical interfaces. They can add stability to the network because they are not subject to route flap problems that can occur due to unstable links between a Layer 3 Switch and other devices. You can configure up to eight loopback interfaces on a Chassis Layer 3 Switch and FWS devices. You can configure up to four loopback interfaces on a Compact Layer 3 Switch.

You can add up to 24 IP addresses to each loopback interface.

NOTE
If you configure the Brocade Layer 3 Switch to use a loopback interface to communicate with a BGP4 neighbor, you also must configure a loopback interface on the neighbor and configure the neighbor to use that loopback interface to communicate with the Brocade Layer 3 Switch. Refer to “Adding a loopback interface” on page 1306.

To add a loopback interface, enter commands such as those shown in the following example.

```
FastIron(config-bgp-router)#exit
FastIron(config)#int loopback 1
FastIron(config-lbif-1)#ip address 10.0.0.1/24
```
Syntax: interface loopback <num>

The <num> parameter specifies the virtual interface number. You can specify from 1 to the maximum number of virtual interfaces supported on the device. To display the maximum number of virtual interfaces supported on the device, enter the show default values command. The maximum is listed in the System Parameters section, in the Current column of the virtual-interface row.

Refer to the syntax description in “Assigning an IP address to an Ethernet port” on page 993.

Assigning an IP address to a virtual interface

A virtual interface is a logical port associated with a Layer 3 Virtual LAN (VLAN) configured on a Layer 3 Switch. You can configure routing parameters on the virtual interface to enable the Layer 3 Switch to route protocol traffic from one Layer 3 VLAN to the other, without using an external router.¹

You can configure IP routing interface parameters on a virtual interface. This section describes how to configure an IP address on a virtual interface. Other sections in this chapter that describe how to configure interface parameters also apply to virtual interfaces.

NOTE
The Layer 3 Switch uses the lowest MAC address on the device (the MAC address of port 1 or 1/1) as the MAC address for all ports within all virtual interfaces you configure on the device.

To add a virtual interface to a VLAN and configure an IP address on the interface, enter commands such as the following.

FastIron(config)#vlan 2 name IP-Subnet_1.1.2.0/24
FastIron(config-vlan-2)#untag e1 to 4
FastIron(config-vlan-2)#router-interface ve1
FastIron(config-vlan-2)#interface ve1
FastIron(config-vif-1)#ip address 1.1.2.1/24

The first two commands in this example create a Layer 3 protocol-based VLAN name “IP-Subnet_1.1.2.0/24” and add a range of untagged ports to the VLAN. The router-interface command creates virtual interface 1 as the routing interface for the VLAN. The last two commands change to the interface configuration level for the virtual interface and assign an IP address to the interface.

Syntax: router-interface ve <num>

Syntax: interface ve <num>

Refer to the syntax description in “Assigning an IP address to an Ethernet port” on page 993.

Configuring IP follow on a virtual routing interface

Platform Support:

- FastIron X Series devices running software release 03.2.00 and later

IP Follow allows multiple virtual routing interfaces to share the same IP address. With this feature, one virtual routing interface is configured with an IP address, while the other virtual routing interfaces are configured to use that IP address, thus, they “follow” the virtual routing interface that has the IP address. This feature is helpful in conserving IP address space.

1. The Brocade feature that allows routing between VLANs within the same device, without the need for external routers, is called Integrated Switch Routing (ISR).
Configuration limitations and feature limitations

- When configuring IP Follow, the primary virtual routing interface should not have ACL or DoS Protection configured. It is recommended that you create a dummy virtual routing interface as the primary and use the IP-follow virtual routing interface for the network.
- Global Policy Based Routing is not supported when IP Follow is configured.
- IPv6 is not supported with `ip-follow`.
- FastIron devices support `ip-follow` with OSPF and VRRP protocols only.

Configuration syntax

Configure IP Follow by entering commands such as the following.

```plaintext
FastIron(config)#vlan 2 name IP-Subnet_1.1.2.0/24
FastIron(config-vlan-2)#untag e1 to 4
FastIron(config-vlan-2)#router-interface ve1
FastIron(config-vlan-2)#interface ve1
FastIron(config-vif-1)#ip address 10.10.2.1/24
FastIron(config-vif-1)#interface ve2
FastIron(config-vif-2)#ip follow ve1
FastIron(config-vif-2)#interface ve3
FastIron(config-vif-3)#ip follow ve1
```

Syntax: `[no] ip follow ve <number>`

For `<number>` enter the ID of the virtual routing interface.

Use the `no` form of the command to disable the configuration.

Virtual routing interface 2 and 3 do not have their own IP subnet address, but are sharing the IP address of virtual routing interface 1.

Deleting an IP address

To delete an IP address, enter a command such as the following.

```plaintext
FastIron(config-if-e1000-1)#no ip address 1.1.2.1
```

This command deletes IP address 1.1.2.1. You do not need to enter the subnet mask.

To delete all IP addresses from an interface, enter the following command.

```plaintext
FastIron(config-if-e1000-1)#no ip address *
```

Syntax: `no ip address <ip-addr> | *`

Configuring Domain Name Server (DNS) resolver

Platform Support:

- FastIron X Series devices running software release 03.0.00 and later

The DNS resolver is a feature in a Layer 2 Switch or Layer 3 Switch that sends and receives queries to and from the DNS server on behalf of a client:

- In software releases prior to 03.0.00 for the FastIron X Series devices, you can use one domain name to perform Telnet, ping, traceroute and other DNS query commands. You define one domain name on a Brocade Layer 2 Switch or Layer 3 Switch and up to four DNS servers. Host names and their IP addresses are configured on the DNS servers.
• Starting in software release 03.0.00 for the FastIron X Series devices, you can create a list of domain names that can be used to resolve host names. This list can have more than one domain name. When a client performs a DNS query, all hosts within the domains in the list can be recognized and queries can be sent to any domain on the list.

When a client performs a DNS query, all hosts within that domain can be recognized. After you define a domain name, the Brocade device automatically appends the appropriate domain to a host and forwards it to the DNS servers for resolution.

For example, if the domain “ds.company.com” is defined on a Brocade Layer 2 Switch or Layer 3 Switch and you want to initiate a ping to “mary”. You need to reference only the host name instead of the host name and its domain name. For example, you could enter the following command to initiate the ping.

U:> ping mary

The Brocade Layer 2 Switch or Layer 3 Switch qualifies the host name by appending a domain name. For example, mary.ds1.company.com. This qualified name is sent to the DNS server for resolution. If there are four DNS servers configured, it is sent to the first DNS server. If the host name is not resolved, it is sent to the second DNS server. If a match is found, a response is sent back to the client with the host IP address. If no match is found, an “unknown host” message is returned. (Refer to Figure 131.)

FIGURE 131 DNS resolution with one domain name

Defining a domain name

To define a domain to resolve host names, enter a command such as the following.
FastIron(config)#ip dns domain-name ds.company.com

Syntax: [no] ip dns domain-name <domain-name>
Enter the domain name for <domain-name>.

Defining DNS server addresses

You can configure the Brocade device to recognize up to four DNS servers. The first entry serves as the primary default address. If a query to the primary address fails to be resolved after three attempts, the next DNS address is queried (also up to three times). This process continues for each defined DNS address until the query is resolved. The order in which the default DNS addresses are polled is the same as the order in which you enter them.

To define DNS servers, enter a command such as the following.

FastIron(config)#ip dns server-address 209.157.22.199 205.96.7.15 208.95.7.25 201.98.7.15

Syntax: [no] ip dns server-address <ip-addr> [<ip-addr>] [<ip-addr>] [<ip-addr>]

In this example, the first IP address entered becomes the primary DNS address and all others are secondary addresses. Because IP address 201.98.7.15 is the last address listed, it is also the last address consulted to resolve a query.

Defining a domain list

NOTE
Domain lists are supported starting in software release 03.0.00 for the FESX, FSX, FSX 800, FSX 1600, and FWSX.

If you want to use more than one domain name to resolve host names, you can create a list of domain names. For example, enter the commands such as the following.

FastIron(config)#ip dns domain-list company.com
FastIron(config)#ip dns domain-list ds.company.com
FastIron(config)#ip dns domain-list hw_company.com
FastIron(config)#ip dns domain-list qa_company.com
FastIron(config)#

The domain names are tried in the order you enter them.

Syntax: [no] ip dns domain-list <domain-name>

Using a DNS name to initiate a trace route

Suppose you want to trace the route from a Brocade Layer 3 Switch to a remote server identified as NYC02 on domain newyork.com. Because the NYC02@ds1.newyork.com domain is already defined on the Layer 3 Switch, you need to enter only the host name, NYC02, as noted below.

FastIron#traceroute nyc02

Syntax: traceroute <host-ip-addr> [maxttl <value>] [minttl <value>] [numeric] [timeout <value>] [source-ip <ip addr>]

The only required parameter is the IP address of the host at the other end of the route.
After you enter the command, a message indicating that the DNS query is in process and the current gateway address (IP address of the domain name server) being queried appear on the screen.

Type Control-c to abort
Sending DNS Query to 209.157.22.199
Tracing Route to IP node 209.157.22.80
To ABORT Trace Route, Please use stop-traceroute command.

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Round Trip Time1</th>
<th>Round Trip Time2</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.95.6.30</td>
<td>93 msec</td>
<td>121 msec</td>
</tr>
</tbody>
</table>

NOTE
In the above example, 209.157.22.199 is the IP address of the domain name server (default DNS gateway address), and 209.157.22.80 represents the IP address of the NYC02 host.

Configuring packet parameters

You can configure the following packet parameters on Layer 3 Switches. These parameters control how the Layer 3 Switch sends IP packets to other devices on an Ethernet network. The Layer 3 Switch always places IP packets into Ethernet packets to forward them on an Ethernet port.

- **Encapsulation type** – The format for the Layer 2 packets within which the Layer 3 Switch sends IP packets.
- **Maximum Transmission Unit (MTU)** – The maximum length of IP packet that a Layer 2 packet can contain. IP packets that are longer than the MTU are fragmented and sent in multiple Layer 2 packets. You can change the MTU globally or an individual ports:
 - **Global MTU** – The default MTU value depends on the encapsulation type on a port and is 1500 bytes for Ethernet II encapsulation and 1492 bytes for SNAP encapsulation.
 - **Port MTU** – A port default MTU depends on the encapsulation type enabled on the port.

Changing the encapsulation type

The Layer 3 Switch encapsulates IP packets into Layer 2 packets, to send the IP packets on the network. (A Layer 2 packet is also called a MAC layer packet or an Ethernet frame.) The source address of a Layer 2 packet is the MAC address of the Layer 3 Switch interface sending the packet. The destination address can be one of the following:

- The MAC address of the IP packet destination. In this case, the destination device is directly connected to the Layer 3 Switch.
- The MAC address of the next-hop gateway toward the packet destination.
- An Ethernet broadcast address.

The entire IP packet, including the source and destination address and other control information and the data, is placed in the data portion of the Layer 2 packet. Typically, an Ethernet network uses one of two different formats of Layer 2 packet:

- Ethernet II
- Ethernet SNAP (also called IEEE 802.3)
The control portions of these packets differ slightly. All IP devices on an Ethernet network must use the same format. Brocade Layer 3 Switches use Ethernet II by default. You can change the IP encapsulation to Ethernet SNAP on individual ports if needed.

NOTE
All devices connected to the Layer 3 Switch port must use the same encapsulation type.

To change the IP encapsulation type on interface 5 to Ethernet SNAP, enter the following commands.

```plaintext
FastIron(config)#int e 5
FastIron(config-if-e1000-5)#ip encapsulation snap
```

Syntax: ip encapsulation snap | ethernet_ii

Changing the Maximum Transmission Unit (MTU)

The Maximum Transmission Unit (MTU) is the maximum length of IP packet that a Layer 2 packet can contain. IP packets that are longer than the MTU are fragmented and sent in multiple Layer 2 packets. You can change the MTU globally or on individual ports.

The default MTU is 1500 bytes for Ethernet II packets and 1492 for Ethernet SNAP packets.

MTU enhancements

Brocade devices contain the following enhancements to jumbo packet support:

- Hardware forwarding of Layer 3 jumbo packets – Layer 3 IP unicast jumbo packets received on a port that supports the frame's MTU size and forwarded to another port that also supports the frame's MTU size are forwarded in hardware. Previous releases support hardware forwarding of Layer 2 jumbo frames only.

- ICMP unreachable message if a frame is too large to be forwarded – If a jumbo packet has the Do not Fragment (DF) bit set, and the outbound interface does not support the packet's MTU size, the Brocade device sends an ICMP unreachable message to the device that sent the packet.

NOTE
These enhancements apply only to transit traffic forwarded through the Brocade device.

Configuration considerations for increasing the MTU

- When you increase the MTU size of a port, the increase uses system resources. Increase the MTU size only on the ports that need it. For example, if you have one port connected to a server that uses jumbo frames and two other ports connected to clients that can support the jumbo frames, increase the MTU only on those three ports. Leave the MTU size on the other ports at the default value (1500 bytes). Globally increase the MTU size only if needed.

- Use the same MTU size on all ports that will be supporting jumbo frames. If the device needs to fragment a jumbo frame (and the frame does not have the DF bit set), the device fragments the frame into 1500-byte fragments, even if the outbound port has a larger MTU. For example, if a port has an MTU setting of 8000 and receives an 8000-byte frame, then must forward the frame onto a port with an MTU of 4000, the device does not fragment the 8000-byte frame into two 4000-byte frames. Instead, the device fragments the 8000-byte frame into six fragments (five 1500-byte fragments and a final, smaller fragment.)
Globally changing the Maximum Transmission Unit (MTU)
The Maximum Transmission Unit (MTU) is the maximum size an IP packet can be when
encapsulated in a Layer 2 packet. If an IP packet is larger than the MTU allowed by the Layer 2
packet, the Layer 3 Switch fragments the IP packet into multiple parts that will fit into the Layer 2
packets, and sends the parts of the fragmented IP packet separately, in different Layer 2 packets.
The device that receives the multiple fragments of the IP packet reassembles the fragments into
the original packet.
You can increase the MTU size to accommodate jumbo packet sizes up to 10,232 bytes in an
IronStack, or up to 9198 bytes in a TurboIron X Series device.
To globally enable jumbo support on all ports of a FastIron X Series device, enter commands such
as the following.

```
FastIron(config)#jumbo
FastIron(config)#write memory
FastIron(config)#end
FastIron#reload
```

Syntax: `[no] jumbo`

NOTE
You must save the configuration change and then reload the software to enable jumbo support.

Changing the Maximum Transmission Unit on an individual port
By default, the maximum Ethernet MTU sizes are as follows:

- 1500 bytes – The maximum for Ethernet II encapsulation
- 1492 bytes – The maximum for SNAP encapsulation

When jumbo mode is enabled, the maximum Ethernet MTU sizes are as follows:

- 9198 bytes – The maximum for Ethernet II encapsulation
- 9190 bytes – The maximum for SNAP encapsulation

NOTE
On FastIron devices, if you set the MTU of a port to a value lower than the global MTU and from 576 – 1499, the port fragments the packets. However, if the port MTU is exactly 1500 and this is larger
than the global MTU, the port drops the packets.

NOTE
On FastIron devices, you must save the configuration change and then reload the software to enable
jumbo support.

To change the MTU for interface 1/5 to 1000, enter the following commands.

```
FastIron(config)#int e 1/5
FastIron(config-if-1/5)#ip-port-mtu 1000
FastIron(config-if-1/5)#write memory
FastIron(config-if-1/5)#end
```

Syntax: `[no] ip-port-mtu <num>`
NOTE

The new command `ip-port-mtu` replace the command `ip mtu`. On the Turbolron, the IP MTU check on egress is validated based on the physical port instead of the ip interface. Therefore, the command `ip-port-mtu` can be set only on a physical port. In the case of a VE, we can set the `ip-port-mtu` on a port member of a VE. In contrast with the `ip mtu` command, the multiple physical ports in a VE can have a different IP MTU. However, on Turbolron, all VLANs of a port would have the same IP MTU size.

The `<num>` parameter specifies the MTU. Ethernet II packets can hold IP packets from 576 – 1500 bytes long. If jumbo mode is enabled, Ethernet II packets can hold IP packets up to 9198 bytes long. Ethernet SNAP packets can hold IP packets from 576 – 1492 bytes long. If jumbo mode is enabled, SNAP packets can hold IP packets up to 9190 bytes long. The default MTU for Ethernet II packets is 1500. The default MTU for SNAP packets is 1492.

Path MTU discovery (RFC 1191) support

NOTE

IP MTU is not supported for FGS, FLS, FGS-STK, FLS-STK and FWS devices.

Most Brocade devices support the path MTU discovery method described in RFC 1191. When the Brocade device receives an IP packet that has its Do not Fragment (DF) bit set, and the packet size is greater than the MTU value of the outbound interface, then the Brocade device returns an ICMP Destination Unreachable message to the source of the packet, with the Code indicating "fragmentation needed and DF set". The ICMP Destination Unreachable message includes the MTU of the outbound interface. The source host can use this information to help determine the maximum MTU of a path to a destination.

RFC 1191 is supported on all interfaces.

Changing the router ID

In most configurations, a Layer 3 Switch has multiple IP addresses, usually configured on different interfaces. As a result, a Layer 3 Switch identity to other devices varies depending on the interface to which the other device is attached. Some routing protocols, including Open Shortest Path First (OSPF) and Border Gateway Protocol version 4 (BGP4), identify a Layer 3 Switch by just one of the IP addresses configured on the Layer 3 Switch, regardless of the interfaces that connect the Layer 3 Switches. This IP address is the router ID.

NOTE

Routing Information Protocol (RIP) does not use the router ID.

NOTE

If you change the router ID, all current BGP4 sessions are cleared.

By default, the router ID on a Brocade Layer 3 Switch is one of the following:

- If the router has loopback interfaces, the default router ID is the IP address configured on the lowest numbered loopback interface configured on the Layer 3 Switch. For example, if you configure loopback interfaces 1, 2, and 3 as follows, the default router ID is 9.9.9.9/24:
 - Loopback interface 1, 9.9.9.9/24
 - Loopback interface 2, 4.4.4.4/24
 - Loopback interface 3, 1.1.1.1/24
• If the device does not have any loopback interfaces, the default router ID is the lowest numbered IP interface configured on the device.

If you prefer, you can explicitly set the router ID to any valid IP address. The IP address cannot be in use on another device in the network.

NOTE
Brocade Layer 3 Switches use the same router ID for both OSPF and BGP4. If the router is already configured for OSPF, you may want to use the router ID that is already in use on the router rather than set a new one. To display the router ID, enter the `show ip cli` command at any CLI level or select the IP->General links from the Configure tree in the Web Management Interface.

To change the router ID, enter a command such as the following.

```
FastIron(config)#ip router-id 209.157.22.26
```

Syntax: `ip router-id <ip-addr>`

The `<ip-addr>` can be any valid, unique IP address.

NOTE
You can specify an IP address used for an interface on the Brocade Layer 3 Switch, but do not specify an IP address in use by another device.

Specifying a single source interface for Telnet, TACACS/TACACS+, or RADIUS Packets

When the Layer 3 Switch originates a Telnet, TACACS/TACACS+, or RADIUS packet, the source address of the packet is the lowest-numbered IP address on the interface that sends the packet. You can configure the Layer 3 Switch to always use the lowest-numbered IP address on a specific interface as the source addresses for these types of packets. When you configure the Layer 3 Switch to use a single source interface for all Telnet, TACACS/TACACS+, or RADIUS packets, the Layer 3 Switch uses the same IP address as the source for all packets of the specified type, regardless of the ports that actually sends the packets.

Identifying a single source IP address for Telnet, TACACS/TACACS+, or RADIUS packets provides the following benefits:

- If your Telnet, TACACS/TACACS+, or RADIUS server is configured to accept packets only from specific IP addresses, you can use this feature to simplify configuration of the server by configuring the Brocade device to always send the packets from the same link or source address.

- If you specify a loopback interface as the single source for Telnet, TACACS/TACACS+, or RADIUS packets, servers can receive the packets regardless of the states of individual links. Thus, if a link to the server becomes unavailable but the client or server can be reached through another link, the client or server still receives the packets, and the packets still have the source IP address of the loopback interface.

The software contains separate CLI commands for specifying the source interface for Telnet, TACACS/TACACS+, or RADIUS packets. You can configure a source interface for one or more of these types of packets separately.
To specify an Ethernet or a loopback or virtual interface as the source for all TACACS/TACACS+ packets from the device, use the following CLI method. The software uses the lowest-numbered IP address configured on the port or interface as the source IP address for TACACS/TACACS+ packets originated by the device.

The following sections show the syntax for specifying a single source IP address for Telnet, TACACS/TACACS+, and RADIUS packets.

Telnet packets
To specify the lowest-numbered IP address configured on a virtual interface as the device source for all Telnet packets, enter commands such as the following.

```plaintext
FastIron(config)#int loopback 2
FastIron(config-lbif-2)#ip address 10.0.0.2/24
FastIron(config-lbif-2)#exit
FastIron(config)#ip telnet source-interface loopback 2
```

The commands in this example configure loopback interface 2, assign IP address 10.0.0.2/24 to the interface, then designate the interface as the source for all Telnet packets from the Layer 3 Switch.

Syntax: `ip telnet source-interface ethernet [<slotnum>/]<portnum> | loopback <num> | ve <num>`

The `<num>` parameter is a loopback interface or virtual interface number. If you specify an Ethernet port, the `<portnum>` is the port number (including the slot number, if you are configuring a Chassis device).

The following commands configure an IP interface on an Ethernet port and designate the address port as the source for all Telnet packets from the Layer 3 Switch.

```plaintext
FastIron(config)#interface ethernet 1/4
FastIron(config-if-1/4)#ip address 209.157.22.110/24
FastIron(config-if-1/4)#exit
FastIron(config)#ip telnet source-interface ethernet 1/4
```

TACACS/TACACS+ packets
To specify the lowest-numbered IP address configured on a virtual interface as the device source for all TACACS/TACACS+ packets, enter commands such as the following.

```plaintext
FastIron(config)#int ve 1
FastIron(config-vif-1)#ip address 10.0.0.3/24
FastIron(config-vif-1)#exit
FastIron(config)#ip tacacs source-interface ve 1
```

The commands in this example configure virtual interface 1, assign IP address 10.0.0.3/24 to the interface, then designate the interface as the source for all TACACS/TACACS+ packets from the Layer 3 Switch.

Syntax: `ip tacacs source-interface ethernet [<slotnum>/]<portnum> | loopback <num> | ve <num>`

The `<num>` parameter is a loopback interface or virtual interface number. If you specify an Ethernet port, the `<portnum>` is the port number (including the slot number, if you are configuring a Chassis device).

RADIUS packets
To specify the lowest-numbered IP address configured on a virtual interface as the device source for all RADIUS packets, enter commands such as the following.
FastIron(config)#int ve 1
FastIron(config-vif-1)#ip address 10.0.0.3/24
FastIron(config-vif-1)#exit
FastIron(config)#ip radius source-interface ve 1

The commands in this example configure virtual interface 1, assign IP address 10.0.0.3/24 to the interface, then designate the interface as the source for all RADIUS packets from the Layer 3 Switch.

Syntax: ip radius source-interface ethernet [<slotnum>/]<portnum> | loopback <num> | ve <num>

The <num> parameter is a loopback interface or virtual interface number. If you specify an Ethernet port, the <portnum> is the port number (including the slot number, if you are configuring a Chassis device).

Configuring ARP parameters

Address Resolution Protocol (ARP) is a standard IP protocol that enables an IP Layer 3 Switch to obtain the MAC address of another device interface when the Layer 3 Switch knows the IP address of the interface. ARP is enabled by default and cannot be disabled.

NOTE
Brocade Layer 2 Switches also support ARP. The description in “How ARP works” also applies to ARP on Brocade Layer 2 Switches. However, the configuration options described later in this section apply only to Layer 3 Switches, not to Layer 2 Switches.

How ARP works

A Layer 3 Switch needs to know a destination MAC address when forwarding traffic, because the Layer 3 Switch encapsulates the IP packet in a Layer 2 packet (MAC layer packet) and sends the Layer 2 packet to a MAC interface on a device directly attached to the Layer 3 Switch. The device can be the packet final destination or the next-hop router toward the destination.

The Layer 3 Switch encapsulates IP packets in Layer 2 packets regardless of whether the ultimate destination is locally attached or is multiple router hops away. Since the Layer 3 Switch IP route table and IP forwarding cache contain IP address information but not MAC address information, the Layer 3 Switch cannot forward IP packets based solely on the information in the route table or forwarding cache. The Layer 3 Switch needs to know the MAC address that corresponds with the IP address of either the packet locally attached destination or the next-hop router that leads to the destination.

For example, to forward a packet whose destination is multiple router hops away, the Layer 3 Switch must send the packet to the next-hop router toward its destination, or to a default route or default network route if the IP route table does not contain a route to the packet destination. In each case, the Layer 3 Switch must encapsulate the packet and address it to the MAC address of a locally attached device, the next-hop router toward the IP packet destination.

To obtain the MAC address required for forwarding a datagram, the Layer 3 Switch does the following:
First, the Layer 3 Switch looks in the ARP cache (not the static ARP table) for an entry that lists the MAC address for the IP address. The ARP cache maps IP addresses to MAC addresses. The cache also lists the port attached to the device and, if the entry is dynamic, the age of the entry. A dynamic ARP entry enters the cache when the Layer 3 Switch receives an ARP reply or receives an ARP request (which contains the sender IP address and MAC address). A static entry enters the ARP cache from the static ARP table (which is a separate table) when the interface for the entry comes up.

To ensure the accuracy of the ARP cache, each dynamic entry has its own age timer. The timer is reset to zero each time the Layer 3 Switch receives an ARP reply or ARP request containing the IP address and MAC address of the entry. If a dynamic entry reaches its maximum allowable age, the entry times out and the software removes the entry from the table. Static entries do not age out and can be removed only by you.

If the ARP cache does not contain an entry for the destination IP address, the Layer 3 Switch broadcasts an ARP request out all its IP interfaces. The ARP request contains the IP address of the destination. If the device with the IP address is directly attached to the Layer 3 Switch, the device sends an ARP response containing its MAC address. The response is a unicast packet addressed directly to the Layer 3 Switch. The Layer 3 Switch places the information from the ARP response into the ARP cache.

ARP requests contain the IP address and MAC address of the sender, so all devices that receive the request learn the MAC address and IP address of the sender and can update their own ARP caches accordingly.

NOTE
The ARP request broadcast is a MAC broadcast, which means the broadcast goes only to devices that are directly attached to the Layer 3 Switch. A MAC broadcast is not routed to other networks. However, some routers, including Brocade Layer 3 Switches, can be configured to reply to ARP requests from one network on behalf of devices on another network. Refer to “Enabling proxy ARP” on page 1008.

NOTE
If the router receives an ARP request packet that it is unable to deliver to the final destination because of the ARP timeout and no ARP response is received (the Layer 3 Switch knows of no route to the destination address), the router sends an ICMP Host Unreachable message to the source.

Rate limiting ARP packets

Platform Support:
- FastIron X Series devices running software release 03.0.01 or later
- TurboIron X Series devices running software release 04.2.00 and later

You can limit the number of ARP packets the Brocade device accepts during each second. By default, the software does not limit the number of ARP packets the device can receive. Since the device sends ARP packets to the CPU for processing, if a device in a busy network receives a high number of ARP packets in a short period of time, some CPU processing might be deferred while the CPU processes the ARP packets.
To prevent the CPU from becoming flooded by ARP packets in a busy network, you can restrict the number of ARP packets the device will accept each second. When you configure an ARP rate limit, the device accepts up to the maximum number of packets you specify, but drops additional ARP packets received during the one-second interval. When a new one-second interval starts, the counter restarts at zero, so the device again accepts up to the maximum number of ARP packets you specified, but drops additional packets received within the interval.

To limit the number of ARP packets the device will accept each second, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)#rate-limit-arp 100
```

This command configures the device to accept up to 100 ARP packets each second. If the device receives more than 100 ARP packets during a one-second interval, the device drops the additional ARP packets during the remainder of that one-second interval.

Syntax: `[no] rate-limit-arp <num>`

The `<num>` parameter specifies the number of ARP packets and can be from 0 – 100. If you specify 0, the device will not accept any ARP packets.

NOTE

If you want to change a previously configured the ARP rate limiting policy, you must remove the previously configured policy using the `no rate-limit-arp <num>` command before entering the new policy.

Changing the ARP aging period

When the Layer 3 Switch places an entry in the ARP cache, the Layer 3 Switch also starts an aging timer for the entry. The aging timer ensures that the ARP cache does not retain learned entries that are no longer valid. An entry can become invalid when the device with the MAC address of the entry is no longer on the network.

The ARP age affects dynamic (learned) entries only, not static entries. The default ARP age is ten minutes. On Layer 3 Switches, you can change the ARP age to a value from 0 – 240 minutes. You cannot change the ARP age on Layer 2 Switches. If you set the ARP age to zero, aging is disabled and entries do not age out.

On TurboIron devices, ARP aging period is performed on route entry.

To globally change the ARP aging parameter to 20 minutes, enter the following command.

```
FastIron(config)#ip arp-age 20
```

Syntax: `ip arp-age <num>`

The `<num>` parameter specifies the number of minutes and can be from 0 – 240. The default is 10. If you specify 0, aging is disabled.

To override the globally configured IP ARP age on an individual interface, enter a command such as the following at the interface configuration level.

```
FastIron(config-if-e1000-1/1)#ip arp-age 30
```

Syntax: `[no] ip arp-age <num>`

The `<num>` parameter specifies the number of minutes and can be from 0 – 240. The default is the globally configured value, which is 10 minutes by default. If you specify 0, aging is disabled.
Enabling proxy ARP

Proxy ARP allows a Layer 3 Switch to answer ARP requests from devices on one network on behalf of devices in another network. Since ARP requests are MAC-layer broadcasts, they reach only the devices that are directly connected to the sender of the ARP request. Thus, ARP requests do not cross routers.

For example, if Proxy ARP is enabled on a Layer 3 Switch connected to two subnets, 10.10.10.0/24 and 20.20.20.0/24, the Layer 3 Switch can respond to an ARP request from 10.10.10.69 for the MAC address of the device with IP address 20.20.20.69. In standard ARP, a request from a device in the 10.10.10.0/24 subnet cannot reach a device in the 20.20.20.0 subnet if the subnets are on different network cables, and thus is not answered.

NOTE
An ARP request from one subnet can reach another subnet when both subnets are on the same physical segment (Ethernet cable), since MAC-layer broadcasts reach all the devices on the segment.

Proxy ARP is disabled by default on Brocade Layer 3 Switches. This feature is not supported on Brocade Layer 2 Switches.

In releases prior to FSX 04.0.00, you enable proxy ARP at the Global CONFIG level of the CLI. Beginning in software release FSX 04.0.00, you can enable proxy ARP at the Interface level, as well as at the Global CONFIG level, of the CLI.

NOTE
Configuring proxy ARP at the Interface level overrides the global configuration.

Enabling proxy ARP globally
To enable IP proxy ARP on a global basis, enter the following command.

```
FastIron(config)#ip proxy-arp
```

To again disable IP proxy ARP on a global basis, enter the following command.

```
FastIron(config)#no ip proxy-arp
```

Syntax: [no] ip proxy-arp

Platform Support:
- Layer 3 devices only – BL3 and L3

Enabling IP ARP on an Interface
Platform Support:
- FastIron X Series devices running software release 04.0.00 and later

NOTE
Configuring proxy ARP at the Interface level overrides the global configuration.

To enable IP proxy ARP on an interface, enter the following command.

```
FastIron(config)#int e 5
FastIron(config-if-e1000-5)#ip proxy-arp enable
```

To again disable IP proxy ARP on an interface, enter the following command.
Configuring IP parameters – Layer 3 Switches

FastIron(config)#int e 5
FastIron(config-if-e1000-5)#ip proxy-arp disable

Syntax: [no] ip proxy-arp enable | disable

Platform Support:
- FastIron X Series devices running software release 04.0.00 and later – BL3 and L3

Enabling local proxy ARP

NOTE
This feature is not supported for FGS, FLS, FGS-STK, FLS-STK, and FWS devices.

Brocade devices support Proxy Address Resolution Protocol (*Proxy ARP*), a feature that enables router ports to respond to ARP requests for subnets it can reach. However, router ports will not respond to ARP requests for IP addresses in the same subnet as the incoming ports. Software release 02.3.03 resolves this issue with the introduction of Local Proxy ARP per IP interface. **Local Proxy ARP** enables router ports to reply to ARP requests for IP addresses within the same subnet and to forward all traffic between hosts in the subnet.

When Local Proxy ARP is enabled on a router port, the port will respond to ARP requests for IP addresses within the same subnet, if it has ARP entries for the destination IP addresses in the ARP cache. If it does not have ARP entries for the IP addresses, the port will attempt to resolve them by broadcasting its own ARP requests.

Local Proxy ARP is disabled by default. To use Local Proxy ARP, Proxy ARP (CLI command `ip proxy-arp`) must be enabled globally on the Brocade device. You can enter the CLI command to enable Local Proxy ARP even though Proxy ARP is not enabled, however, the configuration will not take effect until you enable Proxy ARP.

Use the `show run` command to view the ports on which Local Proxy ARP is enabled.

To enable Local Proxy ARP, enter commands such as the following.

FastIron(config)#int e 4
FastIron(config-if-e1000-4)#ip local-proxy-arp

Syntax: [no] ip local-proxy-arp

Use the `no` form of the command to disable Local Proxy ARP.

Creating static ARP entries

Brocade Layer 3 Switches have a static ARP table, in addition to the regular ARP cache. The static ARP table contains entries that you configure.

Static entries are useful in cases where you want to pre-configure an entry for a device that is not connected to the Layer 3 Switch, or you want to prevent a particular entry from aging out. The software removes a dynamic entry from the ARP cache if the ARP aging interval expires before the entry is refreshed. Static entries do not age out, regardless of whether the Brocade device receives an ARP request from the device that has the entry address.

NOTE
You cannot create static ARP entries on a Layer 2 Switch.
The maximum number of static ARP entries you can configure depends on the software version running on the device. Refer to “Changing the maximum number of entries the static ARP table can hold” on page 1010.

To display the ARP cache and static ARP table, refer to the following:

- To display the ARP table, refer to “Displaying the ARP cache” on page 1091.
- To display the static ARP table, refer to “Displaying the static ARP table” on page 1092.

To create a static ARP entry, enter a command such as the following.

```
FastIron(config)#arp 1 192.53.4.2 1245.7654.2348 e 1/2
```

Syntax: `arp <num> <ip-addr> <mac-addr> ethernet [<slotnum>/]<portnum>`

The `<num>` parameter specifies the entry number. You can specify a number from 1 up to the maximum number of static entries allowed on the device.

The `<ip-addr>` command specifies the IP address of the device that has the MAC address of the entry.

The `<mac-addr>` parameter specifies the MAC address of the entry.

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` command specifies the port number attached to the device that has the MAC address of the entry.

Changing the maximum number of entries the static ARP table can hold

Table 170 on page 1011 lists the default maximum and configurable maximum number of entries in the static ARP table that are supported on a Brocade Layer 3 Switch. If you need to change the maximum number of entries supported on a Layer 3 Switch, use the method described in this section.

NOTE
The basic procedure for changing the static ARP table size is the same as the procedure for changing other configurable cache or table sizes. Refer to the section “Displaying and modifying system parameter default settings” on page 380.

To increase the maximum number of static ARP table entries you can configure on a Brocade Layer 3 Switch, enter commands such as the following at the global CONFIG level of the CLI.

```
FastIron(config)#system-max ip-static-arp 1000
FastIron(config)#write memory
FastIron(config)#end
FastIron#reload
```

NOTE
You must save the configuration to the startup-config file and reload the software after changing the static ARP table size to place the change into effect.

Syntax: `system-max ip-static-arp <num>`
The `<num>` parameter indicates the maximum number of static ARP entries and can be within one of the ranges shown in Table 170, depending on the software version running on the device.

TABLE 170 Static ARP entry support

<table>
<thead>
<tr>
<th>Default maximum</th>
<th>Configurable minimum</th>
<th>Configurable maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software releases prior to FSX 05.0.00</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Software releases FSX 05.0.00 and later, and FCX 06.0.00 and later</td>
<td>512</td>
<td>512</td>
</tr>
</tbody>
</table>

Configuring forwarding parameters

The following configurable parameters control the forwarding behavior of Brocade Layer 3 Switches:

- Time-To-Live (TTL) threshold
- Forwarding of directed broadcasts
- Forwarding of source-routed packets
- Ones-based and zero-based broadcasts

All these parameters are global and thus affect all IP interfaces configured on the Layer 3 Switch.

To configure these parameters, use the procedures in the following sections.

Changing the TTL threshold

The TTL threshold prevents routing loops by specifying the maximum number of router hops an IP packet originated by the Layer 3 Switch can travel through. Each device capable of forwarding IP that receives the packet decrements (decreases) the packet TTL by one. If a device receives a packet with a TTL of 1 and reduces the TTL to zero, the device drops the packet.

The default TTL is 64. You can change the TTL to a value from 1–255.

To modify the TTL threshold to 25, enter the following commands.

```
FastIron(config)#ip ttl 25
```

Syntax: `ip ttl <1-255>`

Enabling forwarding of directed broadcasts

A directed broadcast is an IP broadcast to all devices within a single directly-attached network or subnet. A net-directed broadcast goes to all devices on a given network. A subnet-directed broadcast goes to all devices within a given subnet.

NOTE

A less common type, the all-subnets broadcast, goes to all directly-attached subnets. Forwarding for this broadcast type also is supported, but most networks use IP multicasting instead of all-subnet broadcasting.

Forwarding for all types of IP directed broadcasts is disabled by default. You can enable forwarding for all types if needed. You cannot enable forwarding for specific broadcast types.
To enable forwarding of IP directed broadcasts, enter the following command.

FastIron(config)#ip directed-broadcast

Syntax: [no] ip directed-broadcast

NOTE
This command is not supported on the Turbolron X Series devices.

Brocade software makes the forwarding decision based on the router's knowledge of the destination network prefix. Routers cannot determine that a message is unicast or directed broadcast apart from the destination network prefix. The decision to forward or not forward the message is by definition only possible in the last hop router.

To disable the directed broadcasts, enter the following command in the CONFIG mode.

FastIron(config)#no ip directed-broadcast

To enable directed broadcasts on an individual interface instead of globally for all interfaces, enter commands such as the following.

FastIron(config)#interface ethernet 1/1
FastIron(config-if-1/1)#ip directed-broadcast

Syntax: [no] ip directed-broadcast

Disabling forwarding of IP source-routed packets

A source-routed packet specifies the exact router path for the packet. The packet specifies the path by listing the IP addresses of the router interfaces through which the packet must pass on its way to the destination. The Layer 3 Switch supports both types of IP source routing:

- Strict source routing – requires the packet to pass through only the listed routers. If the Layer 3 Switch receives a strict source-routed packet but cannot reach the next hop interface specified by the packet, the Layer 3 Switch discards the packet and sends an ICMP Source-Route-Failure message to the sender.

 NOTE
 The Layer 3 Switch allows you to disable sending of the Source-Route-Failure messages. Refer to “Disabling ICMP messages” on page 1013.

- Loose source routing – requires that the packet pass through all of the listed routers but also allows the packet to travel through other routers, which are not listed in the packet.

 The Layer 3 Switch forwards both types of source-routed packets by default. To disable the feature, use either of the following methods. You cannot enable or disable strict or loose source routing separately.

To disable forwarding of IP source-routed packets, enter the following command.

FastIron(config)#no ip source-route

Syntax: [no] ip source-route

To re-enable forwarding of source-routed packets, enter the following command.

FastIron(config)#ip source-route
Enabling support for zero-based IP subnet broadcasts

By default, the Layer 3 Switch treats IP packets with all ones in the host portion of the address as IP broadcast packets. For example, the Layer 3 Switch treats IP packets with 209.157.22.255/24 as the destination IP address as IP broadcast packets and forwards the packets to all IP hosts within the 209.157.22.x subnet (except the host that sent the broadcast packet to the Layer 3 Switch).

Most IP hosts are configured to receive IP subnet broadcast packets with all ones in the host portion of the address. However, some older IP hosts instead expect IP subnet broadcast packets that have all zeros instead of all ones in the host portion of the address. To accommodate this type of host, you can enable the Layer 3 Switch to treat IP packets with all zeros in the host portion of the destination IP address as broadcast packets.

NOTE
When you enable the Layer 3 Switch for zero-based subnet broadcasts, the Layer 3 Switch still treats IP packets with all ones the host portion as IP subnet broadcasts too. Thus, the Layer 3 Switch can be configured to support all ones only (the default) or all ones and all zeroes.

NOTE
This feature applies only to IP subnet broadcasts, not to local network broadcasts. The local network broadcast address is still expected to be all ones.

To enable the Layer 3 Switch for zero-based IP subnet broadcasts in addition to ones-based IP subnet broadcasts, enter the following command.

```
FastIron(config)#ip broadcast-zero
FastIron(config)#write memory
FastIron(config)#end
FastIron#reload
```

NOTE
You must save the configuration and reload the software to place this configuration change into effect.

Syntax: `[no] ip broadcast-zero`

NOTE
This command is not supported on the TurboIron X Series devices.

Disabling ICMP messages

Brocade devices are enabled to reply to ICMP echo messages and send ICMP Destination Unreachable messages by default.

You can selectively disable the following types of Internet Control Message Protocol (ICMP) messages:

- Echo messages (ping messages) – The Layer 3 Switch replies to IP pings from other IP devices.
- Destination Unreachable messages – If the Layer 3 Switch receives an IP packet that it cannot deliver to its destination, the Layer 3 Switch discards the packet and sends a message back to the device that sent the packet to the Layer 3 Switch. The message informs the device that the destination cannot be reached by the Layer 3 Switch.
Disabling replies to broadcast ping requests
By default, Brocade devices are enabled to respond to broadcast ICMP echo packets, which are ping requests.

To disable response to broadcast ICMP echo packets (ping requests), enter the following command.

```
FastIron(config)#no ip icmp echo broadcast-request
```

Syntax: `[no] ip icmp echo broadcast-request`

If you need to re-enable response to ping requests, enter the following command.

```
FastIron(config)#ip icmp echo broadcast-request
```

Disabling ICMP destination unreachable messages
By default, when a Brocade device receives an IP packet that the device cannot deliver, the device sends an ICMP Unreachable message back to the host that sent the packet. You can selectively disable a Brocade device response to the following types of ICMP Unreachable messages:

- Administration – The packet was dropped by the Brocade device due to a filter or ACL configured on the device.
- Fragmentation-needed – The packet has the Do not Fragment bit set in the IP Flag field, but the Brocade device cannot forward the packet without fragmenting it.
- Host – The destination network or subnet of the packet is directly connected to the Brocade device, but the host specified in the destination IP address of the packet is not on the network.
- Port – The destination host does not have the destination TCP or UDP port specified in the packet. In this case, the host sends the ICMP Port Unreachable message to the Brocade device, which in turn sends the message to the host that sent the packet.
- Protocol – The TCP or UDP protocol on the destination host is not running. This message is different from the Port Unreachable message, which indicates that the protocol is running on the host but the requested protocol port is unavailable.
- Source-route-failure – The device received a source-routed packet but cannot locate the next-hop IP address indicated in the packet Source-Route option.

You can disable the Brocade device from sending these types of ICMP messages on an individual basis. To do so, use the following CLI method.

NOTE
Disabling an ICMP Unreachable message type does not change the Brocade device ability to forward packets. Disabling ICMP Unreachable messages prevents the device from generating or forwarding the Unreachable messages.

To disable all ICMP Unreachable messages, enter the following command.

```
FastIron(config)#no ip icmp unreachable
```

Syntax: `[no] ip icmp unreachable [host | protocol | administration | fragmentation-needed | port | source-route-fail]`

- If you enter the command without specifying a message type (as in the example above), all types of ICMP Unreachable messages listed above are disabled. If you want to disable only specific types of ICMP Unreachable messages, you can specify the message type. To disable more than one type of ICMP message, enter the `no ip icmp unreachable` command for each messages type.
- The **administration** parameter disables ICMP Unreachable (caused by Administration action) messages.
- The **fragmentation-needed** parameter disables ICMP Fragmentation-Needed But Do not-Fragment Bit Set messages.
- The **host** parameter disables ICMP Host Unreachable messages.
- The **port** parameter disables ICMP Port Unreachable messages.
- The **protocol** parameter disables ICMP Protocol Unreachable messages.
- The **source-route-fail** parameter disables ICMP Unreachable (caused by Source-Route-Failure) messages.

To disable ICMP Host Unreachable messages but leave the other types of ICMP Unreachable messages enabled, enter the following commands instead of the command shown above.

```
FastIron(config)#no ip icmp unreachable host
```

If you have disabled all ICMP Unreachable message types but you want to re-enable certain types, for example ICMP Host Unreachable messages, you can do so by entering the following command.

```
FastIron(config)#ip icmp unreachable host
```

Configuring static routes

The IP route table can receive routes from the following sources:

- **Directly-connected networks** – When you add an IP interface, the Layer 3 Switch automatically creates a route for the network the interface is in.
- **RIP** – If RIP is enabled, the Layer 3 Switch can learn about routes from the advertisements other RIP routers send to the Layer 3 Switch. If the route has a lower administrative distance than any other routes from different sources to the same destination, the Layer 3 Switch places the route in the IP route table.
- **OSPF** – Refer to RIP, but substitute “OSPF” for “RIP”.
- **BGP4** – Refer to RIP, but substitute “BGP4” for “RIP”.
- **Default network route** – A statically configured default route that the Layer 3 Switch uses if other default routes to the destination are not available. Refer to “Configuring a default network route” on page 1024.
- **Statically configured route** – You can add routes directly to the route table. When you add a route to the IP route table, you are creating a static IP route. This section describes how to add static routes to the IP route table.

NOTE

On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

Static route types

You can configure the following types of static IP routes:

- **Standard** – the static route consists of the destination network address and network mask, and the IP address of the next-hop gateway. You can configure multiple standard static routes with the same metric for load sharing or with different metrics to provide a primary route and backup routes.
• Interface-based – the static route consists of the destination network address and network mask, and the Layer 3 Switch interface through which you want the Layer 3 Switch to send traffic for the route. Typically, this type of static route is for directly attached destination networks.

• Null – the static route consists of the destination network address and network mask, and the “null0” parameter. Typically, the null route is configured as a backup route for discarding traffic if the primary route is unavailable.

Static IP route parameters

When you configure a static IP route, you must specify the following parameters:

• The IP address and network mask for the route destination network.

• The route path, which can be one of the following:
 • The IP address of a next-hop gateway
 • An Ethernet port
 • A virtual interface (a routing interface used by VLANs for routing Layer 3 protocol traffic among one another)
 • A “null” interface. The Layer 3 Switch drops traffic forwarded to the null interface.

You also can specify the following optional parameters:

• The metric for the route – The value the Layer 3 Switch uses when comparing this route to other routes in the IP route table to the same destination. The metric applies only to routes that the Layer 3 Switch has already placed in the IP route table. The default metric for static IP routes is 1.

• The administrative distance for the route – The value that the Layer 3 Switch uses to compare this route with routes from other route sources to the same destination before placing a route in the IP route table. This parameter does not apply to routes that are already in the IP route table. The default administrative distance for static IP routes is 1.

The default metric and administrative distance values ensure that the Layer 3 Switch always prefers static IP routes over routes from other sources to the same destination.

Multiple static routes to the same destination provide load sharing and redundancy

You can add multiple static routes for the same destination network to provide one or more of the following benefits:

• IP load balancing – When you add multiple IP static routes for the same destination to different next-hop gateways, and the routes each have the same metric and administrative distance, the Layer 3 Switch can load balance traffic to the routes’ destination. For information about IP load balancing, refer to “Configuring IP load sharing” on page 1025.

• Path redundancy – When you add multiple static IP routes for the same destination, but give the routes different metrics or administrative distances, the Layer 3 Switch uses the route with the lowest administrative distance by default, but uses another route to the same destination if the first route becomes unavailable.

Refer to the following sections for examples and configuration information:

• “Configuring load balancing and redundancy using multiple static routes to the same destination” on page 1019
• “Configuring standard static IP routes and interface or null static routes to the same destination” on page 1020

Static route states follow port states

IP static routes remain in the IP route table only so long as the port or virtual interface used by the route is available. If the port or virtual routing interface becomes unavailable, the software removes the static route from the IP route table. If the port or virtual routing interface becomes available again later, the software adds the route back to the route table.

This feature allows the Layer 3 Switch to adjust to changes in network topology. The Layer 3 Switch does not continue trying to use routes on unavailable paths but instead uses routes only when their paths are available.

Figure 132 shows an example of a network containing a static route. The static route is configured on Switch A, as shown in the CLI example following the figure.

FIGURE 132 Example of a static route

The following command configures a static route to 207.95.7.0, using 207.95.6.157 as the next-hop gateway.

```
FastIron(config)# ip route 207.95.7.0/24 207.95.6.157
```

When you configure a static IP route, you specify the destination address for the route and the next-hop gateway or Layer 3 Switch interface through which the Layer 3 Switch can reach the route. The Layer 3 Switch adds the route to the IP route table. In this case, Switch A knows that 207.95.6.157 is reachable through port 1/2, and also assumes that local interfaces within that subnet are on the same port. Switch A deduces that IP interface 207.95.7.188 is also on port 1/2.

The software automatically removes a static IP route from the IP route table if the port used by that route becomes unavailable. When the port becomes available again, the software automatically re-adds the route to the IP route table.

Configuring a static IP route

To configure an IP static route with a destination address of 192.0.0.0 255.0.0.0 and a next-hop router IP address of 195.1.1.1, enter the following commands.

```
FastIron(config)# ip route 192.0.0.0 255.0.0.0 195.1.1.1
```

To configure a static IP route with an Ethernet port instead of a next-hop address, enter a command such as the following.

```
FastIron(config)# ip route 192.128.2.69 255.255.255.0 ethernet 4/1
```

The command in the example above configures a static IP route for destination network 192.128.2.69/24. Since an Ethernet port is specified instead of a gateway IP address as the next hop, the Layer 3 Switch always forwards traffic for the 192.128.2.69/24 network to port 4/1. The command in the following example configures an IP static route that uses virtual interface 3 as its next hop.
FastIron(config)# ip route 192.128.2.71 255.255.255.0 ve 3

The command in the following example configures an IP static route that uses port 2/2 as its next hop.

FastIron(config)# ip route 192.128.2.73 255.255.255.0 ethernet 2/2

Syntax:

```
ip route <dest-ip-addr> <dest-mask>
  <next-hop-ip-addr> [ethernet [<slotnum>]/<portnum> | ve <num>
  [<metric>] [distance <num>]]
```

or

```
ip route <dest-ip-addr>/<mask-bits>
  <next-hop-ip-addr> [ethernet [<slotnum>]/<portnum> | ve <num>
  [<metric>] [distance <num>]]
```

The `<dest-ip-addr>` is the route destination. The `<dest-mask>` is the network mask for the route destination IP address. Alternatively, you can specify the network mask information by entering a forward slash followed by the number of bits in the network mask. For example, you can enter 192.0.0.0 255.255.255.0 as 192.0.0.0/24.

The `<next-hop-ip-addr>` is the IP address of the next-hop router (gateway) for the route.

If you do not want to specify a next-hop IP address, you can instead specify a port or interface number on the Layer 3 Switch. The `<num>` parameter is a virtual interface number. If you instead specify an Ethernet port, the `<portnum>` is the port number (including the slot number, if you are configuring a Chassis device). In this case, the Layer 3 Switch forwards packets destined for the static route destination network to the specified interface. Conceptually, this feature makes the destination network like a directly connected network, associated with a specific Layer 3 Switch interface.

NOTE
The port or virtual interface you use for the static route next hop must have at least one IP address configured on it. The address does not need to be in the same subnet as the destination network.

The `<metric>` parameter can be a number from 1 – 16. The default is 1.

NOTE
If you specify 16, RIP considers the metric to be infinite and thus also considers the route to be unreachable.

The `distance <num>` parameter specifies the administrative distance of the route. When comparing otherwise equal routes to a destination, the Layer 3 Switch prefers lower administrative distances over higher ones, so make sure you use a low value for your default route. The default is 1.

NOTE
The Layer 3 Switch will replace the static route if it receives a route with a lower administrative distance. Refer to "Changing administrative distances" on page 1327 for a list of the default administrative distances for all types of routes.

NOTE
You can also assign the default router as the destination by entering 0.0.0.0 0.0.0.0 xxx.xxx.xxx.xxx.
Configuring a “Null” route

You can configure the Layer 3 Switch to drop IP packets to a specific network or host address by configuring a “null” (sometimes called “null0”) static route for the address. When the Layer 3 Switch receives a packet destined for the address, the Layer 3 Switch drops the packet instead of forwarding it.

To configure a null static route, use the following CLI method.

To configure a null static route to drop packets destined for network 209.157.22.x, enter the following commands.

```
FastIron(config)# ip route 209.157.22.0 255.255.255.0 null0
FastIron(config)# write memory
```

Syntax: `ip route <ip-addr> <ip-mask> null0 [metric] [distance <num>]`

or

Syntax: `ip route <ip-addr>/<mask-bits> null0 [metric] [distance <num>]`

To display the maximum value for your device, enter the `show default values` command. The maximum number of static IP routes the system can hold is listed in the `ip-static-route` row in the System Parameters section of the display. To change the maximum value, use the `system-max` `ip-static-route <num>` command at the global CONFIG level.

The `<ip-addr>` parameter specifies the network or host address. The Layer 3 Switch will drop packets that contain this address in the destination field instead of forwarding them.

The `<ip-mask>` parameter specifies the network mask. Ones are significant bits and zeros allow any value. For example, the mask 255.255.255.0 matches on all hosts within the Class C subnet address specified by `<ip-addr>`. Alternatively, you can specify the number of bits in the network mask. For example, you can enter `209.157.22.0/24` instead of `209.157.22.0 255.255.255.0`.

The `null0` parameter indicates that this is a null route. You must specify this parameter to make this a null route.

The `<metric>` parameter adds a cost to the route. You can specify from `1 – 16`. The default is `1`.

The distance `<num>` parameter configures the administrative distance for the route. You can specify a value from `1 – 255`. The default is `1`. The value `255` makes the route unusable.

NOTE
The last two parameters are optional and do not affect the null route, unless you configure the administrative distance to be `255`. In this case, the route is not used and the traffic might be forwarded instead of dropped.

Configuring load balancing and redundancy using multiple static routes to the same destination

You can configure multiple static IP routes to the same destination, for the following benefits:

- **IP load sharing** – If you configure more than one static route to the same destination, and the routes have different next-hop gateways but have the same metrics, the Layer 3 Switch load balances among the routes using basic round-robin. For example, if you configure two static routes with the same metrics but to different gateways, the Layer 3 Switch alternates between the two routes. For information about IP load balancing, refer to “Configuring IP load sharing” on page 1025.
• **Backup Routes** – If you configure multiple static IP routes to the same destination, but give the routes different next-hop gateways and different metrics, the Layer 3 Switch will always use the route with the lowest metric. If this route becomes unavailable, the Layer 3 Switch will fail over to the static route with the next-lowest metric, and so on.

NOTE
You also can bias the Layer 3 Switch to select one of the routes by configuring them with different administrative distances. However, make sure you do not give a static route a higher administrative distance than other types of routes, unless you want those other types to be preferred over the static route. For a list of the default administrative distances, refer to “Changing administrative distances” on page 1327.

The steps for configuring the static routes are the same as described in the previous section. The following sections provide examples.

To configure multiple static IP routes, enter commands such as the following.

```plaintext
FastIron(config)# ip route 192.128.2.69 255.255.255.0 209.157.22.1
FastIron(config)# ip route 192.128.2.69 255.255.255.0 192.111.10.1
```

The commands in the example above configure two static IP routes. The routes go to different next-hop gateways but have the same metrics. These commands use the default metric value (1), so the metric is not specified. These static routes are used for load sharing among the next-hop gateways.

The following commands configure static IP routes to the same destination, but with different metrics. The route with the lowest metric is used by default. The other routes are backups in case the first route becomes unavailable. The Layer 3 Switch uses the route with the lowest metric if the route is available.

```plaintext
FastIron(config)# ip route 192.128.2.69 255.255.255.0 209.157.22.1
FastIron(config)# ip route 192.128.2.69 255.255.255.0 192.111.10.1 2
FastIron(config)# ip route 192.128.2.69 255.255.255.0 201.1.1.1 3
```

In this example, each static route has a different metric. The metric is not specified for the first route, so the default (1) is used. A metric is specified for the second and third static IP routes. The second route has a metric of two and the third route has a metric of 3. Thus, the second route is used only if the first route (which has a metric of 1) becomes unavailable. Likewise, the third route is used only if the first and second routes (which have lower metrics) are both unavailable.

For complete syntax information, refer to “Configuring a static IP route” on page 1017.

Configuring standard static IP routes and interface or null static routes to the same destination

You can configure a null0 or interface-based static route to a destination and also configure a normal static route to the same destination, so long as the route metrics are different.

When the Layer 3 Switch has multiple routes to the same destination, the Layer 3 Switch always prefers the route with the lowest metric. Generally, when you configure a static route to a destination network, you assign the route a low metric so that the Layer 3 Switch prefers the static route over other routes to the destination.

This feature is especially useful for the following configurations. These are not the only allowed configurations but they are typical uses of this enhancement:
• When you want to ensure that if a given destination network is unavailable, the Layer 3 Switch drops (forwards to the null interface) traffic for that network instead of using alternate paths to route the traffic. In this case, assign the normal static route to the destination network a lower metric than the null route.

• When you want to use a specific interface by default to route traffic to a given destination network, but want to allow the Layer 3 Switch to use other interfaces to reach the destination network if the path that uses the default interface becomes unavailable. In this case, give the interface route a lower metric than the normal static route.

NOTE
You cannot add a null or interface-based static route to a network if there is already a static route of any type with the same metric you specify for the null or interface-based route.
Figure 133 shows an example of two static routes configured for the same destination network. In this example, one of the routes is a standard static route and has a metric of 1. The other static route is a null route and has a higher metric than the standard static route. The Layer 3 Switch always prefers the static route with the lower metric. In this example, the Layer 3 Switch always uses the standard static route for traffic to destination network 192.168.7.0/24, unless that route becomes unavailable, in which case the Layer 3 Switch sends traffic to the null route instead.

FIGURE 133 Standard and null static routes to the same destination network

Two static routes to 192.168.7.0/24:

- Standard static route through gateway 192.168.6.157, with metric 1
- Null route, with metric 2

Figure 134 shows another example of two static routes. In this example, a standard static route and an interface-based static route are configured for destination network 192.168.6.0/24. The interface-based static route has a lower metric than the standard static route. As a result, the Layer 3 Switch always prefers the interface-based route when the route is available. However, if the interface-based route becomes unavailable, the Layer 3 Switch still forwards the traffic toward the destination using an alternate route through gateway 192.168.8.11/24.

FIGURE 134 Standard and interface routes to the same destination network

To configure a standard static IP route and a null route to the same network as shown in Figure 133 on page 1022, enter commands such as the following.

```
FastIron(config)# ip route 192.168.7.0/24 192.168.6.157/24 1
FastIron(config)# ip route 192.168.7.0/24 null0 3
```

The first command configures a standard static route, which includes specification of the next-hop gateway. The command also gives the standard static route a metric of 1, which causes the Layer 3 Switch to always prefer this route when the route is available.

The second command configures another static route for the same destination network, but the second route is a null route. The metric for the null route is 3, which is higher than the metric for the standard static route. If the standard static route is unavailable, the software uses the null route.

For complete syntax information, refer to “Configuring a static IP route” on page 1017.

To configure a standard static route and an interface-based route to the same destination, enter commands such as the following.

```
FastIron(config)# ip route 192.168.6.0/24 ethernet 1/1 1
FastIron(config)# ip route 192.168.6.0/24 192.168.8.11/24 3
```

The first command configured an interface-based static route through Ethernet port 1/1. The command assigns a metric of 1 to this route, causing the Layer 3 Switch to always prefer this route when it is available. If the route becomes unavailable, the Layer 3 Switch uses an alternate route through the next-hop gateway 192.168.8.11/24.
Configuring a default network route

The Layer 3 Switch enables you to specify a candidate default route without the need to specify the next hop gateway. If the IP route table does not contain an explicit default route (for example, 0.0.0.0/0) or propagate an explicit default route through routing protocols, the software can use the default network route as a default route instead.

When the software uses the default network route, it also uses the default network route’s next hop gateway as the gateway of last resort.

This feature is especially useful in environments where network topology changes can make the next hop gateway unreachable. This feature allows the Layer 3 Switch to perform default routing even if the default network route's default gateway changes.

The feature thus differs from standard default routes. When you configure a standard default route, you also specify the next hop gateway. If a topology change makes the gateway unreachable, the default route becomes unusable.

For example, if you configure 10.10.10.0/24 as a candidate default network route, if the IP route table does not contain an explicit default route (0.0.0.0/0), the software uses the default network route and automatically uses that route's next hop gateway as the default gateway. If a topology change occurs and as a result the default network route’s next hop gateway changes, the software can still use the default network route. To configure a default network route, use the following CLI method.

If you configure more than one default network route, the Layer 3 Switch uses the following algorithm to select one of the routes.

1. Use the route with the lowest administrative distance.
2. If the administrative distances are equal:
 • Are the routes from different routing protocols (RIP, OSPF, or BGP4)? If so, use the route with the lowest IP address.
 • If the routes are from the same routing protocol, use the route with the best metric. The meaning of “best” metric depends on the routing protocol:
 • RIP – The metric is the number of hops (additional routers) to the destination. The best route is the route with the fewest hops.
 • OSPF – The metric is the path cost associated with the route. The path cost does not indicate the number of hops but is instead a numeric value associated with each route. The best route is the route with the lowest path cost.
 • BGP4 – The metric is the Multi-exit Discriminator (MED) associated with the route. The MED applies to routes that have multiple paths through the same AS. The best route is the route with the lowest MED.

Configuring a default network route

You can configure up to four default network routes.

To configure a default network route, enter commands such as the following.

```
FastIron(config)# ip default-network 209.157.22.0
FastIron(config)# write memory
```

Syntax: `ip default-network <ip-addr>`

The `<ip-addr>` parameter specifies the network address.
To verify that the route is in the route table, enter the following command at any level of the CLI.

```
FastIron# show ip route
Total number of IP routes: 2
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>NetMask</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>209.157.20.0</td>
<td>255.255.255.0</td>
<td>0.0.0.0</td>
<td>lb1</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>209.157.22.0</td>
<td>255.255.255.0</td>
<td>0.0.0.0</td>
<td>4/11</td>
<td>1</td>
<td>*D</td>
</tr>
</tbody>
</table>

This example shows two routes. Both of the routes are directly attached, as indicated in the Type column. However, one of the routes is shown as type “*D”, with an asterisk (*). The asterisk indicates that this route is a candidate default network route.

Configuring IP load sharing

Platform Support:

- All FESX, FSX, FSX 800, FSX 1600, and FWSX devices
- FGS, FLS, and FWS devices running software release 04.3.01 and later
- TurboIron X Series devices running software release 04.2.00 and later

The IP route table can contain more than one path to a given destination. When this occurs, the Layer 3 Switch selects the path with the lowest cost as the path for forwarding traffic to the destination. If the IP route table contains more than one path to a destination and the paths each have the lowest cost, then the Layer 3 Switch uses **IP load sharing** to select a path to the destination.¹

On FastIron X Series devices, IP load sharing uses a hashing algorithm based on the source IP address, destination IP address, and protocol field in the IP header.

In software releases 02.1.00 and later, you can enable a Layer 3 Switch to load balance across up to six equal-cost paths. In software releases prior to 02.1.00, you can enable a Layer 3 Switch to load balance across up to eight equal-cost paths. The default maximum number of equal-cost load sharing paths is four.

NOTE

IP load sharing is based on next-hop routing, and not on source routing.

NOTE

The term “path” refers to the next-hop router to a destination, not to the entire route to a destination. Thus, when the software compares multiple equal-cost paths, the software is comparing paths that use different next-hop routers, with equal costs, to the same destination.

In many contexts, the terms “route” and “path” mean the same thing. Most of the user documentation uses the term “route” throughout. The term “path” is used in this section to refer to an individual next-hop router to a destination, while the term “route” refers collectively to the multiple paths to the destination. Load sharing applies when the IP route table contains multiple, equal-cost paths to a destination.

NOTE

Brocade devices also perform load sharing among the ports in aggregate links. Refer to “Trunk group load sharing” on page 553.

1. IP load sharing is also called “Equal-Cost Multi-Path (ECMP)” load sharing or just “ECMP”
How multiple equal-cost paths enter the IP route table

IP load sharing applies to equal-cost paths in the IP route table. Routes that are eligible for load sharing can enter the table from any of the following sources:

- IP static routes
- Routes learned through RIP
- Routes learned through OSPF
- Routes learned through BGP4

Administrative distance

The administrative distance is a unique value associated with each type (source) of IP route. Each path has an administrative distance. The administrative distance is not used when performing IP load sharing, but the administrative distance is used when evaluating multiple equal-cost paths to the same destination from different sources, such as RIP, OSPF and so on.

The value of the administrative distance is determined by the source of the route. The Layer 3 Switch is configured with a unique administrative distance value for each IP route source.

When the software receives multiple paths to the same destination and the paths are from different sources, the software compares the administrative distances of the paths and selects the path with the lowest distance. The software then places the path with the lowest administrative distance in the IP route table. For example, if the Layer 3 Switch has a path learned from OSPF and a path learned from RIP for a given destination, only the path with the lower administrative distance enters the IP route table.

Here are the default administrative distances on the Brocade Layer 3 Switch:

- Directly connected – 0 (this value is not configurable)
- Static IP route – 1 (applies to all static routes, including default routes and default network routes)
- Exterior Border Gateway Protocol (EBGP) – 20
- OSPF – 110
- RIP – 120
- Interior Gateway Protocol (IBGP) – 200
- Local BGP – 200
- Unknown – 255 (the router will not use this route)

Lower administrative distances are preferred over higher distances. For example, if the router receives routes for the same network from OSPF and from RIP, the router will prefer the OSPF route by default.

NOTE

You can change the administrative distances individually. Refer to the configuration chapter for the route source for information.

Since the software selects only the path with the lowest administrative distance, and the administrative distance is determined by the path source, IP load sharing does not apply to paths from different route sources. IP load sharing applies only when the IP route table contains multiple paths to the same destination, from the same IP route source.

IP load sharing does not apply to paths that come from different sources.
Path cost

The cost parameter provides a common basis of comparison for selecting from among multiple paths to a given destination. Each path in the IP route table has a cost. When the IP route table contains multiple paths to a destination, the Layer 3 Switch chooses the path with the lowest cost. When the IP route table contains more than one path with the lowest cost to a destination, the Layer 3 Switch uses IP load sharing to select one of the lowest-cost paths.

The source of a path cost value depends on the source of the path:

- IP static route – The value you assign to the metric parameter when you configure the route. The default metric is 1. Refer to “Configuring load balancing and redundancy using multiple static routes to the same destination” on page 1019.
- RIP – The number of next-hop routers to the destination.
- OSPF – The Path Cost associated with the path. The paths can come from any combination of inter-area, intra-area, and external Link State Advertisements (LSAs).
- BGP4 – The path Multi-Exit Discriminator (MED) value.

NOTE

If the path is redistributed between two or more of the above sources before entering the IP route table, the cost can increase during the redistribution due to settings in redistribution filters.

Static route, OSPF, and BGP4 load sharing

IP load sharing and load sharing for static routes, OSPF routes, and BGP4 routes are individually configured. Multiple equal-cost paths for a destination can enter the IP route table only if the source of the paths is configured to support multiple equal-cost paths. For example, if BGP4 allows only one path with a given cost for a given destination, the BGP4 route table cannot contain equal-cost paths to the destination. Consequently, the IP route table will not receive multiple equal-cost paths from BGP4.

Table 171 lists the default and configurable maximum numbers of paths for each IP route source that can provide equal-cost paths to the IP route table. The table also lists where to find configuration information for the route source load sharing parameters.
The load sharing state for all the route sources is based on the state of IP load sharing. Since IP load sharing is enabled by default on all Brocade Layer 3 Switches, load sharing for static IP routes, RIP routes, OSPF routes, and BGP4 routes also is enabled by default.

How IP load sharing works

When the Layer 3 Switch receives traffic for a destination and the IP route table contains multiple, equal-cost paths to that destination, the device checks the IP forwarding cache for a forwarding entry for the destination. The IP forwarding cache provides a fast path for forwarding IP traffic, including load-balanced traffic. The cache contains entries that associate a destination host or network with a path (next-hop router).

- If the IP forwarding sharing cache contains a forwarding entry for the destination, the device uses the entry to forward the traffic.
- If the IP load forwarding cache does not contain a forwarding entry for the destination, the software selects a path from among the available equal-cost paths to the destination, then creates a forwarding entry in the cache based on the calculation. Subsequent traffic for the same destination uses the forwarding entry.

Response to path state changes

If one of the load-balanced paths to a cached destination becomes unavailable, or the IP route table receives a new equal-cost path to a cached destination, the software removes the unavailable path from the IP route table. Then the software selects a new path.

Disabling or re-enabling load sharing

To disable IP load sharing, enter the following commands.

```
FastIron(config)# no ip load-sharing
```

Syntax: [no] ip load-sharing

Changing the maximum number of load sharing paths

By default, IP load sharing allows IP traffic to be balanced across up to four equal paths. You can change the maximum number of paths the Layer 3 Switch supports to a value from 2 – 8.

NOTE

FSX devices support up to 6 paths. FCX devices support up to 8 paths.

TABLE 171 Default load sharing parameters for route sources

<table>
<thead>
<tr>
<th>Route source</th>
<th>Default maximum number of paths</th>
<th>Maximum number of paths</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FSX</td>
<td>FCX</td>
</tr>
<tr>
<td>Static IP route</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>RIP</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>OSPF</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>BGP4</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

1. This value depends on the value for IP load sharing, and is not separately configurable.
For optimal results, set the maximum number of paths to a value at least as high as the maximum number of equal-cost paths your network typically contains. For example, if the Layer 3 Switch you are configuring for IP load sharing has six next-hop routers, set the maximum paths value to six.

NOTE
If the setting for the maximum number of paths is lower than the actual number of equal-cost paths, the software does not use all the paths for load sharing.

To change the number of IP load sharing paths, enter a command such as the following.

```
FastIron(config)# ip load-sharing 6
```

Syntax: `[no] ip load-sharing [<num>]`

The `<num>` parameter specifies the number of paths and can be from 2 – 8.

NOTE
FSX devices support up to 6 paths. FCX devices support up to 8 paths.

Configuring IRDP

The ICMP Router Discovery Protocol (IRDP) is used by Brocade Layer 3 Switches to advertise the IP addresses of its router interfaces to directly attached hosts. IRDP is disabled by default. You can enable the feature on a global basis or on an individual port basis:

- If you enable the feature globally, all ports use the default values for the IRDP parameters.
- If you leave the feature disabled globally but enable it on individual ports, you also can configure the IRDP parameters on an individual port basis.

NOTE
You can configure IRDP parameters only on an individual port basis. To do so, IRDP must be disabled globally and enabled only on individual ports. You cannot configure IRDP parameters if the feature is globally enabled.

When IRDP is enabled, the Layer 3 Switch periodically sends Router Advertisement messages out the IP interfaces on which the feature is enabled. The messages advertise the Layer 3 Switch IP addresses to directly attached hosts who listen for the messages. In addition, hosts can be configured to query the Layer 3 Switch for the information by sending Router Solicitation messages. Some types of hosts use the Router Solicitation messages to discover their default gateway. When IRDP is enabled on the Brocade Layer 3 Switch, the Layer 3 Switch responds to the Router Solicitation messages. Some clients interpret this response to mean that the Layer 3 Switch is the default gateway. If another router is actually the default gateway for these clients, leave IRDP disabled on the Brocade Layer 3 Switch.

IRDP uses the following parameters. If you enable IRDP on individual ports instead of enabling the feature globally, you can configure these parameters on an individual port basis:

- **Packet type** – The Layer 3 Switch can send Router Advertisement messages as IP broadcasts or as IP multicasts addressed to IP multicast group 224.0.0.1. The packet type is IP broadcast.
- **Maximum message interval and minimum message interval** – When IRDP is enabled, the Layer 3 Switch sends the Router Advertisement messages every 450 – 600 seconds by default. The time within this interval that the Layer 3 Switch selects is random for each message and is not affected by traffic loads or other network factors. The random interval
minimizes the probability that a host will receive Router Advertisement messages from other routers at the same time. The interval on each IRDP-enabled Layer 3 Switch interface is independent of the interval on other IRDP-enabled interfaces. The default maximum message interval is 600 seconds. The default minimum message interval is 450 seconds.

- **Hold time** – Each Router Advertisement message contains a hold time value. This value specifies the maximum amount of time the host should consider an advertisement to be valid until a newer advertisement arrives. When a new advertisement arrives, the hold time is reset. The hold time is always longer than the maximum advertisement interval. Therefore, if the hold time for an advertisement expires, the host can reasonably conclude that the router interface that sent the advertisement is no longer available. The default hold time is three times the maximum message interval.

- **Preference** – If a host receives multiple Router Advertisement messages from different routers, the host selects the router that sent the message with the highest preference as the default gateway. The preference can be a number from 0-4294967296 to 0-4294967295. The default is 0.

Enabling IRDP globally

To globally enable IRDP, enter the following command.

```plaintext
FastIron(config)# ip irdp
```

This command enables IRDP on the IP interfaces on all ports. Each port uses the default values for the IRDP parameters. The parameters are not configurable when IRDP is globally enabled.

Enabling IRDP on an individual port

To enable IRDP on an individual interface and change IRDP parameters, enter commands such as the following.

```plaintext
FastIron(config)# interface ethernet 1/3
FastIron(config-if-1/3)# ip irdp maxadvertinterval 400
```

This example shows how to enable IRDP on a specific port and change the maximum advertisement interval for Router Advertisement messages to 400 seconds.

NOTE

To enable IRDP on individual ports, you must leave the feature globally disabled.

Syntax:

```plaintext
[no] ip irdp [broadcast | multicast] [holdtime <seconds>] [maxadvertinterval <seconds>]
[minadvertinterval <seconds>] [preference <number>]
```

The `broadcast | multicast` parameter specifies the packet type the Layer 3 Switch uses to send Router Advertisement:

- **broadcast** – The Layer 3 Switch sends Router Advertisement as IP broadcasts. This is the default.
- **multicast** – The Layer 3 Switch sends Router Advertisement as multicast packets addressed to IP multicast group 224.0.0.1.

The `holdtime <seconds>` parameter specifies how long a host that receives a Router Advertisement from the Layer 3 Switch should consider the advertisement to be valid. When a host receives a new Router Advertisement message from the Layer 3 Switch, the host resets the hold time for the Layer 3 Switch to the hold time specified in the new advertisement. If the hold time of
an advertisement expires, the host discards the advertisement, concluding that the router
interface that sent the advertisement is no longer available. The value must be greater than the
value of the `maxadvertinterval` parameter and cannot be greater than 9000. The default is three
times the value of the `maxadvertinterval` parameter.

The `maxadvertinterval` parameter specifies the maximum amount of time the Layer 3 Switch waits
between sending Router Advertisements. You can specify a value from 1 to the current value of the
`holdtime` parameter. The default is 600 seconds.

The `minadvertinterval` parameter specifies the minimum amount of time the Layer 3 Switch can
wait between sending Router Advertisements. The default is three-fourths (0.75) the value of the
`maxadvertinterval` parameter. If you change the `maxadvertinterval` parameter, the software
automatically adjusts the `minadvertinterval` parameter to be three-fourths the new value of the
`maxadvertinterval` parameter. If you want to override the automatically configured value, you can
specify an interval from 1 to the current value of the `maxadvertinterval` parameter.

The `preference <number>` parameter specifies the IRDP preference level of this Layer 3 Switch. If
a host receives Router Advertisements from multiple routers, the host selects the router interface
that sent the message with the highest interval as the host default gateway. The valid range is
0-4294967296 to 0-4294967295. The default is 0.

Configuring RARP

The Reverse Address Resolution Protocol (RARP) provides a simple mechanism for
directly-attached IP hosts to boot over the network. RARP allows an IP host that does not have a
means of storing its IP address across power cycles or software reloads to query a directly-attached
router for an IP address.

RARP is enabled by default. However, you must create a RARP entry for each host that will use the
Layer 3 Switch for booting. A RARP entry consists of the following information:

- The entry number – the entry sequence number in the RARP table.
- The MAC address of the boot client.
- The IP address you want the Layer 3 Switch to give to the client.

When a client sends a RARP broadcast requesting an IP address, the Layer 3 Switch responds to
the request by looking in the RARP table for an entry that contains the client MAC address:

- If the RARP table contains an entry for the client, the Layer 3 Switch sends a unicast response
to the client that contains the IP address associated with the client MAC address in the RARP
table.
- If the RARP table does not contain an entry for the client, the Layer 3 Switch silently discards
the RARP request and does not reply to the client.

How RARP Differs from BootP/DHCP

RARP and BootP/DHCP are different methods for providing IP addresses to IP hosts when they
boot. These methods differ in the following ways:

- Location of configured host addresses:
 - RARP requires static configuration of the host IP addresses on the Layer 3 Switch. The
 Layer 3 Switch replies directly to a host request by sending an IP address you have
 configured in the RARP table.
• The Layer 3 Switch forwards BootP and DHCP requests to a third-party BootP/DHCP server that contains the IP addresses and other host configuration information.

• Connection of host to boot source (Layer 3 Switch or BootP/DHCP server):
 • RARP requires the IP host to be directly attached to the Layer 3 Switch.
 • An IP host and the BootP/DHCP server can be on different networks and on different routers, so long as the routers are configured to forward (“help”) the host boot request to the boot server.
 • You can centrally configure other host parameters on the BootP/DHCP server, in addition to the IP address, and supply those parameters to the host along with its IP address.

To configure the Layer 3 Switch to forward BootP/DHCP requests when boot clients and the boot servers are on different subnets on different Layer 3 Switch interfaces, refer to “Configuring BootP/DHCP relay parameters” on page 1035.

Disabling RARP

RARP is enabled by default. To disable RARP, enter the following command at the global CONFIG level.

```
FastIron(config)# no ip rarp
```

Syntax: `[no] ip rarp`

To re-enable RARP, enter the following command.

```
FastIron(config)# ip rarp
```

Creating static RARP entries

You must configure the RARP entries for the RARP table. The Layer 3 Switch can send an IP address in reply to a client RARP request only if create a RARP entry for that client.

To assign a static IP RARP entry for static routes on a Brocade router, enter a command such as the following.

```
FastIron(config)# rarp 1 1245.7654.2348 192.53.4.2
```

This command creates a RARP entry for a client with MAC address 1245.7654.2348. When the Layer 3 Switch receives a RARP request from this client, the Layer 3 Switch replies to the request by sending IP address 192.53.4.2 to the client.

Syntax: `rarp <number> <mac-addr> <ip-addr>`

The `<number>` parameter identifies the RARP entry number. You can specify an unused number from 1 to the maximum number of RARP entries supported on the device. To determine the maximum number of entries supported on the device, refer to the section “Displaying and modifying system parameter default settings” on page 380.

The `<mac-addr>` parameter specifies the MAC address of the RARP client.

The `<ip-addr>` parameter specifies the IP address the Layer 3 Switch will give the client in response to the client RARP request.
Changing the maximum number of static RARP entries supported

The number of RARP entries the Layer 3 Switch supports depends on how much memory the Layer 3 Switch has. To determine how many RARP entries your Layer 3 Switch can have, display the system default information using the procedure in the section “Displaying and modifying system parameter default settings” on page 380.

If your Layer 3 Switch allows you to increase the maximum number of RARP entries, you can use a procedure in the same section to do so.

NOTE
You must save the configuration to the startup-config file and reload the software after changing the RARP cache size to place the change into effect.

Configuring UDP broadcast and IP helper parameters

Some applications rely on client requests sent as limited IP broadcasts addressed to the UDP application port. If a server for the application receives such a broadcast, the server can reply to the client. Routers do not forward subnet directed broadcasts, so the client and server must be on the same network for the broadcast to reach the server. If the client and server are on different networks (on opposite sides of a router), the client request cannot reach the server.

You can configure the Layer 3 Switch to forward clients’ requests to UDP application servers. To do so:

- Enable forwarding support for the UDP application port, if forwarding support is not already enabled.
- Configure a helper address on the interface connected to the clients. Specify the helper address to be the IP address of the application server or the subnet directed broadcast address for the IP subnet the server is in. A helper address is associated with a specific interface and applies only to client requests received on that interface. The Layer 3 Switch forwards client requests for any of the application ports the Layer 3 Switch is enabled to forward to the helper address.

Forwarding support for the following application ports is enabled by default:

- bootps (port 67)
- dns (port 53)
- tftp (port 69)
- time (port 37)
- netbios-ns (port 137)
- netbios-dgm (port 138)
- tacacs (port 65)

NOTE
The application names are the names for these applications that the Layer 3 Switch software recognizes, and might not match the names for these applications on some third-party devices. The numbers listed in parentheses are the UDP port numbers for the applications. The numbers come from RFC 1340.
NOTE
Forwarding support for BootP/DHCP is enabled by default. If you are configuring the Layer 3 Switch to forward BootP/DHCP requests, refer to “Configuring BootP/DHCP relay parameters” on page 1035.

You can enable forwarding for other applications by specifying the application port number.

You also can disable forwarding for an application.

NOTE
If you disable forwarding for a UDP application, forwarding of client requests received as broadcasts to helper addresses is disabled. Disabling forwarding of an application does not disable other support for the application. For example, if you disable forwarding of Telnet requests to helper addresses, other Telnet support on the Layer 3 Switch is not also disabled.

Enabling forwarding for a UDP application

If you want the Layer 3 Switch to forward client requests for UDP applications that the Layer 3 Switch does not forward by default, you can enable forwarding support for the port. To enable forwarding support for a UDP application, use the following method. You also can disable forwarding for an application using this method.

NOTE
You also must configure a helper address on the interface that is connected to the clients for the application. The Layer 3 Switch cannot forward the requests unless you configure the helper address. Refer to “Configuring an IP helper address” on page 1036.

To enable the forwarding of SNMP trap broadcasts, enter the following command.

```
FastIron(config)# ip forward-protocol udp snmp-trap
```

Syntax: [no] ip forward-protocol udp <udp-port-name> | <udp-port-num>

The <udp-port-name> parameter can have one of the following values. For reference, the corresponding port numbers from RFC 1340 are shown in parentheses. If you specify an application name, enter the name only, not the parentheses or the port number shown here:

- bootpc (port 68)
- bootps (port 67)
- discard (port 9)
- dns (port 53)
- dnsix (port 90)
- echo (port 7)
- mobile-ip (port 434)
- netbios-dgm (port 138)
- netbios-ns (port 137)
- ntp (port 123)
- tacacs (port 65)
- talk (port 517)
- time (port 37)
• tftp (port 69)

In addition, you can specify any UDP application by using the application UDP port number.

The `<udp-port-num>` parameter specifies the UDP application port number. If the application you want to enable is not listed above, enter the application port number. You also can list the port number for any of the applications listed above.

To disable forwarding for an application, enter a command such as the following.

```
FastIron(config)# no ip forward-protocol udp snmp
```

This command disables forwarding of SNMP requests to the helper addresses configured on Layer 3 Switch interfaces.

Configuring an IP helper address

To forward a client broadcast request for a UDP application when the client and server are on different networks, you must configure a helper address on the interface connected to the client. Specify the server IP address or the subnet directed broadcast address of the IP subnet the server is in as the helper address.

You can configure up to 16 helper addresses on each interface. You can configure a helper address on an Ethernet port or a virtual interface.

To configure a helper address on interface 2 on chassis module 1, enter the following commands.

```
FastIron(config)# interface e 1/2
FastIron(config-if-1/2)# ip helper-address 1 207.95.7.6
```

The commands in this example change the CLI to the configuration level for port 1/2, then add a helper address for server 207.95.7.6 to the port. If the port receives a client request for any of the applications that the Layer 3 Switch is enabled to forward, the Layer 3 Switch forwards the client request to the server.

Syntax: `ip helper-address <num> <ip-addr>`

The `<num>` parameter specifies the helper address number and can be from 1 – 16.

The `<ip-addr>` command specifies the server IP address or the subnet directed broadcast address of the IP subnet the server is in.

Configuring BootP/DHCP relay parameters

A host on an IP network can use BootP/DHCP to obtain its IP address from a BootP/DHCP server. To obtain the address, the client sends a BootP/DHCP request. The request is a subnet directed broadcast and is addressed to UDP port 67. A limited IP broadcast is addressed to IP address 255.255.255.255 and is not forwarded by the Brocade Layer 3 Switch or other IP routers.

When the BootP/DHCP client and server are on the same network, the server receives the broadcast request and replies to the client. However, when the client and server are on different networks, the server does not receive the client request, because the Layer 3 Switch does not forward the request.

You can configure the Layer 3 Switch to forward BootP/DHCP requests. To do so, configure a helper address on the interface that receives the client requests, and specify the BootP/DHCP server IP address as the address you are helping the BootP/DHCP requests to reach. Instead of the server IP address, you can specify the subnet directed broadcast address of the IP subnet the server is in.
BootP/DHCP relay parameters

The following parameters control the Layer 3 Switch forwarding of BootP/DHCP requests:

- **Helper address** – The BootP/DHCP server IP address. You must configure the helper address on the interface that receives the BootP/DHCP requests from the client. The Layer 3 Switch cannot forward a request to the server unless you configure a helper address for the server.

- **Gateway address** – The Layer 3 Switch places the IP address of the interface that received the BootP/DHCP request in the request packet Gateway Address field (sometimes called the Router ID field). When the server responds to the request, the server sends the response as a unicast packet to the IP address in the Gateway Address field. (If the client and server are directly attached, the Gateway ID field is empty and the server replies to the client using a unicast or broadcast packet, depending on the server.)

By default, the Layer 3 Switch uses the lowest-numbered IP address on the interface that receives the request as the Gateway address. You can override the default by specifying the IP address you want the Layer 3 Switch to use.

- **Hop count** – Each router that forwards a BootP/DHCP packet increments the hop count by 1. Routers also discard a forwarded BootP/DHCP request instead of forwarding the request if the hop count is greater than the maximum number of BootP/DHCP hops allows by the router. By default, a Brocade Layer 3 Switch forwards a BootP/DHCP request if its hop count is four or less, but discards the request if the hop count is greater than four. You can change the maximum number of hops the Layer 3 Switch will allow to a value from 1 – 15.

NOTE
The BootP/DHCP hop count is not the TTL parameter.

Configuring an IP helper address

The procedure for configuring a helper address for BootP/DHCP requests is the same as the procedure for configuring a helper address for other types of UDP broadcasts. Refer to “Configuring an IP helper address” on page 1035.

Configuring the BOOTP/DHCP reply source address

You can configure the Brocade device so that a BOOTP/DHCP reply to a client contains the server IP address as the source address instead of the router IP address. To do so, enter the following command at the Global CONFIG level of the CLI.

```
FastIron(config)# ip helper-use-responder-ip
```

Syntax: [no] ip helper-use-responder-ip

Changing the IP address used for stamping BootP/DHCP requests

NOTE
This feature is not supported in TurboIron devices.

When the Layer 3 Switch forwards a BootP/DHCP request, the Layer 3 Switch “stamps” the Gateway Address field. The default value the Layer 3 Switch uses to stamp the packet is the lowest-numbered IP address configured on the interface that received the request. If you want the Layer 3 Switch to use a different IP address to stamp requests received on the interface, use either of the following methods to specify the address.
The BootP/DHCP stamp address is an interface parameter. Change the parameter on the interface that is connected to the BootP/DHCP client.

To change the IP address used for stamping BootP/DHCP requests received on interface 1/1, enter commands such as the following.

```bash
FastIron(config)# int e 1/1
FastIron(config-if-1/1)# ip bootp-gateway 109.157.22.26
```

These commands change the CLI to the configuration level for port 1/1, then change the BootP/DHCP stamp address for requests received on port 1/1 to 192.157.22.26. The Layer 3 Switch will place this IP address in the Gateway Address field of BootP/DHCP requests that the Layer 3 Switch receives on port 1/1 and forwards to the BootP/DHCP server.

Syntax: `ip bootp-gateway <ip-addr>`

Changing the maximum number of hops to a BootP relay server

Each BootP/DHCP request includes a field Hop Count field. The Hop Count field indicates how many routers the request has passed through. When the Layer 3 Switch receives a BootP/DHCP request, the Layer 3 Switch looks at the value in the Hop Count field:

- If the hop count value is equal to or less than the maximum hop count the Layer 3 Switch allows, the Layer 3 Switch increments the hop count by one and forwards the request.
- If the hop count is greater than the maximum hop count the Layer 3 Switch allows, the Layer 3 Switch discards the request.

To change the maximum number of hops the Layer 3 Switch allows for forwarded BootP/DHCP requests, use either of the following methods.

NOTE
The BootP/DHCP hop count is not the TTL parameter.

To modify the maximum number of BootP/DHCP hops, enter the following command.

```bash
FastIron(config)# bootp-relay-max-hops 10
```

This command allows the Layer 3 Switch to forward BootP/DHCP requests that have passed through ten previous hops before reaching the Layer 3 Switch. Requests that have traversed 11 hops before reaching the switch are dropped. Since the hop count value initializes at zero, the hop count value of an ingressing DHCP Request packet is the number of Layer 3 routers that the packet has already traversed.

Syntax: `bootp-relay-max-hops <1 through 15>`

DHCP Server

Platform Support:

- FastIron GS, LS, and WS devices running software version 04.3.03 and later
Overview

The Dynamic Host Configuration Protocol (DHCP) is a computer networking protocol used by devices (DHCP clients) to obtain leased (or permanent) IP addresses. DHCP is an extension of the Bootstrap Protocol (BOOTP). The differences between DHCP and BOOTP are the address allocation and renewal process.

DHCP introduces the concept of a lease on an IP address. See “How DHCP Client-based Auto-Configuration works” on page 1052. The DHCP server can allocate an IP address for a specified amount of time, or can extend a lease for an indefinite amount of time. DHCP provides greater control of address distribution within a subnet. This feature is crucial if the subnet has more devices than available IP address. In contrast to BOOTP, which has two types of messages that can be used for leased negotiation, DHCP provides 7 types of messages. See “Supported Options for DHCP Servers” on page 1056.

DHCP allocates temporary or permanent network IP addresses to clients. When a client requests the use of an address for a time interval, the DHCP server guarantees not to reallocate that address within the requested time and tries to return the same network address each time the client makes a request. The period of time for which a network address is allocated to a client is called a lease. The client may extend the lease through subsequent requests. When the client is done with the address, they can release the address back to the server. By asking for an indefinite lease, clients may receive a permanent assignment.

In some environments, it may be necessary to reassign network addresses due to exhaustion of the available address pool. In this case, the allocation mechanism reuses addresses with expired leases.

DHCP Option 82 Support

The DHCP relay agent information option (DHCP option 82) enables a DHCP relay agent to include information about itself when forwarding client-originated DHCP packets to a DHCP server. The DHCP server uses this information to implement IP address or other parameter-assignment policies.

In a metropolitan Ethernet-access environment, the DHCP server can centrally manage IP address assignments for a large number of subscribers. If DHCP option 82 is disabled, a DHCP policy can only be applied per subnet, rather than per physical port. When DHCP option 82 is enabled, a subscriber is identified by the physical port through which it connects to the network.

DHCP Server Options

A FastIron configured as a DHCP server can support up to 1000 DHCP clients, offering them the following options:

- **NetBIOS over TCP/IP Name Server** - Specifies a list of RFC1001/1002 NBNS name servers listed in order of preference.
- **Domain Name Server** - Specifies a list of Domain Name System (RFC 1035) name servers available to the client. Servers are listed in order of preference.
- **Domain Name** - Specifies the domain name the client should use when resolving hostnames using the Domain Name system.
- **Router Option** - Specifies a list of IP addresses for routers on the client subnet. Routers are listed in order of preference.
- **Subnet Mask** - Specifies the client subnet mask (per RFC950).
- **Vendor Specific Information** - Allows clients and servers to exchange vendor-specific information.
- **Boot File** - Specifies a boot image to be used by the client
- **Next Bootstrap Server** - Configures the IP address of the next server to be used for startup by the client.
- **TFTP Server** - Configures the address of the TFTP server available to the client.
A DHCP server assigns and manages IPv4 addresses from a multiple address pools, using dynamic address allocation. The DHCP server also contains the relay agent to forward DHCP broadcast messages to network segments that do not support these types of messages.

FIGURE 135 DHCP Server configuration flow chart
Configuring DHCP Server on a device

Perform the following steps to configure the DHCP Server feature on your FastIron device.

1. Classify incoming message.
2. DHCP enabled?
 - Yes: Previous allocation in DB for this host?
 - Yes: Reserve the previous allocated address.
 - No: Route Portnum, Ciaddr field, and Giaddr field to select proper address pool.
 - No: Use RX Portnum, Ciaddr field, and Giaddr field to select proper address pool.
3. Available address in the pool?
 - Yes: Host options requested address?
 - Yes: Check for requested address from host options parameters (Requested IP Address).
 - No: Reserve an address from the address pool.
 - No: Reserve the address.
4. Requested address available?
 - Yes: Requested address available.
 - No: Log error in system log and send DHCP NAK to host.
5. Host responds?
 - Yes: Send offer to host and listen for response.
 - No: Reserve the previous allocated address.
6. Host options requested address?
 - Yes: Send offer to host and listen for response.
 - No: Reserve an address from the address pool.
7. Available address in the pool?
 - Yes: Use RX Portnum, Ciaddr field, and Giaddr field to select proper address pool.
 - No: Reserve the address.
8. Check host decline address against address pool.
 - Yes: Mark address as available to another host.
 - No: Log error to system log.
9. DHCP release?
 - Yes: Mark address as no available and log config error in system log.
 - No: Check for requested address from host options parameters (Requested IP Address).
10. DHCP decline?
 - Yes: Send ACK to host with all configured options. Do not include lease expiration or yiaddr.
 - No: Log warning to system log.
11. DHCP inform?
 - Yes: Send ACK to host and listen for request to extend, renew, or release lease.
 - No: Request to extend or renew lease.
12. DHCP request?
 - Yes: Accepting assigned address/lease parameters.
 - No: Renew or extend the lease.

End.
1. Enable DHCP Server by entering a command similar to the following:

 FWS624 Switch(config)# ip dhcp-server enable

2. Create a DHCP Server address pool by entering a command similar to the following:

 FWS624 Switch(config)# ip dhcp-server pool cabo

3. Configure the DHCP Server address pool by entering commands similar to the following:

 FWS624 Switch(config-dhcp-cabo)# network 172.16.1.0/24
 FWS624 Switch(config-dhcp-cabo)# domain-name brocade.com
 FWS624 Switch(config-dhcp-cabo)# dns-server 172.16.1.2 172.16.1.3
 FWS624 Switch(config-dhcp-cabo)# netbios-name-server 172.16.1.2
 FWS624 Switch(config-dhcp-cabo)# lease 0 0 5

4. To disable DHCP, enter a command similar to the following:

 FWS624 Switch(config)# no ip dhcp-server enable

The following sections describe the default DHCP settings, CLI commands and the options you can configure for the DHCP Server feature.
Default DHCP Server Settings

Table 172 shows the default DHCP server settings.

<table>
<thead>
<tr>
<th>TABLE 172</th>
<th>DHCP Server default settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Default Value</td>
</tr>
<tr>
<td>DHCP server</td>
<td>Disabled</td>
</tr>
<tr>
<td>Lease database expiration time</td>
<td>86400 seconds</td>
</tr>
<tr>
<td>The duration of the lease for an assigned IP address</td>
<td>43200 seconds (one day)</td>
</tr>
<tr>
<td>Maximum lease database expiration time</td>
<td>86400 seconds</td>
</tr>
<tr>
<td>DHCP server with option 82</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP server unknown circuit-ID for Option 82</td>
<td>Permit range lookup</td>
</tr>
<tr>
<td>IP distribution mechanism</td>
<td>Linear</td>
</tr>
</tbody>
</table>

DHCP Server CLI commands

This section describes the CLI commands that are available in the DHCP Server feature.

<table>
<thead>
<tr>
<th>TABLE 173</th>
<th>DHCP Server CLI commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>ip dhcp-server arp-ping-timeout <#></td>
<td>Specifies the time (in seconds) the server will wait for a response to an arp-ping packet before deleting the client from the binding database. The minimum setting is 5 seconds and the maximum time is 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td>Do not alter the default value unless it is necessary. Increasing the value of this timer may increase the time to get console access after a reboot.</td>
</tr>
<tr>
<td>clear ip dhcp-server binding</td>
<td>Deletes a specific, or all leases from the binding database. See "Removing DHCP leases" on page 1044.</td>
</tr>
<tr>
<td>ip dhcp-server enable</td>
<td>Enables the DHCP server feature. See "Enabling DHCP Server" on page 1045.</td>
</tr>
<tr>
<td>ip dhcp-server pool <name></td>
<td>Switches to pool configuration mode (config-dhcp-name# prompt) and creates an address pool. See "Creating an address pool" on page 1045.</td>
</tr>
<tr>
<td>ip dhcp-server relay-agent-echo enable</td>
<td>Enables relay agent echo (Option 82). See "Enabling relay agent echo (Option 82)" on page 1045.</td>
</tr>
<tr>
<td>ip dhcp-server <server-id> <address></td>
<td>Specifies the IP address of the selected DHCP server. See "Configuring the IP address of the DHCP server" on page 1045.</td>
</tr>
<tr>
<td>show ip dhcp-server binding [<address>]</td>
<td>Displays a specific lease entry, or all lease entries. See "Display active lease entries" on page 1048.</td>
</tr>
</tbody>
</table>
Removing DHCP leases

The clear ip dhcp-server binding command can be used to delete a specific lease, or all lease entries from the lease binding database.

FWS624 Switch(config)# clear ip dhcp-server binding *

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip dhcp-server address-pool <name></td>
<td>Displays a specific address pool or all address pools. See “Display address-pool information” on page 1048.</td>
</tr>
<tr>
<td>show ip dhcp-server flash</td>
<td>Displays the lease binding database that is stored in flash memory. See “Display lease-binding information in flash memory” on page 1049.</td>
</tr>
<tr>
<td>show ip dhcp-server summary</td>
<td>Displays a summary of active leases, deployed address pools, undeployed address pools, and server uptime. “Display summary DHCP information” on page 1050.</td>
</tr>
<tr>
<td>bootfile <name></td>
<td>Specifies a boot image to be used by the client. See “Configure the boot image” on page 1046.</td>
</tr>
<tr>
<td>deploy</td>
<td>Deploys an address pool configuration to the server. See “Deploy an address pool configuration to the server” on page 1046.</td>
</tr>
<tr>
<td>dhcp-default-router <addresses></td>
<td>Specifies the IP address of the default router or routers for a client. See “Specify default routers available to the client” on page 1046.</td>
</tr>
<tr>
<td>dns-server <addresses></td>
<td>Specifies the IP addresses of a DNS server or servers available to the client. See “Specify DNS servers available to the client” on page 1046.</td>
</tr>
<tr>
<td>domain-name <domain></td>
<td>Configures the domain name for the client. See “Configure the domain name for the client” on page 1046.</td>
</tr>
<tr>
<td>lease <days><hours><minutes></td>
<td>Specifies the lease duration for an address pool. The default is a one-day lease. See “Configure the lease duration for the address pool” on page 1046.</td>
</tr>
<tr>
<td>excluded-address [<address></td>
<td>Secifies an address or range of addresses to be excluded from the address pool. See “Specify addresses to exclude from the address pool” on page 1047.</td>
</tr>
<tr>
<td>netbios-name-server <address></td>
<td>Specifies the IP address of a NetBIOS WINS server or servers that are available to Microsoft DHCP clients. See “Configure the NetBIOS server for DHCP clients” on page 1047.</td>
</tr>
<tr>
<td>network <subnet>/<mask></td>
<td>Configures the subnet network and mask of the DHCP address pool. See “Configure the subnet and mask of a DHCP address pool” on page 1047.</td>
</tr>
<tr>
<td>next-bootstrap-server <address></td>
<td>Configures the IP address of the next server to be used for startup by the client. See “Configure a next-bootstrap server” on page 1047.</td>
</tr>
<tr>
<td>tftp-server <address></td>
<td>Configures the address of the TFTP server available to the client. See “Configure the TFTP server” on page 1047.</td>
</tr>
<tr>
<td>vendor-class [\ascii]</td>
<td>Specifies the vendor type and configuration value for the DHCP client. See “Configure a vendor type and configuration value for a DHCP client” on page 1047.</td>
</tr>
</tbody>
</table>
Syntax: clear ip dhcp-server binding [<address> | <*>]
- `<address>` - The IP address to be deleted
- `<*>` - Clears all IP addresses

Enabling DHCP Server

The `dhcp server` command enables DHCP Server, which is disabled by default.

Syntax: [no] ip dhcp-server enable
- Enables the DHCP server feature. The `no` version of this command disables DHCP server.

Setting the wait time for ARP-ping response

At startup, the server reconciles the lease-binding database by sending an ARP-ping packet out to every client. If there is no response to the ARP-ping packet within a set amount of time (set in seconds), the server deletes the client from the lease-binding database. The minimum setting is 5 seconds and the maximum is 30 seconds.

Syntax: ip dhcp-server arp-ping-timeout <#>
- `<#>` - The number of seconds to wait for a response to an ARP-ping packet.

NOTE
Do not alter the default value unless it is necessary. Increasing the value of this timer may increase the time to get console access after a reboot.

Creating an address pool

The `dhcp-server pool` command puts you in pool configuration mode, and allows you to create an address pool.

```
FWS624 Switch(config)# dhcp-server pool
FWS624 Switch(config-dhcp-name)# dhcp-server pool monterey
FWS624 Switch(config-dhcp-monterey)#
```

These commands have created an address pool named monterey.

Syntax: dhcp-server pool <name>

Enabling relay agent echo (Option 82)

The `ip dhcp-server relay-agent-echo enable` command activates DHCP Option 82, and enables the DHCP server to echo relay agent information in all replies.

```
FWS624 Switch(config)# ip dhcp-server relay-agent-echo enable
```

Syntax: ip dhcp-server relay-agent-echo enable

Configuring the IP address of the DHCP server

The `ip dhcp-server` command specifies the IP address of the selected DHCP server, as shown in this example:

```
FWS624 Switch(config)# ip dhcp-server cabo 102.1.1.144
```
Syntax: `ip dhcp-server <server-identifier> <address>`

- `<server-identifier>` - The name of the DHCP server
- `<address>` - The IP address of the DHCP server

This command assigns an IP address to the selected DHCP server.

Configure the boot image

The `bootfile` command specifies a boot image name to be used by the DHCP client.

```
FWS624 Switch(config-dhcp-cabo)# bootfile foxhound
```

In this example, the DHCP client should use the boot image called “foxhound”.

Syntax: `bootfile <name>`

Deploy an address pool configuration to the server

The `deploy` command sends an address pool configuration to the DHCP server.

```
FWS624 Switch(config-dhcp-cabo)# deploy
```

Syntax: `deploy`

Specify default routers available to the client

The `dhcp-default-router` command specifies the IP addresses of the default routers for a client.

Syntax: `dhcp-default-router <address> [<address>, <address>]`

Specify DNS servers available to the client

The `dns-server` command specifies DNS servers that are available to DHCP clients.

```
FWS624 Switch(config-dhcp-cabo)# dns-server 102.2.1.143, 101.2.2.142
```

Syntax: `dns-server <address> [<address>, <address>]`

Configure the domain name for the client

- The `domain-name` command configures the domain name for the client.

```
FWS624 Switch(config-dhcp-cabo)# domain-name sierra
```

Syntax: `domain-name <domain>`

Configure the lease duration for the address pool

The `lease` command specifies the lease duration for the address pool. The default is a one-day lease.

```
FWS624 Switch(config-dhcp-cabo)# lease 1 4 32
```

In this example, the lease duration has been set to one day, four hours, and 32 minutes. You can set a lease duration for just days, just hours, or just minutes, or any combination of the three.
Syntax: lease <days> <hours> <minutes>

Specify addresses to exclude from the address pool

The excluded-address command specifies either a single address, or a range of addresses that are to be excluded from the address pool.

FWS624 Switch(config-dhcp-cabo)# excluded-address 101.2.3.44

Syntax: excluded-address <[<address> | <address-low address-high>]>
- <address> - Specifies a single address
- <address-low address-high> - Specifies a range of addresses

Configure the NetBIOS server for DHCP clients

The netbios-name-server command specifies the IP address of a NetBIOS WINS server or servers that are available to Microsoft DHCP clients.

FWS624 Switch(config-dhcp-cabo)# netbios-name-server 192.168.1.55

Syntax: netbios-name-server <address> [<address2>, <address3>]

Configure the subnet and mask of a DHCP address pool

This network command configures the subnet network and mask of the DHCP address pool.

FWS624 Switch(config-dhcp-cabo)# network 101.2.3.44/24

Syntax: network <subnet>/<mask>

Configure a next-bootstrap server

The next-bootstrap-server command specifies the IP address of the next server the client should use for boot up.

FWS624 Switch(config-dhcp-cabo)# next-bootstrap-server 101.2.5.44

Syntax: next-bootstrap-server <address>

Configure the TFTP server

This tftp-server command specifies the address of the TFTP server to be used by the DHCP clients.

FWS624 Switch(config-dhcp-cabo)# tftp-server 101.7.5.48

Syntax: tftp-server <address>

Configure a vendor type and configuration value for a DHCP client

The vendor-class command specifies the vendor-type and configuration value for a DHCP client.

FWS624 Switch(config-dhcp-cabo)# vendor class ascii waikiki

Syntax: vendor-class {[<ascii> | <ip> | <hex>]} <value>
Displaying DHCP information

The following DHCP show commands may be entered from any level of the CLI.

Display active lease entries

The show ip dhcp-server binding command displays a specific active lease, or all active leases, as shown in this example:

FWS624 Switch# show ip dhcp-server binding

The following output is displayed:

SW-FWS624 Switch# show ip dhcp-server bind

Bindings from all pools:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Client-ID/</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardware address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.1.2</td>
<td>001b.ed5d.a440</td>
<td>0d:0h:29m:31s</td>
<td>Automatic</td>
</tr>
<tr>
<td>192.168.1.3</td>
<td>0012.f2e1.26c0</td>
<td>0d:0h:29m:38s</td>
<td>Automatic</td>
</tr>
</tbody>
</table>

SW-FWS624 Switch#

Syntax: show ip dhcp-server binding [<address>]

- <address> - Displays entries for this address only

The following table describes this output.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The IP addresses currently in the binding database</td>
</tr>
<tr>
<td>Client ID/Hardware address</td>
<td>The hardware address for the client</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>The time when this lease will expire</td>
</tr>
<tr>
<td>Type</td>
<td>The type of lease</td>
</tr>
</tbody>
</table>

Display address-pool information

This show ip dhcp-server address-pool command displays information about a specific address pool, or for all address pools.

FWS624 Switch# show ip dhcp-server address-pools

Output similar to the following is displayed, as shown here.

Showing all address pool(s):

Pool Name: one
Time elapsed since last save: 0d:0h:6m:52s
Total number of active leases: 2
Address Pool State: active
IP Address Exclusions: 192.168.1.45
IP Address Exclusions: 192.168.1.99 192.168.1.103
Pool Configured Options:
 bootfile: example.bin
 dhcp-default-router: 192.168.1.1
 dns-server: 192.168.1.100
 domain-name: example.com
 lease: 0 0 30
 netbios-name-server: 192.168.1.101
 network: 192.168.1.0 255.255.255.0
 next-bootstrap-server: 192.168.1.102
 tftp-server: 192.168.1.103

Syntax: show ip dhcp-server address-pool[s] [<name>]
 - address-pool[s] - If you enter address-pools, the display will show all address pools
 - <name> - Displays information about a specific address pool

The following table describes this output.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool name</td>
<td>The name of the address pool</td>
</tr>
<tr>
<td>Time elapsed since last save</td>
<td>The time that has elapsed since the last save.</td>
</tr>
<tr>
<td>Total number of active leases</td>
<td>The number of leases that are currently active.</td>
</tr>
<tr>
<td>Address pool state</td>
<td>The state of the address pool (active or inactive).</td>
</tr>
<tr>
<td>IP Address exclusions</td>
<td>IP addresses that are not included in the address pool</td>
</tr>
<tr>
<td>Pool configured options</td>
<td></td>
</tr>
<tr>
<td>bootfile</td>
<td>The name of the bootfile</td>
</tr>
<tr>
<td>dhcp-server-router</td>
<td>The address of the DHCP server router</td>
</tr>
<tr>
<td>dns-server</td>
<td>The address of the dns server</td>
</tr>
<tr>
<td>domain-name</td>
<td>The name of the domain</td>
</tr>
<tr>
<td>lease</td>
<td>The identifier for the lease</td>
</tr>
<tr>
<td>netbios-name server</td>
<td>The address of the netbios name server</td>
</tr>
<tr>
<td>network</td>
<td>The address of the network</td>
</tr>
<tr>
<td>next-bootstrap-server</td>
<td>The address of the next-bootstrap server</td>
</tr>
<tr>
<td>tftp-server</td>
<td>The address of the TFTP server</td>
</tr>
</tbody>
</table>

Display lease-binding information in flash memory

The show ip dhcp-server flash command displays the lease-binding database that is stored in flash memory.

FWS624 Switch# show ip dhcp-server flash

The following information is displayed.

SW-FWS624 Switch# show ip dhcp-server flash
Address Pool Binding:
DHCP Server

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Client-ID/Hardware address</th>
<th>Lease expiration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.2</td>
<td>001b.ed5d.a440</td>
<td>0d:0h:18m:59s</td>
<td>Automatic</td>
</tr>
<tr>
<td>192.168.1.3</td>
<td>0012.f2e1.26c0</td>
<td>0d:0h:19m:8s</td>
<td>Automatic</td>
</tr>
</tbody>
</table>

Syntax: `show ip dhcp-server flash`

The following table describes this output.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The IP address of the flash memory lease-binding database</td>
</tr>
<tr>
<td>Client-ID/Hardware address</td>
<td>The address of the client</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>The time when the lease will expire</td>
</tr>
<tr>
<td>Type</td>
<td>The type of lease</td>
</tr>
</tbody>
</table>

Display summary DHCP information

The `show ip dhcp-server summary` command displays information about active leases, deployed address-pools, undeployed address-pools, and server uptime.

FWS624 Switch# show ip dhcp-server summary

The following information is displayed.

DHCP Server Summary:

- Total number of active leases: 2
- Total number of deployed address-pools: 1
- Total number of undeployed address-pools: 0
- Server uptime: 0d:0h:8m:27s

Syntax: `show ip dhcp-server summary`

The following table describes this output.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of active leases</td>
<td>Indicates the number of leases that are currently active</td>
</tr>
<tr>
<td>Total number of deployed address-pools</td>
<td>The number of address pools currently in use.</td>
</tr>
<tr>
<td>Total number of undeployed address-pools</td>
<td>The number of address-pools being held in reserve.</td>
</tr>
<tr>
<td>Server uptime</td>
<td>The amount of time that the server has been active.</td>
</tr>
</tbody>
</table>
DHCP Client-Based Auto-Configuration

DHCP Client-Based Auto-Configuration allows FGS, FLS, FWS and FCX Layer 2 and Base Layer 3 devices to automatically obtain leased IP addresses through a DHCP server, negotiate address lease renewal, and obtain configuration files.

DHCP Client-Based Auto-Configuration occurs in two steps:

- In the first step, the IP address validation and lease negotiation enables the DHCP client (an FGS, FLS, FWS and FCX Layer 2 or Base-Layer 3 device) to automatically obtain and configure an IP address, as follows:
 - One lease is granted for each Layer 2 device. if the device is configured with a static IP address, the DHCP Auto-Configuration feature is automatically disabled.
 - For a Base Layer 3 devices, one leased address is granted (per device) to the interface that first receives a response from the DHCP server.
- In the second step, TFTP configuration download and update, the device downloads a configuration file from a TFTP server and saves it as the running configuration.
Figure 136 shows how DHCP Client-Based Auto Configuration works.

FIGURE 136 DHCP Client-Based Auto-Configuration

How DHCP Client-based Auto-Configuration works

Auto-Configuration is enabled by default. To disable this feature, refer to “Disabling or re-enabling Auto-Configuration” on page 1056.

The steps of the Auto-Configuration process are described in Figure 137, and in the description that follows the flowchart.

NOTE

For Base Layer 3 devices, this feature is available for the default VLAN only. For Layer 2 devices, this feature is available for default VLANs and management VLANs. This feature is not supported on virtual interfaces (VEs), trunked ports, or LACP ports.
NOTE
Although the DHCP server may provide multiple addresses, only one IP address is installed at a time.

FIGURE 137 The DHCP Client-Based Auto-Configuration steps

The IP address validation and lease negotiation step
1. At boot-up, the device automatically checks its configuration for an IP address.
2. If the device does not have a static IP address, it requests the lease of an address from the DHCP server:
• If the server responds, it leases an IP address to the device for the specified lease period.
• If the server does not respond (after four tries) the DHCP Client process is ended.

3. If the device has a dynamic address, the device asks the DHCP server to validate that address. If the server does not respond, the device will continue to use the existing address until the lease expires. If the server responds, and the IP address is outside of the DHCP address pool or has been leased to another device, it is automatically rejected, and the device receives a new IP address from the server. If the existing address is valid, the lease continues.

NOTE
The lease time interval is configured on the DHCP server, not on the client device. The `ip dhcp-client lease` command is set by the system, and is non-operational to a user.

4. If the existing address is static, the device keeps it and the DHCP Client process is ended.

5. For a leased IP address, when the lease interval reaches the renewal point, the device requests a renewal from the DHCP server:
 • If the device is able to contact the DHCP server at the renewal point in the lease, the DHCP server extends the lease. This process can continue indefinitely.
 • If the device is unable to reach the DHCP server after four attempts, it continues to use the existing IP address until the lease expires. When the lease expires, the dynamic IP address is removed and the device contacts the DHCP server for a new address. If the device is still unable to contact the DHCP server after four attempts, the process is ended.

The IP address validation and lease negotiation step

1. At boot-up, the device automatically checks its configuration for an IP address.

2. If the device does not have a static IP address, it requests the lease of an address from the DHCP server:
 • If the server responds, it leases an IP address to the device for the specified lease period.
 • If the server does not respond (after four tries) the DHCP Client process is ended.

3. If the device has a dynamic address, the device asks the DHCP server to validate that address. If the server does not respond, the device will continue to use the existing address until the lease expires. If the server responds, and the IP address is outside of the DHCP address pool or has been leased to another device, it is automatically rejected, and the device receives a new IP address from the server. If the existing address is valid, the lease continues.

NOTE
The lease time interval is configured on the DHCP server, not on the client device. The `ip dhcp-client lease` command is set by the system, and is non-operational to a user.

4. If the existing address is static, the device keeps it and the DHCP Client process is ended.

5. For a leased IP address, when the lease interval reaches the renewal point, the device requests a renewal from the DHCP server:
 • If the device is able to contact the DHCP server at the renewal point in the lease, the DHCP server extends the lease. This process can continue indefinitely.
 • If the device is unable to reach the DHCP server after four attempts, it continues to use the existing IP address until the lease expires. When the lease expires, the dynamic IP address is removed and the device contacts the DHCP server for a new address. If the device is still unable to contact the DHCP server after four attempts, the process is ended.
The TFTP Flash image download and update step

NOTE
This process only occurs when the client device reboots, or when DHCP-client has been disabled and then re-enabled.

Once a lease is obtained from the server (described in “The IP address validation and lease negotiation step” on page 1053), the device compares the filename of the requested flash image with the image stored in flash. In a stacking configuration, the device compares the filename with the image stored in the Active controller only.

- If the .bin filenames match, then the DHCP client skips the flash image download. If auto-configuration is enabled, the DHCP client proceeds with downloading the configuration files as described in “The TFTP configuration download and update step”.

- If the .bin filenames are different, then the DHCP client downloads the new image from a TFTP server, then writes the downloaded image to flash. In a stacking configuration, the device copies the flash image to flash in all stack member units.

The code determines which flash (i.e., primary or secondary) to use based on how the device is booted. In a stacking configuration, the member units use the same flash as the Active controller. Once the flash is updated with the newer flash image, the device is reloaded and any member units in a stacking configuration are reloaded as well. If auto-configuration is enabled, the DHCP client then proceeds to download the configuration files described in “The TFTP configuration download and update step”.

NOTE
In a stacking environment, the DHCP client flash image download waits 5 minutes for all member units to join and update. Then the DHCP client downloads the new image from the TFTP server using the TFTP server IP address (option 150), if it is available. If the TFTP server IP address is not available, the DHCP client requests the TFTP file from the DHCP server.

The TFTP configuration download and update step

NOTE
This process only occurs when the client device reboots, or when Auto-Configuration has been disabled and then re-enabled.

1. When the device reboots, or the Auto-Configuration feature has been disabled and then re-enabled, the device uses information from the DHCP server to contact the TFTP server to update the running-configuration file:
 - If the DHCP server provides a TFTP server name or IP address, the device uses this information to request files from the TFTP server.
 - If the DHCP server does not provide a TFTP server name or IP address, the device requests the configuration files from the DHCP server.

2. The device requests the configuration files from the TFTP server by asking for filenames in the following order:
 - bootfile name provided by the DHCP server (if configured)
 - hostnameMAC-config.cfg, for example:
 FGS624p-Switch001b.ed5e.4d00-config.cfg
 - hostnameMAC.cfg, for example:
• **foundry.cfg** (applies to FGS and FLS devices), for example:
 foundry.cfg

• **brocade.cfg** (applies to all devices, for example:
 brocade.cfg

• **<fcx | fgs | fls>-<switch | router>.cfg** (applies to Layer 2 or base Layer 3 devices), for example:

 - fgs-switch.cfg (FGS Layer 2)
 - fls-switch.cfg (FLS Layer 2)
 - fgs-router.cfg (FGS Base-Layer 3)
 - fls-router.cfg (FLS Base Layer 3)
 - fcx-switch.cfg (FCX Layer 2)
 - fcx-router.cfg (FCX Layer 3)

• **hostnameMAC.cfg**, for example:

 FGS624p-Switch001b.ed5e.4d00.cfg

• **foundry.cfg** (applies to both FGS and FLS devices), for example:

 foundry.cfg

• **<fgs | fls>-<switch | router>.cfg** (applies to Layer 2 or base Layer 3 devices), for example:

 - fgs-switch.cfg (FGS Layer 2)
 - fls-switch.cfg (FLS Layer 2)
 - fgs-router.cfg (FGS Base-Layer 3)
 - fls-router.cfg (FLS Base Layer 3)

If the device is successful in contacting the TFTP server and the server has the configuration file, the files are merged. If there is a conflict, the server file takes precedence.

If the device is **unable** to contact the TFTP server or if the files are not found on the server, the TFTP part of the configuration download process ends.

Supported Options for DHCP Servers

DHCP Client supports the following options:

- 001 - subnetmask
- 003 - router ip
- 015 - domain name
- 006 - domain name server
- 012 - hostname (optional)
- 066 - TFTP server name (only used for Client-Based Auto Configuration)
- 067 - bootfile name
- 150 - TFTP server IP address (private option, datatype = IP Address)

Disabling or re-enabling Auto-Configuration

For a switch, you can disable or enable this feature using the following commands.

```
FGS Switch(config)# ip dhcp-client enable
FGS Switch(config)# no ip dhcp-client enable
```
For a router, you can disable or enable this feature using the following commands.

FGS Router(config-if-e1000-0/1/1)# ip dhcp-client enable
FGS Router(config-if-e1000-0/1/1)# no ip dhcp-client enable

Syntax: [no] ip dhcp-client enable

Configuration notes

• When using DHCP on a router, if you have a DHCP address for one interface, and you want to connect to the DHCP server from another interface, you must disable DHCP on the first interface, then enable DHCP on the second interface.

• When DHCP is disabled, and then re-enabled, or if the system is rebooted, the TFTP process requires approximately three minutes to run in the background before file images can be downloaded manually.

• Once a port is assigned a leased IP address, it is bound by the terms of the lease regardless of the link state of the port.
Displaying DHCP configuration information

The following example shows output from the `show ip` command for Layer 2 devices.

```
FGS Switch(config)# show ip

Switch IP address: 10.44.16.116
Subnet mask: 255.255.255.0
Default router address: 10.44.16.1
TFTP server address: 10.44.16.41
Configuration filename: foundry.cfg
Image filename: None
```

The following example shows output from the `show ip address` command for a Layer 2 device.

```
FGS Switch(config)# show ip address

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Type</th>
<th>Lease Time</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.44.16.116</td>
<td>Dynamic</td>
<td>174</td>
<td>0/1/1</td>
</tr>
</tbody>
</table>
```

The following example shows output from the `show ip address` command for a Base Layer 3 device.

```
FGS Router(config)# show ip address

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Type</th>
<th>Lease Time</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.44.3.233</td>
<td>Dynamic</td>
<td>672651</td>
<td>0/1/2</td>
</tr>
<tr>
<td>1.0.0.1</td>
<td>Static</td>
<td>N/A</td>
<td>0/1/15</td>
</tr>
</tbody>
</table>
```

The following example shows a Layer 2 device configuration as a result of the `show run` command.

```
FGS Switch(config)# show run

Current configuration:
!
ver 04.2.00b4777e1
!
module 1 fls-24-port-copper-base-module
!
ip address 10.44.16.116 255.255.255.0 dynamic
ip dns server-address 10.44.16.41
ip dhcp-client lease 174
ip default-gateway 10.44.16.1
!
end
```

The following example shows a Base Layer 3 device configuration as a result of the `show run` command.
DHCP Log messages

The following DHCP notification messages are sent to the log file.

2d01h48m21s:I: DHCP: existing ip address found, no further action needed by DHCP
2d01h48m21s:I: DHCP: Starting DHCP Client service
2d01h48m21s:I: DHCP: Stopped DHCP Client service
2d01h48m21s:I: DHCP: FGS624P Switch running-configuration changed
2d01h48m21s:I: DHCP: sending TFTP request for bootfile name fgs-switch.cfg
2d01h48m21s:I: DHCP: TFTP unable to download running-configuration
2d01h48m21s:I: DHCP: Found static IP Address 1.1.1.1 subnet mask 255.255.255.0 on port 0/1/5
2d01h48m21s:I: DHCP: Client service found no DHCP server(s) on 3 possible subnet
2d01h48m21s:I: DHCP: changing 0/1/3 protocol from stopped to running

Configuring IP parameters – Layer 2 Switches

The following sections describe how to configure IP parameters on a Brocade Layer 2 Switch.

NOTE
This section describes how to configure IP parameters for Layer 2 Switches. For IP configuration information for Layer 3 Switches, refer to “Configuring IP parameters – Layer 3 Switches” on page 992.
Configuring the management IP address and specifying the default gateway

To manage a Layer 2 Switch using Telnet or Secure Shell (SSH) CLI connections or the Web Management Interface, you must configure an IP address for the Layer 2 Switch. Optionally, you also can specify the default gateway.

Brocade devices support both classical IP network masks (Class A, B, and C subnet masks, and so on) and Classless Interdomain Routing (CIDR) network prefix masks:

- To enter a classical network mask, enter the mask in IP address format. For example, enter “209.157.22.99 255.255.255.0” for an IP address with a Class-C subnet mask.
- To enter a prefix network mask, enter a forward slash (/) and the number of bits in the mask immediately after the IP address. For example, enter “209.157.22.99/24” for an IP address that has a network mask with 24 significant bits (ones).

By default, the CLI displays network masks in classical IP address format (example: 255.255.255.0). You can change the display to prefix format. Refer to “Changing the network mask display to prefix format” on page 1084.

To assign an IP address to a Brocade Layer 2 Switch, enter a command such as the following at the global CONFIG level.

```
FastIron(config)# ip address 192.45.6.110 255.255.255.0
```

Syntax: `ip address <ip-addr> <ip-mask>`

or

Syntax: `ip address <ip-addr>/<mask-bits>`

NOTE
You also can enter the IP address and mask in CIDR format, as follows.

```
FastIron(config)# ip address 192.45.6.1/24
```

To specify the Layer 2 Switch default gateway, enter a command such as the following.

```
FastIron(config)# ip default-gateway 192.45.6.1 255.255.255.0
```

```
ip default-gateway <ip-addr>
```

or

```
ip default-gateway <ip-addr>/<mask-bits>
```

NOTE
When configuring an IP address on a Layer 2 switch that has multiple VLANs, make sure the configuration includes a designated management VLAN that identifies the VLAN to which the global IP address belongs. Refer to “Designated VLAN for Telnet management sessions to a Layer 2 Switch” on page 1421.
Configuring Domain Name Server (DNS) resolver

The Domain Name Server (DNS) resolver feature lets you use a host name to perform Telnet, ping, and traceroute commands. You can also define a DNS domain on a Brocade Layer 2 Switch or Layer 3 Switch and thereby recognize all hosts within that domain. After you define a domain name, the Brocade Layer 2 Switch or Layer 3 Switch automatically appends the appropriate domain to the host and forwards it to the domain name server.

For example, if the domain “newyork.com” is defined on a Brocade Layer 2 Switch or Layer 3 Switch and you want to initiate a ping to host “NYC01” on that domain, you need to reference only the host name in the command instead of the host name and its domain name. For example, you could enter either of the following commands to initiate the ping.

FastIron# ping nyc01
FastIron# ping nyc01.newyork.com

Defining a DNS entry

You can define up to four DNS servers for each DNS entry. The first entry serves as the primary default address. If a query to the primary address fails to be resolved after three attempts, the next gateway address is queried (also up to three times). This process continues for each defined gateway address until the query is resolved. The order in which the default gateway addresses are polled is the same as the order in which you enter them.

Suppose you want to define the domain name of newyork.com on a Layer 2 Switch and then define four possible default DNS gateway addresses. To do so, enter the following commands.

FastIron(config)# ip dns domain-name newyork.com
FastIron(config)# ip dns server-address 209.157.22.199 205.96.7.15 208.95.7.25 201.98.7.15

Syntax: ip dns server-address <ip-addr> [...]

In this example, the first IP address in the ip dns server-address... command becomes the primary gateway address and all others are secondary addresses. Because IP address 201.98.7.15 is the last address listed, it is also the last address consulted to resolve a query.

Using a DNS name To initiate a trace route

Example

Suppose you want to trace the route from a Brocade Layer 2 Switch to a remote server identified as NYC02 on domain newyork.com. Because the newyork.com domain is already defined on the Layer 2 Switch, you need to enter only the host name, NYC02, as noted below.

FastIron# traceroute nyc02

Syntax: traceroute <host-ip-addr> [maxttl <value>] [minttl <value>] [numeric] [timeout <value>]

[source-ip <ip addr>]

The only required parameter is the IP address of the host at the other end of the route.
After you enter the command, a message indicating that the DNS query is in process and the current gateway address (IP address of the domain name server) being queried appear on the screen.

Type Control-c to abort
Sending DNS Query to 209.157.22.199
Tracing Route to IP node 209.157.22.80
To ABORT Trace Route, Please use stop-traceroute command.
Traced route to target IP node 209.157.22.80:
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Round Trip Time1</th>
<th>Round Trip Time2</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.95.6.30</td>
<td>93 msec</td>
<td>121 msec</td>
</tr>
</tbody>
</table>

NOTE
In the above example, 209.157.22.199 is the IP address of the domain name server (default DNS gateway address), and 209.157.22.80 represents the IP address of the NYC02 host.

FIGURE 138 Querying a Host on the newyork.com Domain

Changing the TTL threshold

The TTL threshold prevents routing loops by specifying the maximum number of router hops an IP packet originated by the Layer 2 Switch can travel through. Each device capable of forwarding IP that receives the packet decrements (decreases) the packet TTL by one. If a router receives a packet with a TTL of 1 and reduces the TTL to zero, the router drops the packet.

The default TTL is 64. You can change the TTL to a value from 1 – 255.

To modify the TTL threshold to 25, enter the following commands.

```plaintext
FastIron(config)# ip ttl 25
FastIron(config)# exit
```

Syntax: `ip ttl <1-255>`
Configuring DHCP Assist

Platform Support:
- FastIron X Series devices – all software releases
- FGS and FLS devices running software release 03.0.00 and later
- FWS devices running software release 04.3.00 or later
- Turbolron X Series devices running software release 04.1.00 and later

DHCP Assist allows a Brocade Layer 2 Switch to assist a router that is performing multi-netting on its interfaces as part of its DHCP relay function.

DHCP Assist ensures that a DHCP server that manages multiple IP subnets can readily recognize the requester IP subnet, even when that server is not on the client local LAN segment. The Brocade Layer 2 Switch does so by stamping each request with its IP gateway address in the DHCP discovery packet.

NOTE
Brocade Layer 3 Switches provide BootP/DHCP assistance by default on an individual port basis. Refer to “Changing the IP address used for stamping BootP/DHCP requests” on page 1036.

By allowing multiple subnet DHCP requests to be sent on the same wire, you can reduce the number of router ports required to support secondary addressing as well as reduce the number of DHCP servers required, by allowing a server to manage multiple subnet address assignments.

FIGURE 139 DHCP requests in a network without DHCP Assist on the Layer 2 Switch
In a network operating without DHCP Assist, hosts can be assigned IP addresses from the wrong subnet range because a router with multiple subnets configured on an interface cannot distinguish among DHCP discovery packets received from different subnets.

For example, in Figure 139, a host from each of the four subnets supported on a Layer 2 Switch requests an IP address from the DHCP server. These requests are sent transparently to the router. Because the router is unable to determine the origin of each packet by subnet, it assumes the lowest IP address or the ‘primary address’ is the gateway for all ports on the Layer 2 Switch and stamps the request with that address.

When the DHCP request is received at the server, it assigns all IP addresses within that range only. With DHCP Assist enabled on a Brocade Layer 2 Switch, correct assignments are made because the Layer 2 Switch provides the stamping service.
How DHCP Assist works

Upon initiation of a DHCP session, the client sends out a DHCP discovery packet for an address from the DHCP server as seen in Figure 140. When the DHCP discovery packet is received at a Brocade Layer 2 Switch with the DHCP Assist feature enabled, the gateway address configured on the receiving interface is inserted into the packet. This address insertion is also referred to as stamping.

FIGURE 140 DHCP requests in a network with DHCP Assist operating on a FastIron Switch

When the stamped DHCP discovery packet is then received at the router, it is forwarded to the DHCP server. The DHCP server then extracts the gateway address from each request and assigns an available IP address within the corresponding IP subnet (Figure 141). The IP address is then forwarded back to the workstation that originated the request.

NOTE

When DHCP Assist is enabled on any port, Layer 2 broadcast packets are forwarded by the CPU. Unknown unicast and multicast packets are still forwarded in hardware, although selective packets such as IGMP, are sent to the CPU for analysis. When DHCP Assist is not enabled, Layer 2 broadcast packets are forwarded in hardware.
NOTE
The DHCP relay function of the connecting router must be turned on.

FIGURE 141 DHCP Offers are forwarded back toward the requestors

Step 4:
DHCP Server extracts the gateway address from each packet and assigns IP addresses for each host within the appropriate range.

DHCP response with IP addresses for Subnets 1, 2, 3 and 4

- 192.95.5.10
- 200.95.6.15
- 202.95.1.35
- 202.95.5.25

Step 5:
IP addresses are distributed to the appropriate hosts.

- 192.95.5.10
- 200.95.6.15
- 202.95.1.35
- 202.95.5.25

NOTE
When DHCP Assist is enabled on any port, Layer 2 broadcast packets are forwarded by the CPU. Unknown unicast and multicast packets are still forwarded in hardware, although selective packets such as IGMP are sent to the CPU for analysis. When DHCP Assist is not enabled, Layer 2 broadcast packets are forwarded in hardware.

Configuring DHCP Assist

You can associate a gateway list with a port. You must configure a gateway list when DHCP Assist is enabled on a Brocade Layer 2 Switch. The gateway list contains a gateway address for each subnet that will be requesting addresses from a DHCP server. The list allows the stamping process to occur. Each gateway address defined on the Layer 2 Switch corresponds to an IP address of the Brocade router interface or other router involved.
Up to eight addresses can be defined for each gateway list in support of ports that are multi-homed. When multiple IP addresses are configured for a gateway list, the Layer 2 Switch inserts the addresses into the discovery packet in a round robin fashion.

Up to 32 gateway lists can be defined for each Layer 2 Switch.

Example
To create the configuration indicated in Figure 140 and Figure 141, enter commands such as the following.

```
FastIron(config)# dhcp-gateway-list 1 192.95.5.1
FastIron(config)# dhcp-gateway-list 2 200.95.6.1
FastIron(config)# dhcp-gateway-list 3 202.95.1.1 202.95.5.1
FastIron(config)# int e 2
FastIron(config-if-e1000-2)# dhcp-gateway-list 1
FastIron(config-if-e1000-2)# int e8
FastIron(config-if-e1000-8)# dhcp-gateway-list 3
FastIron(config-if-e1000-8)# int e 14
FastIron(config-if-e1000-14)# dhcp-gateway-list 2
```

Syntax: `dhcp-gateway-list <num> <ip-addr>`

IPv4 point-to-point GRE tunnels

Platform Support: FESX, FSX and SX IPv6 devices running software release FSX 05.1.00 and later

This section describes support for point-to-point Generic Routing Encapsulation (GRE) tunnels and how to configure them on a Brocade device.

GRE tunnels support includes, but is not limited to, the following:

- IPv4 over GRE tunnels. IPv6 over GRE tunnels is not supported.
- Static and dynamic unicast routing over GRE tunnels
- Multicast routing over GRE tunnels
- Hardware forwarding of IP data traffic across a GRE tunnel.
- Path MTU Discovery (PMTUD)

Overview

Generic Routing Encapsulation is described in RFC 2784. Generally, GRE provides a way to encapsulate arbitrary packets (payload packet) inside of a transport protocol, and transmit them from one tunnel endpoint to another. The payload is encapsulated in a GRE packet. The resulting GRE packet is then encapsulated in a delivery protocol, then forwarded to the tunnel destination. At the tunnel destination, the packet is de-encapsulated to reveal the payload. The payload is then forwarded to its final destination.

FESX, FSX, and SX IPv6 devices allow the tunneling of packets of the following protocols over an IP network using GRE:

- OSPF V2
- BGP4
- RIP V1 and V2
GRE packet structure and header format

Figure 142 shows the structure of a GRE encapsulated packet.

FIGURE 142 GRE encapsulated packet structure

![GRE packet structure](image)

Figure 143 shows the GRE header format.

FIGURE 143 GRE header format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum</td>
<td>1 bit. This field is assumed to be zero in this version. If set to 1, this means that the Checksum (optional) and Reserved (optional) fields are present and the Checksum (optional) field contains valid information.</td>
</tr>
<tr>
<td>Reserved0</td>
<td>12 bits. If bits 1 - 5 are non-zero, then a receiver must discard the packet unless RFC 1701 is implemented. Bits 6 - 12 are reserved for future use and must be set to zero in transmitted packets. This field is assumed to be zero in this version.</td>
</tr>
<tr>
<td>Ver</td>
<td>3 bits. The GRE protocol version. This field must be set to zero in this version.</td>
</tr>
<tr>
<td>Protocol Type</td>
<td>16 bits. The Ethernet protocol type of the packet, as defined in RFC 1700.</td>
</tr>
<tr>
<td>Checksum (optional)</td>
<td>16 bits. This field is optional. It contains the IP checksum of the GRE header and the payload packet.</td>
</tr>
<tr>
<td>Reserved (optional)</td>
<td>16 bits. This field is optional. It is reserved for Brocade internal use.</td>
</tr>
</tbody>
</table>

Path MTU Discovery (PMTUD) support

Brocade IronWare software supports the following RFCs for handling large packets over a GRE tunnel:

- RFC 1191, Path MTU Discovery
- RFC 4459, MTU and Fragmentation Issues with In-the-Network Tunneling
RFC 1191 describes a method for dynamically discovering the maximum transmission unit (MTU) of an arbitrary internet path. When the FastIron receives an IP packet that has its Do not Fragment (DF) bit set, and the packet size is greater than the MTU value of the outbound interface, then the FastIron returns an ICMP Destination Unreachable message to the source of the packet, with the code indicating "fragmentation needed and DF set". The ICMP Destination Unreachable message includes the MTU of the outbound interface. The source host can use this information to help determine the maximum MTU of a path to a destination.

RFC 4459 describes solutions for issues with large packets over a tunnel. The following methods, from RFC 4459, are supported in Brocade IronWare software:

- If a source attempts to send packets that are larger than the lowest MTU value along the path, PMTUD can signal to the source to send smaller packets so that they can be encapsulated. This method is described in Section 3.2 of RFC 4459.
- Inner packets can be fragmented before encapsulation, in such a manner that the encapsulated packet fits in the tunnel path MTU, which is discovered using PMTUD. This method is described in Section 3.4 of RFC 4459.

PMTUD is enabled by default.

Tunnel loopback ports for GRE tunnels

A physical tunnel loopback port is required for routing a de-encapsulated packet. When a GRE-encapsulated packet is received on a tunnel interface, and the packet needs to be de-encapsulated, the packet is de-encapsulated and sent to the tunnel loopback port. The packet is then looped back and forwarded based on the payload packets.

If a tunnel loopback port is not configured, tunnel termination is performed by the CPU. Each GRE tunnel interface can have one assigned tunnel loopback port and the same tunnel loopback port can be used for multiple tunnels.

Tunnel loopback ports for GRE tunnels are supported on:

- untagged ports
- ports that are enabled by default
- 10 Gbps and 1 Gbps copper and fiber ports

Note the following hardware limitations for these port types:

- On 10 Gbps ports, the port LEDs will be ON (green) when the ports are configured as tunnel loopback ports for GRE tunnels. Also, the LEDs will blink when data packets are forwarded.
- On 1 Gbps fiber and copper ports, port LEDs will not be ON when the ports are configured as tunnel loopback ports for GRE tunnels, nor will the LEDs blink when data packets are forwarded.

Tunnel loopback ports for GRE tunnels are not supported on:

- tagged ports
- trunk ports
- ports that are members of a VE
- ports that are disabled
- ports that have an IP address
- flow control
Support for IPv4 multicast routing over GRE tunnels

PIM-DM and PIM-SM Layer 3 multicast protocols and multicast data traffic are supported over GRE tunnels. When a multicast protocol is enabled on both ends of a GRE tunnel, multicast packets can be sent from one tunnel endpoint to another. To accomplish this, the packets are encapsulated using the GRE unicast tunneling mechanism and forwarded like any other IPv4 unicast packet to the destination endpoint of the tunnel. The router that terminates the tunnel (i.e., the router where the tunnel endpoint is an ingress interface) de-encapsulates the GRE tunneled packet to retrieve the native multicast data packets. After de-encapsulation, data packets are forwarded in the direction of its receivers, and control packets may be consumed. This creates a PIM-enabled virtual or logical link between the two GRE tunnel endpoints.

Strict RPF check for multicast protocols

IronWare software enforces strict Reverse Path Forwarding (RPF) check rules on an (s,g) entry on a GRE tunnel interface. The (s,g) entry uses the GRE tunnel as an RPF interface. During unicast routing transit, GRE tunnel packets may arrive at different physical interfaces. The strict RPF check limits GRE PIM tunnel interfaces to accept the (s,g) GRE tunnel traffic.

When the GRE-encapsulated multicast packet is received, the unicast GRE mechanism takes care of de-encapsulating the packet. The packet then egresses and re-enters the tunnel interface loopback port as the native multicast packet. The hardware RPF check is done, not on the tunnel interface directly, but on the loopback port – the hardware compares this port number with the port number configured in the Multicast table (s,g) entry. If they match, the packet is routed. Otherwise it is sent to the CPU for error processing.

In unicast, it is permissible for multiple tunnel interfaces to use a single loopback port. However, in multicast, this will not allow the hardware to determine the tunnel interface that the packet was received on in order to do an RPF check. Therefore, when IPv4 Multicast Routing is enabled on a GRE tunnel, the tunnel interface must have a dedicated loopback port.

GRE support with other features

This section describes how GRE tunnels may affect other features on FESX, FSX, and SX IPv6 devices.

Support for ECMP for routes through a GRE tunnel

Equal-Cost Multi-Path (ECMP) load sharing allows for load distribution of traffic among available routes. When GRE is enabled, a mix of GRE tunnels and normal IP routes is supported. If multiple routes are using GRE tunnels to a destination, packets are automatically load-balanced between tunnels, or between tunnels and normal IP routes.

ACL, QoS, and PBR support for traffic through a GRE tunnel

Traffic coming from a tunnel can be filtered by an ACL or redirected by PBR both before and after the tunnel is terminated. An ACL classifies and sets QoS for GRE traffic. PBR routes GRE traffic that matches an ACL, according to instructions in the route map. If the ACL or PBR is applied to the tunnel loopback port, it would apply to the inner IP packet header (the payload packet) after the tunnel is terminated. If the ACL or PBR is applied to the tunnel ingress port, then the delivery header (outer header) would be classified or filtered before the tunnel is terminated.
NOTE
Restrictions for using ACLs in conjunction with GRE are noted in the section “Configuration considerations” on page 1071. PBR can be configured on tunnel loopback ports for tunnel interfaces with no restrictions.

Syslog messages
Syslog messages provide management applications with information related to GRE IP tunnels. The following Syslog message is supported.

Tunnel: TUN-RECURSIVE-DOWN tnnl 1, Tnnl disabled due to recursive routing

Configuration considerations
Before configuring GRE tunnels and tunnel options, consider the configuration notes in this section.

• When GRE is enabled on a Layer 3 switch, the following features are not supported on Virtual Ethernet (VE) ports, VE member ports (ports that have IP addresses), and GRE tunnel loopback ports:
 • ACL logging
 • ACL statistics (also called ACL counting)
 • MAC filters
 • IPv6 filters

NOTE
The above features are supported on VLANs that do not have VE ports.

• Whenever multiple IP addresses are configured on a tunnel source, the primary address of the tunnel is always used for forming the tunnel connections. Therefore, carefully check the configurations when configuring the tunnel destination.

• When a GRE tunnel is configured, you cannot configure the same routing protocol on the tunnel through which you learn the route to the tunnel destination. For example, if the FastIron learns the tunnel destination route through the OSPF protocol, you cannot configure the OSPF protocol on the same tunnel and vice-versa. When a tunnel has OSPF configured, the FastIron cannot learn the tunnel destination route through OSPF. This could cause the system to become unstable.

• The tunnel destination cannot be resolved to the tunnel itself or any other local tunnel. This is called recursive routing. This scenario would cause the tunnel interface to flap and the Syslog message TUN-RECURSIVE-DOWN to be logged. To resolve this issue, create a static route for the tunnel destination.

Configuration considerations for tunnel loopback ports
Consider the following when configuring tunnel loopback ports for GRE tunnels:

• For multicast traffic over a GRE tunnel, each PIM-enabled tunnel interface must have a dedicated tunnel loopback port.
IPv4 point-to-point GRE tunnels

- For unicast traffic, a tunnel loopback port can be oversubscribed, meaning multiple GRE tunnels (up to the maximum supported) can use the same tunnel loopback port for traffic. When oversubscribed, proper traffic classification on the tunnel loopback port is necessary in order to avoid traffic congestion. In this case, Brocade recommends that you configure the trust level at the DSCP level for QoS by adding an ACL that maps DSCP 46 to priority 5. Otherwise, loss of loopback packets may flap the tunnel interface.
- By default, when you create a tunnel loopback port for a GRE tunnel on a port that is part of the default VLAN, the port will stay in the default VLAN. Before configuring a port as a tunnel loopback port for a GRE tunnel, if the port is in the default VLAN (VLAN 1), first create a VLAN, then add the port to the VLAN. Otherwise, an error message such as the following will appear on the console when you attempt to configure a router interface for the default VLAN.

```
ERROR: Router-interface cannot be applied because of GRE loopback port 1/2
```

GRE MTU configuration considerations

The default Maximum Transmission Unit (MTU) value for packets in a GRE tunnel is 1476 bytes, or 10194 bytes for jumbo packets. The MTU of the GRE tunnel is compared with the outgoing packet before the packet is encapsulated. After encapsulation, the packet size increases by 24 bytes. Therefore, when changing the GRE tunnel MTU, set the MTU to at least 24 bytes less than the IP MTU of the outgoing interface. Otherwise, the size of the encapsulated packet will exceed the IP MTU, the outgoing interface and the packet will be dropped if the DF (Do-Not-Fragment) bit is set in the original IP packet, and an ICMP message will be sent. Otherwise, the packet will be sent to the CPU for fragmentation.

Configuration tasks

Brocade recommends that you perform the configuration tasks in the order listed in Table 178.

```
<table>
<thead>
<tr>
<th>Configuration tasks</th>
<th>Default behavior</th>
<th>See...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1  Create a tunnel interface</td>
<td>Not assigned</td>
<td>“Creating a tunnel interface” on page 1073</td>
</tr>
<tr>
<td>2  Configure the source address or source interface for the tunnel interface</td>
<td>Not assigned</td>
<td>“Configuring the source address or source interface for a tunnel interface” on page 1073</td>
</tr>
<tr>
<td>3  Configure the destination address of the tunnel interface</td>
<td>Not assigned</td>
<td>“Configuring the destination address for a tunnel interface” on page 1074</td>
</tr>
<tr>
<td>4  Enable GRE encapsulation on the tunnel interface</td>
<td>Disabled</td>
<td>“Enabling GRE encapsulation on a tunnel interface” on page 1074</td>
</tr>
<tr>
<td>5  If packets need to be terminated in hardware, configure a tunnel loopback port for the tunnel interface</td>
<td>Not assigned</td>
<td>“Tunnel loopback ports for GRE tunnels” on page 1069</td>
</tr>
<tr>
<td>6  Configure an IP address for the tunnel interface</td>
<td>Not assigned</td>
<td>“Configuring an IP address for a tunnel interface” on page 1075</td>
</tr>
<tr>
<td>7  If a route to the tunnel destination (configured in Step 3) does not already exist, create a static route and specify that the route is through the tunnel interface.</td>
<td>Not assigned</td>
<td>“Configuring a static route to a tunnel destination” on page 1075</td>
</tr>
</tbody>
</table>
```
The following features are also supported on GRE tunnel interfaces:

- Naming the tunnel interface (CLI command `port-name`) – for configuration details, see “Assigning a port name” on page 56.
- Changing the Maximum Transmission Unit (MTU) (CLI command `ip mtu`) – for configuration details, see “Changing the Maximum Transmission Unit on an individual port” on page 1001.
- Increasing the cost of routes learned on the port (CLI command `ip metric`) – for configuration details, see “Changing the cost of routes learned on a port” on page 1146.

After performing the configuration steps listed in Table 178, you can view the GRE configuration and observe the routes that use GRE tunnels. For details, see “Displaying GRE tunneling information” on page 1080.

Creating a tunnel interface

To create a tunnel interface, enter the following command at the Global CONFIG level of the CLI.

```
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)#
```

Syntax: `[no] interface tunnel `<tunnel-number>`

The `<tunnel-number>` is a numerical value that identifies the tunnel being configured.

NOTE

You can also use the `port-name` command to name the tunnel. To do so, follow the configuration instructions in “Assigning a port name” on page 56.

Configuring the source address or source interface for a tunnel interface

To configure the source for a tunnel interface, specify either a source address or a source interface.

NOTE

If the destination address for a tunnel interface is not resolved, Brocade recommends that you either configure `source interface` (instead of `source address`) as the source for a tunnel interface, or enable GRE link keepalive on the tunnel interface.
The tunnel **source address** should be one of the router IP addresses configured on a physical or VE interface, through which the other end of the tunnel is reachable.

To configure the source address for a specific tunnel interface, enter commands such as the following.

```plaintext
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel source 36.0.8.108
```

The **source interface** should be the port number of the interface configured on a physical or VE interface. The source interface should have at least one IP address configured on it. Otherwise, the interface will not be added to the tunnel configuration and an error message similar to the following will be displayed:

```
ERROR - Tunnel source interface 3/1 has no configured IP address.
```

To configure the source interface for a specific tunnel interface, enter commands such as the following.

```plaintext
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel source ethernet 3/1
```

Syntax:

```
[no] tunnel source <ip-address> | ethernet <port-number> | ve <number>
```

The `<ip-address>` variable is the source IP address being configured for the specified tunnel.

The ethernet `<port-number>` variable is the source slot (chassis devices only) and port number of the physical interface being configured for the specified tunnel, for example 3/1.

The ve `<number>` variable is the VE interface number being configured for the specified tunnel.

Configuring the destination address for a tunnel interface

The destination address should be the address of the IP interface of the device on the other end of the tunnel.

To configure the destination address for a specific tunnel interface, enter commands such as the following.

```plaintext
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel destination 131.108.5.2
```

Syntax:

```
[no] tunnel destination <ip-address>
```

The `<ip-address>` variable is the destination IP address being configured for the specified tunnel.

NOTE

Ensure a route to the tunnel destination exists on the tunnel source device. Create a static route if necessary. For configuration details, see “Configuring a static route to a tunnel destination” on page 1075.

Enabling GRE encapsulation on a tunnel interface

To enable GRE encapsulation on a tunnel interface, enter commands such as the following.

```plaintext
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel mode gre ip
```

Syntax:

```
[no] tunnel mode gre ip
```

gre specifies that the tunnel will use GRE encapsulation (IP protocol 47).

ip specifies that the tunneling protocol is IPv4.
Configuring a tunnel loopback port for a tunnel interface

For details and important configuration considerations regarding tunnel loopback ports for GRE tunnels, see “Tunnel loopback ports for GRE tunnels” on page 1069 and “Configuration considerations for tunnel loopback ports” on page 1071.

To configure a tunnel loopback port, enter commands such as the following:

FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel loopback 3/1

Syntax: [no] tunnel loopback <port-number>

The <port-number> is the slot (chassis devices) and port number of the tunnel loopback port for the specified tunnel interface, for example 3/1.

Configuring an IP address for a tunnel interface

An IP address sets a tunnel interface as an IP port and allows the configuration of Layer 3 protocols, such as OSPF, BGP, and Multicast (PIM-DM and PIM-SM) on the port. Note that the subnet cannot overlap other subnets configured on other routing interfaces, and both ends of the tunnel should be in the same subnet, as illustrated in the GRE tunnel configuration example in Figure 144 on page 1079.

To configure an IP address for a specified tunnel interface, enter commands such as the following:

FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# ip address 10.10.3.1/24

Syntax: [no] ip address <ip-address>

The <ip-address> is the IP address being configured for the specified tunnel interface.

Configuring a static route to a tunnel destination

If a route to the tunnel destination does not already exist on the tunnel source, create a static route and set the route to go through the tunnel interface.

FastIron(config)# ip route 131.108.5.0/24 36.0.8.1
FastIron(config)# ip route 10.10.2.0/24 tunnel 1

Syntax: [no] ip route <ip-address> tunnel <tunnel-ID>

The <ip-address> variable is the IP address of the tunnel interface.
The <tunnel-ID> variable is a valid tunnel number or name.

Changing the MTU value for a tunnel interface

For important configuration considerations regarding this feature, see “GRE MTU configuration considerations” on page 1072.

You can set an MTU value for packets entering the tunnel. Packets that exceed either the default MTU value of 1476 bytes or the value that you set using this command, are fragmented and encapsulated with IP/GRE headers for transit through the tunnel. Jumbo packets are supported, although they may be fragmented based on the configured MTU value.

The following command allows you to change the MTU value for packets transiting “tunnel 1”:

FESX Router(config)# interface tunnel 1
FESX Router(config-tnif-1)# tunnel mtu 1200

Syntax: tunnel mtu <packet-size>
The `<packet-size>` variable specifies the maximum MTU size in bytes for the packets transiting the tunnel. Enter a value from 576 – 1476. The default value is 1476.

NOTE
To prevent packet loss after the 24 byte GRE header is added, make sure that any physical interface that is carrying GRE tunnel traffic has an IP MTU setting at least 24 bytes greater than the tunnel MTU setting.

Changing the maximum number of tunnels supported

By default, FastIron IPv6 devices support up to 16 GRE tunnels. You can configure the device to support 16 – 64 GRE tunnels. To change the maximum number of tunnels supported, enter commands such as the following.

```
FastIron(config)# system-max gre-tunnels 32
Reload required. Please write memory and then reload or power cycle.
FastIron(config)# write mem
FastIron(config)# exit
FastIron# reload
```

NOTE
You must save the configuration (write mem) and reload the software to place the change into effect.

Syntax: `system-max gre-tunnels <number>`

The `<number>` variable specifies the number of GRE tunnels that can be supported on the device. The permissible range is 16 – 64. The default is 16.

Configuring GRE link keepalive

When GRE tunnels are used in combination with static routing or policy-based routing, and a dynamic routing protocol such as RIP, BGP, or OSPF is not deployed over the GRE tunnel, a configured tunnel does not have the ability to bring down the line protocol of either tunnel endpoint, if the far end becomes unreachable. Traffic sent on the tunnel cannot follow alternate paths because the tunnel is always UP. To avoid this scenario, enable GRE link keepalive, which will maintain or place the tunnel in an UP or DOWN state based upon the periodic sending of keepalive packets and the monitoring of responses to the packets. If the packets fail to reach the tunnel far end more frequently than the configured number of retries, the tunnel is placed in the DOWN state.

To enable GRE link keepalive, configure it on one end of the tunnel and ensure the other end of the tunnel has GRE enabled.

To configure GRE link keepalive, enter commands such as the following.

```
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# keepalive 12 4
```

These commands configure the device to wait for 4 consecutive lost keepalive packets before bringing the tunnel down. There will be a 12 second interval between each packet. Note that when the tunnel comes up, it would immediately (within one second) send the first keepalive packet.

Syntax: `[no] keepalive <seconds> <retries>`

Use the `no` form of the command to disable the keepalive option.

The `<seconds>` variable specifies the number of seconds between each initiation of a keepalive message. The range for this interval is 2 – 32767 seconds. The default value is 10 seconds.
The <retries> variable specifies the number of times that a packet is sent before the system places the tunnel in the DOWN state. Possible values are from 1 – 255. The default number of retries is 3.

Use the show interface tunnel and show ip tunnel traffic commands to view the GRE link keepalive configuration. For details, see “Displaying GRE tunneling information” on page 1080.

Configuring Path MTU Discovery (PMTUD)

Path MTU Discovery (PMTUD) support is described in the section “Path MTU Discovery (PMTUD) support” on page 1068. PMTUD is enabled by default on tunnel interfaces. This section describes how to disable and re-enable PMTUD on a tunnel interface, change the PMTUD age timer, manually clear the tunnel PMTUD, and view the PMTUD configuration.

Disabling and re-enabling PMTUD

PMTUD is enabled by default. To disable it, enter the following command:

```
FastIron(config-tnif-1)# tunnel path-mtu-discovery disable
```

To re-enable PMTUD after it has been disabled, enter the following command:

```
FastIron(config-tnif-1)# no tunnel path-mtu-discovery disable
```

Changing the age timer for PMTUD

By default, when PMTUD is enabled on a tunnel interface, the path MTU is reset to its original value every 10 minutes. If desired, you can change the reset time (default age timer) to a value of up to 30 minutes. To do so, enter a command such as the following on the GRE tunnel interface.

```
FastIron(config-tnif-1)# tunnel path-mtu-discovery age-timer 20
```

This command configures the device to wait for 20 minutes before resetting the path MTU to its original value.

Syntax:

```
[no] tunnel path-mtu-discovery age-timer  <minutes> | infinite
```

For <minutes>, enter a value from 10 to 30.

Enter **infinite** to disable the timer.

Clearing the PMTUD dynamic value

To reset a dynamically-configured MTU on a tunnel interface back to the configured value, enter the following command.

```
FastIron(config)# clear ip tunnel pmtud 1
```

Syntax:

```
clear ip tunnel pmtud <tunnel-ID>
```

The <tunnel-ID> variable is a valid tunnel number or name.

Viewing PMTUD configuration details

use the `show interface tunnel` command to view the PMTUD configuration and to determine whether PMTUD has reduced the size of the MTU. For details about the `show interface tunnel` command, see “Displaying GRE tunneling information” on page 1080.

Enabling IPv4 multicast routing over a GRE tunnel

This section describes how to enable IPv4 multicast protocols, PIM Sparse (PIM-SM) and PIM Dense (PIM-DM), on a GRE tunnel. Perform the procedures in this section after completing the required tasks in Table 178 on page 1072.
IPv4 point-to-point GRE tunnels

For an overview of multicast routing support over a GRE tunnel, see “Support for IPv4 multicast routing over GRE tunnels” on page 1070. To view information about multicast protocols and GRE tunnel-specific information, see “Displaying multicast protocols and GRE tunneling information” on page 1082.

NOTE
Each PIM-enabled tunnel interface must have a *dedicated* tunnel loopback port. This differs from GRE tunnels that support unicast traffic only. For unicast traffic, multiple GRE tunnels can use the same tunnel loopback port for traffic.

Enabling PIM-SM on a GRE tunnel
To enable PIM-SM on a GRE tunnel interface, enter commands such as the following:

```
FastIron(config)# interface tunnel 10
FastIron(config-tnif-10)# ip pim-sparse
```
Syntax: Syntax: `[no] ip pim-sparse`

Use the `no` form of the command to disable PIM-SM on the tunnel interface.

Enabling PIM-DM on a GRE tunnel interface
To enable PIM-DM on a GRE tunnel interface, enter commands such as the following:

```
FastIron(config)# interface tunnel 10
FastIron(config-tnif-10)# ip pim
```
Syntax: Syntax: `[no] ip pim`

Use the `no` form of the command to disable PIM-DM on the tunnel interface.
Example point-to-point GRE tunnel configuration

In the configuration example shown in Figure 144, a GRE Tunnel is configured between FastIron A and FastIron B. Traffic between networks 10.10.1.0/24 and 10.10.2.0/24 is encapsulated in a GRE packet sent through the tunnel on the 10.10.3.0 network, and unpacked and sent to the destination network. A static route is configured at each Layer 3 switch to go through the tunnel interface to the target network.

FIGURE 144 Point-to-point GRE tunnel configuration example

The following shows the configuration commands for the example shown in Figure 144.

Configuration example for FastIron A

```
FastIron (config)# interface ethernet 3/1
FastIron (config-if-e1000-3/1)# ip address 36.0.8.108/24
FastIron (config)# exit
FastIron (config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel source 36.0.8.108
FastIron(config-tnif-1)# tunnel destination 131.108.5.2
FastIron(config-tnif-1)# tunnel mode gre ip
FastIron(config-tnif-1)# tunnel loopback 4/1
FastIron(config-tnif-1)# ip address 10.10.3.1/24
FastIron(config-tnif-1)# exit
FastIron (config)# ip route 131.108.5.0/24 36.0.8.1
FastIron(config)# ip route 10.10.2.0/24 tunnel 1
```

Configuration example for FastIron B

```
FastIron(config)# interface ethernet 5/1
FastIron(config-if-e1000-5/1)# ip address 131.108.5.2/24
FastIron(config)# exit
FastIron(config)# interface tunnel 1
FastIron(config-tnif-1)# tunnel source 131.108.5.2
FastIron(config-tnif-1)# tunnel destination 36.0.8.108
FastIron(config-tnif-1)# tunnel mode gre ip
```
Displaying GRE tunneling information

This section describes the `show` commands that display the GRE tunnels configuration, the link status of the GRE tunnels, and the routes that use GRE tunnels. To display information about multicast protocols and GRE tunnels, see “Displaying multicast protocols and GRE tunneling information” on page 1082.

To display GRE tunneling Information, use the following commands:

- `show ip interface`
- `show ip route`
- `show ip interface tunnel`
- `show ip tunnel traffic`
- `show interface tunnel`

The following shows an example output of the `show ip interface` command, which includes information about GRE tunnels.

```
FastIron# show ip interface
Interface       IP-Address     OK?  Method    Status   Protocol
Tunnel 1        10.10.3.1      YES  NVRAM     up       up
```

For field definitions, see Table 182 on page 1090.

Syntax: `show ip interface`

The `show ip route` command displays routes that are pointing to a GRE tunnel as shown in the following example.

```
FastIron# show ip route
Total number of IP routes: 3, avail: 79996 (out of max 80000)
B:BGP D:Connected  R:RIP  S:Static  O:OSPF *:Candidate default
    Destination     NetMask         Gateway         Port       Cost   Type
 1       7.1.1.0         255.255.255.0   0.0.0.0         7          1      D
 2       7.1.2.0         255.255.255.0   7.1.1.3         7          1      S
 3       10.34.3.0       255.255.255.0   0.0.0.0         tn3        1      D
```

For field definitions, see Table 186 on page 1097.

Syntax: `show ip route`

The `show ip interface tunnel` command displays the link status and IP address configuration for an IP tunnel interface as shown in the following example.

```
FastIron# show ip interface tunnel 1
Interface Tunnel 1
    port state: UP
    ip address: 21.21.21.2     subnet mask: 255.255.255.0
    encapsulation: GRE, mtu: 1476, metric: 1
    directed-broadcast-forwarding: disabled
    proxy-arp: disabled
```
ip arp-age: 10 minutes
No Helper Addresses are configured
No inbound ip access-list is set
No outgoing ip access-list is set

Syntax: show ip interface tunnel [<tunnel-ID>]

The <tunnel-ID> variable is a valid tunnel number or name.

The show interface tunnel command displays the GRE tunnel configuration.

FastIron# show int tunnel 3
Tunnel3 is up, line protocol is up
Hardware is Tunnel
Tunnel source 7.1.1.1
Tunnel destination is 7.1.2.3
Tunnel loopback is not configured
Port name is customer1001
Internet address is 10.34.3.2/24, MTU 1476 bytes, encapsulation GRE
Keepalive is Enabled: Interval 10, No.of Retries 3
Total Keepalive Pkts Tx: 2, Rx: 2
Path MTU Discovery: Enabled, MTU is 1476 bytes

Syntax: show interface tunnel [<tunnel-ID>]

This display shows the following information.

TABLE 179 CLI Display of show interface tunnel command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware is Tunnel</td>
<td>The interface is a tunnel interface.</td>
</tr>
<tr>
<td>Tunnel source</td>
<td>The source address for the tunnel.</td>
</tr>
<tr>
<td>Tunnel destination</td>
<td>The destination address for the tunnel.</td>
</tr>
<tr>
<td>Tunnel loopback</td>
<td>The tunnel loopback port for the tunnel (if applicable).</td>
</tr>
<tr>
<td>Port name</td>
<td>The port name (if applicable).</td>
</tr>
<tr>
<td>Internet address</td>
<td>The internet address.</td>
</tr>
<tr>
<td>MTU</td>
<td>The maximum transmission unit.</td>
</tr>
<tr>
<td>encapsulation GRE</td>
<td>GRE encapsulation is enabled on the port.</td>
</tr>
<tr>
<td>Keepalive</td>
<td>Indicates whether or not GRE link keepalive is enabled.</td>
</tr>
<tr>
<td>Interval</td>
<td>If GRE link keepalive is enabled, this field displays the number of seconds between each initiation of a GRE link keepalive message.</td>
</tr>
<tr>
<td>No. of Retries</td>
<td>If GRE link keepalive is enabled, this field displays the number of times that a GRE link keepalive packet is sent before the tunnel is placed in the DOWN state.</td>
</tr>
<tr>
<td>Total Keepalive Pkts</td>
<td>If GRE link keepalive is enabled, this field shows the total number of GRE link keepalive packets transmitted (TX) and received (RX) on the tunnel since it was last cleared by the administrator.</td>
</tr>
<tr>
<td>Path MTU Discovery</td>
<td>Indicates whether or not PMTUD is enabled. If PMTUD is enabled, the MTU value is also displayed.</td>
</tr>
</tbody>
</table>
The `show ip tunnel traffic` command displays the link status of the tunnel and the number of keepalive packets received and sent on the tunnel.

```
FastIron# show ip tunnel traffic
IP GRE Tunnels
<table>
<thead>
<tr>
<th>Tunnel Status</th>
<th>Packet Received</th>
<th>Packet Sent</th>
<th>KA recv</th>
<th>KA sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 up/up</td>
<td>362</td>
<td>0</td>
<td>362</td>
<td>362</td>
</tr>
<tr>
<td>3 up/up</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 down/down</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Syntax: `show ip tunnel traffic`

This display shows the following information.

TABLE 180 CLI Display of show ip tunnel traffic command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Status</td>
<td>Indicates whether the tunnel is up or down. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>• Up/Up – The tunnel and line protocol are up.</td>
</tr>
<tr>
<td></td>
<td>• Up/Down – The tunnel is up and the line protocol is down.</td>
</tr>
<tr>
<td></td>
<td>• Down/Up – The tunnel is down and the line protocol is up.</td>
</tr>
<tr>
<td></td>
<td>• Down/Down – The tunnel and line protocol are down.</td>
</tr>
<tr>
<td>Packet Received</td>
<td>The number of packets received on the tunnel since it was last cleared by the administrator.</td>
</tr>
<tr>
<td>Packet Sent</td>
<td>The number of packets sent on the tunnel since it was last cleared by the administrator.</td>
</tr>
<tr>
<td>KA recv</td>
<td>The number of keepalive packets received on the tunnel since it was last cleared by the administrator.</td>
</tr>
<tr>
<td>KA sent</td>
<td>The number of keepalive packets sent on the tunnel since it was last cleared by the administrator.</td>
</tr>
</tbody>
</table>

Displaying multicast protocols and GRE tunneling information

The following `show` commands display information about multicast protocols and GRE tunnels:

- `show ip pim interface`
- `show ip pim nbr`
- `show ip mcache`
- `show ip pim flow`
- `show statistics`

NOTE

All other `show` commands that are supported currently for Ethernet, VE, and IP loopback interfaces, are also supported for tunnel interfaces. To display information for a tunnel interface, specify the tunnel in the format `tunnel <num>`. For example, `show ip pim interface tunnel 1`. In the show output, the tunnel interface will display in the format `tn<num>`. In some cases, the Ethernet port that the tunnel is using will also display in the format `tn<num>:e<port>`.

The following shows an example output of the `show ip pim interface` command. The lines in bold highlight the GRE tunnel-specific information.

```
FastIron# show ip pim interface
```
Interface e1
PIM Dense: V2
TTL Threshold: 1, Enabled, DR: itself
Local Address: 10.10.10.10

Interface tn1
PIM Dense: V2
TTL Threshold: 1, Enabled, DR: 1.1.1.20 on tn1:e2
Local Address: 1.1.1.10
Neighbor: 1.1.1.20

Syntax: `show ip pim interface`

The following shows an example output of the `show ip pimnbr` command. The line in bold shows the GRE tunnel-specific information.

FastIron# show ip pim nbr
Total number of neighbors: 1 on 1 ports
Port Phy_p Neighbor Holdtime Age UpTime
tn1 tn1:e2 1.1.1.20 180 60 1740

Syntax: `show ip pim nbr`

The following shows an example output of the `show ip pim mcache` command. The line in bold shows the GRE tunnel-specific information.

FastIron# show ip pim mcache 230.1.1.1
1 (10.10.10.1 230.1.1.1) in e1 (e1), cnt=629
Source is directly connected
L3 (HW) 1: tn1:e2(VL1)
fast=1 slow=0 pru=1 graft
age=120s up-time=8m HW=1 L2-vidx=8191 has mll

Syntax: `show ip pim mcache <ip-address>`

The following shows an example output of the `show ip pim flow` command. The text in bold highlights the GRE tunnel-specific information.

FastIron# show ip pim flow 230.1.1.1
Multicast flow (10.10.10.1 230.1.1.1):
Vidx for source vlan forwarding: 8191 (Blackhole, no L2 clients)
Hardware MC Entry hit on devices: 0 1 2 3
MC Entry[0x0c08040]: 00014001 000022ee 0ff0001 00000000
--- MLL contents read from Device 0 ---
MLL Data[0x018c0010]: 0021ff8d 00000083 00000000 00000000
First : Last:1, outlif:60043ff1 00000000, TNL:1(e2)

1 flow printed

Syntax: `show ip pim flow`

The following shows an example output of the `show statistics` command. The below statistics demonstrate an example where the encapsulated multicast traffic ingresses a tunnel endpoint on port e 2, egresses and re-ingresses as native multicast traffic on the loopback port e 4, and is then forwarded to the outbound interface e 1.
Displaying IP configuration information and statistics

The following sections describe IP display options for Layer 3 Switches and Layer 2 Switches:

- To display IP information on a Layer 3 Switch, refer to “Displaying IP information – Layer 3 Switches” on page 1085.
- To display IP information on a Layer 2 Switch, refer to “Displaying IP information – Layer 2 Switches” on page 1100.

Changing the network mask display to prefix format

By default, the CLI displays network masks in classical IP address format (example: 255.255.255.0). You can change the displays to prefix format (example: /18) on a Layer 3 Switch or Layer 2 Switch using the following CLI method.

NOTE
This option does not affect how information is displayed in the Web Management Interface.

To enable CIDR format for displaying network masks, entering the following command at the global CONFIG level of the CLI.

```
FastIron(config)# ip show-subnet-length
```

Syntax: [no] ip show-subnet-length
Displaying IP information – Layer 3 Switches

You can display the following IP configuration information statistics on Layer 3 Switches:

- Global IP parameter settings and IP access policies – refer to “Displaying global IP configuration information” on page 1085.
- IP interfaces – refer to “Displaying IP interface information” on page 1089.
- ARP entries – refer to “Displaying ARP entries” on page 1090.
- Static ARP entries – refer to “Displaying ARP entries” on page 1090.
- IP forwarding cache – refer to “Displaying the forwarding cache” on page 1093.
- IP route table – refer to “Displaying the IP route table” on page 1094.
- IP traffic statistics – refer to “Displaying IP traffic statistics” on page 1098.

The sections below describe how to display this information.

In addition to the information described below, you can display the following IP information. This information is described in other parts of this guide:

- RIP
- OSPF
- BGP4
- DVMRP
- PIM
- VRRP or VRRPE

Displaying global IP configuration information

To display IP configuration information, enter the following command at any CLI level.

```
FastIron# show ip
```

Global Settings

- **ttl**: 64, **arp-age**: 10, **bootp-relay-max-hops**: 4
- **router-id**: 207.95.11.128
- **enabled**: UDP-Broadcast-Forwarding IRDP Proxy-ARP RARP OSPF
- **disabled**: BGP4 Load-Sharing RIP DVMRP FSRP VRRP

Static Routes

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Next Hop Router</th>
<th>Metric</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>209.157.23.2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Policies

<table>
<thead>
<tr>
<th>Index</th>
<th>Action</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Port</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deny</td>
<td>209.157.22.34</td>
<td>209.157.22.26</td>
<td>tcp</td>
<td>http</td>
<td>=</td>
</tr>
<tr>
<td>64</td>
<td>permit</td>
<td>any</td>
<td>any</td>
<td>any</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip

NOTE

This command has additional options, which are explained in other sections in this guide, including the sections below this one.
This display shows the following information.

TABLE 181 CLI Display of global IP configuration information – Layer 3 Switch

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global settings</td>
<td></td>
</tr>
<tr>
<td>ttl</td>
<td>The Time-To-Live (TTL) for IP packets. The TTL specifies the maximum number of router hops a packet can travel before reaching the Brocade router. If the packet TTL value is higher than the value specified in this field, the Brocade router drops the packet. To change the maximum TTL, refer to “Changing the TTL threshold” on page 1011.</td>
</tr>
<tr>
<td>arp-age</td>
<td>The ARP aging period. This parameter specifies how many minutes an inactive ARP entry remains in the ARP cache before the router ages out the entry. To change the ARP aging period, refer to “Changing the ARP aging period” on page 1007.</td>
</tr>
<tr>
<td>bootp-relay-max-hops</td>
<td>The maximum number of hops away a BootP server can be located from the Brocade router and still be used by the router clients for network booting. To change this value, refer to “Changing the maximum number of hops to a BootP relay server” on page 1037.</td>
</tr>
<tr>
<td>router-id</td>
<td>The 32-bit number that uniquely identifies the Brocade router. By default, the router ID is the numerically lowest IP interface configured on the router. To change the router ID, refer to “Changing the router ID” on page 1002.</td>
</tr>
<tr>
<td>enabled</td>
<td>The IP-related protocols that are enabled on the router.</td>
</tr>
<tr>
<td>disabled</td>
<td>The IP-related protocols that are disabled on the router.</td>
</tr>
</tbody>
</table>

Static routes

<table>
<thead>
<tr>
<th>Index</th>
<th>The row number of this entry in the IP route table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the route destination.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>The network mask for the IP address.</td>
</tr>
<tr>
<td>Next Hop Router</td>
<td>The IP address of the router interface to which the Brocade router sends packets for the route.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of the route. Usually, the metric represents the number of hops to the destination.</td>
</tr>
<tr>
<td>Distance</td>
<td>The administrative distance of the route. The default administrative distance for static IP routes in Brocade routers is 1. To list the default administrative distances for all types of routes or to change the administrative distance of a static route, refer to “Changing administrative distances” on page 1327.</td>
</tr>
</tbody>
</table>

Policies

<table>
<thead>
<tr>
<th>Index</th>
<th>The policy number. This is the number you assigned the policy when you configured it.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>The action the router takes if a packet matches the comparison values in the policy. The action can be one of the following: • deny – The router drops packets that match this policy. • permit – The router forwards packets that match this policy.</td>
</tr>
<tr>
<td>Source</td>
<td>The source IP address the policy matches.</td>
</tr>
<tr>
<td>Destination</td>
<td>The destination IP address the policy matches.</td>
</tr>
</tbody>
</table>
Displaying CPU utilization statistics

You can display CPU utilization statistics for IP protocols using the `show process cpu` command.

The `show process cpu` command includes CPU utilization statistics for ACL, 802.1x, and L2VLAN. L2VLAN contains any packet transmitted to a VLAN by the CPU, including unknown unicast, multicast, broadcast, and CPU forwarded Layer 2 traffic.

TABLE 181 CLI Display of global IP configuration information – Layer 3 Switch (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>The IP protocol the policy matches. The protocol can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• ICMP</td>
</tr>
<tr>
<td></td>
<td>• IGMP</td>
</tr>
<tr>
<td></td>
<td>• IGRP</td>
</tr>
<tr>
<td></td>
<td>• OSPF</td>
</tr>
<tr>
<td></td>
<td>• TCP</td>
</tr>
<tr>
<td></td>
<td>• UDP</td>
</tr>
<tr>
<td>Port</td>
<td>The Layer 4 TCP or UDP port the policy checks for in packets. The port can be displayed by its number or, for port types the router recognizes, by the well-known name. For example, TCP port 80 can be displayed as HTTP.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field applies only if the IP protocol is TCP or UDP.</td>
</tr>
<tr>
<td>Operator</td>
<td>The comparison operator for TCP or UDP port names or numbers.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field applies only if the IP protocol is TCP or UDP.</td>
</tr>
</tbody>
</table>
To display CPU utilization statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals, enter the following command at any level of the CLI.

```
FastIron# show process cpu
```

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>714</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>DOT1X</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>161</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>229</td>
</tr>
<tr>
<td>L2VLAN</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>673</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>9</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>7</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

If the software has been running less than 15 minutes (the maximum interval for utilization statistics), the command indicates how long the software has been running. Here is an example.

```
FastIron# show process cpu
The system has only been up for 6 seconds.
```

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>714</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>DOT1X</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>161</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>229</td>
</tr>
<tr>
<td>L2VLAN</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>673</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>9</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>7</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

To display utilization statistics for a specific number of seconds, enter a command such as the following.

```
FastIron# show process cpu 2
Statistics for last 1 sec and 80 ms
```

<table>
<thead>
<tr>
<th>Process Name</th>
<th>Sec(%)</th>
<th>Time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ARP</td>
<td>1.01</td>
<td>0.01</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>DOT1X</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>L2VLAN</td>
<td>1.01</td>
<td>0.01</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

When you specify how many seconds’ worth of statistics you want to display, the software selects
the sample that most closely matches the number of seconds you specified. In this example, statistics are requested for the previous two seconds. The closest sample available is actually for the previous 1 second plus 80 milliseconds.

Syntax: show process cpu [<num>]

The <num> parameter specifies the number of seconds and can be from 1 – 900. If you use this parameter, the command lists the usage statistics only for the specified number of seconds. If you do not use this parameter, the command lists the usage statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals.

Displaying IP Interface information

To display IP interface information, enter the following command at any CLI level.

FastIron# show ip interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet 1/1</td>
<td>207.95.6.173</td>
<td>YES NVRAM</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Ethernet 1/2</td>
<td>3.3.3.3</td>
<td>YES manual</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Loopback 1</td>
<td>1.2.3.4</td>
<td>YES NVRAM</td>
<td>down</td>
<td>down</td>
</tr>
</tbody>
</table>

Syntax: show ip interface [ethernet [<slotnum>/]<portnum>] | [loopback <num>] | [ve <num>]
This display shows the following information.

TABLE 182 CLI display of interface IP configuration information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The type and the slot and port number of the interface.</td>
</tr>
<tr>
<td>IP-Address</td>
<td>The IP address of the interface. NOTE: If an “s” is listed following the address, this is a secondary address. When the address was configured, the interface already had an IP address in the same subnet, so the software required the “secondary” option before the software could add the interface.</td>
</tr>
<tr>
<td>OK?</td>
<td>Whether the IP address has been configured on the interface.</td>
</tr>
<tr>
<td>Method</td>
<td>Whether the IP address has been saved in NVRAM. If you have set the IP address for the interface in the CLI or Web Management Interface, but have not saved the configuration, the entry for the interface in the Method field is “manual”.</td>
</tr>
<tr>
<td>Status</td>
<td>The link status of the interface. If you have disabled the interface with the disable command, the entry in the Status field will be “administratively down”. Otherwise, the entry in the Status field will be either “up” or “down”.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Whether the interface can provide two-way communication. If the IP address is configured, and the link status of the interface is up, the entry in the protocol field will be “up”. Otherwise the entry in the protocol field will be “down”.</td>
</tr>
</tbody>
</table>

To display detailed IP information for a specific interface, enter a command such as the following.

```plaintext
FastIron# show ip interface ethernet 1/1
Interface Ethernet 1/1
  port state: UP
  ip address: 192.168.9.51      subnet mask: 255.255.255.0
  encapsulation: ETHERNET, mtu: 1500, metric: 1
  directed-broadcast-forwarding: disabled
  proxy-arp: disabled
  ip arp-age: 10 minutes
  Ip Flow switching is disabled
  No Helper Addresses are configured.
  No inbound ip access-list is set
  No outgoing ip access-list is set
```

Displaying ARP entries

You can display the ARP cache and the static ARP table. The ARP cache contains entries for devices attached to the Layer 3 Switch. The static ARP table contains the user-configured ARP entries. An entry in the static ARP table enters the ARP cache when the entry interface comes up.

The tables require separate display commands or Web management options.
Displaying the ARP cache
To display the contents of the ARP cache, enter the following command at any CLI level.

FastIron# show arp

Total number of ARP entries: 5

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
<th>Age</th>
<th>Port</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.95.6.102</td>
<td>0800.5afc.ea21</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
<td>Valid</td>
</tr>
<tr>
<td>207.95.6.18</td>
<td>00a0.24d2.04ed</td>
<td>Dynamic</td>
<td>3</td>
<td>6</td>
<td>Pend</td>
</tr>
<tr>
<td>207.95.6.54</td>
<td>00a0.24ab.cd2b</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
<td>Pend</td>
</tr>
<tr>
<td>207.95.6.101</td>
<td>0800.207c.a7fa</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
<td>Valid</td>
</tr>
<tr>
<td>207.95.6.211</td>
<td>00c0.2638.ac9c</td>
<td>Dynamic</td>
<td>0</td>
<td>6</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Syntax: show arp [ethernet [<slotnum>/]<portnum> | mac-address <xxxx.xxxx.xxxx> [<mask>] | <ip-addr> [<ip-mask>] [num>

The <slotnum> parameter is required on chassis devices.

The <portnum> parameter lets you restrict the display to entries for a specific port.

The mac-address <xxxx.xxxx.xxxx> parameter lets you restrict the display to entries for a specific MAC address.

The <mask> parameter lets you specify a mask for the mac-address <xxxx.xxxx.xxxx> parameter, to display entries for multiple MAC addresses. Specify the MAC address mask as “f”s and “0”s, where “f”s are significant bits.

The <ip-addr> and <ip-mask> parameters let you restrict the display to entries for a specific IP address and network mask. Specify the IP address masks in standard decimal mask format (for example, 255.255.0.0).

NOTE
The <ip-mask> parameter and <mask> parameter perform different operations. The <ip-mask> parameter specifies the network mask for a specific IP address, whereas the <mask> parameter provides a filter for displaying multiple MAC addresses that have specific values in common.

The <num> parameter lets you display the table beginning with a specific entry number.

NOTE
The entry numbers in the ARP cache are not related to the entry numbers for static ARP table entries.
This display shows the following information. The number in the left column of the CLI display is the row number of the entry in the ARP cache. This number is not related to the number you assign to static MAC entries in the static ARP table.

TABLE 183 CLI display of ARP cache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the device.</td>
</tr>
<tr>
<td>Type</td>
<td>The ARP entry type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Dynamic – The Layer 3 Switch learned the entry from an incoming packet.</td>
</tr>
<tr>
<td></td>
<td>• Static – The Layer 3 Switch loaded the entry from the static ARP table when the device for the entry was connected to the Layer 3 Switch.</td>
</tr>
<tr>
<td></td>
<td>• DHCP – The Layer 3 Switch learned the entry from the DHCP binding address table.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If the type is DHCP, the port number will not be available until the entry gets resolved through ARP.</td>
</tr>
<tr>
<td>Age</td>
<td>The number of minutes the entry has remained unused. If this value reaches the ARP aging period, the entry is removed from the table.</td>
</tr>
<tr>
<td></td>
<td>To display the ARP aging period, refer to “Displaying global IP configuration information” on page 1085. To change the ARP aging interval, refer to “Changing the ARP aging period” on page 1007.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Static entries do not age out.</td>
</tr>
<tr>
<td>Port</td>
<td>The port on which the entry was learned.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If the ARP entry type is DHCP, the port number will not be available until the entry gets resolved through ARP.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the entry, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Valid – This a valid ARP entry.</td>
</tr>
<tr>
<td></td>
<td>• Pend – The ARP entry is not yet resolved.</td>
</tr>
</tbody>
</table>

Displaying the static ARP table

To display the static ARP table instead of the ARP cache, enter the following command at any CLI level.

`FastIron# show ip static-arp`

Static ARP table size: 512, configurable from 512 to 1024

<table>
<thead>
<tr>
<th>Index</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>207.95.6.111</td>
<td>0800.093b.d210</td>
<td>1/1</td>
</tr>
<tr>
<td>3</td>
<td>207.95.6.123</td>
<td>0800.093b.d211</td>
<td>1/1</td>
</tr>
</tbody>
</table>

This example shows two static entries. Note that since you specify an entry index number when you create the entry, it is possible for the range of index numbers to have gaps, as shown in this example.

NOTE

The entry number you assign to a static ARP entry is not related to the entry numbers in the ARP cache.

Syntax: `show ip static-arp [ethernet [<slotnum>/]<portnum>] | mac-address <xxxx.xxxx.xxxx> [mask:] | ip-addr [<ip-mask>] [<num>]`

The `<slotnum>` parameter is required on chassis devices.
The `<portnum>` parameter lets you restrict the display to entries for a specific port.

The `mac-address <xxxx.xxxx.xxxx>` parameter lets you restrict the display to entries for a specific MAC address.

The `<mask>` parameter lets you specify a mask for the `mac-address <xxxx.xxxx.xxxx>` parameter, to display entries for multiple MAC addresses. Specify the MAC address mask as “f”s and “0”s, where “f”s are significant bits.

The `<ip-addr>` and `<ip-mask>` parameters let you restrict the display to entries for a specific IP address and network mask. Specify the IP address masks in standard decimal mask format (for example, 255.255.0.0).

NOTE

The `<ip-mask>` parameter and `<mask>` parameter perform different operations. The `<ip-mask>` parameter specifies the network mask for a specific IP address, whereas the `<mask>` parameter provides a filter for displaying multiple MAC addresses that have specific values in common.

The `<num>` parameter lets you display the table beginning with a specific entry number.

TABLE 184 CLI display of static ARP table

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static ARP table size</td>
<td>The maximum number of static entries that can be configured on the device using the current memory allocation. The range of valid memory allocations for static ARP entries is listed after the current allocation. To change the memory allocation for static ARP entries, refer to “Changing the maximum number of entries the static ARP table can hold” on page 1010.</td>
</tr>
<tr>
<td>Index</td>
<td>The number of this entry in the table. You specify the entry number when you create the entry.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the device.</td>
</tr>
<tr>
<td>Port</td>
<td>The port attached to the device the entry is for.</td>
</tr>
</tbody>
</table>

Displaying the forwarding cache

To display the IP forwarding cache, enter the following command at any CLI level.

FastIron# show ip cache

Total number of cache entries: 3

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Next Hop</th>
<th>MAC Address</th>
<th>Type</th>
<th>Port</th>
<th>Vlan</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 192.168.1.11</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PU</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2 192.168.1.1255</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PU</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3 255.255.255.255</td>
<td>DIRECT</td>
<td>0000.0000.0000</td>
<td>PU</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip cache [<ip-addr>] | [<num>]

The `<ip-addr>` parameter displays the cache entry for the specified IP address.

The `<num>` parameter displays the cache beginning with the row following the number you enter. For example, to begin displaying the cache at row 10, enter the following command.
show ip cache 9

The **show ip cache** command displays the following information.

TABLE 185 CLI display of IP forwarding cache – Layer 3 Switch

<table>
<thead>
<tr>
<th>This field…</th>
<th>Displays…</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the destination.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The IP address of the next-hop router to the destination. This field contains either an IP address or the value DIRECT. DIRECT means the destination is either directly attached or the destination is an address on this Brocade device. For example, the next hop for loopback addresses and broadcast addresses is shown as DIRECT.</td>
</tr>
<tr>
<td>MAC</td>
<td>The MAC address of the destination.</td>
</tr>
<tr>
<td>NOTE: If the entry is type U (indicating that the destination is this Brocade device), the address consists of zeroes.</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>The type of host entry, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• D – Dynamic</td>
</tr>
<tr>
<td></td>
<td>• P – Permanent</td>
</tr>
<tr>
<td></td>
<td>• F – Forward</td>
</tr>
<tr>
<td></td>
<td>• U – Us</td>
</tr>
<tr>
<td></td>
<td>• C – Complex Filter</td>
</tr>
<tr>
<td></td>
<td>• W – Wait ARP</td>
</tr>
<tr>
<td></td>
<td>• I – ICMP Deny</td>
</tr>
<tr>
<td></td>
<td>• K – Drop</td>
</tr>
<tr>
<td></td>
<td>• R – Fragment</td>
</tr>
<tr>
<td></td>
<td>• S – Snap Encap</td>
</tr>
<tr>
<td>Port</td>
<td>The port through which this device reaches the destination. For destinations that are located on this device, the port number is shown as “n/a”.</td>
</tr>
<tr>
<td>VLAN</td>
<td>Indicates the VLANs the listed port is in.</td>
</tr>
<tr>
<td>Pri</td>
<td>The QoS priority of the port or VLAN.</td>
</tr>
</tbody>
</table>

Displaying the IP route table

To display the IP route table, enter the following command at any CLI level.

FastIron# show ip route

```
Total number of IP routes: 514
Start index: 1  B:BGP D:Connected  R:RIP  S:Static  O:OSPF *:Candidate default
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>NetMask</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.2.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.3.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.4.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.5.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.6.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.7.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.8.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.9.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
<tr>
<td>1.10.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>1/1</td>
<td>2</td>
<td>R</td>
</tr>
</tbody>
</table>

Syntax: `show ip route [ip-addr] [ip-mask] [longer] [none-bgp] | <num> | bgp | direct | ospf | rip | static`

The `<ip-addr>` parameter displays the route to the specified IP address.
The `<ip-mask>` parameter lets you specify a network mask or, if you prefer CIDR format, the number of bits in the network mask. If you use CIDR format, enter a forward slash immediately after the IP address, then enter the number of mask bits (for example: 209.157.22.0/24 for 209.157.22.0 255.255.255.0).

The `longer` parameter applies only when you specify an IP address and mask. This option displays only the routes for the specified IP address and mask. See the example below.

The `none-bgp` parameter displays only the routes that did not come from BGP4.

The `<num>` option displays the route table entry whose row number corresponds to the number you specify. For example, if you want to display the tenth row in the table, enter “10”.

The `bgp` option displays the BGP4 routes.

The `direct` option displays only the IP routes that are directly attached to the Layer 3 Switch.

The `ospf` option displays the OSPF routes.

The `rip` option displays the RIP routes.

The `static` option displays only the static IP routes.

The `default` routes are displayed first.

Here is an example of how to use the `direct` option. To display only the IP routes that go to devices directly attached to the Layer 3 Switch, enter the following command.

```
FastIron# show ip route direct
Start index: 1  B:BGP D:Connected  R:RIP  S:Static  O:OSPF *:Candidate default

   Destination       NetMask           Gateway           Port   Cost   Type
     209.157.22.0      255.255.255.0     0.0.0.0           4/11   1      D
```

Notice that the route displayed in this example has “D” in the Type field, indicating the route is to a directly connected device.

Here is an example of how to use the `static` option. To display only the static IP routes, enter the following command.

```
FastIron# show ip route static
Start index: 1  B:BGP D:Connected  R:RIP  S:Static  O:OSPF *:Candidate default

   Destination       NetMask           Gateway           Port   Cost   Type
     192.144.33.11     255.255.255.0     209.157.22.12     1/1    2      S
```

Notice that the route displayed in this example has “S” in the Type field, indicating the route is static.
Here is an example of how to use the `longer` option. To display only the routes for a specified IP address and mask, enter a command such as the following.

```
FastIron# show ip route 209.159.0.0/16 longer
Starting index: 1 B:BGP D:Directly-Connected R:RIP S:Static O:OSPF
Destination NetMask Gateway Port Cost Type
```

```
52 209.159.38.0 255.255.255.0 207.95.6.101 1/1 1 S
53 209.159.39.0 255.255.255.0 207.95.6.101 1/1 1 S
54 209.159.40.0 255.255.255.0 207.95.6.101 1/1 1 S
55 209.159.41.0 255.255.255.0 207.95.6.101 1/1 1 S
56 209.159.42.0 255.255.255.0 207.95.6.101 1/1 1 S
57 209.159.43.0 255.255.255.0 207.95.6.101 1/1 1 S
58 209.159.44.0 255.255.255.0 207.95.6.101 1/1 1 S
59 209.159.45.0 255.255.255.0 207.95.6.101 1/1 1 S
60 209.159.46.0 255.255.255.0 207.95.6.101 1/1 1 S
```

This example shows all the routes for networks beginning with 209.159. The mask value and `longer` parameter specify the range of network addresses to be displayed. In this example, all routes within the range 209.159.0.0 – 209.159.255.255 are listed.

The `summary` option displays a summary of the information in the IP route table. The following is an example of the output from this command.

Example

```
FastIron# show ip route summary
IP Routing Table - 35 entries:
 6 connected, 28 static, 0 RIP, 1 OSPF, 0 BGP, 0 ISIS, 0 MPLS
Number of prefixes:
 /0: 1 /16: 27 /22: 1 /24: 5 /32: 1
```

Syntax: show ip route summary

In this example, the IP route table contains 35 entries. Of these entries, 6 are directly connected devices, 28 are static routes, and 1 route was calculated through OSPF. One of the routes has a zero-bit mask (this is the default route), 27 have a 22-bit mask, 5 have a 24-bit mask, and 1 has a 32-bit mask.
The following table lists the information displayed by the `show ip route` command.

TABLE 186 CLI display of IP route table

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The destination network of the route.</td>
</tr>
<tr>
<td>NetMask</td>
<td>The network mask of the destination address.</td>
</tr>
<tr>
<td>Gateway</td>
<td>The next-hop router.</td>
</tr>
<tr>
<td>Port</td>
<td>The port through which this router sends packets to reach the route's destination.</td>
</tr>
<tr>
<td>Cost</td>
<td>The route's cost.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>The route type, which can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>The route was learned from BGP.</td>
</tr>
<tr>
<td>D</td>
<td>The destination is directly connected to this Layer 3 Switch.</td>
</tr>
<tr>
<td>R</td>
<td>The route was learned from RIP.</td>
</tr>
<tr>
<td>S</td>
<td>The route is a static route.</td>
</tr>
<tr>
<td>*</td>
<td>The route is a candidate default route.</td>
</tr>
<tr>
<td>O</td>
<td>The route is an OSPF route. Unless you use the <code>ospf</code> option to display the route table, “O” is used for all OSPF routes. If you do use the <code>ospf</code> option, the following type codes are used:</td>
</tr>
<tr>
<td>IA</td>
<td>The route is an OSPF inter area route (a route that passes from one area into another).</td>
</tr>
<tr>
<td>E1</td>
<td>The route is an OSPF external type 1 route.</td>
</tr>
<tr>
<td>E2</td>
<td>The route is an OSPF external type 2 route.</td>
</tr>
</tbody>
</table>

Clearing IP routes

If needed, you can clear the entire route table or specific individual routes.

To clear all routes from the IP route table, enter the following command.

```
FastIron# clear ip route
```

To clear route 209.157.22.0/24 from the IP routing table, enter the following command.

```
FastIron# clear ip route 209.157.22.0/24
```

Syntax: clear ip route [\langle ip-addr \rangle \langle ip-mask \rangle]

or

Syntax: clear ip route [\langle ip-addr \rangle/\langle mask-bits \rangle]
Displaying IP traffic statistics

To display IP traffic statistics, enter the following command at any CLI level.

FastIron# show ip traffic
IP Statistics
 139 received, 145 sent, 0 forwarded
 0 filtered, 0 fragmented, 0 reassembled, 0 bad header
 0 no route, 0 unknown proto, 0 no buffer, 0 other errors

ICMP Statistics
Received:
 0 total, 0 errors, 0 unreachable, 0 time exceed
 0 parameter, 0 source quench, 0 redirect, 0 echo,
 0 echo reply, 0 timestamp, 0 timestamp reply, 0 addr mask
 0 addr mask reply, 0 irdp advertisement, 0 irdp solicitation
Sent:
 0 total, 0 errors, 0 unreachable, 0 time exceed
 0 parameter, 0 source quench, 0 redirect, 0 echo,
 0 echo reply, 0 timestamp, 0 timestamp reply, 0 addr mask
 0 addr mask reply, 0 irdp advertisement, 0 irdp solicitation

UDP Statistics
 1 received, 0 sent, 1 no port, 0 input errors

TCP Statistics
 0 active opens, 0 passive opens, 0 failed attempts
 0 active resets, 0 passive resets, 0 input errors
 138 in segments, 141 out segments, 4 retransmission

RIP Statistics
 0 requests sent, 0 requests received
 0 responses sent, 0 responses received
 0 unrecognized, 0 bad version, 0 bad addr family, 0 bad req format
 0 bad metrics, 0 bad resp format, 0 resp not from rip port
 0 resp from loopback, 0 packets rejected

The show ip traffic command displays the following information.

TABLE 187 CLI display of IP traffic statistics – Layer 3 Switch

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP statistics</td>
<td></td>
</tr>
<tr>
<td>received</td>
<td>The total number of IP packets received by the device.</td>
</tr>
<tr>
<td>sent</td>
<td>The total number of IP packets originated and sent by the device.</td>
</tr>
<tr>
<td>forwarded</td>
<td>The total number of IP packets received by the device and forwarded to other devices.</td>
</tr>
<tr>
<td>filtered</td>
<td>The total number of IP packets filtered by the device.</td>
</tr>
<tr>
<td>fragmented</td>
<td>The total number of IP packets fragmented by this device to accommodate the MTU of this device or of another device.</td>
</tr>
<tr>
<td>reassembled</td>
<td>The total number of fragmented IP packets that this device re-assembled.</td>
</tr>
<tr>
<td>bad header</td>
<td>The number of IP packets dropped by the device due to a bad packet header.</td>
</tr>
<tr>
<td>no route</td>
<td>The number of packets dropped by the device because there was no route.</td>
</tr>
</tbody>
</table>
TABLE 187 CLI display of IP traffic statistics – Layer 3 Switch (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown proto</td>
<td>The number of packets dropped by the device because the value in the Protocol field of the packet header is unrecognized by this device.</td>
</tr>
<tr>
<td>no buffer</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>other errors</td>
<td>The number of packets dropped due to error types other than those listed above.</td>
</tr>
</tbody>
</table>

ICMP statistics

The ICMP statistics are derived from RFC 792, “Internet Control Message Protocol”, RFC 950, “Internet Standard Subnetting Procedure”, and RFC 1256, “ICMP Router Discovery Messages”. Statistics are organized into Sent and Received. The field descriptions below apply to each.

total	The total number of ICMP messages sent or received by the device.
errors	This information is used by Brocade customer support.
unreachable	The number of Destination Unreachable messages sent or received by the device.
time exceed	The number of Time Exceeded messages sent or received by the device.
parameter	The number of Parameter Problem messages sent or received by the device.
source quench	The number of Source Quench messages sent or received by the device.
redirect	The number of Redirect messages sent or received by the device.
echo	The number of Echo messages sent or received by the device.
echo reply	The number of Echo Reply messages sent or received by the device.
timestamp	The number of Timestamp messages sent or received by the device.
timestamp reply	The number of Timestamp Reply messages sent or received by the device.
addr mask	The number of Address Mask Request messages sent or received by the device.
addr mask reply	The number of Address Mask Replies messages sent or received by the device.
irdp advertisement	The number of ICMP Router Discovery Protocol (IRDP) Advertisement messages sent or received by the device.
irdp solicitation	The number of IRDP Solicitation messages sent or received by the device.

UDP statistics

received	The number of UDP packets received by the device.
sent	The number of UDP packets sent by the device.
no port	The number of UDP packets dropped because they did not have a valid UDP port number.
input errors	This information is used by Brocade customer support.

TCP statistics

The TCP statistics are derived from RFC 793, “Transmission Control Protocol”.

active opens	The number of TCP connections opened by sending a TCP SYN to another device.
passive opens	The number of TCP connections opened by this device in response to connection requests (TCP SYN) received from other devices.
failed attempts	This information is used by Brocade customer support.
active resets	The number of TCP connections this device reset by sending a TCP RESET message to the device at the other end of the connection.
Displaying IP configuration information and statistics

TABLE 187 CLI display of IP traffic statistics – Layer 3 Switch (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive resets</td>
<td>The number of TCP connections this device reset because the device at the other end of the connection sent a TCP RESET message.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>in segments</td>
<td>The number of TCP segments received by the device.</td>
</tr>
<tr>
<td>out segments</td>
<td>The number of TCP segments sent by the device.</td>
</tr>
<tr>
<td>retransmission</td>
<td>The number of segments that this device retransmitted because the retransmission timer for the segment had expired before the device at the other end of the connection had acknowledged receipt of the segment.</td>
</tr>
</tbody>
</table>

RIP statistics

The RIP statistics are derived from RFC 1058, “Routing Information Protocol”.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>requests sent</td>
<td>The number of requests this device has sent to another RIP router for all or part of its RIP routing table.</td>
</tr>
<tr>
<td>requests received</td>
<td>The number of requests this device has received from another RIP router for all or part of this device RIP routing table.</td>
</tr>
<tr>
<td>responses sent</td>
<td>The number of responses this device has sent to another RIP router request for all or part of this device RIP routing table.</td>
</tr>
<tr>
<td>responses received</td>
<td>The number of responses this device has received to requests for all or part of another RIP router routing table.</td>
</tr>
<tr>
<td>unrecognized</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>bad version</td>
<td>The number of RIP packets dropped by the device because the RIP version was either invalid or is not supported by this device.</td>
</tr>
<tr>
<td>bad addr family</td>
<td>The number of RIP packets dropped because the value in the Address Family Identifier field of the packet header was invalid.</td>
</tr>
<tr>
<td>bad req format</td>
<td>The number of RIP request packets this router dropped because the format was bad.</td>
</tr>
<tr>
<td>bad metrics</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>bad resp format</td>
<td>The number of responses to RIP request packets dropped because the format was bad.</td>
</tr>
<tr>
<td>resp not from rip port</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>resp from loopback</td>
<td>The number of RIP responses received from loopback interfaces.</td>
</tr>
<tr>
<td>packets rejected</td>
<td>This information is used by Brocade customer support.</td>
</tr>
</tbody>
</table>

Displaying IP information – Layer 2 Switches

You can display the following IP configuration information statistics on Layer 2 Switches:

- Global IP settings – refer to “Displaying global IP configuration information” on page 1101.
- ARP entries – refer to “Displaying ARP entries” on page 1101.
- IP traffic statistics – refer to “Displaying IP traffic statistics” on page 1102.
Displaying global IP configuration information

To display the Layer 2 Switch IP address and default gateway, enter the following command.

FastIron# show ip

 Switch IP address: 192.168.1.2
 Subnet mask: 255.255.255.0

Default router address: 192.168.1.1
TFTP server address: None
Configuration filename: None
Image filename: None

Syntax: show ip

This display shows the following information.

TABLE 188 CLI display of global IP configuration information – Layer 2 Switch

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP configuration</td>
<td></td>
</tr>
<tr>
<td>Switch IP address</td>
<td>The management IP address configured on the Layer 2 Switch. Specify this</td>
</tr>
<tr>
<td></td>
<td>address for Telnet or Web management access.</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>The subnet mask for the management IP address.</td>
</tr>
<tr>
<td>Default router address</td>
<td>The address of the default gateway, if you specified one.</td>
</tr>
<tr>
<td>Most recent TFTP access</td>
<td></td>
</tr>
<tr>
<td>TFTP server address</td>
<td>The IP address of the most-recently contacted TFTP server, if the switch</td>
</tr>
<tr>
<td></td>
<td>has contacted a TFTP server since the last time the software was reloaded</td>
</tr>
<tr>
<td></td>
<td>or the switch was rebooted.</td>
</tr>
<tr>
<td>Configuration filename</td>
<td>The name under which the Layer 2 Switch startup-config file was uploaded</td>
</tr>
<tr>
<td></td>
<td>or downloaded during the most recent TFTP access.</td>
</tr>
<tr>
<td>Image filename</td>
<td>The name of the Layer 2 Switch flash image (system software file) that</td>
</tr>
<tr>
<td></td>
<td>was uploaded or downloaded during the most recent TFTP access.</td>
</tr>
</tbody>
</table>

Displaying ARP entries

To display the entries the Layer 2 Switch has placed in its ARP cache, enter the following command from any level of the CLI.

FastIron# show arp

 IP Mac Port Age VlanId
 192.168.1.170 0010.5a11.d042 7 0 1

Total Arp Entries : 1

Syntax: show arp
This display shows the following information.

TABLE 189 CLI display of ARP cache

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>The IP address of the device.</td>
</tr>
<tr>
<td>Mac</td>
<td>The MAC address of the device.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>If the MAC address is all zeros, the entry is for the default gateway, but the Layer 2 Switch does not have a link to the gateway.</td>
</tr>
<tr>
<td>Port</td>
<td>The port on which the entry was learned.</td>
</tr>
<tr>
<td>Age</td>
<td>The number of minutes the entry has remained unused. If this value reaches the ARP aging period, the entry is removed from the cache.</td>
</tr>
<tr>
<td>Vlanid</td>
<td>The VLAN the port that learned the entry is in.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>If the MAC address is all zeros, this field shows a random VLAN ID, since the Layer 2 Switch does not yet know which port the device for this entry is attached to.</td>
</tr>
<tr>
<td>Total ARP Entries</td>
<td>The number of entries in the ARP cache.</td>
</tr>
</tbody>
</table>

Displaying IP traffic statistics

To display IP traffic statistics on a Layer 2 Switch, enter the following command at any CLI level.

FastIron# show ip traffic

IP Statistics

- 27 received, 24 sent
- 0 fragmented, 0 reassembled, 0 bad header
- 0 no route, 0 unknown proto, 0 no buffer, 0 other errors

ICMP Statistics

Received:

- 0 total, 0 errors, 0 unreachable, 0 time exceed
- 0 parameter, 0 source quench, 0 redirect, 0 echo,
- 0 echo reply, 0 timestamp, 0 timestamp rely, 0 addr mask
- 0 addr mask reply, 0 irdp advertisement, 0 irdp solicitation

Sent:

- 0 total, 0 errors, 0 unreachable, 0 time exceed
- 0 parameter, 0 source quench, 0 redirect, 0 echo,
- 0 echo reply, 0 timestamp, 0 timestamp rely, 0 addr mask
- 0 addr mask reply, 0 irdp advertisement, 0 irdp solicitation

UDP Statistics

- 0 received, 0 sent, 0 no port, 0 input errors

TCP Statistics

- 1 current active tcbs, 4 tcbs allocated, 0 tcbs freed 0 tcbs protected
- 0 active opens, 0 passive opens, 0 failed attempts
- 0 active resets, 0 passive resets, 0 input errors
- 27 in segments, 24 out segments, 0 retransmission

Syntax: show ip traffic
The `show ip traffic` command displays the following information.

TABLE 190 CLI display of IP traffic statistics – Layer 2 Switch

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP statistics</td>
<td></td>
</tr>
<tr>
<td>received</td>
<td>The total number of IP packets received by the device.</td>
</tr>
<tr>
<td>sent</td>
<td>The total number of IP packets originated and sent by the device.</td>
</tr>
<tr>
<td>fragmented</td>
<td>The total number of IP packets fragmented by this device to accommodate the MTU of this device or of another device.</td>
</tr>
<tr>
<td>reassembled</td>
<td>The total number of fragmented IP packets that this device re-assembled.</td>
</tr>
<tr>
<td>bad header</td>
<td>The number of IP packets dropped by the device due to a bad packet header.</td>
</tr>
<tr>
<td>no route</td>
<td>The number of packets dropped by the device because there was no route.</td>
</tr>
<tr>
<td>unknown proto</td>
<td>The number of packets dropped by the device because the value in the Protocol field of the packet header is unrecognized by this device.</td>
</tr>
<tr>
<td>no buffer</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>other errors</td>
<td>The number of packets that this device dropped due to error types other than the types listed above.</td>
</tr>
</tbody>
</table>

ICMP statistics

The ICMP statistics are derived from RFC 792, “Internet Control Message Protocol”, RFC 950, “Internet Standard Subnetting Procedure”, and RFC 1256, “ICMP Router Discovery Messages”. Statistics are organized into Sent and Received. The field descriptions below apply to each.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>The total number of ICMP messages sent or received by the device.</td>
</tr>
<tr>
<td>errors</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>unreachable</td>
<td>The number of Destination Unreachable messages sent or received by the device.</td>
</tr>
<tr>
<td>time exceed</td>
<td>The number of Time Exceeded messages sent or received by the device.</td>
</tr>
<tr>
<td>parameter</td>
<td>The number of Parameter Problem messages sent or received by the device.</td>
</tr>
<tr>
<td>source quench</td>
<td>The number of Source Quench messages sent or received by the device.</td>
</tr>
<tr>
<td>redirect</td>
<td>The number of Redirect messages sent or received by the device.</td>
</tr>
<tr>
<td>echo</td>
<td>The number of Echo messages sent or received by the device.</td>
</tr>
<tr>
<td>echo reply</td>
<td>The number of Echo Reply messages sent or received by the device.</td>
</tr>
<tr>
<td>timestamp</td>
<td>The number of Timestamp messages sent or received by the device.</td>
</tr>
<tr>
<td>timestamp reply</td>
<td>The number of Timestamp Reply messages sent or received by the device.</td>
</tr>
<tr>
<td>addr mask</td>
<td>The number of Address Mask Request messages sent or received by the device.</td>
</tr>
<tr>
<td>addr mask reply</td>
<td>The number of Address Mask Replies messages sent or received by the device.</td>
</tr>
<tr>
<td>irdp advertisement</td>
<td>The number of ICMP Router Discovery Protocol (IRDP) Advertisement messages sent or received by the device.</td>
</tr>
<tr>
<td>irdp solicitation</td>
<td>The number of IRDP Solicitation messages sent or received by the device.</td>
</tr>
</tbody>
</table>

UDP statistics

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>received</td>
<td>The number of UDP packets received by the device.</td>
</tr>
<tr>
<td>sent</td>
<td>The number of UDP packets sent by the device.</td>
</tr>
</tbody>
</table>
Disabling IP checksum check

Platform Support: FESX, FSX and SX IPv6 devices running software release FSX 05.1.00 and later

The **disable-hw-ip-checksum-check** command traps a packet with bad checksum to the CPU. Previously, if the packet processor detected a packet with, for example, the checksum 0xFFFF, it would treat it as a bad checksum even if it was correct and it would drop the packet. Now, the command, **disable-hw-ip-checksum-check** traps the packet at the CPU and if the checksum is correct, it forwards the packet.

TABLE 190 CLI display of IP traffic statistics – Layer 2 Switch (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>no port</td>
<td>The number of UDP packets dropped because the packet did not contain a valid UDP port number.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>TCP statistics</td>
<td>The TCP statistics are derived from RFC 793, “Transmission Control Protocol”.</td>
</tr>
<tr>
<td>current active tcbs</td>
<td>The number of TCP Control Blocks (TCBs) that are currently active.</td>
</tr>
<tr>
<td>tcbs allocated</td>
<td>The number of TCBs that have been allocated.</td>
</tr>
<tr>
<td>tcbs freed</td>
<td>The number of TCBs that have been freed.</td>
</tr>
<tr>
<td>tcbs protected</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>active opens</td>
<td>The number of TCP connections opened by this device by sending a TCP SYN to another device.</td>
</tr>
<tr>
<td>passive opens</td>
<td>The number of TCP connections opened by this device in response to connection requests (TCP SYNs) received from other devices.</td>
</tr>
<tr>
<td>failed attempts</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>active resets</td>
<td>The number of TCP connections this device reset by sending a TCP RESET message to the device at the other end of the connection.</td>
</tr>
<tr>
<td>passive resets</td>
<td>The number of TCP connections this device reset because the device at the other end of the connection sent a TCP RESET message.</td>
</tr>
<tr>
<td>input errors</td>
<td>This information is used by Brocade customer support.</td>
</tr>
<tr>
<td>in segments</td>
<td>The number of TCP segments received by the device.</td>
</tr>
<tr>
<td>out segments</td>
<td>The number of TCP segments sent by the device.</td>
</tr>
<tr>
<td>retransmission</td>
<td>The number of segments that this device retransmitted because the retransmission timer for the segment had expired before the device at the other end of the connection had acknowledged receipt of the segment.</td>
</tr>
</tbody>
</table>
To set disable hardware ip checksum check for all ports, enter the following command.

FastIron#))disable-hw-ip-checksum-check
disable-ip-header-check set for all ports

To clear disable hardware ip checksum check on all ports, enter the following command.

FastIron#))no disable-hw-ip-checksum-check ethernet 13
disable-hw-ip-checksum-check cleared for ports the 13 to 24

To set disable hardware ip checksum check on for example, port range 0-12, enter the following command.

FastIron#))disable-hw-ip-checksum-check ethernet 2
disable-ip-header-check set for ports ethe 1 to 12

To set disable hardware ip checksum check on, for example, port range 13-24, enter the following command.

FastIron#))disable-hw-ip-checksum-check ethernet 22
disable-ip-header-check set for ports ethe 13 to 24

To clear disable hardware ip checksum check on, for example, port range 13-24, enter the following command.

FastIron#)#no disable-hw-ip-checksum-check ethernet 13
disable-hw-ip-checksum-check cleared for ports the 13 to 24

NOTE
The port range could be any consecutive range, it may not nescesarily be a decimal number.

Syntax: [no] disable-hw-ip-checksum-check <ethernet> <port number>

NOTE
This command only functions on the IPv4 platform.
Disabling IP checksum check
Chapter 31

Configuring Multicast Listening Discovery (MLD) Snooping on FGS, FGS-STK, FLS, FLS-STK, FWS, and FCX devices

Overview

The default method a FastIron uses to process an IPv6 multicast packet is to broadcast it to all ports except the incoming port of a VLAN. Packets are flooded by hardware without going to CPU, which may result in some clients receiving unwanted traffic.

MLD Snooping provides multicast containment by forwarding traffic only to those clients that have MLD receivers for a specific multicast group (destination address). The FastIron maintains the MLD group membership information by processing MLD reports and generating messages so traffic can be forwarded to ports receiving MLD reports. This is analogous to IGMP Snooping on the Brocade Layer3 switches.

An IPv6 multicast address is a destination address in the range of FF00::/8. A limited number of multicast addresses are reserved. Since packets destined for the reserved addresses may require VLAN flooding, these devices do not snoop in the FF0X::000X range (where X is from 0 to F). Data packets destined to these addresses are flooded to the entire VLAN by hardware, and mirrored to CPU. Multicast data packets destined to addresses outside the FF0X::000X range are snooped. A client must send MLD reports in order to receive traffic. If an application outside the FF0X::000X range requires VLAN flooding, you must configure a static group for the entire VLAN.

An MLD device periodically broadcasts general queries, and sends group queries upon receiving a leave message to ensure no other clients at the same port still want this specific traffic before removing it. MLDv1 allows clients to specify which group (destination IPv6 address) on which to receive traffic. (MLDv1 cannot choose the source of the traffic.) MLDv2 deals with source-specific multicasts, adding the capability for clients to INCLUDE or EXCLUDE specific traffic sources. An MLDv2 device's port state can either be in INCLUDE or EXCLUDE mode. There are different types of group records for client reports.

The interfaces respond to general queries by sending a membership report containing one or more of the following records associated with a specific group:

- Current-state record - Indicates the sources from which the interface wants to receive or not receive traffic. This record contains the source addresses of the interfaces and whether or not traffic will be included (IS_IN) or excluded (IS_EX) from that source address.
- Filter-mode-change record - If the interface changes its current state from IS_IN to IS_EX, a TO_EX record is included in the membership report. Likewise, if an interface current state changes from IS_EX to IS_IN, a TO_IN record appears in the membership report.
- MLDv1 leave report - Equivalent to a TO_IN (empty) record in MLDv2. This record means that no traffic from this group will be received regardless of the source.
- An MLDv1 group report - Equivalent to an IS_EX (empty) record in MLDv2. This record means that all traffic from this group will be received regardless of source.
• Source-list-change record - If the interface wants to add or remove traffic sources from its membership report, the report can include an ALLOW record, which contains a list of new sources from which the interface wishes to receive traffic. The report can also contain a BLOCK record, which lists current traffic sources from which the interface wants to stop receiving traffic.

MLD protocols provide a way for clients and a device to exchange messages, and allow the device to build a database indicating which port wants what traffic. Since the MLD protocols do not specify forwarding methods, MLD Snooping or multicast protocols such as IPv6 PIM-Sparse Mode (PIM SM) are required to handle packet forwarding. PIM SM can route multicast packets within and outside a VLAN, while MLD Snooping can switch packets only within a VLAN. These devices do not support PIM-SM routing.

If a VLAN is not MLD Snooping-enabled, it floods IPv6 multicast data and control packets to the entire VLAN in hardware. When snooping is enabled, MLD packets are trapped to the CPU. Data packets are mirrored to the CPU and VLAN flooded. The CPU then installs hardware resources so subsequent data packets can be hardware-switched to desired ports without going through the CPU. If there is no client report, the hardware resource drops the data stream. The hardware can either match group addresses only (* G), or both source and group (S G) addresses in the data stream. If MLDv2 is configured in any port of a VLAN, the VLAN uses an (S G) match, otherwise it uses (* G). Because the hardware can match only the lowest 32 bits of a 128 bit IPv6 address, the output interfaces (OIF) of a hardware resource are the superset of the OIF of all data streams sharing the same lowest 32 bits. For example, if groups ff10::1234:5678:abcd and ff20::5678:abcd share the same hardware resource, then the OIF of the hardware matching (* 5678:abcd) is the superset of these two groups.

FGS, FLS, FGS-STK, FLS-STK, FWS and FCX devices allocate 16K of hardware resources for MAC learning, IGMP, and MLD snooping. If a data packet does not match any of these resources, it might be sent to the CPU, increasing the CPU burden. This can happen if the device runs out of hardware resources, or is unable to install a resource for a specific matching address due to a hashing collision. Because the hardware hashes addresses into 16K entries, some addresses may be hashed into the same entry. If the collision number in an entry is more than the hardware chain length, the resource cannot be installed. The chain length can be configured using the hash-chain-length command, as follows.

```
FastIron(config)#hash-chain-length 8
```

Syntax: `[no] hash-chain-length <num>`

The `<num>` parameter range is 4 to 32, in multiples of 4. If the input value is not a multiple of 4, then it will be changed to the multiple of 4 lower than then the input value (e.g. 11 will be changed to 8). The default hash chain length is 4. A chain length of more than 4 may affect line rate switching.

NOTE
For this command to take effect, you must save the configuration and reload the switch.

The hardware resource limit applies only to snooping-enabled VLANs. In VLANs where snooping is not enabled, multicast streams are switched in hardware without using any pre-installed resources.

The Brocade device supports up to 32K of MLD groups. They are produced by client membership reports.

Platform support

- FGS and FLS devices running software release 03.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 and later
- FCX-S devices running software release 06.0.00 and later

Configuration notes

- Servers (traffic sources) are not required to send MLD memberships.
- The default MLD version is V1.
- Hardware resources are installed only when there is data traffic. If a VLAN is configured for MLDv2, the hardware matches (S G), otherwise it matches (* G).
- You can configure the maximum number of groups and hardware-switched data streams.
- The device supports static groups applying to the entire VLAN, or to specific ports. The device acts as a proxy to send MLD reports for the static groups when receiving queries.
- A user can configure static router ports, forcing all multicast traffic to be sent to these ports.
- All devices support fast leave for MLDv1, which stops traffic immediately to any port that has received a leave message.
- All devices support tracking and fast leave for MLDv2, which tracks all MLDv2 clients. If the only client on a port leaves, traffic is stopped immediately.
- An MLD device can be configured as a querier (active) or non-querier (passive). Queriers send queries. Non-queriers listen for queries and forward them to the entire VLAN.
- Every VLAN can be independently configured as a querier or a non-querier.
- A VLAN that has a connection to an IPv6 PIM-enabled port on another router should be configured as a non-querier. When multiple snooping devices connect together and there is no connection to IPv6 PIM ports, only one device should be configured as the querier. If multiple devices are configured as active, only one will continue to send queries after the devices have exchanged queries. Refer to "Configuring queriers and non-queriers" on page 1110.
- An MLD device can be configured to rate-limit the forwarding of MLDv1 membership reports to queriers.
- Because these devices use an IPv6 link-local address as the source address when sending queries, no global address is required.

The MLD implementation allows snooping on some VLANs or on all VLANs. MLD can be enabled or disabled independently for each VLAN. In addition, individual ports of a VLAN can be configured as MSLv1 and MLDv2. In general, global configuration commands such as ipv6 mld-snooping, apply to all VLANs except those with a local mld-snooping, configuration, which supersedes the global configuration. Configuring the version on a port or a VLAN only affects the device sent query version. The device always processes all versions of client reports regardless of the version configured.

MLD Snooping requires hardware resources. If the device has insufficient resources, the data stream without a resource is mirrored to the CPU in addition to being VLAN flooded, which can cause high CPU usage. To avoid this situation, Brocade recommends that you avoid enabling snooping globally unless necessary.
When any port of a VLAN is configured for MLDv2, the VLAN matches both source and group (S G) in hardware switching. If no port is configured for MLDv2, the VLAN matches group only (* G). Matching (S G) requires more hardware resources than (* G) when there are multiple servers sharing the same group. For example, two data streams from different sources to the same group require two (S G) entries in MLDv2, compared to only one (* G) in MLDv1. Brocade recommends that you use MLDv2 only in a source-specific application. Because each VLAN can be configured for the version independently, some VLANs might match (* G) while others match (S G).

To receive data traffic, MLD Snooping requires clients to send membership reports. If a client does not send reports, you must configure a static group to force traffic to client ports. The static group can either apply to some ports or to the entire VLAN.

Configuring queriers and non-queriers

An MLD Snooping-enabled device can be configured as a querier (active) or non-querier (passive). An MLD querier sends queries; a non-querier listens for MLD queries and forwards them to the entire VLAN. Starting with release 03.0.00, VLANs can be independently configured as queriers or non-queriers. If a VLAN has a connection to an IPv6 PIM-enabled port on another router, the VLAN should be configured as a non-querier. When multiple MLD snooping devices are connected together, and there is no connection to an IPv6 PIM-enabled port, one of the devices should be configured as a querier. If multiple devices are configured as queriers, after multiple devices exchange queries, then all devices except the winner (the device with the lowest address) stop sending queries. Although the system works when multiple devices are configured as queriers, Brocade recommends that only one device, preferably the one with the traffic source, is configured as the querier.

Because non-queriers always forward multicast data traffic and MLD messages to router ports which receive MLD queries or IPv6 PIM hellos, Brocade recommends that you configure the devices with the data traffic source (server) as queriers. If a server is attached to a non-querier, the non-querier always forwards traffic to the querier regardless of whether or not there are clients on the querier.

NOTE

In a topology with one or more connected devices, at least one device must be running PIM, or configured as active. Otherwise, no devices can send queries, and traffic cannot be forwarded to clients.

VLAN specific configuration

You can configure MLD snooping on some VLANs or all VLANs. Each VLAN can be independently enabled or disabled for MLD snooping, or can be configured with MLDv1 or MLDv2. In general, the `ipv6 mld-snooping...` commands apply globally to all VLANs except those configured with `VLAN-specific mld-snooping...` commands. `VLAN-specific mld-snooping` commands supersede global `ipv6 mld-snooping` commands.

Using MLDv1 with MLDv2

MLD snooping can be configured as MLDv1 or MLDv2 on individual ports on a VLAN. An interface or router sends queries and reports that include the MLD version with which it has been configured. The version configuration applies only to the sending of queries. The snooping device recognizes and processes MLDv1 and MLDv2 packets regardless of the version configured.
NOTE
To avoid version deadlock, when an interface receives a report with a lower version than that for which it has been configured, the interface does not automatically downgrade the running MLD version.

Configuring MLD snooping

Configuring MLD Snooping on IPv6 FGS, FLS, FGS-STK, FLS-STK, FWS and FCX devices consists of the following global and VLAN-specific tasks.

Global tasks:
• Configuring hardware and software resource limits
• Disabling transmission and receipt of MLD packets on a port
• Configuring the MLD mode: active or passive (must be enabled for MLD Snooping)
• Modifying the age interval
• Specifying the interval for query messages (active MLD mode only)
• Specifying the global MLD version
• Enabling and disabling report control (rate limiting)
• Modifying the leave-wait time
• Modifying the mcache age interval
• Disabling error and warning messages

VLAN-specific tasks:
• Configuring the MLD mode for the VLAN: active or passive
• Enabling or disabling MLD Snooping for the VLAN
• Configuring the MLD version for the VLAN
• Configuring the MLD version for individual ports
• Configuring static groups to the entire VLAN or some ports
• Configuring static router ports
• Enabling client tracking and the fast leave feature for MLDv2
• Configuring fast leave for MLDv1
• Configuring fast-convergence

Configuring the hardware and software resource limits

The system supports up to 8K of hardware-switched multicast streams. The configurable range is from 256 to 8192 and the default is 4096. Enter a command such as the following to define the maximum number of MLD Snooping cache entries.

```
FastIron(config)#system-max mld-snoop-mcache 8000
```

Syntax: `[no] system-max mld-snoop-mcache <num>`
The system supports up to 32K of groups. The configurable range is 256 to 32768 and the default is 8192. The configured number is the upper limit of an expandable database. Client memberships exceeding the group limits are not processed.

Disabling transmission and receipt of MLD packets on a port

When a VLAN is snooping-enabled, all MLD packets are trapped to the CPU without hardware VLAN flooding. The CPU can block MLD packets to and from a multicast-disabled port, and will not add that port to the output interfaces or hardware resources, which prevents the disabled port from receiving multicast traffic. However, if static groups to the entire VLAN are defined, the traffic for these groups is flooded to the entire VLAN, including to the disabled ports. Since the hardware cannot block traffic from disabled ports, hardware traffic is switched in the same way as traffic from enabled ports.

NOTE
This command has no effect on a VLAN that is not snooping-enabled because all multicast traffic is VLAN flooded.

FastIron(config)#interface ethernet 0/1/3
FastIron(config-if-e1000-0/1/3)#ipv6-multicast-disable

Syntax: [no] ipv6-multicast-disable

Configuring the global MLD mode

You can configure a device for either active or passive (default) MLD mode. If you specify an MLD mode for a VLAN, the MLD mode overrides the global setting:

• **Active** – In active MLD mode, an FGS, FWS, or FLS device actively sends out MLD queries to identify IPv6 multicast groups on the network, and makes entries in the MLD table based on the group membership reports it receives from the network.

• **Passive** – In passive MLD mode, the device forwards reports to the router ports which receive queries. MLD Snooping in passive mode does not send queries, but does forward queries to the entire VLAN.

To globally set the MLD mode to active for the device, enter the following command.

FGS624 Switch(config)#ipv6 mld-snooping active

Syntax: [no] ipv6 mld-snooping [active | passive]

Omitting both the active and passive keywords is the same as entering ipv6 mld-snooping passive.

Modifying the age interval

When the device receives a group membership report, it makes an entry in the MLD group table for the group in the report. The age interval specifies how long the entry can remain in the table without the device receiving another group membership report. When multiple devices connect together, all devices should be configured with the same age interval. The age interval should be at least twice that of the query interval, so that missing one report will not stop traffic. For a non-querier, the query interval should equal that of the querier.

To modify the age interval, enter a command such as the following.
Configuring MLD snooping

FGS624 Switch(config)#ipv6 mld-snooping age-interval 280

Syntax: `[no] ipv6 mld-snooping age-interval <interval>`

The `<interval>` parameter specifies the aging time. You can specify a value from 20 – 7200 seconds. The default is 140 seconds.

Modifying the query interval (Active MLD snooping mode only)

If the MLD mode is set to active, you can modify the query interval, which specifies how often the device sends group membership queries. When multiple queriers connect together, all queriers should be configured with the same interval.

To modify the query interval, enter a command such as the following.

FGS624 Switch(config)#ipv6 mld-snooping query-interval 120

Syntax: `[no] ipv6 mld-snooping query-interval <interval>`

The `<interval>` parameter specifies the interval between queries. You can specify a value from 10 – 3600 seconds. The default is 60 seconds.

Configuring the global MLD version

The default version is MLDv1. You can specify the global MLD version on the device as either MLDv1 or MLDv2. For example, the following command configures the device to use MLDv2.

FGS624 Switch(config)#ipv6 mld-snooping version 2

Syntax: `[no] ipv6 mld-snooping version 1 | 2`

You can also specify the MLD version for individual VLANs, or individual ports within VLANs. If no MLD version is specified for a VLAN, then the globally configured MLD version is used. If an MLD version is specified for individual ports in a VLAN, those ports use that version instead of the version specified for the VLAN or the globally specified version. The default is MLDv1.

Configuring report control

When a device is in passive mode, it forwards reports and leave messages from clients to the upstream router ports that are receiving queries.

You can configure report control to rate-limit report forwarding for the same group to no more than once per 10 seconds. This rate limiting does not apply to the first report answering a group-specific query.

NOTE

This feature applies to MLDv1 only. The leave messages are not rate limited.

MLDv1 membership reports for the same group from different clients are considered to be the same, and are rate-limited. This alleviates the report storm caused by multiple clients answering the upstream router query. To enable report-control, use a command similar to the following.

FGS624 Switch(config)#ipv6 mld-snooping report-control

Syntax: `[no] ipv6 mld-snooping report-control`
Modifying the wait time before stopping traffic when receiving a leave message

You can define the wait time before stopping traffic to a port when the device receives a leave message for that port. The device sends group-specific queries once per second to determine if any client on the same port still needs the group. The value range is from 1 to 5, and the default is 2. Due to the internal timer accuracy, the actual wait time is between \(n \) and \((n+1) \) seconds, where \(n \) is the configured value.

FGS624 Switch(config)#ipv6 mld-snooping leave-wait-time 1
Syntax: [no] ipv6 mld-snooping leave-wait-time <num>

Modifying the multicast cache (mcache) aging time

You can set the time for an mcache to age out when it does not receive traffic. The traffic is hardware-switched. One minute before an mcache is aged out, the device mirrors a packet of the mcache to the CPU to reset the age. If no data traffic arrives within one minute, the mcache is deleted. If you configure a lower value, the resource consumed by idle streams is quickly removed, but packets are mirrored to the CPU more frequently. Configure a higher value only when data streams are arriving consistently. The range is 60 to 3600 seconds, and the default is 60 seconds.

FGS624 Switch(config)#ipv6 mld-snooping mcache-age 180
Syntax: [no] ipv6 mld-snooping mcache-age <num>

Disabling error and warning messages

The device prints error or warning messages when it runs out of software resources or when it receives packets with the wrong checksum or groups. These messages are rate limited. You can turn off these messages by entering a command such as the following.

FGS624 Switch(config)#ipv6 mld-snooping verbose-off
Syntax: [no] ipv6 mld-snooping verbose-off

Configuring the MLD mode for a VLAN

You can configure a VLAN for either the active or passive (default) MLD mode. The VLAN setting overrides the global setting:

- **Active** – In active MLD mode, a device actively sends out MLD queries to identify IPv6 multicast groups on the network, and makes entries in the MLD table based on the group membership reports it receives from the network.

- **Passive** – In passive MLD mode, the device forwards reports to router ports which receive queries. MLD snooping in the passive mode does not send queries. However, it does forward queries to the entire VLAN.

To set the MLD mode for VLAN 20 to active, enter the following commands.

FGS624 Switch(config)#vlan 20
FGS624 Switch(config-vlan-20)#mld-snooping active

Syntax: [no] mld-snooping active | passive
Disabling MLD snooping for the VLAN

When MLD snooping is enabled globally, you can disable it for a specific VLAN. For example, the following commands disable MLD snooping for VLAN 20. This setting overrides the global setting for VLAN 20.

FGS624 Switch(config)#vl 20
FGS624 Switch(config-vlan-20)#mld-snooping disable-mld-snoop

Syntax: [no] mld-snooping disable-mld-snoop

Configuring the MLD version for the VLAN

You can specify the MLD version for a VLAN. For example, the following commands configure VLAN 20 to use MLDv2.

FGS624 Switch(config)#vl 20
FGS624 Switch(config-vlan-20)#mld-snooping version 2

Syntax: [no] mld-snooping version 1 | 2

When no MLD version is specified, the globally-configured MLD version is used. If an MLD version is specified for individual ports, these ports use that version, instead of the version specified for the VLAN.

Configuring the MLD version for individual ports

You can specify the MLD version for individual ports in a VLAN. For example, the following commands configure ports 0/1/4, 0/1/5, 0/1/6 and 0/2/1 to use MLDv2. The other ports use the MLD version specified with the mld-snooping version command, or the globally configured MLD version.

FGS624 Switch(config)#vl 20
FGS624 Switch(config-vlan-20)#mld-snooping port-version 2 ethe 0/2/1 ethe 0/1/4 to 0/1/6

Syntax: [no] mld-snooping port-version 1 | 2 <stack-unit/slot/port>

Configuring static groups to the entire VLAN or to individual ports

A snooping-enabled VLAN cannot forward multicast traffic to ports that do not receive MLD membership reports. To allow clients to send reports, you can configure a static group which applies to the entire VLAN, or to individual ports on the VLAN. The static group forwards packets to the static group ports even if they have no client membership reports. The static group for the entire VLAN is used in VLAN flooding because it uses fewer hardware resources than the static group for individual ports. Configure a static group for specific ports on VLAN 20 using commands similar to the following.

FGS624 Switch(config)#vl 20
FGS624 Switch(config-vlan-20)#mld-snooping static-group ff05::100 count 2 ethe 0/1/3 ethe 0/1/5 to 0/1/7
FGS624 Switch(config-vlan-20)#mld-snooping static-group ff10::200

Syntax: [no] mld-snooping static-group <ipv6-address> [count <num>] [<stack-unit/slot/port>]

Configuring MLD snooping
Configuring MLD snooping

The `ipv6-address` parameter is the IPv6 address of the multicast group.
The `count` is optional, which allows a contiguous range of groups. Omitting the count `<num>` is equivalent to the count being 1.

If there are no `<stack-unit/slot/port>` numbers, the static groups apply to the entire VLAN.

Configuring static router ports

A device always forwards all multicast control and data packets to router ports that receive queries. Although router ports are learned, you can configure static router ports to force multicast traffic to specific ports, even though these ports never receive queries. To configure static router ports, enter commands such as the following.

```
FGS624 Switch(config)#vlan 70
FGS624 Switch(config-vlan-70)#mld-snooping router-port e 0/1/4 to 0/1/5 e 0/1/8
```

Syntax: `[no] mld-snooping router-port <stack-unit/slot/port>

Turning off static group proxy

A device with static groups configured acts as a proxy and sends membership reports for its static groups when it receives general or group-specific queries. When a static group configuration is removed, the group is deleted from active group table immediately. However, the device does not send leave messages to the querier. The querier should age the group out. The proxy activity can be turned off (the default is on). For example.

```
FGS624 Switch(config)#vlan 20
FGS624 Switch(config-vlan-20)#mld-snooping proxy-off
```

Syntax: `[no] mld-snooping proxy-off

Enabling MLDv2 membership tracking and fast leave for the VLAN

MLDv2 provides membership tracking and fast leave services to clients. In MLDv1, only one client per interface must respond to a router queries; leaving some clients invisible to the router, which makes it impossible for the device to track the membership of all clients in a group. In addition, when a client leaves the group, the device sends group-specific queries to the interface to see if other clients on that interface need the data stream of the client who is leaving. If no client responds, the device waits a few seconds before stopping the traffic. You can configure the wait time with the `ipv6 mld-snooping leave-wait-time` command.

MLDv2 requires that every client respond to queries, allowing the device is able to track every client. When the tracking feature is enabled, the device immediately stops forwarding traffic to the interface if an MLDv2 client sends a leave message, and there is no other client. This feature requires the entire VLAN to be configured for MLDv2 and have no MLDv1 clients. If a client does not send a report during the specified group membership time (the default is 140 seconds), that client is removed from the tracking list.
Configuring MLD snooping

Every group on a physical port keeps its own tracking record. However, it can track group membership only; it cannot track by (source, group). For example, Client A and Client B belong to group1 but each is receiving traffic from different sources. Client A receives a traffic stream from (source_1, group1) and Client B receives a traffic stream from (source_2, group1). The device waits for the configured leave-wait-time before it stops the traffic because the two clients are in the same group. If the clients are in different groups, the waiting period is ignored and traffic is stopped immediately.

To enable tracking and fast leave for VLAN 20, enter the following commands.

FGS624 Switch(config)#vlan 20
FGS624 Switch(config-vlan-20)#mld-snooping tracking

Syntax: [no] mld-snooping tracking

The membership tracking and fast leave features are supported for MLDv2 only. If a port or client is not configured for MLDv2, the mld-snooping tracking command is ignored.

Configuring fast leave for MLDv1

When a device receives an MLDv1 leave message, it sends out multiple group-specific queries. If no other client replies within the waiting period, the device stops forwarding traffic to this port. Configuring fast-leave-v1 allows the device to stop forwarding traffic to a port immediately upon receiving a leave message. The device does not send group-specific queries. It is important that no snooping ports have multiple clients. When two devices connect, the querier device should not be configured for fast-leave-v1 because the port to the non-querier device could have multiple clients. The number of queries and the waiting period (in seconds) can be configured using the ipv6 mld-snooping leave-wait-time command. The default is 2 seconds. To configure fast leave for MLDv1, use commands such as the following.

FGS624 Switch(config)#vlan 20
FGS624 Switch(config-vlan-20)#mld-snooping fast-leave-v1

Syntax: [no] mld-snooping fast-leave-v1

Enabling fast convergence

In addition to periodically sending general queries, an active (querier) device sends out general queries when it detects a new port. However, since it does not recognize the other device port-up event, the multicast traffic might still use the query-interval time to resume after a topology change. Configuring fast-convergence allows the device to listen to topology change events in L2 protocols, such as spanning tree, and send general queries to shorten the convergence time.

If the L2 protocol is unable to detect a topology change, the fast-convergence feature may not work. For example, if the direct connection between two devices switches from one interface to another, the rapid spanning tree protocol (802.1w) considers this an optimization action, rather than a topology change. In this case, other devices will not receive topology change notifications and will be unable to send queries to speed up the convergence. The original spanning tree protocol does not recognize optimization actions, and fast-convergence works in all cases.

To enable fast-convergence, enter commands such as the following.

FGS624 Switch(config)#vlan 70
FGS624 Switch(config-vlan-70)#mld-snooping fast-convergence

Syntax: mld-snooping fast-convergence
Displaying MLD snooping information

You can display the following MLD Snooping information:

- MLD Snooping error information
- Information about VLANs
- Group and forwarding information for VLANs
- MLD memory pool usage
- Status of MLD traffic
- MLD information by VLAN

Displaying MLD snooping error information

To display information about possible MLD errors, enter the following command.

```
FGS624 Switch#show ipv6 mld-snooping error
snoop SW processed pkt: 173, up-time 160 sec
```

Syntax: `show ipv6 mld-snooping error`

The following table describes the output from the `show ipv6 mld-snooping error` command.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW processed pkt</td>
<td>The number of IPv6 multicast packets processed by MLD snooping.</td>
</tr>
<tr>
<td>up-time</td>
<td>The time since the MLD snooping last occurred is enabled.</td>
</tr>
</tbody>
</table>

Displaying MLD group information

To display MLD group information, enter the following command.

```
FGS624 Switch#show ipv6 mld-snooping group
```

```
p: physical, ST: static, QR: querier, EX: exclude, IN: include, Y: yes, N: no
VL1 : 263 grp, 263 grp-port, tracking_enabled

<table>
<thead>
<tr>
<th>Group</th>
<th>p-port</th>
<th>ST</th>
<th>QR</th>
<th>Life</th>
<th>Mode</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/1/7</td>
<td>N</td>
<td>Y</td>
<td>120</td>
<td>EX</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0/1/9</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>IN</td>
<td>1</td>
</tr>
</tbody>
</table>
```

NOTE

In this example, an MLDv1 group is in EXCLUDE mode with a source of 0. The group excludes traffic from the 0 (zero) source list, which actually means that all traffic sources are included.

To display detailed MLD group information, enter the following command.

```
FGS624 Switch#show ipv6 mld-snooping group ff0e::ef00:a096 detail
```

```
Display group ff0e::ef00:a096 in all interfaces in details.
p: physical, ST: static, QR: querier, EX: exclude, IN: include, Y: yes, N: no
VL1 : 1 grp, 1 grp-port, tracking_enabled

<table>
<thead>
<tr>
<th>Group</th>
<th>p-port</th>
<th>ST</th>
<th>QR</th>
<th>Life</th>
<th>Mode</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/1/7</td>
<td>N</td>
<td>Y</td>
<td>100</td>
<td>EX</td>
<td>0</td>
</tr>
</tbody>
</table>

Group: ff0e::ef00:a096, EX, permit 0 (source, life):
  life=100, deny 0:
```
If tracking and fast leave are enabled, you can display the list of clients for a particular group by entering the following command.

FGS624 Switch#show ipv6 mld-snooping group ff0e::ef00:a096 tracking
Display group ff0e::ef00:a096 in all interfaces with tracking enabled.
p-:physical, ST:static, QR:querier, EX:exclude, IN:include, Y:yes, N:no
VL1 : 1 grp, 1 grp-port, tracking_enabled

<table>
<thead>
<tr>
<th>group</th>
<th>p-port ST QR life mode source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ff0e::ef00:a096</td>
<td>0/1/7 N Y 80 EX 0</td>
</tr>
</tbody>
</table>

receive reports from 1 clients: (age) (fe80::1011:1213:1415 60)

Syntax: show ipv6 mld-snooping group [<group-address>] [detail] [tracking]
To receive a report for a specific multicast group, enter that group address for <group-address>.
Enter detail to display the source list of a specific VLAN.
Enter tracking for information on interfaces that are tracking-enabled.
The following table describes the information displayed by the show ipv6 mld-snooping group command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>The address of the IPv6 group (destination IPv6 address).</td>
</tr>
<tr>
<td>p-port</td>
<td>The physical port on which the group membership was received.</td>
</tr>
<tr>
<td>ST</td>
<td>Yes indicates that the MLD group was configured as a static group; No means it was learned from reports.</td>
</tr>
<tr>
<td>QR</td>
<td>Yes means the port is a querier port; No means it is not. A port becomes a non-querier port when it receives a query from a source with a lower source IP address than the port.</td>
</tr>
<tr>
<td>life</td>
<td>The number of seconds the group can remain in EXCLUDE mode. An EXCLUDE mode changes to INCLUDE if it does not receive an IS_EX or TO_EX message during a specified period of time. The default is 140 seconds. There is no life displayed in INCLUDE mode.</td>
</tr>
<tr>
<td>mode</td>
<td>The current mode of the interface: INCLUDE or EXCLUDE. If the interface is in INCLUDE mode, it admits traffic only from the source list. If the interface is in EXCLUDE mode, it denies traffic from the source list and accepts the rest.</td>
</tr>
<tr>
<td>source</td>
<td>Identifies the source list that will be included or excluded on the interface. An MLDv1 group is in EXCLUDE mode with a source of 0. The group excludes traffic from 0 (zero) source list, which actually means that all traffic sources are included.</td>
</tr>
</tbody>
</table>

If you requested a detailed report, the following information is displayed:
• The multicast group address
• The mode of the group
• Sources from which traffic will be admitted (INCLUDE) or denied (EXCLUDE) on the interface.
• The life of each source list.

If you requested a tracking/fast leave report, the clients from which reports were received are identified.

Displaying MLD snooping mcache information
The MLD snooping mcache contains multicast forwarding information for VLANs. To display information in the multicast forwarding mcache, enter the following command.
Configuring MLD snooping

Syntax: show ipv6 mld-snooping mcache

The following table describes the output from the `ipv6 mld-snooping mcache` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(abcd:ef50 0:100):</td>
<td>The lowest 32 bits of source and group. It is displayed in XXXX:XXXX hex format. Here XXXX is a 16-bit hex number.</td>
</tr>
<tr>
<td>cnt</td>
<td>The number of packets processed in software. IPv6 packets are switched in software in the FGS 03.0.00 release causing this number to increase slowly.</td>
</tr>
<tr>
<td>OIF</td>
<td>Output interfaces. Entire vlan means that static groups apply to the entire VLAN.</td>
</tr>
<tr>
<td>age</td>
<td>The mcache age. The mcache is reset to 0 if traffic continues to arrive, otherwise it is aged out when it reaches the time defined by <code>ipv6 mld-snooping mcache-age</code>.</td>
</tr>
<tr>
<td>uptime</td>
<td>The up time of this mcache in minutes.</td>
</tr>
<tr>
<td>vidx</td>
<td>The vidx is shared among mcaches using the same output interfaces. The vidx specifies the output port list, which shows the index. Valid range is from 4096 to 8191.</td>
</tr>
<tr>
<td>ref-cnt</td>
<td>The number of mcaches using this vidx.</td>
</tr>
</tbody>
</table>

Displaying software resource usage for VLANs

To display information about the software resources used, enter the following command.

Syntax: show ipv6 mld-snooping resource

The following table describes the output from the `ipv6 mld-snooping resource` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>alloc</td>
<td>The allocated number of units.</td>
</tr>
<tr>
<td>in-use</td>
<td>The number of units which are currently used.</td>
</tr>
<tr>
<td>avail</td>
<td>The number of available units.</td>
</tr>
</tbody>
</table>
Configuring MLD snooping

Displaying status of MLD snooping traffic

To display status information for MLD snooping traffic, enter the following command.

```
FGS624 Switch# show ipv6 mld-snooping traffic
MLD snooping: Total Recv: 32208, Xmit: 166

Q: query, Qry: general Q, G-Qry: group Q, GSQry: group-source Q, Mbr: member
Recv  QryV1  QryV2  G-Qry  GSQry  MbrV1  MbrV2  Leave
VL1    0      0      0      0     31744   208    256
VL70   0      0      0      0      0      0      0
Send  QryV1  QryV2  G-Qry  GSQry  MbrV1  MbrV2
VL1    0      0      166    0     0      0      0
VL70   0      0      0      0      0      0      0
```

Syntax: `show ipv6 mld-snooping traffic`

The following table describes the information displayed by the `show ipv6 mld-snooping traffic` command.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Query</td>
</tr>
<tr>
<td>Qry</td>
<td>General Query</td>
</tr>
<tr>
<td>QryV1</td>
<td>Number of general MLDv1 queries received or sent.</td>
</tr>
<tr>
<td>QryV2</td>
<td>Number of general MLDv2 snooping queries received or sent.</td>
</tr>
<tr>
<td>G-Qry</td>
<td>Number of group specific queries received or sent.</td>
</tr>
<tr>
<td>GSQry</td>
<td>Number of group source specific queries received or sent.</td>
</tr>
<tr>
<td>MBR</td>
<td>The membership report.</td>
</tr>
<tr>
<td>MbrV1</td>
<td>The MLDv1 membership report.</td>
</tr>
<tr>
<td>MbrV2</td>
<td>The MLDv2 membership report.</td>
</tr>
<tr>
<td>IsIN</td>
<td>Number of source addresses that were included in the traffic.</td>
</tr>
</tbody>
</table>
Displaying MLD snooping information by VLAN

You can display MLD snooping information for all VLANs or for a specific VLAN. For example, to display MLD snooping information for VLAN 70, enter the following command.

```
FGS624 Switch#show ipv6 mld-snooping vlan 70
version=1, query-t=60, group-aging-t=140, max-resp-t=3, other-qr-present-t=123
VL70: cfg V2, vlan cfg passive, 2 grp, 0 (SG) cache, rtr ports,
    router ports: 0/1/36(120) fe80::2e0:52ff:fe00:9900,
0/1/26 has 2 grp, non-QR (passive), cfg V1
0/1/26 has 2 grp, non-QR (passive), cfg V1
group: ff10:1234::5679, life = 100
group: ff10:1234::5678, life = 100
0/1/35 has 0 grp, non-QR (QR=fe80::2e0:52ff:fe00:9900, age=20), dft V2 trunk
```

Syntax: `show ipv6 mld-snooping vlan [vlan-id]`

If you do not specify a vlan-id, information for all VLANs is displayed.

The following table describes information displayed by the `show ipv6 mld-snooping vlan` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>The MLD version number.</td>
</tr>
<tr>
<td>query-t</td>
<td>How often a querier sends a general query on the interface.</td>
</tr>
<tr>
<td>group-aging-t</td>
<td>Number of seconds membership groups can be members of this group before aging out.</td>
</tr>
<tr>
<td>rtr-port</td>
<td>The router ports which are the ports receiving queries. The display <code>router ports</code>: 0/1/36(120) fe80::2e0:52ff:fe00:9900 means port 0/1/36 has a querier with fe80::2e0:52ff:fe00:9900 as the link-local address, and the remaining life is 120 seconds.</td>
</tr>
<tr>
<td>max-resp-t</td>
<td>The maximum number of seconds a client can wait before it replies to the query.</td>
</tr>
<tr>
<td>non-QR</td>
<td>Indicates that the port is a non-querier.</td>
</tr>
<tr>
<td>QR</td>
<td>Indicates that the port is a querier.</td>
</tr>
</tbody>
</table>

Clear MLD snooping commands

The clear commands for MLD snooping should only be used in troubleshooting situations or when recovering from error conditions.
Clear MLD counters on VLANs

To clear MLD Snooping error and traffic counters on all VLANs, enter a command similar to the following.

FGS624 Switch#clear ipv6 mld-snooping counters

Syntax: clear ipv6 mld-snooping counters

Clear MLD mcache

To clear the mcache on all VLANs, enter the following command.

FGS624 Switch#clear ipv6 mld-snooping mcache

Syntax: clear ipv6 mld-snooping mcache

Clear mcache on a specific VLAN

To clear the mcache on a specific VLAN, enter the following command.

FGS624 Switch#clear ipv6 mld-snooping vlan <vlan-id> mcache

Syntax: clear ipv6 mld-snooping vlan <vlan-id> mcache

The <vlan-id> parameter specifies the specific VLAN from which to clear the cache.

Clear Traffic on a specific VLAN

To clear the traffic counters on a specific VLAN, enter the following command.

FGS624 Switch#clear ipv6 mld-snooping vlan <vlan-id> traffic

Syntax: clear ipv6 mld-snooping vlan <vlan-id> traffic

The <vlan-id> parameter specifies the specific VLAN from which to clear the traffic counters.
Configuring MLD snooping
Chapter 32

Configuring Multicast Listening Discovery (MLD) Snooping on the FastIron X Series

Overview

The default method a FastIron uses to process an IPv6 multicast packet is to broadcast it to all ports except the incoming port of a VLAN. Packets are flooded by hardware without going to the CPU, which may result in some clients receiving unwanted traffic.

If a VLAN is not MLD snooping-enabled, it floods IPv6 multicast data and control packets to the entire VLAN in hardware. When snooping is enabled, MLD packets are trapped to the CPU. Data packets are mirrored to the CPU and flooded to the entire VLAN. The CPU then installs hardware resources so subsequent data packets can be hardware-switched to desired ports without going through the CPU. If there is no client report, the hardware resource drops the data stream.

MLD protocols provide a way for clients and a device to exchange messages, and allow the device to build a database indicating which port wants what traffic. Since the MLD protocols do not specify forwarding methods, MLD snooping or multicast protocols such as IPv6 PIM-Sparse Mode (PIM SM) are required to handle packet forwarding. PIM SM can route multicast packets within and outside a VLAN, while MLD snooping can switch packets only within a VLAN. FESX and FSX devices do not support PIM-SM routing.

MLD snooping provides multicast containment by forwarding traffic only to those clients that have MLD receivers for a specific multicast group (destination address). The FastIron maintains the MLD group membership information by processing MLD reports and generating messages so traffic can be forwarded to ports receiving MLD reports. This is analogous to IGMP Snooping on Brocade Layer 3 switches.

An IPv6 multicast address is a destination address in the range of FF00::/8. A limited number of multicast addresses are reserved. Since packets destined for the reserved addresses may require VLAN flooding, FESX and FSX devices do not snoop in the FFOX::00X range (where X is from 00 to FF). Data packets destined to these addresses are flooded to the entire VLAN by hardware and mirrored to the CPU. Multicast data packets destined to addresses outside the FFOX::00X range are snooped. A client must send MLD reports in order to receive traffic.

An MLD device periodically broadcasts general queries and sends group queries upon receiving a leave message, to ensure no other clients at the same port still want this specific traffic before removing it. MLDv1 allows clients to specify which group (destination IPv6 address) will receive traffic. (MLDv1 cannot choose the source of the traffic.) MLDv2 deals with source-specific multicasts, adding the capability for clients to INCLUDE or EXCLUDE specific traffic sources. An MLDv2 device's port state can either be in INCLUDE or EXCLUDE mode.

There are different types of group records for client reports. Clients respond to general queries by sending a membership report containing one or more of the following records associated with a specific group:

- **Current-state record** - Indicates the sources from which the client wants to receive or not receive traffic. This record contains the source addresses of the clients and indicates whether or not traffic will be included (IS_IN) or excluded (IS_EX) from that source address.
• Filter-mode-change record - If the client changes its current state from IS_IN to IS_EX, a TO_EX record is included in the membership report. Likewise, if a client current state changes from IS_EX to IS_IN, a TO_IN record appears in the membership report.

• MLDe1 leave report - Equivalent to a TO_IN (empty) record in MLDe2. This record means that no traffic from this group will be received, regardless of the source.

• An MLDe1 group report - Equivalent to an IS_EX (empty) record in MLDe2. This record means that all traffic from this group will be received, regardless of the source.

• Source-list-change record - If the client wants to add or remove traffic sources from its membership report, the report can include an ALLOW record, which contains a list of new sources from which the client wishes to receive traffic. The report can also contain a BLOCK record, which lists current traffic sources from which the client wants to stop receiving traffic.

Platform Support:
• FESX and FSX IPv6 devices running software release 04.1.00 and later - L2, BL3, L3

How MLD snooping uses MAC addresses to forward multicast packets

MLD snooping on Brocade devices is based on MAC address entries. When an IPv6 multicast data packet is received, the packet destination MAC is matched with the MAC address entries in the IPv6 multicast table. If a match is found, packets are sent to the ports associated with the MAC address. If a match is not found, packets are flooded to the VLAN and copied to the CPU.

For IPv6 multicast, the destination MAC address is in the format 0x33-33-xx-yy-zz-kk, where xx-yy-zz-kk are the 32 lowest bits of the IPv6 multicast group address. For example, the IPv6 group address 0xFF3E:40:2001:660:3007:123:1234:5678 maps to the IPv6 MAC address 0x33-33-00-00-00-12.

For two multicast traffic streams, Source_1 and Group1 (S1,G1) and Source_2 and Group2 (S2,G2), with the same or different source addresses, if the lowest 32 bits of the 128-bit IPv6 group address are the same, they would map to the same destination MAC. Because the FESX and FSX support MAC-based forwarding for MLD snooping, the final multicast MAC address entry would be a superset of all the IPv6 groups mapped to it. For example, consider the following three IPv6 multicast streams sent from port 5 of a Brocade device:

• (S1,G1) = (2060::5, ff1e::12), client port 1, port 2
• (S2,G2) = (2060::6, ff1e::12), client port 2, port 3
• (S3,G1) = (2060::7, ff1e::12), client port 4

Because the lowest 32 bits of the group address for G1 and G2 are the same, all three streams would use 0x33-33-00-00-00-12 as the destination MAC address. MLD snooping would build a MAC entry with the MAC address 0x33-33-00-00-00-12 on egress ports 1, 2, 3, and 4. As a result, all three streams would be sent to ports 1, 2, 3, and 4. Note that the above example assumes the following:

• The Brocade device is running MLD snooping on VLAN 10 and all three streams are in VLAN 10
• There are clients on port 1 and port 2 for (S1,G1)
• There are clients on port 2 and port 3 for (S2,G2)
• There are clients on port 4 for (S3,G1)
Configuration notes and feature limitations

- Servers (traffic sources) are not required to send MLD memberships.
- The default MLD version is V1, where the source address is not sensitive. In the example given in the preceding section (“How MLD snooping uses MAC addresses to forward multicast packets” on page 1126), (S1,G1) and (S3,G1) would be considered the same group as (*,G1).
- If MLDv2 is configured on any port of a VLAN, you can check the source information, but because MLD snooping is MAC based, (S,G) switching is not feasible.
- Hardware resources are installed only when there is data traffic.
- Up to 4K collective entries for IGMP Snooping, MLD snooping, and Multi-port Static MAC Addresses are supported.
- You can configure the maximum number of groups and the multicast cache (mcache) number.
- The device supports static groups applying to specific ports. The device acts as a proxy to send MLD reports for the static groups when receiving queries.
- A user can configure static router ports, forcing all multicast traffic to be sent to these ports.
- Brocade devices support fast leave for MLDv1, which stops traffic immediately to any port that has received a leave message.
- Brocade devices support tracking and fast leave for MLDv2, which tracks all MLDv2 clients. If the only client on a port leaves, traffic is stopped immediately.
- An MLD device can be configured as a querier (active) or non-querier (passive). Queriers send queries. Non-queriers listen for queries and forward them to the entire VLAN.
- Every VLAN can be independently configured as a querier or a non-querier.
- A VLAN that has a connection to an IPv6 PIM-enabled port on another router should be configured as a non-querier. When multiple snooping devices connect together and there is no connection to IPv6 PIM ports, only one device should be configured as the querier. If multiple devices are configured as active, only one will continue to send queries after the devices have exchanged queries. Refer to “Queriers and non-queriers” on page 1128.
- An MLD device can be configured to rate-limit the forwarding of MLDv1 membership reports to queriers.
- Because an IPv6 link-local address as the source address when sending queries, a global address is not required.
- The MLD implementation allows snooping on some VLANs or on all VLANs. MLD can be enabled or disabled independently for each VLAN. In addition, individual ports of a VLAN can be configured as MLDv1 and MLDv2. In general, global configuration commands such as `<ipv6 mld-snooping>` apply to all VLANs except those with a local `<mld-snooping>` configuration, which supersedes the global configuration. Configuring the version on a port or a VLAN only affects the device sent query version. The device always processes all versions of client reports regardless of the version configured.
- MLD snooping requires hardware resources. If the device has insufficient resources, the data stream without a resource is mirrored to the CPU in addition to being VLAN flooded, which can cause high CPU usage. To avoid this situation, Brocade recommends that you avoid enabling snooping globally unless necessary.
- To receive data traffic, MLD snooping requires clients to send membership reports. If a client does not send reports, you must configure a static group to force traffic to client ports.
Multicast Router Discovery (MRD) messages are useful for determining which nodes attached to a switch have multicast routing enabled. This capability is useful in a Layer 2 bridge domain with snooping switches. By utilizing MRD messages, Layer 2 switches can determine where to send multicast source data and group membership messages. Multicast source data and group membership reports must be received by all multicast routers on a segment. Using the group membership protocol Query messages to discover multicast routers is insufficient due to query suppression.

Since Brocade does not support MRD, this can lead to stream loss when non-Querier router ports age out on the Querier after the initial Query election. To avoid such stream loss, configure a static router port on the querier on each interface that connects to a non-querier snooping device.

Queriers and non-queriers

An MLD snooping-enabled device can be configured as a querier (active) or non-querier (passive). An MLD querier sends queries; a non-querier listens for MLD queries and forwards them to the entire VLAN. When multiple MLD snooping devices are connected together, and there is no connection to an IPv6 PIM-enabled port, one of the devices should be configured as a querier. If multiple devices are configured as queriers, after multiple devices exchange queries, then all devices except the winner (the device with the lowest address) stop sending queries. Although the system works when multiple devices are configured as queriers, Brocade recommends that only one device, preferably the one with the traffic source, is configured as the querier.

VLANs can also be independently configured as queriers or non-queriers. If a VLAN has a connection to an IPv6 PIM-enabled port on another router, the VLAN should be configured as a non-querier.

Because non-queriers always forward multicast data traffic and MLD messages to router ports which receive MLD queries or IPv6 PIM hellos, Brocade recommends that you configure the devices with the data traffic source (server) as queriers. If a server is attached to a non-querier, the non-querier always forwards traffic to the querier regardless of whether or not there are clients on the querier.

NOTE

In a topology with one or more connected devices, at least one device must be running PIM, or configured as active. Otherwise, no devices can send queries, and traffic cannot be forwarded to clients.

To configure the MLD mode (querier or non-querier) on an MLD snooping-enabled device, refer to “Configuring the global MLD mode” on page 1130. To configure the MLD mode on a VLAN, refer to “Configuring the MLD mode for a VLAN” on page 1133.

VLAN specific configuration

You can configure MLD snooping on some VLANs or all VLANs. Each VLAN can be independently enabled or disabled for MLD snooping, or can be configured with MLDv1 or MLDv2. In general, the `ipv6 mld-snooping` commands apply globally to all VLANs except those configured with VLAN-specific `mld-snooping` commands. VLAN-specific `mld-snooping` commands supersede global `ipv6 mld-snooping` commands.
Using MLDv1 with MLDv2

MLD snooping can be configured as MLDv1 or MLDv2 on individual ports on a VLAN. An interface or router sends queries and reports that include the MLD version with which it has been configured. The version configuration applies only to the sending of queries. The snooping device recognizes and processes MLDv1 and MLDv2 packets regardless of the version configured.

NOTE
To avoid version deadlock, when an interface receives a report with a lower version than that for which it has been configured, the interface does **not** automatically downgrade the running MLD version.

Configuring MLD snooping

Configuring MLD snooping on an IPv6 device consists of the following global and VLAN-specific tasks.

Global tasks:
- Configuring hardware and software resource limits
- Disabling transmission and receipt of MLD packets on a port
- Configuring the MLD mode: active or passive (must be enabled for MLD snooping)
- Modifying the age interval
- Modifying the interval for query messages (active MLD mode only)
- Specifying the global MLD version
- Enabling and disabling report control (rate limiting)
- Modifying the leave wait time
- Modifying the mcache age interval
- Disabling error and warning messages

VLAN-specific tasks:
- Configuring the MLD mode for the VLAN: active or passive
- Enabling or disabling MLD snooping for the VLAN
- Configuring the MLD version for the VLAN
- Configuring the MLD version for individual ports
- Configuring static groups to the entire VLAN or some ports
- Configuring static router ports
- Disabling proxy activity for a static group
- Enabling client tracking and the fast leave feature for MLDv2
- Configuring fast leave for MLDv1
- Configuring fast-convergence
Configuring the hardware and software resource limits

The system supports up to 8K of hardware-switched multicast streams. The default is 512. To define the maximum number of MLD snooping mcache entries, enter a command such as the following.

```
FastIron(config)#system-max mld-snoop-mcache 8000
```

Syntax:
```
[no] system-max mld-snoop-mcache <num>
```

<num> is a value from 256 – 8192. The default is 512.

The system supports up to 32K of multicast groups. The default is 8192. The configured number is the upper limit of an expandable database. Client memberships exceeding the group limits are not processed. To define the maximum number of multicast group addresses supported, enter a command such as the following.

```
FastIron(config)#system-max mld-max-group-addr 4000
```

Syntax:
```
[no] system-max mld-snoop-mcache <num>
```

<num> is a value from 256 – 32768. The default is 8192.

Disabling transmission and receipt of MLD packets on a port

When a VLAN is snooping-enabled, all MLD packets are trapped to the CPU without hardware VLAN flooding. The CPU can block MLD packets to and from a multicast-disabled port, and will not add that port to the output interfaces of hardware resources, which prevents the disabled port from receiving multicast traffic. However, if static groups to the entire VLAN are defined, the traffic for these groups is flooded to the entire VLAN, including to the disabled ports. Since the hardware cannot block traffic from disabled ports, hardware traffic is switched in the same way as traffic from enabled ports.

NOTE

This command has no effect on a VLAN that is not snooping-enabled because all multicast traffic is VLAN flooded.

```
FastIron(config)#interface ethernet 1/3
FastIron(config-if-e1000-1/3)#ipv6-multicast-disable
```

Syntax:
```
[no] ipv6-multicast-disable
```

Configuring the global MLD mode

You can configure a Brocade device for either active or passive (default) MLD mode. If you specify an MLD mode for a VLAN, the MLD mode overrides the global setting.

- **Active** – In active MLD mode, a device actively sends out MLD queries to identify IPv6 multicast groups on the network, and makes entries in the MLD table based on the group membership reports it receives from the network.
- **Passive** – In passive MLD mode, the device forwards reports to the router ports which receive queries. MLD snooping in passive mode does not send queries, but does forward queries to the entire VLAN.

To globally set the MLD mode to active, enter the following command.
Configuring MLD snooping

FastIron(config)#ipv6 mld-snooping active

Syntax: [no] ipv6 mld-snooping [active | passive]

Omitting both the active and passive keywords is the same as entering ipv6 mld-snooping passive.

Modifying the age interval

When the device receives a group membership report, it makes an entry in the MLD group table for the group in the report. The age interval specifies how long the entry can remain in the table without the device receiving another group membership report. When multiple devices connect together, all devices should be configured with the same age interval. The age interval should be at least twice that of the query interval, so that missing one report will not stop traffic. For a non-querier, the query interval should equal that of the querier.

To modify the age interval, enter a command such as the following.

FastIron(config)#ipv6 mld-snooping age-interval 280

Syntax: [no] ipv6 mld-snooping age-interval <interval>

The <interval> parameter specifies the aging time. You can specify a value from 20 – 7200 seconds. The default is 140 seconds.

Modifying the query interval (active MLD snooping mode only)

If the MLD mode is set to active, you can modify the query interval, which specifies how often the Brocade device sends group membership queries. By default, queries are sent every 60 seconds. When multiple queriers connect together, all queriers should be configured with the same interval.

To modify the query interval, enter a command such as the following.

FastIron(config)#ipv6 mld-snooping query-interval 120

Syntax: [no] ipv6 mld-snooping query-interval <interval>

The <interval> parameter specifies the interval between queries. You can specify a value from 10 – 3600 seconds. The default is 60 seconds.

Configuring the global MLD version

The default version is MLDv1. You can specify the global MLD version on the device as either MLDv1 or MLDv2. For example, the following command configures the device to use MLDv2.

FastIron(config)#ipv6 mld-snooping version 2

Syntax: [no] ipv6 mld-snooping version 1 | 2

You can also specify the MLD version for individual VLANs, or individual ports within VLANs. If no MLD version is specified for a VLAN, then the globally configured MLD version is used. If an MLD version is specified for individual ports in a VLAN, those ports use that version instead of the version specified for the VLAN or the globally specified version. The default is MLDv1.
Configuring report control

When a device is in passive mode, it forwards reports and leave messages from clients to the upstream router ports that are receiving queries.

You can configure report control to rate-limit report forwarding for the same group to no more than once per 10 seconds. This rate limiting does not apply to the first report answering a group-specific query.

NOTE
This feature applies to MLDv1 only. The leave messages are not rate limited.

MLDv1 membership reports for the same group from different clients are considered to be the same, and are rate-limited. This alleviates the report storm caused by multiple clients answering the upstream router query.

To enable report-control, enter the following command.

```plaintext
FastIron(config)#ipv6 mld-snooping report-control
```

Syntax: `[no] ipv6 mld-snooping report-control`

Modifying the wait time before stopping traffic when receiving a leave message

You can define the wait time before stopping traffic to a port when the device receives a leave message for that port. The device sends group-specific queries once per second to determine if any client on the same port still needs the group.

```plaintext
FastIron(config)#ipv6 mld-snooping leave-wait-time 1
```

Syntax: `[no] ipv6 mld-snooping leave-wait-time <num>`

where `<num>` is a value from 1 to 5. The default is 2. Because of the internal timer accuracy, the actual wait time is between `n` and `(n+1)` seconds, where `n` is the configured value.

Modifying the multicast cache (mcache) aging time

You can set the time for an mcache to age out when it does not receive traffic. Two seconds before an mcache is aged out, the device mirrors a packet of the mcache to the CPU to reset the age. If no data traffic arrives within two seconds, the mcache is deleted. Note that in FESX and FSX devices, more than one mcache can be mapped to the same destination MAC. Hence, when an mcache entry is deleted, the MAC entry may not be deleted. If you configure a lower value, the resource consumed by idle streams is quickly removed, but packets are mirrored to the CPU more frequently. Configure a higher value only when data streams are arriving consistently.

You can use the `show ipv6 mld-snooping mcache` command to view the currently configured mcache age. Refer to "Displaying MLD snooping mcache information" on page 1138.

To modify the multicast cache age out time, enter a command such as the following.

```plaintext
FastIron(config)#ipv6 mld-snooping mcache-age 180
```

Syntax: `[no] ipv6 mld-snooping mcache-age <num>`

where `<num>` is a value from 60 to 3600 seconds, and the default is 60 seconds.
Disabling error and warning messages

Error or warning messages are printed when the device runs out of software resources or when it receives packets with the wrong checksum or groups. These messages are rate limited. You can turn off these messages by entering a command such as the following.

```
FastIron(config)#ipv6 mld-snooping verbose-off
```

Syntax: [no] ipv6 mld-snooping verbose-off

Configuring the MLD mode for a VLAN

You can configure a VLAN for either the active or passive (default) MLD mode. The VLAN setting overrides the global setting:

- Active – In active MLD mode, the device actively sends out MLD queries to identify IPv6 multicast groups on the network, and makes entries in the MLD table based on the group membership reports it receives from the network.
- Passive – In passive MLD mode, the device forwards reports to router ports that receive queries. MLD snooping in the passive mode does not send queries. However, it does forward queries to the entire VLAN.

To set the MLD mode for VLAN 20 to active, enter the following commands.

```
FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping active
```

Syntax: [no] mld-snooping active | passive

The default mode is passive.

Disabling MLD snooping for the VLAN

When MLD snooping is enabled globally, you can disable it for a specific VLAN. For example, the following commands disable MLD snooping for VLAN 20. This setting overrides the global setting for VLAN 20.

```
FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping disable-mld-snoop
```

Syntax: [no] mld-snooping disable-mld-snoop

Configuring the MLD version for the VLAN

You can specify the MLD version for a VLAN. For example, the following commands configure VLAN 20 to use MLDv2.

```
FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping version 2
```

Syntax: [no] mld-snooping version 1 | 2

When no MLD version is specified, the globally-configured MLD version is used. If an MLD version is specified for individual ports, these ports use that version, instead of the version specified for the VLAN.
Configuring the MLD version for individual ports

You can specify the MLD version for individual ports in a VLAN. For example, the following commands configure ports 1/4, 1/5, 1/6 and 2/1 to use MLDv2. The other ports use the MLD version specified with the `mld-snooping version` command, or the globally configured MLD version.

```
FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping port-version 2 ethe 2/1 ethe 1/4 to 1/6
```

Syntax: `[no] mld-snooping port-version 1 | 2 ethernet <port-numbers>`

Configuring static groups to the entire VLAN or to individual ports

NOTE
On FastIron X Series devices, you can configure MLD snooping static groups for individual ports in a VLAN, but not for the entire VLAN.

A snooping-enabled VLAN cannot forward multicast traffic to ports that do not receive MLD membership reports. To allow clients to send reports, you can configure a static group which applies to the entire VLAN, or to individual ports on the VLAN. The maximum number of supported static groups in a VLAN is 512, and the maximum number of supported static groups for individual ports in a VLAN is 256. The static group forwards packets to the static group ports even if they have no client membership reports. The static group for the entire VLAN is used in VLAN flooding because it uses fewer hardware resources than the static group for individual ports. Configure a static group for specific ports on VLAN 20 using commands similar to the following.

```
FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping static-group ff05::100 count 2 ethe 1/3 ethe 1/5 to 1/7
FastIron(config-vlan-20)#mld-snooping static-group ff10::200
```

Syntax: `[no] mld-snooping static-group <ipv6-address> [count <num>] [<port-numbers>]`

The `ipv6-address` parameter is the IPv6 address of the multicast group.

The `count` is optional, which allows a contiguous range of groups. Omitting the count `<num>` is equivalent to the count being 1.

Except on FastIron X Series devices, if there are no port-numbers, the static groups apply to the entire VLAN.

Configuring static router ports

All multicast control and data packets are forwarded to router ports that receive queries. Although router ports are learned, you can configure static router ports to force multicast traffic to specific ports, even though these ports never receive queries. To configure static router ports, enter commands such as the following.

```
FastIron(config)#vlan 70
FastIron(config-vlan-70)#mld-snooping router-port e 1/4 to 1/5 e 1/8
```

Syntax: `[no] mld-snooping router-port ethernet <port-numbers>`
Disabling static group proxy

A device with statically configured groups acts as a proxy and sends membership reports for its static groups when it receives general or group-specific queries. When a static group configuration is removed, the group is immediately deleted from the active group table. However, the device does not send leave messages to the querier. The querier should age out the group. The proxy activity can be disabled (the default is enabled).

Example

FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping proxy-off

Syntax: [no] mld-snooping proxy-off

By default, MLD snooping proxy is enabled.

Enabling MLDv2 membership tracking and fast leave for the VLAN

MLDv2 provides membership tracking and fast leave services to clients. In MLDv1, only one client per interface must respond to a router queries; leaving some clients invisible to the router, which makes it impossible for the device to track the membership of all clients in a group. In addition, when a client leaves the group, the device sends group-specific queries to the interface to see if other clients on that interface need the data stream of the client who is leaving. If no client responds, the device waits a few seconds before stopping the traffic. You can configure the wait time with the ipv6 mld-snooping leave-wait-time command. Refer to “Modifying the wait time before stopping traffic when receiving a leave message” on page 1132.

MLDv2 requires that every client respond to queries, allowing the device to track every client. When the tracking feature is enabled, the device immediately stops forwarding traffic to the interface if an MLDv2 client sends a leave message, and there is no other client. This feature requires the entire VLAN to be configured for MLDv2 and have no MLDv1 clients. If a client does not send a report during the specified group membership time (the default is 140 seconds), that client is removed from the tracking list.

Every group on a physical port keeps its own tracking record. However, it can track group membership only; it cannot track by (source, group). For example, Client A and Client B belong to group1 but each is receiving traffic from different sources. Client A receives a traffic stream from (source_1, group1) and Client B receives a traffic stream from (source_2, group1). The device waits for the configured leave-wait-time before it stops the traffic because the two clients are in the same group. If the clients are in different groups, the waiting period is ignored and traffic is stopped immediately.

To enable tracking and fast leave for VLAN 20, enter the following commands.

FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping tracking

Syntax: [no] mld-snooping tracking

The membership tracking and fast leave features are supported for MLDv2 only. If a port or client is not configured for MLDv2, the mld-snooping tracking command is ignored.
Configuring fast leave for MLDv1

When a FESX or FSX device receives an MLDv1 leave message, it sends out multiple group-specific queries. If no other client replies within the waiting period, the device stops forwarding traffic to this port. Configuring fast-leave-v1 allows the device to stop forwarding traffic to a port immediately upon receiving a leave message. The device does not send group-specific queries. It is important that no snooping ports have multiple clients. When two devices connect, the querier device should not be configured for fast-leave-v1 because the port to the non-querier device could have multiple clients. The number of queries and the waiting period (in seconds) can be configured using the `ipv6 mld-snooping leave-wait-time` command. Refer to “Modifying the wait time before stopping traffic when receiving a leave message” on page 1132.

To configure fast leave for MLDv1, use commands such as the following.

```
FastIron(config)#vlan 20
FastIron(config-vlan-20)#mld-snooping fast-leave-v1
```

Syntax: `[no] mld-snooping fast-leave-v1`

Enabling fast convergence

In addition to periodically sending general queries, an active (querier) FESX or FSX device sends out general queries when it detects a new port. However, since it does not recognize the other device port-up event, the multicast traffic might still use the query-interval time to resume after a topology change. Configuring fast-convergence allows the device to listen to topology change events in Layer 2 (L2) protocols, such as spanning tree, and send general queries to shorten the convergence time.

If the L2 protocol is unable to detect a topology change, the fast-convergence feature may not work. For example, if the direct connection between two devices switches from one interface to another, the rapid spanning tree protocol (802.1w) considers this an optimization action, rather than a topology change. In this case, other devices will not receive topology change notifications and will be unable to send queries to speed up the convergence. The original spanning tree protocol does not recognize optimization actions, and fast-convergence works in all cases.

To enable fast-convergence, enter commands such as the following.

```
FastIron(config)#vlan 70
FastIron(config-vlan-70)#mld-snooping fast-convergence
```

Syntax: `[no] mld-snooping fast-convergence`

Displaying MLD snooping information

You can display the following MLD snooping information:

- MLD snooping error information
- Group and forwarding information for VLANs
- Information about MLD snooping mcache
- MLD memory pool usage
- Status of MLD traffic
- MLD information by VLAN
Displaying MLD snooping error information

To display information about possible MLD errors, enter the following command.

```
FastIron#show ipv6 mld-snooping error
snoop SW processed pkt: 173, up-time 160 sec
```

Syntax: `show ipv6 mld-snooping error`

The following table describes the output from the `show ipv6 mld-snooping error` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW processed pkt</td>
<td>The number of IPv6 multicast packets processed by MLD snooping.</td>
</tr>
<tr>
<td>up-time</td>
<td>The MLD snooping up time.</td>
</tr>
</tbody>
</table>

Displaying MLD group information

To display MLD group information, enter the following command.

```
FastIron#show ipv6 mld-snooping group
p-:physical, ST:static, QR:querier, EX:exclude, IN:include, Y:yes, N:no
VL1: 263 grp, 263 grp-port, tracking_enabled
```

```
group                                      p-port  ST  QR  life  mode source
1   ff0e::ef00:a0e3                         1/7    N  Y  120  EX   0
2   ff01::1::f123::f567                    1/9    N  Y      IN   1
```

NOTE

In this example, an MLDv1 group is in EXCLUDE mode with a source of 0. The group excludes traffic from the 0 (zero) source list, which actually means that all traffic sources are included.

To display detailed MLD group information, enter the following command.

```
FastIron#show ipv6 mld-snooping group ff0e::ef00:a096 detail
Display group ff0e::ef00:a096 in all interfaces in details.
p-:physical, ST:static, QR:querier, EX:exclude, IN:include, Y:yes, N:no
VL1: 1 grp, 1 grp-port, tracking_enabled
```

```
group                                      p-port  ST  QR  life  mode source
1   ff0e::ef00:a096                         1/7    N  Y  100  EX   0
```

```
group: ff0e::ef00:a096, EX, permit 0 (source, life):
    life=100, deny 0:
```

If tracking and fast leave are enabled, you can display the list of clients for a particular group by entering the following command.

```
FastIron#show ipv6 mld-snooping group ff0e::ef00:a096 tracking
Display group ff0e::ef00:a096 in all interfaces with tracking enabled.
p-:physical, ST:static, QR:querier, EX:exclude, IN:include, Y:yes, N:no
VL1: 1 grp, 1 grp-port, tracking_enabled
```

```
group                                      p-port  ST  QR  life  mode source
1   ff0e::ef00:a096                         1/7    N  Y  80   EX   0
```

```
receive reports from 1 clients: (age)
   (fe80::1011:1213:1415 60)
```

Syntax: `show ipv6 mld-snooping group [group-address] [detail] [tracking]`
To receive a report for a specific multicast group, enter that group address for `<group-address>`.

Enter **detail** to display the source list of a specific VLAN.

Enter **tracking** for information on interfaces that are tracking-enabled.

The following table describes the information displayed by the `show ipv6 mld-snooping group` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>The address of the IPv6 group (destination IPv6 address).</td>
</tr>
<tr>
<td>p-port</td>
<td>The physical port on which the group membership was received.</td>
</tr>
<tr>
<td>ST</td>
<td>Yes indicates that the MLD group was configured as a static group; No means it was learned from reports.</td>
</tr>
<tr>
<td>QR</td>
<td>Yes means the port is a querier port; No means it is not. A port becomes a non-querier port when it receives a query from a source with a lower source IP address than the port.</td>
</tr>
<tr>
<td>life</td>
<td>The number of seconds the group can remain in EXCLUDE mode. An EXCLUDE mode changes to INCLUDE if it does not receive an IS_EX or TO_EX message during a specified period of time. The default is 140 seconds. There is no life displayed in INCLUDE mode.</td>
</tr>
<tr>
<td>mode</td>
<td>The current mode of the interface: INCLUDE or EXCLUDE. If the interface is in INCLUDE mode, it admits traffic only from the source list. If the interface is in EXCLUDE mode, it denies traffic from the source list and accepts the rest.</td>
</tr>
<tr>
<td>source</td>
<td>Identifies the source list that will be included or excluded on the interface. An MLDv1 group is in EXCLUDE mode with a source of 0. The group excludes traffic from 0 (zero) source list, which actually means that all traffic sources are included.</td>
</tr>
</tbody>
</table>
| group | If you requested a **detailed** report, the following information is displayed:
 • The multicast group address
 • The mode of the group
 • Sources from which traffic will be admitted (INCLUDE) or denied (EXCLUDE) on the interface.
 • The life of each source list.
 If you requested a **tracking/fast leave** report, the clients from which reports were received are identified. |

Displaying MLD snooping mcache information

The MLD snooping mcache contains multicast forwarding information for VLANs. To display information in the multicast forwarding mcache, enter the following command.

```
FastIron#show ipv6 mld-snooping mcache
Example: (S G) cnt=: (S G) are the lowest 32 bits, cnt: SW proc. count 
  OIF: 1/22 TR(1/32,1/33), TR is trunk, 1/32 primary, 1/33 output 
  vlan 1, has 2 cache 
  1 (abcd:ef50 0:100), cnt=121 
    OIF: 1/11 1/9 
    age=0s up-time=120s vidx=4130 (ref-cnt=1) 
  2 (abcd:ef50 0:101), cnt=0 
    OIF: entire vlan 
    age=0s up-time=0s vidx=8191 (ref-cnt=1) 
  vlan 70, has 0 cache
```

Syntax: show ipv6 mld-snooping mcache

The following table describes the output from the `ipv6 mld-snooping mcache` command.
Configuring MLD snooping

Displaying software resource usage for VLANs

To display information about the software resources used, enter the following command.

```
FastIron#show ipv6 mld-snooping resource
```

```
alloc in-use avail get-fail limit get-mem size init
mld group 512 9 503 0 32000 272 28 256
mld phy port 1024 16 1008 0 200000 279 21 1024
snoop group hash 512 9 503 0 59392 272 20 256
... Entries deleted
total pool memory 194432 bytes
has total 1 forwarding hash
Available vidx: 4061
```

Syntax: `show ipv6 mld-snooping resource`

The following table describes the output from the `show ipv6 mld-snooping resource` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>alloc</td>
<td>The allocated number of units.</td>
</tr>
<tr>
<td>in-use</td>
<td>The number of units which are currently used.</td>
</tr>
<tr>
<td>avail</td>
<td>The number of available units.</td>
</tr>
<tr>
<td>get-fail</td>
<td>The number of resource failures.</td>
</tr>
<tr>
<td>limit</td>
<td>The upper limit of this expandable field. The MLD group limit is configured using the <code>system-max mld-max-group-addr</code> command. The snoop mcache entry limit is configured using the <code>system-max mld-snoop-mcache</code> command.</td>
</tr>
<tr>
<td>get-mem</td>
<td>The current memory allocation. This number should continue to increase.</td>
</tr>
<tr>
<td>size</td>
<td>The size of a unit (in bytes).</td>
</tr>
<tr>
<td>init</td>
<td>The initial allocated amount of memory.</td>
</tr>
<tr>
<td>Available vidx</td>
<td>The output interface (OIF) port mask used by mcache. The entire device has a maximum of 4096 vidx. Different mcaches with the same OIF share the same vidx. If vidx is not available, the stream cannot be hardware-switched.</td>
</tr>
</tbody>
</table>
Displaying status of MLD snooping traffic

To display status information for MLD snooping traffic, enter the following command.

```
FastIron#show ipv6 mld-snooping traffic
MLD snooping: Total Recv: 32208, Xmit: 166
Q: query, Qry: general Q, G-Qry: group Q, GSQry: group-source Q, Mbr: member
Recv QryV1 QryV2 G-Qry GSQry MbrV1 MbrV2 Leave
VL1 0 0 0 0 31744 208 256
VL70 0 0 0 0 0 0 0
Recv ISIN IsEX ToIN ToEX ALLOW BLOCK Pkt-Err
VL1 1473 31784 0 1 0 0 0
VL70 0 0 0 0 0 0 0
Send QryV1 QryV2 G-Qry GSQry MbrV1 MbrV2
VL1 0 0 166 0 0 0
VL70 0 0 0 0 0 0
```

Syntax: `show ipv6 mld-snooping traffic`

The following table describes the information displayed by the `show ipv6 mld-snooping traffic` command.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Query</td>
</tr>
<tr>
<td>Qry</td>
<td>General Query</td>
</tr>
<tr>
<td>QryV1</td>
<td>Number of general MLDv1 queries received or sent.</td>
</tr>
<tr>
<td>QryV2</td>
<td>Number of general MLDv2 snooping queries received or sent.</td>
</tr>
<tr>
<td>G-Qry</td>
<td>Number of group specific queries received or sent.</td>
</tr>
<tr>
<td>GSQry</td>
<td>Number of group source specific queries received or sent.</td>
</tr>
<tr>
<td>MBR</td>
<td>The membership report.</td>
</tr>
<tr>
<td>MbrV1</td>
<td>The MLDv1 membership report.</td>
</tr>
<tr>
<td>MbrV2</td>
<td>The MLDv2 membership report.</td>
</tr>
<tr>
<td>IsIN</td>
<td>Number of source addresses that were included in the traffic.</td>
</tr>
<tr>
<td>IsEX</td>
<td>Number of source addresses that were excluded in the traffic.</td>
</tr>
<tr>
<td>ToIN</td>
<td>Number of times the interface mode changed from EXCLUDE to INCLUDE.</td>
</tr>
<tr>
<td>ToEX</td>
<td>Number of times the interface mode changed from INCLUDE to EXCLUDE.</td>
</tr>
<tr>
<td>ALLO</td>
<td>Number of times additional source addresses were allowed on the interface.</td>
</tr>
<tr>
<td>BLK</td>
<td>Number of times sources were removed from an interface.</td>
</tr>
<tr>
<td>Pkt-Err</td>
<td>Number of packets having errors such as checksum errors.</td>
</tr>
</tbody>
</table>

Displaying MLD snooping information by VLAN

You can display MLD snooping information for all VLANs or for a specific VLAN. For example, to display MLD snooping information for VLAN 70, enter the following command.
Configuring MLD snooping

Syntax: show ipv6 mld-snooping vlan [<vlan-id>]

If you do not specify a vlan-id, information for all VLANs is displayed.

The following table describes information displayed by the show ipv6 mld-snooping vlan command.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>The MLD version number.</td>
</tr>
<tr>
<td>query-t</td>
<td>How often a querier sends a general query on the interface.</td>
</tr>
<tr>
<td>group-aging-t</td>
<td>Number of seconds membership groups can be members of this group before aging out.</td>
</tr>
<tr>
<td>rtr-port</td>
<td>The router ports which are the ports receiving queries. The display router ports: 1/36(120) fe80::2e0:52ff:fe00:9900, 1/26 has 2 grp, non-QR (passive), cfg V1 1/26 has 2 grp, non-QR (passive), cfg V1 group: ff10:1234::5679, life = 100 group: ff10:1234::5678, life = 100 1/35 has 0 grp, non-QR (QR=fe80::2e0:52ff:fe00:9900, age=20), dft V2 trunk</td>
</tr>
<tr>
<td>max-resp-t</td>
<td>The maximum number of seconds a client can wait before it replies to the query.</td>
</tr>
<tr>
<td>non-QR</td>
<td>Indicates that the port is a non-querier.</td>
</tr>
<tr>
<td>QR</td>
<td>Indicates that the port is a querier.</td>
</tr>
</tbody>
</table>

Clearing MLD snooping counters and mcach

The clear commands for MLD snooping should only be used in troubleshooting situations or when recovering from error conditions.

Clearing MLD counters on all VLANs

To clear MLD snooping error and traffic counters on all VLANs, enter the following command.

FastIron#clear ipv6 mld-snooping counters

Syntax: clear ipv6 mld-snooping counters

Clearing the mcache on all VLANs

To clear the mcache on all VLANs, enter the following command.

FastIron#clear ipv6 mld-snooping mcache

Syntax: clear ipv6 mld-snooping mcache

Clearing the mcache on a specific VLAN

To clear the mcache on a specific VLAN, enter the following command.

FastIron#clear ipv6 mld-snooping vlan 10 mcache
Syntax: clear ipv6 mld-snooping vlan <vlan-id> mcache
The <vlan-id> parameter specifies the specific VLAN from which to clear the cache.

Clearing traffic counters on a specific VLAN

To clear the traffic counters on a specific VLAN, enter the following command.

FastIron#clear ipv6 mld-snooping vlan 10 traffic

Syntax: clear ipv6 mld-snooping vlan <vlan-id> traffic
The <vlan-id> parameter specifies the specific VLAN from which to clear the traffic counters.
Configuring RIP

RIP overview

Routing Information Protocol (RIP) is an IP route exchange protocol that uses a distance vector (a number representing distance) to measure the cost of a given route. The cost is a distance vector because the cost often is equivalent to the number of router hops between the Brocade Layer 3 Switch and the destination network.

A Brocade Layer 3 Switch can receive multiple paths to a destination. The software evaluates the paths, selects the best path, and saves the path in the IP route table as the route to the destination. Typically, the best path is the path with the fewest hops. A hop is another router through which packets must travel to reach the destination. If the Brocade Layer 3 Switch receives a RIP update from another router that contains a path with fewer hops than the path stored in the Brocade Layer 3 Switch route table, the Layer 3 Switch replaces the older route with the newer one. The Layer 3 Switch then includes the new path in the updates it sends to other RIP routers, including Brocade Layer 3 Switches.

RIP routers, including the Brocade Layer 3 Switch, also can modify a route cost, generally by adding to it, to bias the selection of a route for a given destination. In this case, the actual number of router hops may be the same, but the route has an administratively higher cost and is thus less likely to be used than other, lower-cost routes.

A RIP route can have a maximum cost of 15. Any destination with a higher cost is considered unreachable. Although limiting to larger networks, the low maximum hop count prevents endless loops in the network.

Brocade Layer 3 Switches support the following RIP versions:

- Version 1
- V1 compatible with V2
- Version 2 (the default)

Platform Support:

- FastIron X Series devices running software release 02.0.00 and later
- FGS-STK and FLS-STK devices running software release 05.0.00 and later (Base Layer 3)
- FWS devices running software release 04.3.00 and later (Edge Layer 3)
- FGS and FLS devices running software release 04.3.01 and later
- TurboIron X Series devices running software release 04.2.00 and later

ICMP host unreachable message for undeliverable ARPs

If the router receives an ARP request packet that it is unable to deliver to the final destination because of the ARP timeout and no ARP response is received (router knows of no route to the destination address), the router sends an ICMP Host Unreachable message to the source.
RIP parameters and defaults

The following tables list the RIP parameters, their default values, and where to find configuration information.

RIP global parameters

Table 191 lists the global RIP parameters and their default values, and indicates where you can find configuration information.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP state</td>
<td>The global state of the protocol</td>
<td>Disabled</td>
<td>page 1145</td>
</tr>
<tr>
<td></td>
<td>NOTE: You also must enable the protocol on individual interfaces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globally enabling the protocol does not allow interfaces to send and receive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RIP information. Refer to Table 192 on page 1145.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative distance</td>
<td>The administrative distance is a numeric value assigned to each type of route</td>
<td>120</td>
<td>page 1147</td>
</tr>
<tr>
<td></td>
<td>on the router.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When the router is selecting from among multiple routes (sometimes of different origins) to the same destination, the router compares the administrative distances of the routes and selects the route with the lowest administrative distance. This parameter applies to routes originated by RIP. The administrative distance stays with a route when it is redistributed into other routing protocols.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redistribution</td>
<td>RIP can redistribute routes from other routing protocols such as OSPF and BGP4 into RIP. A redistributed route is one that a router learns through another protocol, then distributes into RIP.</td>
<td>Disabled</td>
<td>page 1147</td>
</tr>
<tr>
<td>Redistribution metric</td>
<td>RIP assigns a RIP metric (cost) to each external route redistributed from another routing protocol into RIP. An external route is a route with at least one hop (packets must travel through at least one other router to reach the destination). This parameter applies to routes that are redistributed from other protocols into RIP.</td>
<td>1 (one)</td>
<td>page 1149</td>
</tr>
<tr>
<td>Update interval</td>
<td>How often the router sends route updates to its RIP neighbors</td>
<td>30 seconds</td>
<td>page 1150</td>
</tr>
<tr>
<td>Learning default routes</td>
<td>The router can learn default routes from its RIP neighbors.</td>
<td>Disabled</td>
<td>page 1150</td>
</tr>
<tr>
<td></td>
<td>NOTE: You also can enable or disable this parameter on an individual interface basis. Refer to Table 192 on page 1145.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertising and learning with specific neighbors</td>
<td>The Layer 3 Switch learns and advertises RIP routes with all its neighbors by default. You can prevent the Layer 3 Switch from advertising routes to specific neighbors or learning routes from specific neighbors.</td>
<td>Learning and advertising permitted for all neighbors</td>
<td>page 1151</td>
</tr>
</tbody>
</table>
RIP interface parameters

Table 192 lists the interface-level RIP parameters and their default values, and indicates where you can find configuration information.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP state and version</td>
<td>The state of the protocol and the version that is supported on the interface. The version can be one of the following: Version 1 only, Version 2 only, Version 1, but also compatible with version 2</td>
<td>Disabled</td>
<td>page 114 5</td>
</tr>
<tr>
<td>Metric</td>
<td>A numeric cost the router adds to RIP routes learned on the interface. This parameter applies only to RIP routes.</td>
<td>1 (one)</td>
<td>page 114 6</td>
</tr>
<tr>
<td>Learning default routes</td>
<td>Locally overrides the global setting. Refer to Table 191 on page 1144.</td>
<td>Disabled</td>
<td>page 115 0</td>
</tr>
<tr>
<td>Loop prevention</td>
<td>The method a router uses to prevent routing loops caused by advertising a route on the same interface as the one on which the router learned the route. Split horizon – The router does not advertise a route on the same interface as the one on which the router learned the route. Poison reverse – The router assigns a cost of 16 ("infinite" or "unreachable") to a route before advertising it on the same interface as the one on which the router learned the route.</td>
<td>Poison reverse</td>
<td>page 115 1</td>
</tr>
<tr>
<td>Advertising and learning specific routes</td>
<td>You can control the routes that a Layer 3 Switch learns or advertises.</td>
<td>The Layer 3 Switch learns and advertises all RIP routes on all interfaces.</td>
<td>page 115 2</td>
</tr>
</tbody>
</table>

Configuring RIP parameters

Use the following procedures to configure RIP parameters on a system-wide and individual interface basis.

Enabling RIP

RIP is disabled by default. To enable it, use the following method.

NOTE
You must enable the protocol globally and also on individual interfaces on which you want to advertise RIP. Globally enabling the protocol does not enable it on individual interfaces.

To enable RIP globally, enter the following command.

```
FastIron(config)# router rip
```

Syntax: [no] router rip
Configuring RIP parameters

After globally enabling the protocol, you must enable it on individual interfaces. You can enable the protocol on physical interfaces as well as virtual routing interfaces. To enable RIP on an interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 0/1/1
FastIron(config-if-0/1/1)# ip rip v1-only
```

Syntax: [no] ip rip v1-only | v1-compatible-v2 | v2-only

NOTE
You must specify the RIP version.

Configuring metric parameters

By default, a Brocade Layer 3 Switch port increases the cost of a RIP route that is learned on the port by one. You can configure individual ports to add more than one to a learned route cost. In addition, you can configure a RIP offset list to increase the metric for learned or advertised routes based on network address.

Changing the cost of routes learned on a port

By default, a Brocade Layer 3 Switch port increases the cost of a RIP route that is learned on the port. The Layer 3 Switch increases the cost by adding one to the route metric before storing the route.

You can change the amount that an individual port adds to the metric of RIP routes learned on the port. To do so, use the following method.

NOTE
RIP considers a route with a metric of 16 to be unreachable. Use this metric only if you do not want the route to be used. In fact, you can prevent the Layer 3 Switch from using a specific port for routes learned though that port by setting its metric to 16.

To increase the cost a port adds to RIP routes learned in that port, enter commands such as the following.

```
FastIron(config)# interface ethernet 0/6/1
FastIron(config-if-0/6/1)# ip metric 5
```

These commands configure port 6/1 to add 5 to the cost of each route learned on the port.

Syntax: ip metric <1-16>

Configuring a RIP offset list

A RIP offset list allows you to add to the metric of specific inbound or outbound routes learned or advertised by RIP. RIP offset lists provide a simple method for adding to the cost of specific routes and therefore biasing the Layer 3 Switch route selection away from those routes.

An offset list consists of the following parameters:

- An ACL that specifies the routes to which to add the metric.
- The direction:
 - In applies to routes the Layer 3 Switch learns from RIP neighbors.
 - Out applies to routes the Layer 3 Switch is advertising to its RIP neighbors.
Configuring RIP parameters

- The type and number of a specific port to which the offset list applies (optional).

The software adds the offset value to the routing metric (cost) of the routes that match the ACL. If a route matches both a global offset list and an interface-based offset list, the interface-based offset list takes precedence. The interface-based offset list metric is added to the route in this case.

You can configure up to 24 global RIP offset lists and up to 24 RIP offset lists on each interface.

To configure a global RIP offset list, enter commands such as the following.

```
FastIron(config)# access-list 21 deny 160.1.0.0 0.0.255.255
FastIron(config)# access-list 21 permit any
FastIron(config)# router rip
FastIron(config-rip-router)# offset-list 21 out 10
```

The commands in this example configure a standard ACL. The ACL matches on all IP networks except 160.1.x.x. When the Layer 3 Switch advertises a route that matches ACL 21, the offset list adds 10 to the route metric.

Syntax:
```
[no] offset-list <ACL-number-or-name> in | out offset [ethernet [
[<stack-unit>]/<slotnum>/]<portnum>]
```

In the following example, the Layer 3 Switch uses ACL 21 to add 10 to the metric of routes received on Ethernet port 2/1.

```
FastIron(config-rip-router)# offset-list 21 in 10 ethernet 0/2/1
```

Changing the administrative distance

By default, the Layer 3 Switch assigns the default RIP administrative distance (120) to RIP routes. When comparing routes based on administrative distance, the Layer 3 Switch selects the route with the lower distance. You can change the administrative distance for RIP routes.

NOTE
Refer to “Changing administrative distances” on page 1327 for the default distances for all route sources.

To change the administrative distance for RIP routes, enter a command such as the following.

```
FastIron(config-rip-router)# distance 140
```

This command changes the administrative distance to 140 for all RIP routes.

Syntax:
```
[no] distance <num>
```

Configuring redistribution

You can configure the Layer 3 Switch to redistribute routes learned through Open Shortest Path First (OSPF) or Border Gateway Protocol version 4 (BGP4) into RIP. When you redistribute a route from one of these other protocols into RIP, the Layer 3 Switch can use RIP to advertise the route to its RIP neighbors.

To configure redistribution, perform the following tasks:

- Configure redistribution filters (optional). You can configure filters to permit or deny redistribution for a route based on its origin (OSPF, BGP4, and so on), the destination network address, and the route metric. You also can configure a filter to set the metric based on these criteria.
Configuring RIP parameters

- Change the default redistribution metric (optional). The Layer 3 Switch assigns a RIP metric of one to each redistributed route by default. You can change the default metric to a value up to 16.
- Enable redistribution.

NOTE
Do not enable redistribution until you configure the other redistribution parameters.

Configuring redistribution filters

RIP redistribution filters apply to all interfaces. The software uses the filters in ascending numerical order and immediately takes the action specified by the filter. Thus, if filter 1 denies redistribution of a given route, the software does not redistribute the route, regardless of whether a filter with a higher ID would permit redistribution of that route.

NOTE
The default redistribution action is permit, even after you configure and apply redistribution filters to the virtual routing interface. If you want to tightly control redistribution, apply a filter to deny all routes as the last filter (the filter with the highest ID), then apply filters with lower filter IDs to allow specific routes.

To configure a redistribution filter, enter a command such as the following.

```plaintext
FastIron(config-rip-router)# deny redistribute 2 all address 207.92.0.0 255.255.0.0
```

This command denies redistribution for all types of routes to the 207.92.x.x network.

Syntax:
```
[no] permit | deny redistribute <filter-num> all | bgp | ospf | static address <ip-addr> [match-metric <value> | set-metric <value>]
```

The `<filter-num>` specifies the redistribution filter ID. The software uses the filters in ascending numerical order. Thus, if filter 1 denies a route from being redistributed, the software does not redistribute that route even if a filter with a higher ID permits redistribution of the route.

The `all` parameter applies redistribution to all route types.

The `bgp` parameter applies redistribution to BGP4 routes only.

The `ospf` parameter applies redistribution to OSPF routes only.

The `static` parameter applies redistribution to IP static routes only.

The `address` `<ip-addr>` `<ip-mask>` parameters apply redistribution to the specified network and subnet address. Use 0 to specify “any”. For example, “207.92.0.0 255.255.0.0” means “any 207.92.x.x subnet”. However, to specify any subnet (all subnets match the filter), enter “address 255.255.255.255 255.255.255.255”.

The `match-metric` `<value>` parameter applies the redistribution filter only to those routes with the specified metric value; possible values are from 1 – 15.

The `set-metric` `<value>` parameter sets the RIP metric value that will be applied to those routes imported into RIP.

The following command denies redistribution into RIP for all OSPF routes.

```plaintext
FastIron(config-rip-router)# deny redistribute 3 ospf address 207.92.0.0 255.255.0.0
```
The following command denies redistribution for all OSPF routes that have a metric of 10.

```
FastIron(config-rip-router)# deny redistribute 3 ospf address 207.92.0.0 255.255.0.0 match-metric 10
```

The following commands deny redistribution of all routes except routes for 10.10.10.x and 20.20.20.x.

```
FastIron(config-rip-router)# deny redistribute 64 static address 255.255.255.255 255.255.255.255
FastIron(config-rip-router)# permit redistribute 1 static address 10.10.10.0 255.255.255.0
FastIron(config-rip-router)# permit redistribute 2 static address 20.20.20.0 255.255.255.0
```

NOTE
This example assumes that the highest RIP redistribution filter ID configured on the device is 64.

Changing the redistribution metric

When the Layer 3 Switch redistributes a route into RIP, the software assigns a RIP metric (cost) to the route. By default, the software assigns a metric of one to each route that is redistributed into RIP. You can increase the metric that the Layer 3 Switch assigns, up to 15.

To change the RIP metric the Layer 3 Switch assigns to redistributed routes, enter a command such as the following.

```
FastIron(config-rip-router)# default-metric 10
```

This command assigns a RIP metric of 10 to each route that is redistributed into RIP.

Syntax: `[no] default-metric <1-15>`

Enabling redistribution

After you configure redistribution parameters, you need to enable redistribution.

To enable RIP redistribution, enter the following command.

```
FastIron(config-rip-router)# redistribution
```

Syntax: `[no] redistribution`

Removing a RIP redistribution deny filter

To remove a previously configured RIP redistribution deny filter, do the following.

1. Remove the RIP redistribution deny filter.
2. Disable the redistribution function.
3. Re-enable redistribution.

The following shows an example of how to remove a RIP redistribution deny filter.
Configuring route learning and advertising parameters

By default, a Brocade Layer 3 Switch learns routes from all its RIP neighbors and advertises RIP routes to those neighbors.

You can configure the following learning and advertising parameters:

- **Update interval** – The update interval specifies how often the Layer 3 Switch sends RIP route advertisements to its neighbors. The default is 30 seconds. You can change the interval to a value from 1 – 1000 seconds.
- **Learning and advertising of RIP default routes** – The Layer 3 Switch learns and advertises RIP default routes by default. You can disable learning and advertising of default routes on a global or individual interface basis.
- **Learning of standard RIP routes** – By default, the Layer 3 Switch can learn RIP routes from all its RIP neighbors. You can configure RIP neighbor filters to explicitly permit or deny learning from specific neighbors.

Changing the update interval for route advertisements

The update interval specifies how often the Layer 3 Switch sends route advertisements to its RIP neighbors. You can specify an interval from 1 – 1000 seconds. The default is 30 seconds.

To change the RIP update interval, enter a command such as the following.

```
FastIron(config-rip-router)# update 120
```

This command configures the Layer 3 Switch to send RIP updates every 120 seconds.

Syntax: `update-time <1-1000>`

Enabling learning of RIP default routes

By default, the Layer 3 Switch does not learn RIP default routes. You can enable learning of RIP default routes on a global or interface basis.

To enable learning of default RIP routes on a global basis, enter the following command.

```
FastIron(config-rip-router)# learn-default
```

Syntax: `[no] learn-default`

To enable learning of default RIP routes on an interface basis, enter commands such as the following.

```
FastIron(config)# interface ethernet 0/1/1
FastIron(config-if-0/1/1)# ip rip learn-default
```

Syntax: `[no] ip rip learn-default`
Configuring RIP parameters

Configuring a RIP neighbor filter

By default, a Brocade Layer 3 Switch learns RIP routes from all its RIP neighbors. Neighbor filters allow you to specify the neighbor routers from which the Brocade device can receive RIP routes. Neighbor filters apply globally to all ports.

To configure a RIP neighbor filters, enter a command such as the following.

```
FastIron(config-rip-router)# neighbor 1 deny any
```

Syntax: `[no] neighbor <filter-num> permit | deny <source-ip-address> | any`

This command configures the Layer 3 Switch so that the device does not learn any RIP routes from any RIP neighbors.

The following commands configure the Layer 3 Switch to learn routes from all neighbors except 192.168.1.170. Once you define a RIP neighbor filter, the default action changes from learning all routes from all neighbors to denying all routes from all neighbors except the ones you explicitly permit. To deny learning from a specific neighbor but allow all other neighbors, you must add a filter that allows learning from all neighbors. Be sure to add the filter to permit all neighbors last (the one with the highest filter number). Otherwise, the software can match on the permit all filter instead of a filter that denies a specific neighbor, and learn routes from that neighbor.

```
FastIron(config-rip-router)# neighbor 2 deny 192.16.1.170
FastIron(config-rip-router)# neighbor 1024 permit any
```

Changing the route loop prevention method

RIP can use the following methods to prevent routing loops:

- **Split horizon** – The Layer 3 Switch does not advertise a route on the same interface as the one on which the router learned the route.
- **Poison reverse** – The Layer 3 Switch assigns a cost of 16 (“infinite” or “unreachable”) to a route before advertising it on the same interface as the one on which the router learned the route. This is the default.

These loop prevention methods are configurable on an individual interface basis. One of the methods is always in effect on an interface enabled for RIP. If you disable one method, the other method is enabled.

NOTE

These methods may be used in addition to RIP maximum valid route cost of 15.

To disable poison reverse and enable split horizon on an interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 0/1/1
FastIron(config-if-0/1/1)# no ip rip poison-reverse
```

Syntax: `[no] ip rip poison-reverse`

To disable split horizon and enable poison reverse on an interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 0/1/1
FastIron(config-if-0/1/1)# ip rip poison-reverse
```
Suppressing RIP route advertisement on a VRRP or VRRPE backup interface

NOTE
This section applies only if you configure the Layer 3 Switch for Virtual Router Redundancy Protocol (VRRP) or VRRP Extended (VRRPE). Refer to Chapter 37, “Configuring VRRP and VRRPE”.

Normally, a VRRP or VRRPE Backup includes route information for the virtual IP address (the backed up interface) in RIP advertisements. As a result, other routers receive multiple paths for the backed up interface and might sometimes unsuccessfully use the path to the Backup rather than the path to the Master.

You can prevent the Backups from advertising route information for the backed up interface by enabling suppression of the advertisements.

To suppress RIP advertisements for the backed up interface, enter the following commands.

```plaintext
FastIron(config)# router rip
FastIron(config-rip-router)# use-vrrp-path
```

Syntax: `[no] use-vrrp-path
The syntax is the same for VRRP and VRRPE.

Configuring RIP route filters

You can configure RIP route filters to permit or deny learning or advertising of specific routes. Configure the filters globally, then apply them to individual interfaces. When you apply a RIP route filter to an interface, you specify whether the filter applies to learned routes (in) or advertised routes (out).

NOTE
A route is defined by the destination IP address and network mask.

NOTE
By default, routes that do not match a route filter are learned or advertised. To prevent a route from being learned or advertised, you must configure a filter to deny the route.

To configure RIP filters, enter commands such as the following.

```plaintext
FastIron(config-rip-router)# filter 1 permit 192.53.4.1 255.255.255.0
FastIron(config-rip-router)# filter 2 permit 192.53.5.1 255.255.255.0
FastIron(config-rip-router)# filter 3 permit 192.53.6.1 255.255.255.0
FastIron(config-rip-router)# filter 4 deny 192.53.7.1 255.255.255.0
```

These commands explicitly permit RIP routes to three networks, and deny the route to one network.

Since the default action is permit, all other routes (routes not explicitly permitted or denied by the filters) can be learned or advertised.

Syntax: `filter <filter-num> permit | deny <source-ip-address> | any <source-mask> | any [log]`
Applying a RIP route filter to an interface

Once you define RIP route filters, you must assign them to individual interfaces. The filters do not take effect until you apply them to interfaces. When you apply a RIP route filter, you also specify whether the filter applies to learned routes or advertised routes:

- Out filters apply to routes the Layer 3 Switch advertises to its neighbor on the interface.
- In filters apply to routes the Layer 3 Switch learns from its neighbor on the interface.

To apply RIP route filters to an interface, enter commands such as the following.

```
FastIron(config)# interface ethernet 0/1/2
FastIron(config-if-0/1/2)# ip rip filter-group in 2 3 4
```

Syntax: `[no] ip rip filter-group in | out <filter-list>`

These commands apply RIP route filters 2, 3, and 4 to all routes learned from the RIP neighbor on port 1/2.

Displaying RIP filters

To display the RIP filters configured on the router, enter the following command at any CLI level.

```
FastIron# show ip rip
```

This display shows the following information.

<table>
<thead>
<tr>
<th>TABLE 193 CLI display of RIP filter information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>Route filters</td>
</tr>
<tr>
<td>The rows underneath “RIP Route Filter Table” list the RIP route filters. If no RIP route filters are configured on the device, the following message is displayed instead: “No Filters are configured in RIP Route Filter Table”.</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>Action</td>
</tr>
<tr>
<td>deny</td>
</tr>
<tr>
<td>permit</td>
</tr>
<tr>
<td>Route IP Address</td>
</tr>
</tbody>
</table>
Displaying CPU utilization statistics

You can display CPU utilization statistics for RIP and other IP protocols.

To display CPU utilization statistics for RIP for the previous one-second, one-minute, five-minute, and fifteen-minute intervals, enter the following command at any level of the CLI.

```
FastIron# show process cpu
```

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.03</td>
<td>0.09</td>
<td>0.22</td>
<td>9</td>
</tr>
<tr>
<td>BGP</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.14</td>
<td>13</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>7</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

If the software has been running less than 15 minutes (the maximum interval for utilization statistics), the command indicates how long the software has been running. Here is an example.
To display utilization statistics for a specific number of seconds, enter a command such as the following.

FastIron# show process cpu

The system has only been up for 6 seconds.

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

FastIron# show process cpu 2

Statistics for last 1 sec and 80 ms

<table>
<thead>
<tr>
<th>Process Name</th>
<th>Sec(%)</th>
<th>Time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

When you specify how many seconds’ worth of statistics you want to display, the software selects the sample that most closely matches the number of seconds you specified. In this example, statistics are requested for the previous two seconds. The closest sample available is actually for the previous 1 second plus 80 milliseconds.

Syntax: show process cpu [<num>]

The <num> parameter specifies the number of seconds and can be from 1 – 900. If you use this parameter, the command lists the usage statistics only for the specified number of seconds. If you do not use this parameter, the command lists the usage statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals.
Displaying CPU utilization statistics
Configuring RIPng

RIPng overview

Routing Information Protocol (RIP) is an IP route exchange protocol that uses a distance vector (a number representing a distance) to measure the cost of a given route. RIP uses a hop count as its cost or metric.

IPv6 RIP, known as Routing Information Protocol Next Generation or RIPng functions similarly to IPv4 RIP Version 2. RIPng supports IPv6 addresses and prefixes and introduces some new commands that are specific to RIPng. This chapter describes the commands that are specific to RIPng. This section does not describe commands that apply to both IPv4 RIP and RIPng.

RIPng maintains a Routing Information Database (RIB), which is a local route table. The local RIB contains the lowest-cost IPv6 routes learned from other RIP routers. In turn, RIPng attempts to add routes from its local RIB into the main IPv6 route table.

NOTE
Brocade IPv6 devices support up to 10000 RiPng routes.

This section describes the following:

- How to configure RIPng
- How to clear RIPng information from the RIPng route table
- How to display RIPng information and statistics

Platform Support:
- FESX and FSX IPv6 devices running software release 04.1.00 and later – L3

Summary of configuration tasks

To configure RIPng, you must enable RIPng globally on the Brocade device and on individual router interfaces. The following configuration tasks are optional:

- Change the default settings of RIPng timers.
- Configure how the Brocade device learns and advertises routes.
- Configure which routes are redistributed into RIPng from other sources.
- Configure how the Brocade device distributes routes through RIPng.
- Configure poison reverse parameters.

Enabling RIPng

Before configuring the Brocade device to run RIPng, you must do the following:
Enable the forwarding of IPv6 traffic on the Brocade device using the `ipv6 unicast-routing` command.

Enable IPv6 on each interface over which you plan to enable RIPng. You enable IPv6 on an interface by configuring an IPv6 address or explicitly enabling IPv6 on that interface.

For more information about performing these configuration tasks, refer to the chapter “Configuring IPv6 Connectivity” on page 207.

By default, RIPng is disabled. To enable RIPng, you must enable it globally on the Brocade device and also on individual router interfaces.

NOTE
You are required to configure a router ID when running only IPv6 routing protocols.

NOTE
Enabling RIPng globally on the Brocade device does not enable it on individual router interfaces.

To enable RIPng globally, enter the following command.

```
FastIron(config)#ipv6 router rip
FastIron(config-ripng-router)#
```

After you enter this command, the Brocade device enters the RIPng configuration level, where you can access several commands that allow you to configure RIPng.

Syntax: `[no] ipv6 router rip`

To disable RIPng globally, use the `no` form of this command.

After enabling RIPng globally, you must enable it on individual router interfaces. You can enable it on physical as well as virtual routing interfaces. For example, to enable RIPng on Ethernet interface 3/1, enter the following commands.

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# ipv6 rip enable
```

Syntax: `[no] ipv6 rip enable`

To disable RIPng on an individual router interface, use the `no` form of this command.

Configuring RIPng timers

Table 194 describes the RIPng timers and provides their defaults.

<table>
<thead>
<tr>
<th>Timer</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update</td>
<td>Amount of time (in seconds) between RIPng routing updates.</td>
<td>30 seconds.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Amount of time (in seconds) after which a route is considered unreachable.</td>
<td>180 seconds.</td>
</tr>
<tr>
<td>Hold-down</td>
<td>Amount of time (in seconds) during which information about other paths is ignored.</td>
<td>180 seconds.</td>
</tr>
<tr>
<td>Garbage-collection</td>
<td>Amount of time (in seconds) after which a route is removed from the routing table.</td>
<td>120 seconds.</td>
</tr>
</tbody>
</table>

You can adjust these timers for RIPng. Before doing so, keep the following caveats in mind:
If you adjust these RIPng timers, Brocade strongly recommends setting the same timer values for all routers and access servers in the network.

Setting the update timer to a shorter interval can cause the routers to spend excessive time updating the IPv6 route table.

Brocade recommends setting the timeout timer value to at least three times the value of the update timer.

Brocade recommends a shorter hold-down timer interval, because a longer interval can cause delays in RIPng convergence.

The following example sets updates to be broadcast every 45 seconds. If a route is not heard from in 135 seconds, the route is declared unusable. Further information is suppressed for an additional 10 seconds. Assuming no updates, the route is flushed from the routing table 20 seconds after the end of the hold-down period.

```
FastIron(config)# ipv6 router rip
FastIron(config-ripng-router)# timers 45 135 10 20
```

Syntax:
```
[no] timers <update-timer> <timeout-timer> <hold-down-timer> <garbage-collection-timer>
```

Possible values for the timers are as follows:

- Update timer: 3 – 65535 seconds.
- Timeout timer: 9 – 65535 seconds.
- Hold-down timer: 9 – 65535 seconds.

NOTE

You must enter a value for each timer, even if you want to retain the current setting of a particular timer.

To return to the default values of the RIPng timers, use the `no` form of this command.

Configuring route learning and advertising parameters

You can configure the following learning and advertising parameters:

- Learning and advertising of RIPng default routes.
- Advertising of IPv6 address summaries.
- Metric of routes learned and advertised on a router interface.

Configuring default route learning and advertising

By default, the Brocade device does not learn IPv6 default routes (::/0). You can originate default routes into RIPng, which causes individual router interfaces to include the default routes in their updates. When configuring the origination of the default routes, you can also do the following:

- Suppress all other routes from the updates.
- Include all other routes in the updates.

For example, to originate default routes in RIPng and suppress all other routes in updates sent from Ethernet interface 3/1, enter the following commands.
Configuring route learning and advertising parameters

FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# ipv6 rip default-information only

To originate IPv6 default routes and include all other routes in updates sent from Ethernet interface 3/1, enter the following commands.

FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# ipv6 rip default-information originate

Syntax: [no] ipv6 rip default-information only | originate

The **only** keyword originates the default routes and suppresses all other routes from the updates.

The **originate** keyword originates the default routes and includes all other routes in the updates.

To remove the explicit default routes from RIPng and suppress advertisement of these routes, use the **no** form of this command.

Advertising IPv6 address summaries

You can configure RIPng to advertise a summary of IPv6 addresses from a router interface and to specify an IPv6 prefix that summarizes the routes.

If a route prefix length matches the value specified in the `ipv6 rip summary-address` command, RIPng advertises the prefix specified in the `ipv6 rip summary-address` command instead of the original route.

For example, to advertise the summarized prefix 2001:469e::/36 instead of the IPv6 address 2001:469e:0:adff:8935:e838:78:e0ff with a prefix length of 64 bits from Ethernet interface 3/1, enter the following commands.

FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# ipv6 address 2001:469e:0:adff:8935:e838:78:e0ff /64
FastIron(config-if-e100-3/1)# ipv6 rip summary-address 2001:469e::/36

Syntax: [no] ipv6 rip summary-address <ipv6-prefix>/<prefix-length>

You must specify the `<ipv6-prefix>` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

You must specify the `<prefix-length>` parameter as a decimal value. A slash mark (/) must follow the `<ipv6-prefix>` parameter and precede the `<prefix-length>` parameter.

To stop the advertising of the summarized IPv6 prefix, use the **no** form of this command.

Changing the metric of routes learned and advertised on an interface

A router interface increases the metric of an incoming RIPng route it learns by an offset (the default is one). The Brocade device then places the route in the route table. When the Brocade device sends an update, it advertises the route with the metric plus the default offset of zero in an outgoing update message.

You can change the metric offset an individual interface adds to a route learned by the interface or advertised by the interface. For example, to change the metric offset for incoming routes learned by Ethernet interface 3/1 to one and the metric offset for outgoing routes advertised by the interface to three, enter the following commands.
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# ipv6 rip metric-offset 1
FastIron(config-if-e100-3/1)# ipv6 rip metric-offset out 3

In this example, if Ethernet interface 3/1 learns about an incoming route, it will increase the incoming metric by two (the default offset of 1 and the additional offset of 1 as specified in this example). If Ethernet interface 3/1 advertises an outgoing route, it will increase the metric by 3 as specified in this example.

Syntax: [no] ipv6 rip metric-offset <1 –– 16>
Syntax: [no] ipv6 rip metric-offset out <1 –– 15>

To return the metric offset to its default value, use the no form of this command.

Redistributing routes into RIPng

You can configure the Brocade device to redistribute routes from the following sources into RIPng:

- IPv6 static routes
- Directly connected IPv6 networks
- OSPF V3

When you redistribute a route from IPv6 or OSPF V3 into RIPng, the Brocade device can use RIPng to advertise the route to its RIPng neighbors.

When configuring the Brocade device to redistribute routes, you can optionally specify a metric for the redistributed routes. If you do not explicitly configure a metric, the default metric value of one is used.

For example, to redistribute OSPF V3 routes into RIPng, enter the following command.

FastIron(config)# ipv6 router rip
FastIron(config-ripng-router)# redistribute ospf

Syntax: redistribute bgp | connected | isis | ospf | static [metric <number>]

For the metric, specify a numerical value that is consistent with RIPng.

Controlling distribution of routes through RIPng

You can create a prefix list and then apply it to RIPng routing updates that are received or sent on a router interface. Performing this task allows you to control the distribution of routes through RIPng.

For example, to permit the inclusion of routes with the prefix 2001::/16 in RIPng routing updates sent from Ethernet interface 3/1, enter the following commands.

FastIron(config)# ipv6 prefix-list routesfor2001 permit 2001::/16
FastIron(config)# ipv6 router rip
FastIron(config-ripng-router)# distribute-list prefix-list routesfor2001 out ethernet 3/1

To deny prefix lengths greater than 64 bits in routes that have the prefix 3EE0:A99::/64 and allow all other routes received on tunnel interface 3/1, enter the following commands.
Configuring poison reverse parameters

By default, poison reverse is disabled on a RIPng router. If poison reverse is enabled, RIPng advertises routes it learns from a particular interface over that same interface with a metric of 16, which means that the route is unreachable.

If poison reverse is enabled on the RIPng router, it takes precedence over split horizon (if it is also enabled).

To enable poison reverse on the RIPng router, enter the following commands.

```
FastIron(config)# ipv6 router rip
FastIron(config-ripng-router)# poison-reverse
```

Syntax: `[no] poison-reverse`

To disable poison-reverse, use the `no` version of this command.

By default, if a RIPng interface goes down, the Brocade device does not send a triggered update for the interface IPv6 networks.

To better handle this situation, you can configure a RIPng router to send a triggered update containing the local routes of the disabled interface with an unreachable metric of 16 to the other RIPng routers in the routing domain. You can enable the sending of a triggered update by entering the following commands.

```
FastIron(config)# ipv6 router rip
FastIron(config-ripng-router)# poison-local-routes
```

Syntax: `[no] poison-local-routes`

To disable the sending of a triggered update, use the `no` version of this command.
Clearing RIPng routes from the IPv6 route table

To clear all RIPng routes from the RIPng route table and the IPv6 main route table and reset the routes, enter the following command at the Privileged EXEC level or any of the Config levels of the CLI.

FastIron# clear ipv6 rip routes

Syntax: clear ipv6 rip routes

Displaying RIPng information

You can display the following RIPng information:

- RIPng configuration
- RIPng routing table

Displaying RIPng configuration

To display RIPng configuration information, enter the following command at any CLI level.

FastIron# show ipv6 rip
IPv6 rip enabled, port 521
 Administrative distance is 120
 Updates every 30 seconds, expire after 180
 Holddown lasts 180 seconds, garbage collect after 120
 Split horizon is on; poison reverse is off
 Default routes are not generated
 Periodic updates 0, trigger updates 0
 Distribute List, Inbound : Not set
 Distribute List, Outbound : Not set
 Redistribute: CONNECTED

Syntax: show ipv6 rip

This display shows the following information.

TABLE 195 RIPng configuration fields

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
</table>
| IPv6 RIP status/port | The status of RIPng on the Brocade device. Possible status is “enabled” or “disabled.”
 | The UDP port number over which RIPng is enabled. |
| Administrative distance | The setting of the administrative distance for RIPng. |
| Updates/expiration | The settings of the RIPng update and timeout timers. |
| Holddown/garbage collection | The settings of the RIPng hold-down and garbage-collection timers. |
| Split horizon/poison reverse | The status of the RIPng split horizon and poison reverse features. Possible status is “on” or “off.” |
| Default routes | The status of RIPng default routes. |
| Periodic updates/trigger updates | The number of periodic updates and triggered updates sent by the RIPng router. |
Displaying RIPng routing table

To display the RIPng routing table, enter the following command at any CLI level.

```plaintext
FastIron# show ipv6 rip route
IPv6 RIP Routing Table - 4 entries:
2001::/64, from fe80::212:f2ff:fe87:9a40, ve 177    (314)
  RIP, metric 2, tag 0, timers: aging 11
2001:11:11::/64, from ::, null   (0)
  CONNECTED, metric 1, tag 0, timers: none
  LOCAL, metric 1, tag 0, timers: none
2001:aa:2061:31:1::/96, from fe80::2e0:52ff:fe88:8000, ve 100    (58)
  RIP, metric 2, tag 0, timers: aging 43
```

Syntax: `show ipv6 rip route [<ipv6-prefix>/<prefix-length> | <ipv6-address>]`

The `<ipv6-prefix>/<prefix-length>` parameters restrict the display to the entries for the specified IPv6 prefix. You must specify the `<ipv6-prefix>` parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373. You must specify the `<prefix-length>` parameter as a decimal value. A slash mark (/) must follow the `<ipv6-prefix>` parameter and precede the `<prefix-length>` parameter.

The `<ipv6-address>` parameter restricts the display to the entries for the specified IPv6 address. You must specify this parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.

This display shows the following information.

TABLE 196 RIPng routing table fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIPng Routing Table entries</td>
<td>The total number of entries in the RIPng routing table.</td>
</tr>
<tr>
<td><code><ipv6-prefix>/<prefix-length></code> <code><ipv6-address></code></td>
<td>The IPv6 prefix and prefix length. The IPv6 address.</td>
</tr>
<tr>
<td>Next-hop router</td>
<td>The next-hop router for this Brocade device. If:: appears, the route is originated locally.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface name. If “null” appears, the interface is originated locally.</td>
</tr>
<tr>
<td>Serial number</td>
<td>The number identifying the order in which the route was added to the RIPng route table.</td>
</tr>
</tbody>
</table>
TABLE 196 RIPng routing table fields (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of route</td>
<td>The source of the route information. The source can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• LOCAL – routes configured on local interfaces taking part in RIPng.</td>
</tr>
<tr>
<td></td>
<td>• RIP – routes learned by RIPng.</td>
</tr>
<tr>
<td></td>
<td>• CONNECTED – IPv6 routes redistributed from directly connected networks.</td>
</tr>
<tr>
<td></td>
<td>• STATIC – IPv6 static routes are redistributed into RIPng.</td>
</tr>
<tr>
<td></td>
<td>• OSPF – OSPF V3 routes are redistributed into RIPng.</td>
</tr>
<tr>
<td>Metric <number></td>
<td>The cost of the route. The <number> parameter indicates the number of hops to</td>
</tr>
<tr>
<td></td>
<td>the destination.</td>
</tr>
<tr>
<td>Tag <number></td>
<td>The tag value of the route.</td>
</tr>
<tr>
<td>Timers:</td>
<td>Indicates if the hold-down timer or the garbage-collection timer is set.</td>
</tr>
</tbody>
</table>
Displaying RIPng information
This chapter describes how to configure OSPF Version 2 on Brocade Layer 3 Switches using the CLI. OSPF Version 2 is supported on devices running IPv4.

NOTE
The terms Layer 3 Switch and router are used interchangeably in this chapter and mean the same thing.

Overview of OSPF

OSPF is a link-state routing protocol. The protocol uses link-state advertisements (LSA) to update neighboring routers regarding its interfaces and information on those interfaces. The router floods these LSAs to all neighboring routers to update them regarding the interfaces. Each router maintains an identical database that describes its area topology to help a router determine the shortest path between it and any neighboring router.

Brocade Layer 3 Switches support the following types of LSAs, which are described in RFC 1583:

- Router link
- Network link
- Summary link
- Autonomous system (AS) summary link
- AS external link
- Not-So-Stubby Area (NSSA) external link

OSPF is built upon a hierarchy of network components. The highest level of the hierarchy is the Autonomous System (AS). An autonomous system is defined as a number of networks, all of which share the same routing and administration characteristics.

An AS can be divided into multiple areas as shown in Figure 145 on page 1168. Each area represents a collection of contiguous networks and hosts. Areas limit the area to which link-state advertisements are broadcast, thereby limiting the amount of flooding that occurs within the network. An area is represented in OSPF by either an IP address or a number.

You can further limit the broadcast area of flooding by defining an area range. The area range allows you to assign an aggregate value to a range of IP addresses. This aggregate value becomes the address that is advertised instead of all of the individual addresses it represents being advertised. You can assign up to 32 ranges in an OSPF area.

An OSPF router can be a member of multiple areas. Routers with membership in multiple areas are known as Area Border Routers (ABRs). Each ABR maintains a separate topological database for each area the router is in. Each topological database contains all of the LSA databases for each router within a given area. The routers within the same area have identical topological databases. The ABR is responsible for forwarding routing information or changes between its border areas.
An **Autonomous System Boundary Router (ASBR)** is a router that is running multiple protocols and serves as a gateway to routers outside an area and those operating with different protocols. The ASBR is able to import and translate different protocol routes into OSPF through a process known as **redistribution**. For more details on redistribution and configuration examples, refer to “Enable route redistribution” on page 1198.

FIGURE 145 OSPF operating in a network

OSPF point-to-point Links

Platform Support:
- FESX devices running software release 02.2.00 and later
- FSX devices running software release 02.3.01 and later
- FCX-S devices running software release 06.0.00 and later
- Turbolron X Series devices running software release 04.2.00 and later
One important OSPF process is **Adjacency**. Adjacency occurs when a relationship is formed between neighboring routers for the purpose of exchanging routing information. Adjacent OSPF neighbor routers go beyond the simple Hello packet exchange; they exchange database information. In order to minimize the amount of information exchanged on a particular segment, one of the first steps in creating adjacency is to assign a Designated Router (DR) and a Backup Designated Router (BDR). The Designated Router ensures that there is a central point of contact, thereby improving convergence time within a multi-access segment.

In an OSPF point-to-point network, where a direct Layer 3 connection exists between a single pair of OSPF routers, there is no need for Designated and Backup Designated Routers, as is the case in OSPF multi-access networks. Without the need for Designated and Backup Designated routers, a point-to-point network establishes adjacency and converges faster. The neighboring routers become adjacent whenever they can communicate directly. In contrast, in broadcast and non-broadcast multi-access (NBMA) networks, the Designated Router and Backup Designated Router become adjacent to all other routers attached to the network.

To configure an OSPF point-to-point link, refer to “Configuring an OSPF point-to-point Link” on page 1207.

Designated routers in multi-access networks

In a network that has multiple routers attached, OSPF elects one router to serve as the designated router (DR) and another router on the segment to act as the backup designated router (BDR). This arrangement minimizes the amount of repetitive information that is forwarded on the network by forwarding all messages to the designated router and backup designated routers responsible for forwarding the updates throughout the network.

Designated router election in multi-access networks

In a network with no designated router and no backup designated router, the neighboring router with the highest priority is elected as the DR, and the router with the next largest priority is elected as the BDR, as shown in Figure 146.

FIGURE 146 Designated and backup router election

If the DR goes off-line, the BDR automatically becomes the DR. The router with the next highest priority becomes the new BDR. This process is shown in Figure 147.
NOTE
Priority is a configurable option at the interface level. You can use this parameter to help bias one router as the DR.

FIGURE 147 Backup designated router becomes designated router

If two neighbors share the same priority, the router with the highest router ID is designated as the DR. The router with the next highest router ID is designated as the BDR.

NOTE
By default, the Brocade router ID is the IP address configured on the lowest numbered loopback interface. If the Layer 3 Switch does not have a loopback interface, the default router ID is the lowest numbered IP address configured on the device. For more information or to change the router ID, refer to “Changing the router ID” on page 1002.

When multiple routers on the same network are declaring themselves as DRs, then both priority and router ID are used to select the designated router and backup designated routers.

When only one router on the network claims the DR role despite neighboring routers with higher priorities or router IDs, this router remains the DR. This is also true for BDRs.

The DR and BDR election process is performed when one of the following events occurs:

- An interface is in a waiting state and the wait time expires
- An interface is in a waiting state and a hello packet is received that addresses the BDR
- A change in the neighbor state occurs, such as:
 - A neighbor state transitions from 2 or higher
 - Communication to a neighbor is lost
 - A neighbor declares itself to be the DR or BDR for the first time

OSPF RFC 1583 and 2178 compliance

Brocade routers are configured, by default, to be compliant with the RFC 1583 OSPF V2 specification. Brocade routers can also be configured to operate with the latest OSPF standard, RFC 2178.
NOTE
For details on how to configure the system to operate with the RFC 2178, refer to “Modify OSPF standard compliance setting” on page 1206.

Reduction of equivalent AS External LSAs

An OSPF ASBR uses AS External link advertisements (AS External LSAs) to originate advertisements of a route to another routing domain, such as a BGP4 or RIP domain. The ASBR advertises the route to the external domain by flooding AS External LSAs to all the other OSPF routers (except those inside stub networks) within the local OSPF Autonomous System (AS).

In some cases, multiple ASBRs in an AS can originate equivalent LSAs. The LSAs are equivalent when they have the same cost, the same next hop, and the same destination. Brocade devices optimize OSPF by eliminating duplicate AS External LSAs in this case. The Layer 3 Switch with the lower router ID flushes the duplicate External LSAs from its database and thus does not flood the duplicate External LSAs into the OSPF AS. AS External LSA reduction therefore reduces the size of the Layer 3 Switch link state database.

This enhancement implements the portion of RFC 2328 that describes AS External LSA reduction. This enhancement is enabled by default, requires no configuration, and cannot be disabled.

Figure 148 shows an example of the AS External LSA reduction feature. In this example, Brocade Layer 3 Switches D and E are OSPF ASBRs, and thus communicate route information between the OSPF AS, which contains Routers A, B, and C, and another routing domain, which contains Router F. The other routing domain is running another routing protocol, such as BGP4 or RIP. Routers D, E, and F, therefore, are each running both OSPF and either BGP4 or RIP.
Notice that both Router D and Router E have a route to the other routing domain through Router F. In earlier software releases, if Routers D and E have equal-cost routes to Router F, then both Router D and Router E flood AS External LSAs to Routers A, B, and C advertising the route to Router F. Since both routers are flooding equivalent routes, Routers A, B, and C receive multiple routes with the same cost to the same destination (Router F). For Routers A, B, and C, either route to Router F (through Router D or through Router E) is equally good.

OSPF eliminates the duplicate AS External LSAs. When two or more Brocade Layer 3 Switches configured as ASBRs have equal-cost routes to the same next-hop router in an external routing domain, the ASBR with the highest router ID floods the AS External LSAs for the external domain into the OSPF AS, while the other ASBRs flush the equivalent AS External LSAs from their databases. As a result, the overall volume of route advertisement traffic within the AS is reduced and the Layer 3 Switches that flush the duplicate AS External LSAs have more memory for other OSPF data. In Figure 148, since Router D has a higher router ID than Router E, Router D floods the AS External LSAs for Router F to Routers A, B, and C. Router E flushes the equivalent AS External LSAs from its database.
Algorithm for AS External LSA reduction

Figure 148 shows an example in which the normal AS External LSA reduction feature is in effect. The behavior changes under the following conditions:

- There is one ASBR advertising (originating) a route to the external destination, but one of the following happens:
 - A second ASBR comes on-line
 - A second ASBR that is already on-line begins advertising an equivalent route to the same destination.

In either case above, the router with the higher router ID floods the AS External LSAs and the other router flushes its equivalent AS External LSAs. For example, if Router D is offline, Router E is the only source for a route to the external routing domain. When Router D comes on-line, it takes over flooding of the AS External LSAs to Router F, while Router E flushes its equivalent AS External LSAs to Router F.

- One of the ASBRs starts advertising a route that is no longer equivalent to the route the other ASBR is advertising. In this case, the ASBRs each flood AS External LSAs. Since the LSAs either no longer have the same cost or no longer have the same next-hop router, the LSAs are no longer equivalent, and the LSA reduction feature no longer applies.

- The ASBR with the higher router ID becomes unavailable or is reconfigured so that it is no longer an ASBR. In this case, the other ASBR floods the AS External LSAs. For example, if Router D goes off-line, then Router E starts flooding the AS with AS External LSAs for the route to Router F.

Support for OSPF RFC 2328 Appendix E

Brocade devices provide support for Appendix E in OSPF RFC 2328. Appendix E describes a method to ensure that an OSPF router (such as a Brocade Layer 3 Switch) generates unique link state IDs for type-5 (External) link state advertisements (LSAs) in cases where two networks have the same network address but different network masks.

NOTE

Support for Appendix E of RFC 2328 is enabled automatically and cannot be disabled. No user configuration is required.

Normally, an OSPF router uses the network address alone for the link state ID of the link state advertisement (LSA) for the network. For example, if the router needs to generate an LSA for network 10.1.2.3 255.0.0.0, the router generates ID 10.1.2.3 for the LSA.

However, suppose that an OSPF router needs to generate LSAs for all the following networks:

- 10.0.0.0 255.0.0.0
- 10.0.0.0 255.255.0.0
- 10.0.0.0 255.255.255.0

All three networks have the same network address, 10.0.0.0. Without support for RFC 2328 Appendix E, an OSPF router uses the same link state ID, 10.0.0.0, for the LSAs for all three networks. For example, if the router generates an LSA with ID 10.0.0.0 for network 10.0.0.0 255.0.0.0, this LSA conflicts with the LSA generated for network 10.0.0.0 255.255.0.0 or 10.0.0.0 255.255.255.0. The result is multiple LSAs that have the same ID but that contain different route information.
When appendix E is supported, the router generates the link state ID for a network as follows.

1. Does an LSA with the network address as its ID already exist?
 - No – Use the network address as the ID.
 - Yes – Go to step 2.

2. Compare the networks that have the same network address, to determine which network is more specific. The more specific network is the one that has more contiguous one bits in its network mask. For example, network 10.0.0.0 255.255.0.0 is more specific than network 10.0.0.0 255.0.0.0, because the first network has 16 ones bits (255.255.0.0) whereas the second network has only 8 ones bits (255.0.0.0):
 - For the less specific network, use the networks address as the ID.
 - For the more specific network, use the network broadcast address as the ID. The broadcast address is the network address, with all ones bits in the host portion of the address. For example, the broadcast address for network 10.0.0.0 255.255.0.0 is 10.0.0.255.

 If this comparison results in a change to the ID of an LSA that has already been generated, the router generates a new LSA to replace the previous one. For example, if the router has already generated an LSA for network with ID 10.0.0.0 for network 10.0.0.0 255.255.255.0, the router must generate a new LSA for the network, if the router needs to generate an LSA for network 10.0.0.0 255.255.0.0 or 10.0.0.0 255.0.0.0.

Dynamic OSPF activation and configuration

OSPF is automatically activated when you enable it. The protocol does not require a software reload.

You can configure and save the following OSPF changes without resetting the system:

- All OSPF interface-related parameters (for example: area, hello timer, router dead time cost, priority, re-transmission time, transit delay)
- All area parameters
- All area range parameters
- All virtual-link parameters
- All global parameters
- Creation and deletion of an area, interface or virtual link

In addition, you can make the following changes without a system reset by first disabling and then re-enabling OSPF operation:

- Changes to address ranges
- Changes to global values for redistribution
- Addition of new virtual links

You also can change the amount of memory allocated to various types of LSA entries. However, these changes require a system reset or reboot.
Dynamic OSPF memory

FastIron devices dynamically allocate memory for Link State Advertisements (LSAs) and other OSPF data structures. This eliminates overflow conditions and does not require a reload to change OSPF memory allocation. So long as the Layer 3 Switch has free (unallocated) dynamic memory, OSPF can use the memory.

To display the current allocations of dynamic memory, use the show memory command.

Configuring OSPF

Follow the steps given below to begin using OSPF on the router.

1. Enable OSPF on the router.
2. Assign the areas to which the router will be attached.
3. Assign individual interfaces to the OSPF areas.
4. Define redistribution filters, if desired.
5. Enable redistribution, if you defined redistribution filters.
6. Modify default global and port parameters as required.
7. Modify OSPF standard compliance, if desired.

NOTE

OSPF is automatically enabled without a system reset.

Configuration rules

• Brocade FastIron devices support a maximum of 676 OSPF interfaces.
• If a router is to operate as an ASBR, you must enable the ASBR capability at the system level.
• Redistribution must be enabled on routers configured to operate as ASBRs.
• All router ports must be assigned to one of the defined areas on an OSPF router. When a port is assigned to an area, all corresponding subnets on that port are automatically included in the assignment.

OSPF parameters

You can modify or set the following global and interface OSPF parameters.

Global parameters:

• Modify OSPF standard compliance setting.
• Assign an area.
• Define an area range.
• Define the area virtual link.
• Set global default metric for OSPF.
• Change the reference bandwidth for the default cost of OSPF interfaces.
• Disable or re-enable load sharing.
• Enable or disable default-information-originate.
• Modify Shortest Path First (SPF) timers
• Define external route summarization
• Define redistribution metric type.
• Define deny redistribution.
• Define permit redistribution.
• Enable redistribution.
• Change the LSA pacing interval.
• Modify OSPF Traps generated.
• Modify database overflow interval.

Interface parameters:

• Assign interfaces to an area.
• Define the authentication key for the interface.
• Change the authentication-change interval
• Modify the cost for a link.
• Modify the dead interval.
• Modify MD5 authentication key parameters.
• Modify the priority of the interface.
• Modify the retransmit interval for the interface.
• Modify the transit delay of the interface.

NOTE

When using the CLI, you set global level parameters at the OSPF CONFIG Level of the CLI. To reach that level, enter `router ospf...` at the global CONFIG Level. Interface parameters for OSPF are set at the interface CONFIG Level using the CLI command, `ip ospf...`

When using the Web Management Interface, you set OSPF global parameters using the OSPF configuration panel. All other parameters are accessed through links accessed from the OSPF configuration sheet.

Enable OSPF on the router

When you enable OSPF on the router, the protocol is automatically activated. To enable OSPF on the router, enter the following CLI command.

```
FastIron(config)# router ospf
```

This command launches you into the OSPF router level where you can assign areas and modify OSPF global parameters.
Note regarding disabling OSPF

If you disable OSPF, the Layer 3 Switch removes all the configuration information for the disabled protocol from the running-config. Moreover, when you save the configuration to the startup-config file after disabling one of these protocols, all the configuration information for the disabled protocol is removed from the startup-config file.

NOTE
If you are running software release 02.4.00 and later and do not want to delete the OSPF configuration information, use the CLI command `clear ip ospf process` instead of `no router ospf`. Refer to “Resetting OSPF” on page 1177.

When you enter the `no router ospf` command, the CLI displays a warning message such as the following.

`FastIron(config-ospf-router)# no router ospf
router ospf mode now disabled. All ospf config data will be lost when writing to flash!`

The Web Management Interface does not display a warning message.

If you have disabled the protocol but have not yet saved the configuration to the startup-config file and reloaded the software, you can restore the configuration information by re-entering the command to enable the protocol (ex: `router ospf`), or by selecting the Web management option to enable the protocol. If you have already saved the configuration to the startup-config file and reloaded the software, the information is gone.

If you are testing an OSPF configuration and are likely to disable and re-enable the protocol, you might want to make a backup copy of the startup-config file containing the protocol configuration information. This way, if you remove the configuration information by saving the configuration after disabling the protocol, you can restore the configuration by copying the backup copy of the startup-config file onto the flash memory.

Resetting OSPF

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later
- TurboIron X Series devices running software release 04.2.00 and later

The `clear ip ospf process all` command globally resets (disables then re-enables) OSPF without deleting the OSPF configuration information. This command is equivalent to entering the commands `no router ospf` followed by `router ospf`. Whereas the `no router ospf` command disables OSPF and removes all the configuration information for the disabled protocol from the running-config, the `router ospf` command re-enables OSPF and restores the OSPF configuration information.

The `clear ip ospf process all` command is useful if you are testing an OSPF configuration and are likely to disable and re-enable the protocol. This way, you do not have to save the configuration after disabling the protocol, and you do not have to restore the configuration by copying the backup copy of the startup-config file onto the flash memory.

To reset OSPF without deleting the OSPF configuration, enter the following command at the Global CONFIG level or at the Router OSPF level of the CLI.

`FastIron# clear ip ospf process all`
Syntax: clear ip ospf process all

Assign OSPF areas

Once OSPF is enabled on the system, you can assign areas. Assign an IP address or number as the area ID for each area. The area ID is representative of all IP addresses (subnets) on a router port. Each port on a router can support one area.

An area can be normal, a stub, or a Not-So-Stubby Area (NSSA):

- Normal – OSPF routers within a normal area can send and receive External Link State Advertisements (LSAs).
- Stub – OSPF routers within a stub area cannot send or receive External LSAs. In addition, OSPF routers in a stub area must use a default route to the area Area Border Router (ABR) or Autonomous System Boundary Router (ASBR) to send traffic out of the area.
- NSSA – The ASBR of an NSSA can import external route information into the area:
 - ASBRs redistribute (import) external routes into the NSSA as type 7 LSAs. Type-7 External LSAs are a special type of LSA generated only by ASBRs within an NSSA, and are flooded to all the routers within only that NSSA.
 - ABRs translate type 7 LSAs into type 5 External LSAs, which can then be flooded throughout the AS. You can configure address ranges on the ABR of an NSSA so that the ABR converts multiple type-7 External LSAs received from the NSSA into a single type-5 External LSA.

When an NSSA contains more than one ABR, OSPF elects one of the ABRs to perform the LSA translation for NSSA. OSPF elects the ABR with the highest router ID. If the elected ABR becomes unavailable, OSPF automatically elects the ABR with the next highest router ID to take over translation of LSAs for the NSSA. The election process for NSSA ABRs is automatic.

Example

To set up the OSPF areas shown in Figure 145 on page 1168, enter the following commands.

```
FastIron(config-ospf-router)# area 192.5.1.0
FastIron(config-ospf-router)# area 200.5.0.0
FastIron(config-ospf-router)# area 195.5.0.0
FastIron(config-ospf-router)# area 0.0.0.0
FastIron(config-ospf-router)# write memory
```

Syntax: area <num> | <ip-addr>

The <num> | <ip-addr> parameter specifies the area number, which can be a number or in IP address format. If you specify an number, the number can be from 0 – 2,147,483,647.

NOTE

You can assign one area on a router interface. For example, if the system or chassis module has 16 ports, 16 areas are supported on the chassis or module.
Assign a totally stubby area

By default, the Layer 3 Switch sends summary LSAs (LSA type 3) into stub areas. You can further reduce the number of link state advertisements (LSAs) sent into a stub area by configuring the Layer 3 Switch to stop sending summary LSAs (type 3 LSAs) into the area. You can disable the summary LSAs when you are configuring the stub area or later after you have configured the area.

This feature disables origination of summary LSAs, but the Layer 3 Switch still accepts summary LSAs from OSPF neighbors and floods them to other neighbors. The Layer 3 Switch can form adjacencies with other routers regardless of whether summarization is enabled or disabled for areas on each router.

When you enter a command or apply a Web management option to disable the summary LSAs, the change takes effect immediately. If you apply the option to a previously configured area, the Layer 3 Switch flushes all of the summary LSAs it has generated (as an ABR) from the area.

NOTE
This feature applies only when the Layer 3 Switch is configured as an Area Border Router (ABR) for the area. To completely prevent summary LSAs from being sent to the area, disable the summary LSAs on each OSPF router that is an ABR for the area.

This feature does not apply to Not So Stubby Areas (NSSAs).

To disable summary LSAs for a stub area, enter commands such as the following.

```
FastIron(config-ospf-router)# area 40 stub 99 no-summary
```

Syntax: `area <num> | <ip-addr> stub <cost> [no-summary]`

The `<num>` parameter specifies the area number, which can be a number or in IP address format. If you specify a number, the number can be from 0 – 2,147,483,647.

The `stub <cost>` parameter specifies an additional cost for using a route to or from this area and can be from 1 – 16,777,215. There is no default. Normal areas do not use the cost parameter.

The `no-summary` parameter applies only to stub areas and disables summary LSAs from being sent into the area.

NOTE
You can assign one area on a router interface. For example, if the system or chassis module has 16 ports, 16 areas are supported on the chassis or module.

Assign a Not-So-Stubby Area (NSSA)

The OSPF Not So Stubby Area (NSSA) feature enables you to configure OSPF areas that provide the benefits of stub areas, but that also are capable of importing external route information. OSPF does not flood external routes from other areas into an NSSA, but does translate and flood route information from the NSSA into other areas such as the backbone.

NSSAs are especially useful when you want to summarize Type-5 External LSAs (external routes) before forwarding them into an OSPF area. The OSPF specification (RFC 2328) prohibits summarization of Type-5 LSAs and requires OSPF to flood Type-5 LSAs throughout a routing domain. When you configure an NSSA, you can specify an address range for aggregating the external routes that the NSSA's ABR exports into other areas.

The Brocade implementation of NSSA is based on RFC 1587.
Figure 149 shows an example of an OSPF network containing an NSSA.

FIGURE 149 OSPF network containing an NSSA

This example shows two routing domains, a RIP domain and an OSPF domain. The ASBR inside the NSSA imports external routes from RIP into the NSSA as Type-7 LSAs, which the ASBR floods throughout the NSSA.

The ABR translates the Type-7 LSAs into Type-5 LSAs. If an area range is configured for the NSSA, the ABR also summarizes the LSAs into an aggregate LSA before flooding the Type-5 LSAs into the backbone.

Since the NSSA is partially “stubby” the ABR does not flood external LSAs from the backbone into the NSSA. To provide access to the rest of the Autonomous System (AS), the ABR generates a default Type-7 LSA into the NSSA.

Configuring an NSSA

To configure OSPF area 1.1.1.1 as an NSSA, enter the following commands.

```plaintext
FastIron(config)# router ospf
FastIron(config-ospf-router)# area 1.1.1.1 nssa 1
FastIron(config-ospf-router)# write memory
```

Syntax: `area <num> | <ip-addr> nssa <cost> | default-information-originate`

The `area <num> | <ip-addr> nssa <cost>` parameter specifies the area number, which can be a number or in IP address format. If you specify an number, the number can be from 0 – 2,147,483,647.

The `nssa <cost> | default-information-originate` parameter specifies that this is a Not-So-Stubby-Area (NSSA). The `cost` specifies an additional cost for using a route to or from this NSSA and can be from 1 – 16777215. There is no default. Normal areas do not use the cost parameter. Alternatively, you can use the `default-information-originate` parameter causes the Layer 3 Switch to inject the default route into the NSSA.
NOTE
The Layer 3 Switch does not inject the default route into an NSSA by default.

NOTE
You can assign one area on a router interface. For example, if the system or chassis module has 16 ports, 16 areas are supported on the chassis or module.

To configure additional parameters for OSPF interfaces in the NSSA, use the `ip ospf area` command at the interface level of the CLI.

Configuring a summary address for the NSSA
If you want the ABR that connects the NSSA to other areas to summarize the routes in the NSSA before translating them into Type-5 LSAs and flooding them into the other areas, configure a summary address. The ABR creates an aggregate value based on the summary address. The aggregate value becomes the address that the ABR advertises instead of advertising the individual addresses represented by the aggregate.

To configure a summary address in NSSA 1.1.1.1, enter the following commands. This example assumes that you have already configured NSSA 1.1.1.1.

```
FastIron(config)# router ospf
FastIron(config-ospf-router)# summary-address 209.157.22.1 255.255.0.0
FastIron(config-ospf-router)# write memory
```

Syntax: `[no] summary address <ip-addr> <ip-mask>

The `<ip-addr>` parameter specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the router.

The `<ip-mask>` parameter specifies the portions of the IP address that a route must contain to be summarized in the summary route. In the example above, all networks that begin with 209.157 are summarized into a single route.

Assigning an area range (optional)
You can assign a range for an area, but it is not required. Ranges allow a specific IP address and mask to represent a range of IP addresses within an area, so that only that reference range address is advertised to the network, instead of all the addresses within that range. Each area can have up to 32 range addresses.

Example
To define an area range for subnets on 193.45.5.1 and 193.45.6.2, enter the following command.

```
FastIron(config)# router ospf
FastIron(config-ospf-router)# area 192.45.5.1 range 193.45.0.0 255.255.0.0
FastIron(config-ospf-router)# area 193.45.6.2 range 193.45.0.0 255.255.0.0
```

Syntax: `area <num> | <ip-addr> range <ip-addr> <ip-mask`

The `<num>` | `<ip-addr>` parameter specifies the area number, which can be in IP address format.

The `range` `<ip-addr>` parameter specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the router.
The `<ip-mask>` parameter specifies the portions of the IP address that a route must contain to be summarized in the summary route. In the example above, all networks that begin with 193.45 are summarized into a single route.

Assigning interfaces to an area

Once you define OSPF areas, you can assign interfaces to the areas. All router ports must be assigned to one of the defined areas on an OSPF router. When a port is assigned to an area, all corresponding subnets on that port are automatically included in the assignment.

To assign interface 1/8 to area 195.5.0.0 and then save the changes, enter the following commands.

```
FastIron(config-ospf-router)# interface e 1/8
FastIron(config-if-1/8)# ip ospf area 195.5.0.0
FastIron(config-if-1/8)# write memory
```

Modify interface defaults

OSPF has interface parameters that you can configure. For simplicity, each of these parameters has a default value. No change to these default values is required except as needed for specific network configurations.

Port default values can be modified using the following commands at the interface configuration level of the CLI:

- `ip ospf area <ip-addr>`
- `ip ospf auth-change-wait-time <secs>`
- `ip ospf authentication-key [0 | 1] <string>`
- `ip ospf cost <num>`
- `ip ospf dead-interval <value>`
- `ip ospf hello-interval <value>`
- `ip ospf md5-authentication key-activation-wait-time <num> | key-id <num> [0 | 1] key <string>`
- `ip ospf passive`
- `ip ospf priority <value>`
- `ip ospf retransmit-interval <value>`
- `ip ospf transmit-delay <value>`

For a complete description of these parameters, see the summary of OSPF port parameters in the next section.

OSPF interface parameters

The following parameters apply to OSPF interfaces.

Area: Assigns an interface to a specific area. You can assign either an IP address or number to represent an OSPF Area ID. If you assign a number, it can be any value from 0 – 2,147,483,647.
Auth-change-wait-time: OSPF gracefully implements authentication changes to allow all routers to implement the change and thus prevent disruption to neighbor adjacencies. During the authentication-change interval, both the old and new authentication information is supported. The default authentication-change interval is 300 seconds (5 minutes). You change the interval to a value from 0 – 14400 seconds.

Authentication-key: OSPF supports three methods of authentication for each interface—none, simple password, and MD5. Only one method of authentication can be active on an interface at a time. The default authentication value is none, meaning no authentication is performed.

The simple password method of authentication requires you to configure an alphanumeric password on an interface. The simple password setting takes effect immediately. All OSPF packets transmitted on the interface contain this password. Any OSPF packet received on the interface is checked for this password. If the password is not present, then the packet is dropped. The password can be up to eight characters long.

The MD5 method of authentication requires you to configure a key ID and an MD5 key. The key ID is a number from 1 – 255 and identifies the MD5 key that is being used. The MD5 key can be up to sixteen alphanumeric characters long.

Cost: Indicates the overhead required to send a packet across an interface. You can modify the cost to differentiate between 100 Mbps and 1000 Mbps (1 Gbps) links. The default cost is calculated by dividing 100 million by the bandwidth. For 10 Mbps links, the cost is 10. The cost for both 100 Mbps and 1000 Mbps links is 1, because the speed of 1000 Mbps was not in use at the time the OSPF cost formula was devised.

Dead-interval: Indicates the number of seconds that a neighbor router waits for a hello packet from the current router before declaring the router down. The value can be from 1 – 65535 seconds. The default is 40 seconds.

Hello-interval: Represents the length of time between the transmission of hello packets. The value can be from 1 – 65535 seconds. The default is 10 seconds.

MD5-authentication activation wait time: The number of seconds the Layer 3 Switch waits until placing a new MD5 key into effect. The wait time provides a way to gracefully transition from one MD5 key to another without disturbing the network. The wait time can be from 0 – 14400 seconds. The default is 300 seconds (5 minutes).

MD5-authentication key ID and key: A method of authentication that requires you to configure a key ID and an MD5 key. The key ID is a number from 1 – 255 and identifies the MD5 key that is being used. The MD5 key consists of up to 16 alphanumeric characters. The MD5 is encrypted and included in each OSPF packet transmitted.

Passive: When you configure an OSPF interface to be passive, that interface does not send or receive OSPF route updates. By default, all OSPF interfaces are active and thus can send and receive OSPF route information. Since a passive interface does not send or receive route information, the interface is in effect a stub network. OSPF interfaces are active by default.

NOTE
This option affects all IP subnets configured on the interface. If you want to disable OSPF updates only on some of the IP subnets on the interface, use the `ospf-ignore` or `ospf-passive` parameter with the `ip address` command. Refer to “Assigning an IP address to an Ethernet port” on page 993.
Priority: Allows you to modify the priority of an OSPF router. The priority is used when selecting the designated router (DR) and backup designated routers (BDRs). The value can be from 0 – 255. The default is 1. If you set the priority to 0, the Layer 3 Switch does not participate in DR and BDR election.

Retransmit-interval: The time between retransmissions of link-state advertisements (LSAs) to adjacent routers for this interface. The value can be from 0 – 3600 seconds. The default is 5 seconds.

Transit-delay: The time it takes to transmit Link State Update packets on this interface. The value can be from 0 – 3600 seconds. The default is 1 second.

Encrypted Display of the Authentication String or MD5 Authentication Key

The optional 0 | 1 parameter with the `authentication-key` and `md5-authentication key-id` parameters affects encryption.

For added security, FastIron devices encrypt display of the password or authentication string. Encryption is enabled by default. The software also provides an optional parameter to disable encryption of a password or authentication string, on an individual OSPF area or OSPF interface basis.

When encryption of the passwords or authentication strings is enabled, they are encrypted in the CLI regardless of the access level you are using. In the Web Management Interface, the passwords or authentication strings are encrypted at the read-only access level but are visible at the read-write access level.

The encryption option can be omitted (the default) or can be one of the following:

- **0** – Disables encryption for the password or authentication string you specify with the command. The password or string is shown as clear text in the running-config and the startup-config file. Use this option if you do not want display of the password or string to be encrypted.
- **1** – Assumes that the password or authentication string you enter is the encrypted form, and decrypts the value before using it.

NOTE

If you want the software to assume that the value you enter is the clear-text form, and to encrypt display of that form, do not enter **0** or **1**. Instead, omit the encryption option and allow the software to use the default behavior.

If you specify encryption option **1**, the software assumes that you are entering the encrypted form of the password or authentication string. In this case, the software decrypts the password or string you enter before using the value for authentication. If you accidentally enter option **1** followed by the clear-text version of the password or string, authentication will fail because the value used by the software will not match the value you intended to use.

Change the timer for OSPF authentication changes

When you make an OSPF authentication change, the software uses the authentication-change timer to gracefully implement the change. The software implements the change in the following ways:
• Outgoing OSPF packets – After you make the change, the software continues to use the old authentication to send packets, during the remainder of the current authentication-change interval. After this, the software uses the new authentication for sending packets.

• Inbound OSPF packets – The software accepts packets containing the new authentication and continues to accept packets containing the older authentication for two authentication-change intervals. After the second interval ends, the software accepts packets only if they contain the new authentication key.

The default authentication-change interval is 300 seconds (5 minutes). You change the interval to a value from 0 – 14400 seconds.

OSPF provides graceful authentication change for all the following types of authentication changes in OSPF:

• Changing authentication methods from one of the following to another of the following:
 • Simple text password
 • MD5 authentication
 • No authentication

• Configuring a new simple text password or MD5 authentication key

• Changing an existing simple text password or MD5 authentication key

To change the authentication-change interval, enter a command such as the following at the interface configuration level of the CLI.

FastIron(config-if-2/5)# ip ospf auth-change-wait-time 400

Syntax: [no] ip ospf auth-change-wait-time <secs>

The <secs> parameter specifies the interval and can be from 0 – 14400 seconds. The default is 300 seconds (5 minutes).

NOTE
For backward compatibility, the `ip ospf md5-authentication key-activation-wait-time <seconds>` command is still supported.

Block flooding of outbound LSAs on specific OSPF interfaces

By default, the Layer 3 Switch floods all outbound LSAs on all the OSPF interfaces within an area. You can configure a filter to block outbound LSAs on an OSPF interface. This feature is particularly useful when you want to block LSAs from some, but not all, of the interfaces attached to the area.

After you apply filters to block the outbound LSAs, the filtering occurs during the database synchronization and flooding.

If you remove the filters, the blocked LSAs are automatically re-flooded. You do not need to reset OSPF to re-flood the LSAs.

NOTE
You cannot block LSAs on virtual links.

To apply a filter to an OSPF interface to block flooding of outbound LSAs on the interface, enter the following command at the Interface configuration level for that interface.

FastIron(config-if-1/1)# ip ospf database-filter all out
The command in this example blocks all outbound LSAs on the OSPF interface configured on port 1/1.

Syntax: [no] ip ospf database-filter all out
To remove the filter, enter a command such as the following.

FastIron(config-if-1/1)# no ip ospf database-filter all out

Configuring an OSPF non-broadcast interface

Platform Support:
- FESX and FSX Layer 3 devices running software release 02.3.01 and later

Layer 3 switches support Non-Broadcast Multi-Access (NBMA) networks. This feature enables you to configure an interface on a Brocade device to send OSPF traffic to its neighbor as unicast packets rather than broadcast packets.

OSPF routers generally use broadcast packets to establish neighbor relationships and broadcast route updates on Ethernet and virtual interfaces (VEs). In this release, as an alternative, you can configure the Brocade device to use unicast packets for this purpose. This can be useful in situations where multicast traffic is not feasible (for example when a firewall does not allow multicast packets).

On a non-broadcast interface, the routers at the other end of this interface must also be configured as non-broadcast and neighbor routers. There is no restriction on the number of routers sharing a non-broadcast interface (for example, through a hub or switch).

NOTE
Only Ethernet interfaces or VEs can be configured as non-broadcast interfaces.

To configure an OSPF interface as a non-broadcast interface, enable the feature on a physical interface or a VE, following the ip ospf area statement, and then specify the IP address of the neighbor in the OSPF configuration. The non-broadcast interface configuration must be done on the OSPF routers on both ends of the link.

For example, the following commands configure VE 20 as a non-broadcast interface.

FastIron(config)# int ve 20
FastIron(config-vif-20)# ip ospf area 0
FastIron(config-vif-20)# ip ospf network non-broadcast
FastIron(config-vif-20)# exit

Syntax: [no] ip ospf network non-broadcast

The following commands specify 1.1.20.1 as an OSPF neighbor address. The address specified must be in the same subnet as a non-broadcast interface.

FastIron(config)# router ospf
FastIron(config ospf-router)# neighbor 1.1.20.1

For example, to configure the feature in a network with three routers connected by a hub or switch, each router must have the linking interface configured as a non-broadcast interface, and both of the other routers must be specified as neighbors.

The output of the show ip ospf interface command has been enhanced to display information about non-broadcast interfaces and neighbors that are configured in the same subnet.
Example

FastIron# show ip ospf interface
v20,OSPF enabled
 IP Address 1.1.20.4, Area 0
 OSPF state BD, Pri 1, Cost 1, Options 2, Type non-broadcast Events 6
 Timers(sec): Transit 1, Retrans 5, Hello 10, Dead 40
 DR: Router ID 1.1.13.1 Interface Address 1.1.20.5
 BDR: Router ID 2.2.2.1 Interface Address 1.1.20.4
 Neighbor Count = 1, Adjacent Neighbor Count= 2
 Non-broadcast neighbor config: 1.1.20.1, 1.1.20.2, 1.1.20.3, 1.1.20.5,
 Neighbor: 1.1.20.5
 Authentication-Key:None
 MD5 Authentication: Key None, Key-Id None, Auth-change-wait-time 300

In the Type field, “non-broadcast” indicates that this is a non-broadcast interface. When the interface type is non-broadcast, the Non-broadcast neighbor config field displays the neighbors that are configured in the same subnet. If no neighbors are configured in the same subnet, a message such as the following is displayed.

***Warning! no non-broadcast neighbor config in 1.1.100.1 255.255.255.0

Assign virtual links

All ABRs (area border routers) must have either a direct or indirect link to the OSPF backbone area (0.0.0.0 or 0). If an ABR does not have a physical link to the area backbone, the ABR can configure a virtual link to another router within the same area, which has a physical connection to the area backbone.

The path for a virtual link is through an area shared by the neighbor ABR (router with a physical backbone connection), and the ABR requiring a logical connection to the backbone.

Two parameters fields must be defined for all virtual links—transit area ID and neighbor router:

- The transit area ID represents the shared area of the two ABRs and serves as the connection point between the two routers. This number should match the area ID value.
- The neighbor router field is the router ID (IP address) of the router that is physically connected to the backbone, when assigned from the router interface requiring a logical connection. When assigning the parameters from the router with the physical connection, the router ID is the IP address of the router requiring a logical connection to the backbone.

NOTE
By default, the Brocade router ID is the IP address configured on the lowest numbered loopback interface. If the Layer 3 Switch does not have a loopback interface, the default router ID is the lowest numbered IP address configured on the device. For more information or to change the router ID, refer to “Changing the router ID” on page 1002.

NOTE
When you establish an area virtual link, you must configure it on both of the routers (both ends of the virtual link).
Example

Figure 150 shows an OSPF area border router, FastIronA, that is cut off from the backbone area (area 0). To provide backbone access to FastIronA, you can add a virtual link between FastIronA and FastIronC using area 1 as a transit area. To configure the virtual link, you define the link on the router that is at each end of the link. No configuration for the virtual link is required on the routers in the transit area.

To define the virtual link on FastIronA, enter the following commands.

```
FastIronA(config-ospf-router)# area 1 virtual-link 209.157.22.1
FastIronA(config-ospf-router)# write memory
```

Enter the following commands to configure the virtual link on FastIronC.

```
FastIronC(config-ospf-router)# area 1 virtual-link 10.0.0.1
FastIronC(config-ospf-router)# write memory
```

Syntax:
```
area <ip-addr> | <num> virtual-link <router-id>  
[authentication-key | dead-interval | hello-interval | retransmit-interval | transmit-delay <value>]
```

The `area <ip-addr> | <num>` parameter specifies the transit area.

The `<router-id>` parameter specifies the router ID of the OSPF router at the remote end of the virtual link. To display the router ID on a Brocade Layer 3 Switch, enter the `show ip` command.
Modify virtual link parameters

OSPF has some parameters that you can modify for virtual links. Notice that these are the same parameters as the ones you can modify for physical interfaces.

You can modify default values for virtual links using the following CLI command at the OSPF router level of the CLI, as shown in the following syntax.

```plaintext
Syntax: area <num> | <ip-addr> virtual-link <ip-addr> [authentication-key [0 | 1] <string>] [dead-interval <num>] [hello-interval <num>] [md5-authentication key-activation-wait-time <num> | key-id <num> [0 | 1] key <string>] [retransmit-interval <num>] [transmit-delay <num>]
```

The parameters are described below.

Virtual link parameter descriptions

You can modify the following virtual link interface parameters.

Authentication Key: This parameter allows you to assign different authentication methods on a port-by-port basis. OSPF supports three methods of authentication for each interface—none, simple password, and MD5. Only one method of authentication can be active on an interface at a time.

The simple password method of authentication requires you to configure an alphanumeric password on an interface. The password can be up to eight characters long. The simple password setting takes effect immediately. All OSPF packets transmitted on the interface contain this password. All OSPF packets received on the interface are checked for this password. If the password is not present, the packet is dropped.

The MD5 method of authentication encrypts the authentication key you define. The authentication is included in each OSPF packet transmitted.

MD5 Authentication Key: When simple authentication is enabled, the key is an alphanumeric password of up to eight characters. When MD5 is enabled, the key is an alphanumeric password of up to 16 characters that is later encrypted and included in each OSPF packet transmitted. You must enter a password in this field when the system is configured to operate with either simple or MD5 authentication.

MD5 Authentication Key ID: The Key ID is a number from 1 – 255 and identifies the MD5 key that is being used. This parameter is required to differentiate among multiple keys defined on a router.

MD5 Authentication Wait Time: This parameter determines when a newly configured MD5 authentication key is valid. This parameter provides a graceful transition from one MD5 key to another without disturbing the network. All new packets transmitted after the key activation wait time interval use the newly configured MD5 Key. OSPF packets that contain the old MD5 key are accepted for up to five minutes after the new MD5 key is in operation.

The range for the key activation wait time is from 0 – 14400 seconds. The default value is 300 seconds.

Hello Interval: The length of time between the transmission of hello packets. The range is 1 – 65535 seconds. The default is 10 seconds.
Configuring OSPF

Retransmit Interval: The interval between the re-transmission of link state advertisements to router adjacencies for this interface. The range is 0 – 3600 seconds. The default is 5 seconds.

Transmit Delay: The period of time it takes to transmit Link State Update packets on the interface. The range is 0 – 3600 seconds. The default is 1 second.

Dead Interval: The number of seconds that a neighbor router waits for a hello packet from the current router before declaring the router down. The range is 1 – 65535 seconds. The default is 40 seconds.

Encrypted display of the authentication string or MD5 authentication key
The optional 0 | 1 parameter with the authentication-key and md5-authentication key-id parameters affects encryption.

For added security, FastIron devices encrypt display of the password or authentication string. Encryption is enabled by default. The software also provides an optional parameter to disable encryption of a password or authentication string, on an individual OSPF area or OSPF interface basis.

When encryption of the passwords or authentication strings is enabled, they are encrypted in the CLI regardless of the access level you are using. In the Web Management Interface, the passwords or authentication strings are encrypted at the read-only access level but are visible at the read-write access level.

The encryption option can be omitted (the default) or can be one of the following:

• 0 – Disables encryption for the password or authentication string you specify with the command. The password or string is shown as clear text in the running-config and the startup-config file. Use this option if you do not want display of the password or string to be encrypted.

• 1 – Assumes that the password or authentication string you enter is the encrypted form, and decrypts the value before using it.

NOTE
If you want the software to assume that the value you enter is the clear-text form, and to encrypt display of that form, do not enter 0 or 1. Instead, omit the encryption option and allow the software to use the default behavior.

If you specify encryption option 1, the software assumes that you are entering the encrypted form of the password or authentication string. In this case, the software decrypts the password or string you enter before using the value for authentication. If you accidentally enter option 1 followed by the clear-text version of the password or string, authentication will fail because the value used by the software will not match the value you intended to use.

Changing the reference bandwidth for the cost on OSPF interfaces

Each interface on which OSPF is enabled has a cost associated with it. The Layer 3 Switch advertises its interfaces and their costs to OSPF neighbors. For example, if an interface has an OSPF cost of ten, the Layer 3 Switch advertises the interface with a cost of ten to other OSPF routers.
By default, an interface OSPF cost is based on the port speed of the interface. The cost is calculated by dividing the reference bandwidth by the port speed. The default reference bandwidth is 100 Mbps, which results in the following default costs:

- 10 Mbps port – 10
- All other port speeds – 1

You can change the reference bandwidth, to change the costs calculated by the software.

The software uses the following formula to calculate the cost.

\[
\text{Cost} = \frac{\text{reference-bandwidth}}{\text{interface-speed}}
\]

If the resulting cost is less than 1, the software rounds the cost up to 1. The default reference bandwidth results in the following costs:

- 10 Mbps port cost = \(\frac{100}{10} = 10 \)
- 100 Mbps port cost = \(\frac{100}{100} = 1 \)
- 1000 Mbps port cost = \(\frac{100}{1000} = 0.10 \), which is rounded up to 1
- 155 Mbps port cost = \(\frac{100}{155} = 0.65 \), which is rounded up to 1
- 622 Mbps port cost = \(\frac{100}{622} = 0.16 \), which is rounded up to 1
- 2488 Mbps port cost = \(\frac{100}{2488} = 0.04 \), which is rounded up to 1

For 10 Gbps OSPF interfaces, in order to differentiate the costs between 100 Mbps, 1000 Mbps, and 10,000 Mbps interfaces, you can set the auto-cost reference bandwidth to 10000, whereby each slower link is given a higher cost, as follows:

- 10 Mbps port cost = \(\frac{10000}{10} = 1000 \)
- 100 Mbps port cost = \(\frac{10000}{100} = 100 \)
- 1000 Mbps port cost = \(\frac{10000}{1000} = 10 \)
- 10000 Mbps port cost = \(\frac{10000}{10000} = 1 \)

The bandwidth for interfaces that consist of more than one physical port is calculated as follows:

- Trunk group – The combined bandwidth of all the ports.
- Virtual interface – The combined bandwidth of all the ports in the port-based VLAN that contains the virtual interface.

The default reference bandwidth is 100 Mbps. You can change the reference bandwidth to a value from 1 – 4294967.

If a change to the reference bandwidth results in a cost change to an interface, the Layer 3 Switch sends a link-state update to update the costs of interfaces advertised by the Layer 3 Switch.

NOTE

If you specify the cost for an individual interface, the cost you specify overrides the cost calculated by the software.

Interface types to which the reference bandwidth does not apply

Some interface types are not affected by the reference bandwidth and always have the same cost regardless of the reference bandwidth in use:

- The cost of a loopback interface is always 0.
The cost of a virtual link is calculated using the Shortest Path First (SPF) algorithm and is not affected by the auto-cost feature.

The bandwidth for tunnel interfaces is 9 Kbps and is not affected by the auto-cost feature.

Changing the reference bandwidth

To change the reference bandwidth, enter a command such as the following at the OSPF configuration level of the CLI.

```
FastIron(config-ospf-router)# auto-cost reference-bandwidth 500
```

The reference bandwidth specified in this example results in the following costs:

- 10 Mbps port cost = \(\frac{500}{10} = 50\)
- 100 Mbps port cost = \(\frac{500}{100} = 5\)
- 1000 Mbps port cost = \(\frac{500}{1000} = 0.5\), which is rounded up to 1
- 155 Mbps port cost = \(\frac{500}{155} = 3.23\), which is rounded up to 4
- 622 Mbps port cost = \(\frac{500}{622} = 0.80\), which is rounded up to 1
- 2488 Mbps port cost = \(\frac{500}{2488} = 0.20\), which is rounded up to 1

The costs for 10 Mbps, 100 Mbps, and 155 Mbps ports change as a result of the changed reference bandwidth. Costs for higher-speed interfaces remain the same.

Syntax: `[no] auto-cost reference-bandwidth <num>`

The `<num>` parameter specifies the reference bandwidth and can be a value from 1 – 4294967. The default is 100. For 10 Gbps OSPF interfaces, in order to differentiate the costs between 100 Mbps, 1000 Mbps, and 10,000 Mbps interfaces, set the auto-cost reference bandwidth to 10000, whereby each slower link is given a higher cost.

To restore the reference bandwidth to its default value and thus restore the default costs of interfaces to their default values, enter the following command.

```
FastIron(config-ospf-router)# no auto-cost reference-bandwidth
```

Define redistribution filters

Route redistribution imports and translates different protocol routes into a specified protocol type. On Brocade routers, redistribution is supported for static routes, OSPF, RIP, and BGP4. When you configure redistribution for RIP, you can specify that static, OSPF, or BGP4 routes are imported into RIP routes. Likewise, OSPF redistribution supports the import of static, RIP, and BGP4 routes into OSPF routes. BGP4 supports redistribution of static, RIP, and OSPF routes into BGP4.

NOTE

The Layer 3 Switch advertises the default route into OSPF even if redistribution is not enabled, and even if the default route is learned through an IBGP neighbor. IBGP routes (including the default route) are not redistributed into OSPF by OSPF redistribution (for example, by the OSPF `redistribute` command).

In Figure 151 on page 1193, an administrator wants to configure the FastIron Layer 3 Switch acting as the ASBR (Autonomous System Boundary Router) between the RIP domain and the OSPF domain to redistribute routes between the two domains.
NOTE
The ASBR must be running both RIP and OSPF protocols to support this activity.

To configure for redistribution, define the redistribution tables with deny and permit redistribution filters. Use the *deny* and *permit* redistribute commands for OSPF at the OSPF router level.

NOTE
Do not enable redistribution until you have configured the redistribution filters. If you enable redistribution before you configure the redistribution filters, the filters will not take affect and all routes will be distributed.

FIGURE 151 Redistributing OSPF and static routes to RIP routes

Example
To configure the FastIron Layer 3 Switch acting as an ASBR in **Figure 151** to redistribute OSPF, BGP4, and static routes into RIP, enter the following commands.

```
FastIronASBR(config)# router rip
FastIronASBR(config-rip-router)# permit redistribute 1 all
FastIronASBR(config-rip-router)# write memory
```

NOTE
Redistribution is permitted for all routes by default, so the *permit redistribute 1 all* command in the example above is shown for clarity but is not required.
You also have the option of specifying import of just OSPF, BGP4, or static routes, as well as specifying that only routes for a specific network or with a specific cost (metric) be imported, as shown in the command syntax below.

Syntax: deny | permit redistribute <filter-num> all | bgp | connected | rip | static [address <ip-addr> <ip-mask> [match-metric <value> [set-metric <value>]]]

Example

To redistribute RIP, static, and BGP4 routes into OSPF, enter the following commands on the Layer 3 Switch acting as an ASBR.

```
FastIronASBR(config)# router ospf
FastIronASBR(config-ospf-router)# permit redistribute 1 all
FastIronASBR(config-ospf-router)# write memory
```

Syntax: deny | permit redistribute <filter-num> all | bgp | connected | rip | static address <ip-addr> <ip-mask> [match-metric <value> | set-metric <value>]

NOTE
Redistribution is permitted for all routes by default, so the permit redistribute 1 all command in the example above is shown for clarity but is not required.

You also have the option of specifying import of just OSPF, BGP4, or static routes, as well as specifying that only routes for a specific network or with a specific cost (metric) be imported, as shown in the command syntax below.

Syntax: [no] redistribution bgp | connected | rip | static [route-map <map-name>]

For example, to enable redistribution of RIP and static IP routes into OSPF, enter the following commands.

```
FastIron(config)# router ospf
FastIron(config-ospf-router)# redistribution rip
FastIron(config-ospf-router)# redistribution static
FastIron(config-ospf-router)# write memory
```

NOTE
The redistribution command does not perform the same function as the permit redistribute and deny redistribute commands. The redistribute commands allow you to control redistribution of routes by filtering on the IP address and network mask of a route. The redistribution commands enable redistribution for routes of specific types (static, directly connected, and so on). Configure all your redistribution filters before enabling redistribution.

NOTE
Do not enable redistribution until you have configured the redistribution filters. If you enable redistribution before you configure the redistribution filters, the filters will not take affect and all routes will be distributed.

Prevent specific OSPF routes from being installed in the IP route table

By default, all OSPF routes in the OSPF route table are eligible for installation in the IP route table. You can configure a distribution list to explicitly deny specific routes from being eligible for installation in the IP route table.
Configuring OSPF

NOTE
This feature does not block receipt of LSAs for the denied routes. The Layer 3 Switch still receives the routes and installs them in the OSPF database. The feature only prevents the software from installing the denied OSPF routes into the IP route table.

To configure an OSPF distribution list:

- Configure a standard or extended ACL that identifies the routes you want to deny. Using a standard ACL lets you deny routes based on the destination network, but does not filter based on the network mask. To also filter based on the destination network network mask, use an extended ACL.
- Configure an OSPF distribution list that uses the ACL as input.

NOTE
If you change the ACL after you configure the OSPF distribution list, you must clear the IP route table to place the changed ACL into effect. To clear the IP route table, enter the `clear ip route` command at the Privileged EXEC level of the CLI.

The following sections show how to use the CLI to configure an OSPF distribution list. Separate examples are provided for standard and extended ACLs.

NOTE
The examples show named ACLs. However, you also can use a numbered ACL as input to the OSPF distribution list.

Using a standard ACL as input to the distribution list
To use a standard ACL to configure an OSPF distribution list for denying specific routes, enter commands such as the following:

FastIron(config)# ip access-list standard no_ip
FastIron(config-std-nACL)# deny 4.0.0.0 0.255.255.255
FastIron(config-std-nACL)# permit any any
FastIron(config-std-nACL)# exit
FastIron(config)# router ospf
FastIron(config-ospf-router)# distribute-list no_ip in

The first three commands configure a standard ACL that denies routes to any 4.x.x.x destination network and allows all other routes for eligibility to be installed in the IP route table. The last three commands change the CLI to the OSPF configuration level and configure an OSPF distribution list that uses the ACL as input. The distribution list prevents routes to any 4.x.x.x destination network from entering the IP route table. The distribution list does not prevent the routes from entering the OSPF database.

Syntax: `[no] distribute-list <ACL-name> | <ACL-id> in [interface-type] [interface-number]`
Syntax: `[no] ip access-list standard <ACL-name> | <ACL-id>`
Syntax: `deny | permit <source-ip> <wildcard>`

The `<ACL-name> | <ACL-id>` parameter specifies the ACL name or ID.

The `in` command applies the ACL to incoming route updates.

The `<interface-number>` parameter specifies the interface number on which to apply the ACL. Enter only one valid interface number. If necessary, use the `show interface brief` command to display a list of valid interfaces. If you do not specify an interface, the Brocade device applies the ACL to all incoming route updates.
If you do not specify an interface type and interface number, the device applies the OSPF distribution list to all incoming route updates.

The **deny** | **permit** parameter indicates whether packets that match the policy are dropped or forwarded.

The `<source-ip>` parameter specifies the source address for the policy. Since this ACL is input to an OSPF distribution list, the `<source-ip>` parameter actually is specifying the destination network of the route.

The `<wildcard>` parameter specifies the portion of the source address to match against. The `<wildcard>` is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example 0.0.0.255. Zeros in the mask mean the packet source address must match the `<source-ip>`. Ones mean any value matches. For example, the `<source-ip>` and `<wildcard>` values 4.0.0.0 0.255.255.255 mean that all 4.x.x.x networks match the ACL.

If you want the policy to match on all destination networks, enter **any any**.

If you prefer to specify the wildcard (mask value) in Classless Interdomain Routing (CIDR) format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of "4.0.0.0 0.255.255.255" as "4.0.0.0/8". The CLI automatically converts the CIDR number into the appropriate ACL mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into zeros.

NOTE
If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in "/<mask-bits>" format. To enable the software to display the CIDR masks, enter the `ip show-subnet-length` command at the global CONFIG level of the CLI. You can use the CIDR format to configure the ACL entry regardless of whether the software is configured to display the masks in CIDR format.

If you use the CIDR format, the ACL entries appear in this format in the running-config and startup-config files, but are shown with subnet mask in the display produced by the **show ip access-list** command.

Using an extended ACL as input to the distribution list
You can use an extended ACL with an OSPF distribution list to filter OSPF routes based on the network mask of the destination network.

To use an extended ACL to configure an OSPF distribution list for denying specific routes, enter commands such as the following.

```
FastIron(config)# ip access-list extended no_ip
FastIron(config-ext-nACL)# deny ip 4.0.0.0 0.255.255.255 255.255.0.0 0.0.255.255
FastIron(config-ext-nACL)# permit ip any any
FastIron(config-ext-nACL)# exit
FastIron(config)# router ospf
FastIron(config-ospf-router)# distribute-list no_ip in
```
The first three commands configure an extended ACL that denies routes to any 4.x.x.x destination network with a 255.255.0.0 network mask and allows all other routes for eligibility to be installed in the IP route table. The last three commands change the CLI to the OSPF configuration level and configure an OSPF distribution list that uses the ACL as input. The distribution list prevents routes to any 4.x.x.x destination network with network mask 255.255.0.0 from entering the IP route table. The distribution list does not prevent the routes from entering the OSPF database.

Syntax: [no] ip access-list extended <ACL-name> | <ACL-id>

Syntax: deny | permit <ip-protocol> <source-ip> <wildcard> <destination-ip> <wildcard>

The <ACL-name> | <ACL-id> parameter specifies the ACL name or ID.

The deny | permit parameter indicates whether packets that match the policy are dropped or forwarded.

The <ip-protocol> parameter indicates the type of IP packet you are filtering. When using an extended ACL as input for an OSPF distribution list, specify ip.

Since this ACL is input to an OSPF distribution list, the <source-ip> parameter actually specifies the destination network of the route.

The <wildcard> parameter specifies the portion of the source address to match against. The <wildcard> is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example 0.0.0.255. Zeros in the mask mean the packet source address must match the <source-ip>. Ones mean any value matches. For example, the <source-ip> and <wildcard> values 4.0.0.0 0.255.255.255 mean that all 4.x.x.x networks match the ACL.

If you want the policy to match on all network addresses, enter any any.

If you prefer to specify the wildcard (mask value) in Classless Interdomain Routing (CIDR) format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of "4.0.0.0 0.255.255.255" as "4.0.0.0/8". The CLI automatically converts the CIDR number into the appropriate ACL mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into zeros.

NOTE

If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in "/<mask-bits>" format. To enable the software to display the CIDR masks, enter the ip show-subnet-length command at the global CONFIG level of the CLI. You can use the CIDR format to configure the ACL entry regardless of whether the software is configured to display the masks in CIDR format.

If you use the CIDR format, the ACL entries appear in this format in the running-config and startup-config files, but are shown with subnet mask in the display produced by the show ip access-list commands.

Since this ACL is input to an OSPF distribution list, the <destination-ip> parameter actually specifies the subnet mask of the route.

The <wildcard> parameter specifies the portion of the subnet mask to match against. For example, the <destination-ip> and <wildcard> values 255.255.255.255 0.0.0.255 mean that subnet mask /24 and longer match the ACL.

If you want the policy to match on all network masks, enter any any.
Modify default metric for redistribution

The default metric is a global parameter that specifies the cost applied to all OSPF routes by default. The default value is 10. You can assign a cost from 1 – 15.

NOTE
You also can define the cost on individual interfaces. The interface cost overrides the default cost.

To assign a default metric of 4 to all routes imported into OSPF, enter the following commands.

```
FastIron(config)# router ospf
FastIron(config-ospf-router)# default-metric 4
```

Syntax: `default-metric <value>`

The `<value>` can be from 1 – 16,777,215. The default is 10.

Enable route redistribution

To enable route redistribution, use one of the following methods.

NOTE
Do not enable redistribution until you have configured the redistribution filters. Otherwise, you might accidentally overload the network with routes you did not intend to redistribute.

To enable redistribution of RIP and static IP routes into OSPF, enter the following commands.

```
FastIron(config)# router ospf
FastIron(config-ospf-router)# redistribution rip
FastIron(config-ospf-router)# redistribution static
FastIron(config-ospf-router)# write memory
```

Example using a route map

To configure a route map and use it for redistribution of routes into OSPF, enter commands such as the following.

```
FastIron(config)# ip route 1.1.0.0 255.255.0.0 207.95.7.30
FastIron(config)# ip route 1.2.0.0 255.255.0.0 207.95.7.30
FastIron(config)# ip route 1.3.0.0 255.255.0.0 207.95.7.30
FastIron(config)# ip route 4.1.0.0 255.255.0.0 207.95.6.30
FastIron(config)# ip route 4.2.0.0 255.255.0.0 207.95.6.30
FastIron(config)# ip route 4.3.0.0 255.255.0.0 207.95.6.30
FastIron(config)# ip route 4.4.0.0 255.255.0.0 207.95.6.30 5
FastIron(config)# route-map abc permit 1
FastIron(config-route-map abc)# match metric 5
FastIron(config-route-map abc)# set metric 8
FastIron(config-route-map abc)# router ospf
FastIron(config-ospf-router)# redistribute static route-map abc
```

The commands in this example configure some static IP routes, then configure a route map and use the route map for redistributing static IP routes into OSPF.
The `ip route` commands configure the static IP routes. The `route-map` command begins configuration of a route map called “abc”. The number indicates the route map entry (called the “instance”) you are configuring. A route map can contain multiple entries. The software compares packets to the route map entries in ascending numerical order and stops the comparison once a match is found.

The `match` command in the route map matches on routes that have 5 for their metric value (cost). The `set` command changes the metric in routes that match the route map to 8.

The `redistribute static` command enables redistribution of static IP routes into OSPF, and uses route map “abc” to control the routes that are redistributed. In this example, the route map allows a static IP route to be redistributed into OSPF only if the route has a metric of 5, and changes the metric to 8 before placing the route into the OSPF route table.

The following command shows the result of the redistribution filter. Since only one of the static IP routes configured above matches the route map, only one route is redistributed. Notice that the route metric is 5 before redistribution but is 8 after redistribution.

```
FastIron# show ip ospf database external extensive
Index Aging LS ID       Router       Netmask Metric Flag
 1   2  4.4.0.0         10.10.10.60 ffff0000 80000008 0000
```

Syntax:
```
[no] redistribution bgp | connected | rip | static [route-map <map-name>]
```

The `bgp | connected | rip | static` parameter specifies the route source.

The `route-map <map-name>` parameter specifies the route map name. The following match parameters are valid for OSPF redistribution:

- `match ip address | next-hop <ACL-num>`
- `match metric <num>`
- `match tag <tag-value>`

The following set parameters are valid for OSPF redistribution:

- `set ip next hop <ip-addr>`
- `set metric [+] | -<num> | none`
- `set metric-type type-1 | type-2`
- `set tag <tag-value>`

NOTE
You must configure the route map before you configure a redistribution filter that uses the route map.

NOTE
When you use a route map for route redistribution, the software disregards the permit or deny action of the route map.
NOTE
For an external route that is redistributed into OSPF through a route map, the metric value of the route remains the same unless the metric is set by a `set metric` command inside the route map. The `default-metric <num>` command has no effect on the route. This behavior is different from a route that is redistributed without using a route map. For a route redistributed without using a route map, the metric is set by the `default-metric <num>` command.

Disable or re-enable load sharing

Brocade routers can load share among up to eight equal-cost IP routes to a destination. By default, IP load sharing is enabled. The default is 4 equal-cost paths but you can specify from 2 – 6 paths.

The router software can use the route information it learns through OSPF to determine the paths and costs. **Figure 152** shows an example of an OSPF network containing multiple paths to a destination (in this case, R1).

FIGURE 152 Example OSPF network with four equal-cost paths

In the example in **Figure 152**, the Brocade switch has four paths to R1:

- FI->R3
- FI->R4
- FI->R5
- FI->R6

Normally, the Brocade switch will choose the path to the R1 with the lower metric. For example, if R3 metric is 1400 and R4 metric is 600, the Brocade switch will always choose R4.
However, suppose the metric is the same for all four routers in this example. If the costs are the same, the switch now has four equal-cost paths to R1. To allow the switch to load share among the equal cost routes, enable IP load sharing. The software supports four equal-cost OSPF paths by default when you enable load sharing. You can specify from 2 – 6 paths.

NOTE
The Brocade switch is not source routing in these examples. The switch is concerned only with the paths to the next-hop routers, not the entire paths to the destination hosts.

OSPF load sharing is enabled by default when IP load sharing is enabled. To configure IP load sharing parameters, refer to “Configuring IP load sharing” on page 1025.

Configure external route summarization

When the Layer 3 Switch is an OSPF Autonomous System Boundary Router (ASBR), you can configure it to advertise one external route as an aggregate for all redistributed routes that are covered by a specified address range.

When you configure an address range, the range takes effect immediately. All the imported routes are summarized according to the configured address range. Imported routes that have already been advertised and that fall within the range are flushed out of the AS and a single route corresponding to the range is advertised.

If a route that falls within a configured address range is imported by the Layer 3 Switch, no action is taken if the Layer 3 Switch has already advertised the aggregate route; otherwise the Layer 3 Switch advertises the aggregate route. If an imported route that falls within a configured address range is removed by the Layer 3 Switch, no action is taken if there are other imported routes that fall with in the same address range; otherwise the aggregate route is flushed.

You can configure up to 32 address ranges. The Layer 3 Switch sets the forwarding address of the aggregate route to zero and sets the tag to zero.

If you delete an address range, the advertised aggregate route is flushed and all imported routes that fall within the range are advertised individually.

If an external LSDB overflow condition occurs, all aggregate routes are flushed out of the AS, along with other external routes. When the Layer 3 Switch exits the external LSDB overflow condition, all the imported routes are summarized according to the configured address ranges.

NOTE
If you use redistribution filters in addition to address ranges, the Layer 3 Switch applies the redistribution filters to routes first, then applies them to the address ranges.

NOTE
If you disable redistribution, all the aggregate routes are flushed, along with other imported routes.

To configure a summary address for OSPF routes, enter commands such as the following.

```
FastIron(config-ospf-router)# summary-address 10.1.0.0 255.255.0.0
```

The command in this example configures summary address 10.1.0.0, which includes addresses 10.1.1.0, 10.1.2.0, 10.1.3.0, and so on. For all of these networks, only the address 10.1.0.0 is advertised in external LSAs.

Syntax: `summary-address <ip-addr> <ip-mask>`
The `<ip-addr>` parameter specifies the network address.
The `<ip-mask>` parameter specifies the network mask.

To display the configured summary addresses, enter the following command at any level of the CLI.

```
FastIron# show ip ospf config
OSPF Redistribution Address Ranges currently defined:
Range-Address   Subnetmask
1.0.0.0         255.0.0.0
1.0.1.0         255.255.255.0
1.0.2.0         255.255.255.0
```

Syntax: `show ip ospf config`

Configure default route origination

When the Layer 3 Switch is an OSPF Autonomous System Boundary Router (ASBR), you can configure it to automatically generate a default external route into an OSPF routing domain. This feature is called “default route origination” or “default information origination”.

By default, Brocade Layer 3 Switches do not advertise the default route into the OSPF domain. If you want the Layer 3 Switch to advertise the OSPF default route, you must explicitly enable default route origination.

When you enable OSPF default route origination, the Layer 3 Switch advertises a type 5 default route that is flooded throughout the AS (except stub areas and NSSAs). In addition, internal NSSA ASBRs advertise their default routes as translatable type 7 default routes.

The Layer 3 Switch advertises the default route into OSPF even if OSPF route redistribution is not enabled, and even if the default route is learned through an IBGP neighbor.

NOTE

Brocade Layer 3 Switches never advertise the OSPF default route, regardless of other configuration parameters, unless you explicitly enable default route origination using the following method.

If the Layer 3 Switch is an ASBR, you can use the “always” option when you enable the default route origination. The always option causes the ASBR to create and advertise a default route if it does not already have one configured.

If default route origination is enabled and you disable it, the default route originated by the Layer 3 Switch is flushed. Default routes generated by other OSPF routers are not affected. If you re-enable the feature, the feature takes effect immediately and thus does not require you to reload the software.

NOTE

The ABR (Layer 3 Switch) will not inject the default route into an NSSA by default and the command described in this section will not cause the Layer 3 Switch to inject the default route into the NSSA. To inject the default route into an NSSA, use the `area <num> | <ip-addr> nssa default-information-originate` command. Refer to “Assign a Not-So-Stubby Area (NSSA)” on page 1179.

To enable default route origination, enter the following command.

```
FastIron(config-ospf-router)# default-information-originate
```

To disable the feature, enter the following command.
Configuring OSPF

FastIron(config-ospf-router)# no default-information-originate

Syntax: [no] default-information-originate [always] [metric <value>] [metric-type <type>]

The always parameter advertises the default route regardless of whether the router has a default route. This option is disabled by default.

The metric <value> parameter specifies a metric for the default route. If this option is not used, the default metric is used for the route.

The metric-type <type> parameter specifies the external link type associated with the default route advertised into the OSPF routing domain. The <type> can be one of the following:

- 1 – Type 1 external route
- 2 – Type 2 external route

If you do not use this option, the default redistribution metric type is used for the route type.

NOTE

If you specify a metric and metric type, the values you specify are used even if you do not use the always option.

Modify SPF timers

The Layer 3 Switch uses the following timers when calculating the shortest path for OSPF routes:

- SPF delay – When the Layer 3 Switch receives a topology change, the software waits before it starts a Shortest Path First (SPF) calculation. By default, the software waits five seconds. You can configure the SPF delay to a value from 0 – 65535 seconds. If you set the SPF delay to 0 seconds, the software immediately begins the SPF calculation after receiving a topology change.
- SPF hold time – The Layer 3 Switch waits for a specific amount of time between consecutive SPF calculations. By default, the Layer 3 Switch waits ten seconds. You can configure the SPF hold time to a value from 0 – 65535 seconds. If you set the SPF hold time to 0 seconds, the software does not wait between consecutive SPF calculations.

You can set the delay and hold time to lower values to cause the Layer 3 Switch to change to alternate paths more quickly in the event of a route failure. Note that lower values require more CPU processing time.

You can change one or both of the timers. To do so, enter commands such as the following.

FastIron(config-ospf-router)# timers spf 10 20

The command in this example changes the SPF delay to 10 seconds and changes the SPF hold time to 20 seconds.

Syntax: timers spf <delay> <hold-time>

The <delay> parameter specifies the SPF delay.

The <hold-time> parameter specifies the SPF hold time.

To set the timers back to their default values, enter a command such as the following.

FastIron(config-ospf-router)# no timers spf 10 20
Modify redistribution metric type

The redistribution metric type is used by default for all routes imported into OSPF unless you specify different metrics for individual routes using redistribution filters. Type 2 specifies a big metric (three bytes). Type 1 specifies a small metric (two bytes). The default value is type 2.

To modify the default value to type 1, enter the following command.

```bash
FastIron(config-ospf-router)# metric-type type1
```

Syntax: metric-type type1 | type2

The default is type2.

Modify administrative distance

Brocade Layer 3 Switches can learn about networks from various protocols, including Border Gateway Protocol version 4 (BGP4), RIP, and OSPF. Consequently, the routes to a network may differ depending on the protocol from which the routes were learned. The default administrative distance for OSPF routes is 110. Refer to “Changing administrative distances” on page 1327 for a list of the default distances for all route sources.

The router selects one route over another based on the source of the route information. To do so, the router can use the administrative distances assigned to the sources. You can bias the Layer 3 Switch decision by changing the default administrative distance for RIP routes.

Configuring administrative distance based on route type

You can configure a unique administrative distance for each type of OSPF route. For example, you can use this feature to prefer a static route over an OSPF inter-area route but you also want to prefer OSPF intra-area routes to static routes.

The distance you specify influences the choice of routes when the Layer 3 Switch has multiple routes for the same network from different protocols. The Layer 3 Switch prefers the route with the lower administrative distance.

You can specify unique default administrative distances for the following route types:

- Intra-area routes
- Inter-area routes
- External routes

The default for all these OSPF route types is 110.

NOTE

This feature does not influence the choice of routes within OSPF. For example, an OSPF intra-area route is always preferred over an OSPF inter-area route, even if the intra-area route distance is greater than the inter-area route distance.

To change the default administrative distances for inter-area routes, intra-area routes, and external routes, enter the following command.

```bash
FastIron(config-ospf-router)# distance external 100
FastIron(config-ospf-router)# distance inter-area 90
FastIron(config-ospf-router)# distance intra-area 80
```

Syntax: distance external | inter-area | intra-area <distance>
The `external` | `inter-area` | `intra-area` parameter specifies the route type for which you are changing the default administrative distance.

The `<distance>` parameter specifies the new distance for the specified route type. Unless you change the distance for one of the route types using commands such as those shown above, the default is 110.

To reset the administrative distance to its system default (110), enter a command such as the following.

```
FastIron(config-ospf-router)# no distance external 100
```

Configure OSPF group Link State Advertisement (LSA) pacing

The Layer 3 Switch paces LSA refreshes by delaying the refreshes for a specified time interval instead of performing a refresh each time an individual LSA refresh timer expires. The accumulated LSAs constitute a group, which the Layer 3 Switch refreshes and sends out together in one or more packets.

The pacing interval, which is the interval at which the Layer 3 Switch refreshes an accumulated group of LSAs, is configurable to a range from 10 – 1800 seconds (30 minutes). The default is 240 seconds (four minutes). Thus, every four minutes, the Layer 3 Switch refreshes the group of accumulated LSAs and sends the group together in the same packets.

Usage guidelines

The pacing interval is inversely proportional to the number of LSAs the Layer 3 Switch is refreshing and aging. For example, if you have approximately 10,000 LSAs, decreasing the pacing interval enhances performance. If you have a very small database (40 – 100 LSAs), increasing the pacing interval to 10 – 20 minutes might enhance performance slightly.

Changing the LSA pacing interval

To change the LSA pacing interval to two minutes (120 seconds), enter the following command.

```
FastIron(config-ospf-router)# timers lsa-group-pacing 120
```

Syntax: `[no] timers lsa-group-pacing <secs>

The `<secs>` parameter specifies the number of seconds and can be from 10 – 1800 (30 minutes). The default is 240 seconds (four minutes).

To restore the pacing interval to its default value, enter the following command.

```
FastIron(config-ospf-router)# no timers lsa-group-pacing
```

Modify OSPF traps generated

OSPF traps as defined by RFC 1850 are supported on Brocade routers. OSPF trap generation is enabled on the router, by default.

When using the CLI, you can disable all or specific OSPF trap generation by entering the following CLI command.

```
FastIron(config-ospf-router)# no snmp-server trap ospf
```
To later re-enable the trap feature, enter `snmp-server trap ospf`.

To disable a specific OSPF trap, enter the command as `no snmp-server trap ospf <ospf-trap>`. These commands are at the OSPF router Level of the CLI.

Here is a summary of OSPF traps supported on Brocade routers, their corresponding CLI commands, and their associated MIB objects from RFC 1850:

- `interface-state-change-trap` – [MIB object: OspfIfstateChange]
- `virtual-interface-state-change-trap` – [MIB object: OspfVirtIfStateChange]
- `neighbor-state-change-trap` – [MIB object: ospfNbrStateChange]
- `virtual-neighbor-state-change-trap` – [MIB object: ospfVirtNbrStateChange]
- `interface-config-error-trap` – [MIB object: ospfIfConfigError]
- `virtual-interface-config-error-trap` – [MIB object: ospfVirtIfConfigError]
- `interface-authentication-failure-trap` – [MIB object: ospfIfAuthFailure]
- `virtual-interface-authentication-failure-trap` – [MIB object: ospfVirtIfAuthFailure]
- `virtual-interface-receive-bad-packet-trap` – [MIB object: ospfVirtIfRxBadPacket]
- `interface-retransmit-packet-trap` – [MIB object: ospfTxRetransmit]
- `virtual-interface-retransmit-packet-trap` – [MIB object: ospfVirtIfTxRetransmit]
- `originate-lsa-trap` – [MIB object: ospfOriginateLsa]
- `originate-maxage-lsa-trap` – [MIB object: ospfMaxAgeLsa]
- `link-state-database-overflow-trap` – [MIB object: ospfLsdbOverflow]
- `link-state-database-approaching-overflow-trap` – [MIB object: ospfLsdbApproachingOverflow]

Example

To stop an OSPF trap from being collected, use the CLI command: `no trap <ospf-trap>`, at the Router OSPF level of the CLI. To disable reporting of the neighbor-state-change-trap, enter the following command.

```
FastIron(config-ospf-router)# no trap neighbor-state-change-trap
```

Example

To reinstate the trap, enter the following command.

```
FastIron(config-ospf-router)# trap neighbor-state-change-trap
```

Syntax: `[no] snmp-server trap ospf <ospf-trap>`

Modify OSPF standard compliance setting

Brocade routers are configured, by default, to be compliant with the RFC 1583 OSPF V2 specification.

To configure a router to operate with the latest OSPF standard, RFC 2178, enter the following commands.

```
FastIron(config)# router ospf
FastIron(config-ospf-router)# no rfc1583-compatibility
```

Syntax: `[no] rfc1583-compatibility`
Modify exit overflow interval

If a database overflow condition occurs on a router, the router eliminates the condition by removing entries that originated on the router. The exit overflow interval allows you to set how often a Layer 3 Switch checks to see if the overflow condition has been eliminated. The default value is 0. The range is 0 – 86400 seconds (24 hours). If the configured value of the database overflow interval is zero, then the router never leaves the database overflow condition.

NOTE
FastIron devices dynamically allocate OSPF memory as needed. Refer to “Dynamic OSPF memory” on page 1175.

To modify the exit overflow interval to 60 seconds, enter the following command.

```
FastIron(config-ospf-router)# data-base-overflow-interval 60
```

Syntax: `data-base-overflow-interval <value>`

The `<value>` can be from 0 – 86400 seconds. The default is 0 seconds.

Configuring an OSPF point-to-point Link

Platform Support:
- FESX devices running software release 02.2.00 and later
- FSX devices running software release 02.3.01 and later

In an OSPF point-to-point link, a direct Layer 3 connection exists between a single pair of OSPF routers, without the need for Designated and Backup Designated routers. In a point-to-point link, neighboring routers become adjacent whenever they can communicate directly. In contrast, in broadcast and non-broadcast multi-access (NBMA) networks, the Designated Router and the Backup Designated Router become adjacent to all other routers attached to the network.

Configuration notes and limitations
- This feature is supported on Gbps Ethernet and 10 Gbps Ethernet interfaces.
- This feature is supported on physical interfaces. It is not supported on virtual interfaces.
- Brocade supports numbered point-to-point networks, meaning the OSPF router must have an IP interface address which uniquely identifies the router over the network. Brocade does not support unnumbered point-to-point networks.

Configuring an OSPF point-to-point link

To configure an OSPF point-to-point link, enter commands such as the following.

```
FastIron(config)# interface eth 1/5
FastIron(config-if-1/5)# ip ospf network point-to-point
```

This command configures an OSPF point-to-point link on Interface 5 in slot 1.

Syntax: `[no] ip ospf network point-to-point`
Clearing OSPF information

Viewing configured OSPF point-to-point links

Refer to “Displaying OSPF neighbor information” on page 1213 and “Displaying OSPF interface information” on page 1215.

Specifying the types of OSPF Syslog messages to log

You can specify which kinds of OSPF-related Syslog messages are logged. By default, the only OSPF messages that are logged are those indicating possible system errors. If you want other kinds of OSPF messages to be logged, you can configure the Brocade device to log them.

NOTE

This feature is not supported on FGS, FWS, or FLS devices.

For example, to specify that all OSPF-related Syslog messages be logged, enter the following commands.

```text
FastIron(config)# router ospf
FastIron(config-ospf-router)# log all
```

Syntax: [no] log all | adjacency | bad_packet [checksum] | database | memory | retransmit

The log command has the following options:

- **The all option** causes all OSPF-related Syslog messages to be logged. If you later disable this option with the no log all command, the OSPF logging options return to their default settings.

- **The adjacency option** logs essential OSPF neighbor state changes, especially on error cases. This option is disabled by default.

- **The bad_packet checksum option** logs all OSPF packets that have checksum errors. This option is enabled by default.

- **The bad_packet option** logs all other bad OSPF packets. This option is disabled by default.

- **The database option** logs OSPF LSA-related information. This option is disabled by default.

- **The memory option** logs abnormal OSPF memory usage. This option is enabled by default.

- **The retransmit option** logs OSPF retransmission activities. This option is disabled by default.

Clearing OSPF information

Platform Support:

- FESX and FSX devices running software release 03.0.00 and later
- Turbolon X Series devices running software release 04.2.00 and later

The following kinds of OSPF information can be cleared from a Brocade OSPF link state database and OSPF routing table:

- Routes received from OSPF neighbors. You can clear routes from all OSPF neighbors, or an individual OSPF neighbor, specified either by the neighbor IP address or its router ID
- OSPF topology information, including all routes in the OSPF routing table
- All routes in the OSPF routing table that were redistributed from other protocols
• OSPF area information, including routes received from OSPF neighbors within an area, as well as routes imported into the area. You can clear area information for all OSPF areas, or for a specified OSPF area.

The OSPF information is cleared dynamically when you enter the command; you do not need to remove statements from the Brocade configuration or reload the software for the change to take effect.

Clearing OSPF neighbor information

To clear information on the Brocade device about all OSPF neighbors, enter the following command.

```
FastIron# clear ip ospf neighbor
```

Syntax: `clear ip ospf neighbor [ip <ip-addr> | id <ip-addr>]`

This command clears all OSPF neighbors and the OSPF routes exchanged with the neighbors in the Brocade OSPF link state database. After this information is cleared, adjacencies with all neighbors are re-established, and routes with these neighbors exchanged again.

To clear information on the Brocade device about OSPF neighbor 10.10.10.1, enter the following command.

```
FastIron# clear ip ospf neighbor ip 10.10.10.1
```

This command clears the OSPF neighbor and the OSPF routes exchanged with neighbor 10.10.10.1 in the OSPF link state database in the Brocade device. After this information is cleared, the adjacency with the neighbor is re-established, and routes are exchanged again.

The neighbor router can be specified either by its IP address or its router ID. To specify the neighbor router using its IP address, use the `ip <ip-addr>` parameter. To specify the neighbor router using its router ID, use the `id <ip-addr>` parameter.

Clearing OSPF topology information

To clear OSPF topology information on the Brocade device, enter the following command.

```
FastIron# clear ip ospf topology
```

Syntax: `clear ip ospf topology`

This command clears all OSPF routes from the OSPF routing table, including intra-area, (which includes ABR and ASBR intra-area routes), inter-area, external type 1, external type 2, OSPF default, and OSPF summary routes.

After you enter this command, the OSPF routing table is rebuilt, and valid routes are recomputed from the OSPF link state database. When the OSPF routing table is cleared, OSPF routes in the global routing table are also recalculated. If redistribution is enabled, the routes are imported again.

Clearing redistributed routes from the OSPF routing table

To clear all routes in the OSPF routing table that were redistributed from other protocols, enter the following command.

```
FastIron# clear ospf redistribution
```
Syntax: clear ospf redistribution

This command clears all routes in the OSPF routing table that are redistributed from other protocols, including direct connected, static, RIP, and BGP. To import redistributed routes from other protocols, use the redistribution command at the OSPF configuration level.

Clearing information for OSPF areas

To clear information on the Brocade device about all OSPF areas, enter the following command.

FastIron# clear ip ospf

This command clears all OSPF areas, all OSPF neighbors, and the entire OSPF routing table. After this information has been cleared, adjacencies with all neighbors are re-established, and all OSPF routes are re-learned.

To clear information on the Brocade device about OSPF area 1, enter the following command.

FastIron# clear ip ospf area 1

This command clears information about the specified area ID. Information about other OSPF areas is not affected. The command clears information about all OSPF neighbors belonging to the specified area, as well as all routes imported into the specified area. Adjacencies with neighbors belonging to the area are re-established, and routes imported into the area are re-learned.

Syntax: clear ip ospf [area <area-id>]

The <area-id> can be specified in decimal format or in IP address format.

Displaying OSPF information

You can use CLI commands and Web management options to display the following OSPF information:

- Trap, area, and interface information – refer to “Displaying general OSPF configuration information” on page 1211.
- Area information – refer to “Displaying OSPF area information” on page 1213.
- Neighbor information – refer to “Displaying OSPF neighbor information” on page 1213.
- Interface information – refer to “Displaying OSPF interface information” on page 1215.
- Route information – refer to “Displaying OSPF route information” on page 1217.
- External link state information – refer to “Displaying OSPF external link state information” on page 1219.
- Link state information – refer to “Displaying OSPF link state information” on page 1220.
- Virtual Neighbor information – refer to “Displaying OSPF virtual neighbor information” on page 1221.
- Virtual Link information – refer to “Displaying OSPF virtual link information” on page 1221.
- ABR and ASBR information – refer to “Displaying OSPF ABR and ASBR information” on page 1221.
- Trap state information – refer to “Displaying OSPF trap status” on page 1222.
Displaying general OSPF configuration information

To display general OSPF configuration information, enter the following command at any CLI level.

```
FastIron# show ip ospf config
Router OSPF: Enabled
Redistribution: Disabled
Default OSPF Metric: 10
OSPF Redistribution Metric: Type2
OSPF External LSA Limit: 25000
OSPF Database Overflow Interval: 0
RFC 1583 Compatibility: Enabled
Router id: 207.95.11.128

Interface State Change Trap: Enabled
Virtual Interface State Change Trap: Enabled
Neighbor State Change Trap: Enabled
Virtual Neighbor State Change Trap: Enabled
Interface Configuration Error Trap: Enabled
Virtual Interface Configuration Error Trap: Enabled
Interface Authentication Failure Trap: Enabled
Virtual Interface Authentication Failure Trap: Enabled
Interface Receive Bad Packet Trap: Enabled
Virtual Interface Receive Bad Packet Trap: Enabled
Interface Retransmit Packet Trap: Enabled
Virtual Interface Retransmit Packet Trap: Enabled
Originate LSA Trap: Enabled
Originate MaxAge LSA Trap: Enabled
Link State Database Overflow Trap: Enabled
Link State Database Approaching Overflow Trap: Enabled

OSPF Area currently defined:
Area-ID    Area-Type Cost
0          normal    0

OSPF Interfaces currently defined:
Ethernet Interface: 3/1-3/2
ip ospf md5-authentication-key-activation-wait-time 300
ip ospf cost 0
ip ospf area 0

Ethernet Interface: v1
ip ospf md5-authentication-key-activation-wait-time 300
ip ospf cost 0
ip ospf area 0
```

Syntax: show ip ospf config

Displaying CPU utilization statistics

You can display CPU utilization statistics for OSPF and other IP protocols.

To display CPU utilization statistics for OSPF for the previous one-second, one-minute, five-minute, and fifteen-minute intervals, enter the following command at any level of the CLI.

```
FastIron# show ip ospf config
Router OSPF: Enabled
Redistribution: Disabled
Default OSPF Metric: 10
OSPF Redistribution Metric: Type2
OSPF External LSA Limit: 25000
OSPF Database Overflow Interval: 0
RFC 1583 Compatibility: Enabled
Router id: 207.95.11.128

Interface State Change Trap: Enabled
Virtual Interface State Change Trap: Enabled
Neighbor State Change Trap: Enabled
Virtual Neighbor State Change Trap: Enabled
Interface Configuration Error Trap: Enabled
Virtual Interface Configuration Error Trap: Enabled
Interface Authentication Failure Trap: Enabled
Virtual Interface Authentication Failure Trap: Enabled
Interface Receive Bad Packet Trap: Enabled
Virtual Interface Receive Bad Packet Trap: Enabled
Interface Retransmit Packet Trap: Enabled
Virtual Interface Retransmit Packet Trap: Enabled
Originate LSA Trap: Enabled
Originate MaxAge LSA Trap: Enabled
Link State Database Overflow Trap: Enabled
Link State Database Approaching Overflow Trap: Enabled

OSPF Area currently defined:
Area-ID    Area-Type Cost
0          normal    0

OSPF Interfaces currently defined:
Ethernet Interface: 3/1-3/2
ip ospf md5-authentication-key-activation-wait-time 300
ip ospf cost 0
ip ospf area 0

Ethernet Interface: v1
ip ospf md5-authentication-key-activation-wait-time 300
ip ospf cost 0
ip ospf area 0
```

Syntax: show ip ospf config
If the software has been running less than 15 minutes (the maximum interval for utilization statistics), the command indicates how long the software has been running. Here is an example.

```
FastIron# show process cpu
```

```
Process Name  5Sec(%)  1Min(%)  5Min(%)  15Min(%)  Runtime(ms)
ARP  0.01  0.03  0.09  0.22  9
BGP  0.04  0.06  0.08  0.14  13
GVRP  0.00  0.00  0.00  0.00  0
ICMP  0.00  0.00  0.00  0.00  0
IP  0.00  0.00  0.00  0.00  0
OSPF  0.03  0.06  0.09  0.12  11
RIP  0.00  0.00  0.00  0.00  0
STP  0.00  0.00  0.00  0.00  0
VRRP  0.00  0.00  0.00  0.00  0
```

The system has only been up for 6 seconds.

```
FastIron# show process cpu
```

```
The system has only been up for 6 seconds.
```

```
Process Name  5Sec(%)  1Min(%)  5Min(%)  15Min(%)  Runtime(ms)
ARP  0.01  0.00  0.00  0.00  0
BGP  0.00  0.00  0.00  0.00  0
GVRP  0.00  0.00  0.00  0.00  0
ICMP  0.01  0.00  0.00  0.00  1
IP  0.00  0.00  0.00  0.00  0
OSPF  0.00  0.00  0.00  0.00  0
RIP  0.00  0.00  0.00  0.00  0
STP  0.00  0.00  0.00  0.00  0
VRRP  0.00  0.00  0.00  0.00  0
```

To display utilization statistics for a specific number of seconds, enter a command such as the following.

```
FastIron# show process cpu 2
```

```
Statistics for last 1 sec and 80 ms
```

```
Process Name  Sec(%)  Time(ms)
ARP  0.00  0
BGP  0.00  0
GVRP  0.00  0
ICMP  0.01  1
IP  0.00  0
OSPF  0.00  0
RIP  0.00  0
STP  0.01  0
VRRP  0.00  0
```

When you specify how many seconds’ worth of statistics you want to display, the software selects the sample that most closely matches the number of seconds you specified. In this example, statistics are requested for the previous two seconds. The closest sample available is actually for the previous 1 second plus 80 milliseconds.

Syntax: `show process cpu [<num>]`

The `<num>` parameter specifies the number of seconds and can be from 1 – 900. If you use this parameter, the command lists the usage statistics only for the specified number of seconds. If you do not use this parameter, the command lists the usage statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals.
Displaying OSPF area information

To display OSPF area information, enter the following command at any CLI level.

FastIron# show ip ospf area

<table>
<thead>
<tr>
<th>Indx</th>
<th>Area</th>
<th>Type</th>
<th>Cost</th>
<th>SPFR</th>
<th>ABR</th>
<th>ASBR</th>
<th>LSA</th>
<th>Chksum(Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0.0.0</td>
<td>normal</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0000781f</td>
</tr>
<tr>
<td>2</td>
<td>192.147.60.0</td>
<td>normal</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0000fee6</td>
</tr>
<tr>
<td>3</td>
<td>192.147.80.0</td>
<td>stub</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>000181cd</td>
</tr>
</tbody>
</table>

Syntax: show ip ospf area [<area-id>] [<num>]

The <area-id> parameter shows information for the specified area.

The <num> parameter displays the entry that corresponds to the entry number you enter. The entry number identifies the entry position in the area table.

This display shows the following information.

TABLE 197 CLI display of OSPF area information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indx</td>
<td>The row number of the entry in the router OSPF area table.</td>
</tr>
<tr>
<td>Area</td>
<td>The area number.</td>
</tr>
<tr>
<td>Type</td>
<td>The area type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• nssa</td>
</tr>
<tr>
<td></td>
<td>• normal</td>
</tr>
<tr>
<td></td>
<td>• stub</td>
</tr>
<tr>
<td>Cost</td>
<td>The area cost.</td>
</tr>
<tr>
<td>SPFR</td>
<td>The SPFR value.</td>
</tr>
<tr>
<td>ABR</td>
<td>The ABR number.</td>
</tr>
<tr>
<td>ASBR</td>
<td>The ASBR number.</td>
</tr>
<tr>
<td>LSA</td>
<td>The LSA number.</td>
</tr>
<tr>
<td>Chksum(Hex)</td>
<td>The checksum for the LSA packet. The checksum is based on all the fields in the packet except the age field. The Layer 3 Switch uses the checksum to verify that the packet is not corrupted.</td>
</tr>
</tbody>
</table>

Displaying OSPF neighbor information

To display OSPF neighbor information, enter the following command at any CLI level.

FastIron# show ip ospf neighbor

<table>
<thead>
<tr>
<th>Port</th>
<th>Address</th>
<th>Pri</th>
<th>State</th>
<th>Neigh Address</th>
<th>Neigh ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>212.76.7.251</td>
<td>1</td>
<td>full</td>
<td>212.76.7.200</td>
<td>173.35.1.220</td>
</tr>
</tbody>
</table>

To display detailed OSPF neighbor information, enter the following command at any CLI level.
Displaying OSPF information

FastIron# show ip ospf neighbor detail

<table>
<thead>
<tr>
<th>Port</th>
<th>Address</th>
<th>Pri</th>
<th>State</th>
<th>Neigh Address</th>
<th>Neigh ID</th>
<th>Ev</th>
<th>Op</th>
<th>Cnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/1</td>
<td>20.2.0.2</td>
<td>1</td>
<td>FULL/DR</td>
<td>20.2.0.1</td>
<td>2.2.2.2</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1</td>
<td>20.3.0.2</td>
<td>1</td>
<td>FULL/BDR</td>
<td>20.3.0.1</td>
<td>3.3.3.3</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1-1/8</td>
<td>23.5.0.1</td>
<td>1</td>
<td>FULL/DR</td>
<td>23.5.0.2</td>
<td>16.16.16.16</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/1-2/2</td>
<td>23.2.0.1</td>
<td>1</td>
<td>FULL/DR</td>
<td>23.2.0.2</td>
<td>15.15.15.15</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip ospf neighbor [router-id <ip-addr>] | [<num>] | [detail]

The router-id <ip-addr> parameter displays only the neighbor entries for the specified router.

The <num> parameter displays only the entry in the specified index position in the neighbor table. For example, if you enter “1”, only the first entry in the table is displayed.

The detail parameter displays detailed information about the neighbor routers.

These displays show the following information.

TABLE 198 CLI display of OSPF neighbor information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port through which the Layer 3 Switch is connected to the neighbor. The port on which an OSPF point-to-point link is configured.</td>
</tr>
<tr>
<td>Address</td>
<td>The IP address of this Layer 3 Switch interface with the neighbor.</td>
</tr>
<tr>
<td>Pri</td>
<td>The OSPF priority of the neighbor:</td>
</tr>
<tr>
<td></td>
<td>• For multi-access networks, the priority is used during election of the Designated Router (DR) and Backup designated Router (BDR).</td>
</tr>
<tr>
<td></td>
<td>• For point-to-point links, this field shows one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• 1 = point-to-point link</td>
</tr>
<tr>
<td></td>
<td>• 3 = point-to-point link with assigned subnet</td>
</tr>
</tbody>
</table>
Displaying OSPF information

To display OSPF interface information, enter the following command at any CLI level.

Displaying OSPF interface information

To display OSPF interface information, enter the following command at any CLI level.

TABLE 198 CLI display of OSPF neighbor information (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>The state of the conversation between the Layer 3 Switch and the neighbor. This field can have one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• Down – The initial state of a neighbor conversation. This value indicates that there has been no recent information received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Attempt – This state is only valid for neighbors attached to non-broadcast networks. It indicates that no recent information has been received from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• Init – A Hello packet has recently been seen from the neighbor. However, bidirectional communication has not yet been established with the neighbor. (The router itself did not appear in the neighbor's Hello packet.) All neighbors in this state (or higher) are listed in the Hello packets sent from the associated interface.</td>
</tr>
<tr>
<td></td>
<td>• 2-Way – Communication between the two routers is bidirectional. This is the most advanced state before beginning adjacency establishment. The Designated Router and Backup Designated Router are selected from the set of neighbors in the 2-Way state or greater.</td>
</tr>
<tr>
<td></td>
<td>• ExStart – The first step in creating an adjacency between the two neighboring routers. The goal of this step is to decide which router is the master, and to decide upon the initial Database Description (DD) sequence number. Neighbor conversations in this state or greater are called adjacencies.</td>
</tr>
<tr>
<td></td>
<td>• Exchange – The router is describing its entire link state database by sending Database Description packets to the neighbor. Each Database Description packet has a DD sequence number, and is explicitly acknowledged. Only one Database Description packet can be outstanding at any time. In this state, Link State Request packets can also be sent asking for the neighbor's more recent advertisements. All adjacencies in Exchange state or greater are used by the flooding procedure. In fact, these adjacencies are fully capable of transmitting and receiving all types of OSPF routing protocol packets.</td>
</tr>
<tr>
<td></td>
<td>• Loading – Link State Request packets are sent to the neighbor asking for the more recent advertisements that have been discovered (but not yet received) in the Exchange state.</td>
</tr>
<tr>
<td></td>
<td>• Full – The neighboring routers are fully adjacent. These adjacencies will now appear in router links and network link advertisements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neigh Address</th>
<th>The IP address of the neighbor: For point-to-point links, the value is as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• If the Pri field is "1", this value is the IP address of the neighbor router interface.</td>
</tr>
<tr>
<td></td>
<td>• If the Pri field is "3", this is the subnet IP address of the neighbor router interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neigh ID</th>
<th>The neighbor router ID.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ev</th>
<th>The number of times the neighbor state changed.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Opt</th>
<th>The sum of the option bits in the Options field of the Hello packet. This information is used by Brocade technical support. Refer to Section A.2 in RFC 2178 for information about the Options field in Hello packets.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cnt</th>
<th>The number of LSAs that were retransmitted.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Second-to-dead</th>
<th>The amount of time the Brocade device will wait for a HELLO message from each OSPF neighbor before assuming the neighbor is dead.</th>
</tr>
</thead>
</table>
FastIron# show ip ospf interface 192.168.1.1

Ethernet 2/1, OSPF enabled

- IP Address 192.168.1.1, Area 0
- OSPF state ptr2ptr, Pri 1, Cost 1, Options 2, Type pt-2-pt Events 1

Timers (sec): Transit 1, Retrans 5, Hello 10, Dead 40

- DR: Router ID 0.0.0.0
- BDR: Router ID 0.0.0.0

Neighbor Count = 0, Adjacent Neighbor Count = 1

- Neighbor: 2.2.2.2
- Authentication-Key: None
- MD5 Authentication: Key None, Key-Id None, Auth-change-wait-time 300

Syntax: `show ip ospf interface [<ip-addr>]`

The `<ip-addr>` parameter displays the OSPF interface information for the specified IP address.

The following table defines the highlighted fields shown in the above example output of the `show ip ospf interface` command.

<table>
<thead>
<tr>
<th>TABLE 199</th>
<th>Output of the show ip ospf interface command</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field</td>
<td>Displays</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the interface.</td>
</tr>
<tr>
<td>OSPF state</td>
<td>ptr2ptr (point to point)</td>
</tr>
<tr>
<td>Pri</td>
<td>The link ID as defined in the router-LSA. This value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- 1 = point-to-point link</td>
</tr>
<tr>
<td></td>
<td>- 3 = point-to-point link with an assigned subnet</td>
</tr>
<tr>
<td>Cost</td>
<td>The configured output cost for the interface.</td>
</tr>
<tr>
<td>Options</td>
<td>OSPF Options (Bit7 - Bit0):</td>
</tr>
<tr>
<td></td>
<td>- unused:1</td>
</tr>
<tr>
<td></td>
<td>- opaque:1</td>
</tr>
<tr>
<td></td>
<td>- summary:1</td>
</tr>
<tr>
<td></td>
<td>- dont_propagate:1</td>
</tr>
<tr>
<td></td>
<td>- nssa:1</td>
</tr>
<tr>
<td></td>
<td>- multicast:1</td>
</tr>
<tr>
<td></td>
<td>- externals:1</td>
</tr>
<tr>
<td></td>
<td>- tos:1</td>
</tr>
<tr>
<td>Type</td>
<td>The area type, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- Broadcast = 0x01</td>
</tr>
<tr>
<td></td>
<td>- NBMA = 0x02</td>
</tr>
<tr>
<td></td>
<td>- Point to Point = 0x03</td>
</tr>
<tr>
<td></td>
<td>- Virtual Link = 0x04</td>
</tr>
<tr>
<td></td>
<td>- Point to Multipoint = 0x05</td>
</tr>
</tbody>
</table>
Displaying OSPF route information

To display OSPF route information for the router, enter the following command at any CLI level.

```
FastIron# show ip ospf routes
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Destination</th>
<th>Mask</th>
<th>Path_Cost</th>
<th>Type2_Cost</th>
<th>Path_Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>212.95.7.0</td>
<td>255.255.255.0</td>
<td>1</td>
<td>0</td>
<td>Intra</td>
</tr>
<tr>
<td></td>
<td>Adv_Router</td>
<td>Link_State</td>
<td>Dest_Type</td>
<td>State</td>
<td>Tag</td>
</tr>
<tr>
<td>173.35.1.220</td>
<td>212.95.7.251</td>
<td>Network</td>
<td>Valid</td>
<td>00000000</td>
<td>7000</td>
</tr>
<tr>
<td>Paths Out_Port</td>
<td>Next_Hop</td>
<td>Type</td>
<td>Arp_Index</td>
<td>State</td>
<td>Flags</td>
</tr>
<tr>
<td>1</td>
<td>5/6</td>
<td>209.95.7.250</td>
<td>OSPF</td>
<td>8</td>
<td>84 00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Destination</th>
<th>Mask</th>
<th>Path_Cost</th>
<th>Type2_Cost</th>
<th>Path_Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11.3.63.0</td>
<td>255.255.255.0</td>
<td>11</td>
<td>0</td>
<td>Inter</td>
</tr>
<tr>
<td></td>
<td>Adv_Router</td>
<td>Link_State</td>
<td>Dest_Type</td>
<td>State</td>
<td>Tag</td>
</tr>
<tr>
<td>209.95.7.250</td>
<td>11.3.63.0</td>
<td>Network</td>
<td>Valid</td>
<td>00000000</td>
<td>0000</td>
</tr>
<tr>
<td>Paths Out_Port</td>
<td>Next_Hop</td>
<td>Type</td>
<td>Arp_Index</td>
<td>State</td>
<td>Flags</td>
</tr>
<tr>
<td>1</td>
<td>5/6</td>
<td>209.95.7.250</td>
<td>OSPF</td>
<td>8</td>
<td>84 00</td>
</tr>
</tbody>
</table>

Syntax: `show ip ospf routes [<ip-addr>]`

The `<ip-addr>` parameter specifies a destination IP address. If you use this parameter, only the route entries for that destination are shown.

This display shows the following information.

TABLE 200 CLI Display of OSPF route information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>The row number of the entry in the router OSPF route table.</td>
</tr>
<tr>
<td>Destination</td>
<td>The IP address of the route's destination.</td>
</tr>
<tr>
<td>Mask</td>
<td>The network mask for the route.</td>
</tr>
<tr>
<td>Path_Cost</td>
<td>The cost of this route path. (A route can have multiple paths. Each path represents a different exit port for the Layer 3 Switch.)</td>
</tr>
<tr>
<td>Type2_Cost</td>
<td>The type 2 cost of this path.</td>
</tr>
</tbody>
</table>
Displaying OSPF information

You can display the routes that have been redistributed into OSPF. To display the redistributed routes, enter the following command at any level of the CLI.

```
FastIron# show ip ospf redistribute route
  4.3.0.0 255.255.0.0 static
  3.1.0.0 255.255.0.0 static
  10.11.61.0 255.255.255.0 connected
  4.1.0.0 255.255.0.0 static
```

In this example, four routes have been redistributed. Three of the routes were redistributed from static IP routes and one route was redistributed from a directly connected IP route.

Syntax: `show ip ospf redistribute route [<ip-addr> <ip-mask>]`

The `<ip-addr> <ip-mask>` parameter specifies a network prefix and network mask. Here is an example.
Displaying OSPF external link state information

To display external link state information, enter the following command at any CLI level.

```
FastIron# show ip ospf database external-link-state
```

Syntax
```
show ip ospf database external-link-state [advertise <num>] | [extensive] | [link-state-id <ip-addr>] | [router-id <ip-addr>] | [sequence-number <num(Hex)>] | [status <num>]
```

The `advertise <num>` parameter displays the hexadecimal data in the specified LSA packet. The `<num>` parameter identifies the LSA packet by its position in the router External LSA table. To determine an LSA packet position in the table, enter the `show ip ospf external-link-state` command to display the table. Refer to “Displaying the data in an LSA” on page 1220 for an example.

The `extensive` option displays the LSAs in decrypted format.

NOTE
You cannot use the `extensive` option in combination with other display options. The entire database is displayed.

The `link-state-id <ip-addr>` parameter displays the External LSAs for the LSA source specified by `<IP-addr>`.

The `router-id <ip-addr>` parameter shows the External LSAs for the specified OSPF router.

The `sequence-number <num(Hex)>` parameter displays the External LSA entries for the specified hexadecimal LSA sequence number.

The `status <num>` option shows status information.

This display shows the following information.

TABLE 201 CLI display of OSPF external link state information

<table>
<thead>
<tr>
<th>Field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The OSPF area the router is in.</td>
</tr>
<tr>
<td>Aging</td>
<td>The age of the LSA, in seconds.</td>
</tr>
<tr>
<td>LS ID</td>
<td>The ID of the link-state advertisement from which the Layer 3 Switch learned this route.</td>
</tr>
<tr>
<td>Router</td>
<td>The router IP address.</td>
</tr>
</tbody>
</table>
Displaying OSPF link state information

To display link state information, enter the following command at any CLI level.

```
FastIron# show ip ospf database link-state
```

Syntax:

```
show ip ospf database link-state [advertise <num>] | [asbr] | [extensive] | [link-state-id <ip-addr>] | [network] | [nssa] | [opaque-area] | [router] | [router-id <ip-addr>] | [sequence-number <num(Hex)>] | [status <num>] | [summary]
```

The `advertise <num>` parameter displays the hexadecimal data in the specified LSA packet. The `<num>` parameter identifies the LSA packet by its position in the router External LSA table. To determine an LSA packet position in the table, enter the `show ip ospf external-link-state` command to display the table. Refer to “Displaying the data in an LSA” on page 1220 for an example.

The `asbr` option shows ASBR information.

The `extensive` option displays the LSAs in decrypted format.

NOTE
You cannot use the `extensive` option in combination with other display options. The entire database is displayed.

The `link-state-id <ip-addr>` parameter displays the External LSAs for the LSA source specified by `<ip-addr>`.

The `network` option shows network information.

The `nssa` option shows network information.

The `opaque-area` option shows information for opaque areas.

The `router-id <ip-addr>` parameter shows the External LSAs for the specified OSPF router.

The `sequence-number <num(Hex)>` parameter displays the External LSA entries for the specified hexadecimal LSA sequence number.

The `status <num>` option shows status information.

The `summary` option shows summary information.

Displaying the data in an LSA

You can use the CLI to display the data the Layer 3 Switch received in a specific External LSA packet or other type of LSA packet. For example, to display the LSA data in entry 3 in the External LSA table, enter the following command.

TABLE 201 CLI display of OSPF external link state information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq(hex)</td>
<td>The sequence number of the LSA. The OSPF neighbor that sent the LSA stamps it with a sequence number to enable the Layer 3 Switch and other OSPF routers to determine which LSA for a given route is the most recent.</td>
</tr>
<tr>
<td>Chksum</td>
<td>A checksum for the LSA packet, which is based on all the fields in the packet except the age field. The Layer 3 Switch uses the checksum to verify that the packet is not corrupted.</td>
</tr>
<tr>
<td>Type</td>
<td>The route type, which is always EXTR (external).</td>
</tr>
</tbody>
</table>

Seq(hex)

The sequence number field. This field displays the sequence number assigned to the LSA by the originating router. It is used to determine the freshness of the LSA and to detect any discrepancies in the sequence numbers. A higher sequence number indicates a more recent LSA. If the sequence number field contains a value that is not greater than the sequence number field of the LSA in the current database, the LSA is discarding.

Chksum

The checksum field. This field displays the checksum for the LSA packet. It is calculated by summing all the data fields of the LSA, excluding the age field. The checksum is used to verify the integrity of the LSA packet. If the checksum is not correct, the LSA is discarded.

Type

The type field. This field displays the route type of the LSA. The type is always `EXTR` (external) for external LSAs.
Displaying OSPF information

Syntax: show ip ospf database external-link-state [advertise <num>] | [link-state-id <ip-addr>] | [router-id <ip-addr>] | [sequence-number <num(Hex)>] | [status <num>]

To determine an external LSA or other type of LSA index number, enter one of the following commands to display the appropriate LSA table:

- show ip ospf database link-state advertise <num> – This command displays the data in the packet for the specified LSA.
- show ip ospf database external-link-state advertise <num> – This command displays the data in the packet for the specified external LSA.

For example, to determine an external LSA index number, enter the following command.

FastIron# show ip ospf external-link-state

<table>
<thead>
<tr>
<th>Index</th>
<th>Aging</th>
<th>LS ID</th>
<th>Router</th>
<th>Netmask</th>
<th>Metric</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1809</td>
<td>1.18.81.0</td>
<td>103.103.103.6</td>
<td>ffffff00 000003e8 b500 0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1.27.250.0</td>
<td>103.103.103.6</td>
<td>ffffff00 000003e8 b500 0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3.215.0.0</td>
<td>103.103.103.6</td>
<td>fffff0000 000003e8 b500 0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>1.33.192.0</td>
<td>102.102.102.6</td>
<td>ffffff00 000003e8 b500 0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>959</td>
<td>1.9.168.0</td>
<td>102.102.102.6</td>
<td>ffffff00 00002710 b500 0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1807</td>
<td>1.3.226.0</td>
<td>192.85.0.3</td>
<td>ffffff00 000003e8 b500 0.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1809</td>
<td>1.6.197.0</td>
<td>192.85.3.3</td>
<td>ffffff00 000003e8 b500 0.0.0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displaying OSPF virtual neighbor information

To display OSPF virtual neighbor information, enter the following command at any CLI level.

FastIron# show ip ospf virtual-neighbor

Syntax: show ip ospf virtual-neighbor [<num>]

The <num> parameter displays the table beginning at the specified entry number.

Displaying OSPF virtual link information

To display OSPF virtual link information, enter the following command at any CLI level.

FastIron# show ip ospf virtual-link

Syntax: show ip ospf virtual-link [<num>]

The <num> parameter displays the table beginning at the specified entry number.

Displaying OSPF ABR and ASBR information

To display OSPF ABR and ASBR information, enter the following command at any CLI level.

FastIron# show ip ospf border-routers
Syntax: `show ip ospf border-routers [<ip-addr>]`

The `<ip-addr>` parameter displays the ABR and ASBR entries for the specified IP address.

Displaying OSPF trap status

All traps are enabled by default when you enable OSPF. To disable or re-enable an OSPF trap, refer to “Modify OSPF traps generated” on page 1205.

To display the state of each OSPF trap, enter the following command at any CLI level.

```
FastIron# show ip ospf trap
Interface State Change Trap:                  Enabled
Virtual Interface State Change Trap:          Enabled
Neighbor State Change Trap:                   Enabled
Virtual Neighbor State Change Trap:           Enabled
Interface Configuration Error Trap:           Enabled
Virtual Interface Configuration Error Trap:   Enabled
Interface Authentication Failure Trap:        Enabled
Virtual Interface Authentication Failure Trap: Enabled
Interface Receive Bad Packet Trap:            Enabled
Virtual Interface Receive Bad Packet Trap:    Enabled
Interface Retransmit Packet Trap:             Enabled
Virtual Interface Retransmit Packet Trap:     Enabled
Originate LSA Trap:                           Enabled
Originate MaxAge LSA Trap:                    Enabled
Link State Database Overflow Trap:            Enabled
Link State Database Approaching Overflow Trap: Enabled
```

Syntax: `show ip ospf trap`
Overview

Open Shortest Path First (OSPF) is a link-state routing protocol. OSPF uses link-state advertisements (LSAs) to update neighboring routers about its interfaces and information on those interfaces. The switch floods LSAs to all neighboring routers to update them about the interfaces. Each router maintains an identical database that describes its area topology to help a router determine the shortest path between it and any neighboring router:

- The differences between OSPF Version 2 (OSPF V2) and OSPF Version 3 (OSPF V3).
- The link state advertisement types for OSPF Version 3.
- How to configure OSPF Version 3.
- How to display OSPF Version 3 information and statistics.

NOTE
The terms *Layer 3 Switch* and *router* are used interchangeably in this chapter and mean the same thing.

Differences between OSPF V2 and OSPF V3

IPv6 supports OSPF V3 functions similarly to OSPF V2 (the current version that IPv4 supports), except for the following enhancements:

- Support for IPv6 addresses and prefixes.
- While OSPF V2 runs per IP subnet, OSPF V3 runs per link. In general, you can configure several IPv6 addresses on a router interface, but OSPF V3 forms one adjacency per interface only, using the interface associated link-local address as the source for OSPF protocol packets. On virtual links, OSPF V3 uses the global IP address as the source.
- You can run one instance of OSPF Version 2 and one instance of OSPF V3 concurrently on a link.
- Support for IPv6 link state advertisements (LSAs).

In addition, Brocade implements some new commands that are specific to OSPF V3. This chapter describes the commands that are specific to OSPF V3.

NOTE
Although OSPF Versions 2 and 3 function similarly to each other, Brocade has implemented the user interface for each version independently of each other. Therefore, any configuration of OSPF Version 2 features will not affect the configuration of OSPF V3 features and vice versa.

NOTE
You are required to configure a router ID when running only IPv6 routing protocols.
Link state advertisement types for OSPF V3

OSPF V3 supports the following types of LSAs:

- Router LSAs (Type 1)
- Network LSAs (Type 2)
- Interarea-prefix LSAs for ABRs (Type 3)
- Interarea-router LSAs for ASBRs (Type 4)
- Autonomous system external LSAs (Type 5)
- Link LSAs (Type 8)
- Intra-area prefix LSAs (Type 9)

For more information about these LSAs, see RFC 2740.

Configuring OSPF V3

To configure OSPF V3, you must do the following:

1. Enable OSPF V3 globally.
2. Assign OSPF areas.
3. Assign router interfaces to an OSPF area.

The following configuration tasks are optional:

- Configure a virtual link between an ABR without a physical connection to a backbone area and the Brocade device in the same area with a physical connection to the backbone area.
- Change the reference bandwidth for the cost on OSPF V3 interfaces.
- Configure the redistribution of routes into OSPF V3.
- Configure default route origination.
- Modify the shortest path first (SPF) timers.
- Modify the administrative distances for OSPF V3 routes.
- Configure the OSPF V3 LSA pacing interval.
- Modify how often the Brocade device checks on the elimination of the database overflow condition.
- Modify the external link state database limit.
- Modify the default values of OSPF V3 parameters for router interfaces.
- Disable or re-enable OSPF V3 event logging.

Enabling OSPF V3

Before enabling the Brocade device to run OSPF V3, you must do the following:

- Enable the forwarding of IPv6 traffic on the Brocade device using the `ipv6 unicast-routing` command.
- Enable IPv6 on each interface over which you plan to enable OSPF V3. You enable IPv6 on an interface by configuring an IPv6 address or explicitly enabling IPv6 on that interface.
By default, OSPF V3 is disabled. To enable OSPF V3, you must enable it globally.

To enable OSPF V3 globally, enter the following command.

```
FastIron(config-ospf-router)#ipv6 router ospf
FastIron(config-ospf6-router)#
```

After you enter this command, the Brocade device enters the IPv6 OSPF configuration level, where you can access several commands that allow you to configure OSPF V3.

Syntax: `[no] ipv6 router ospf`

To disable OSPF V3, enter the `no` form of this command. If you disable OSPF V3, the Brocade device removes all the configuration information for the disabled protocol from the running-config. Moreover, when you save the configuration to the startup-config file after disabling one of these protocols, all the configuration information for the disabled protocol is removed from the startup-config file.

The CLI displays a warning message such as the following.

```
FastIron(config-ospf6-router)#no ipv6 router ospf
ipv6 router ospf mode now disabled. All ospf config data will be lost when writing to flash!
```

If you have disabled the protocol but have not yet saved the configuration to the startup-config file and reloaded the software, you can restore the configuration information by re-entering the command to enable the protocol (for example, `ipv6 router ospf`). If you have already saved the configuration to the startup-config file and reloaded the software, the information is gone. If you are testing an OSPF configuration and are likely to disable and re-enable the protocol, you might want to make a backup copy of the startup-config file containing the protocol configuration information. This way, if you remove the configuration information by saving the configuration after disabling the protocol, you can restore the configuration by copying the backup copy of the startup-config file onto the flash memory.

Assigning OSPF V3 areas

After OSPF V3 is enabled, you can assign OSPF V3 areas. You can assign an IPv4 address or a number as the area ID for each area. The area ID is representative of all IPv6 addresses (subnets) on a router interface. Each router interface can support one area.

An area can be **normal** or a **stub**:

- **Normal** – OSPF routers within a normal area can send and receive External Link State Advertisements (LSAs).
- **Stub** – OSPF routers within a stub area cannot send or receive External LSAs. In addition, OSPF routers in a stub area must use a default route to the area Area Border Router (ABR) or Autonomous System Boundary Router (ASBR) to send traffic out of the area.

For example, to set up OSPF V3 areas 0.0.0.0, 200.5.0.0, 192.5.1.0, and 195.5.0.0, enter the following commands.

```
FastIron(config-ospf6-router)#area 0.0.0.0
FastIron(config-ospf6-router)#area 200.5.0.0
FastIron(config-ospf6-router)#area 192.5.1.0
FastIron(config-ospf6-router)#area 195.5.0.0
```

Syntax: `[no] area <number> | <ipv4-address>`
Configuring OSPF V3

The `<number> | <ipv4-address>` parameter specifies the area number, which can be a number or in IPv4 address format. If you specify a number, the number can be from 0 – 2,147,483,647.

NOTE
You can assign one area on a router interface.

Assigning a totally stubby area

By default, the Brocade device sends summary LSAs (LSA type 3) into stub areas. You can further reduce the number of LSAs sent into a stub area by configuring the Brocade device to stop sending summary LSAs into the area. You can disable the summary LSAs when you are configuring the stub area or later after you have configured the area.

This feature disables origination of summary LSAs into a stub area, but the Brocade device still accepts summary LSAs from OSPF neighbors and floods them to other areas. The Brocade device can form adjacencies with other routers regardless of whether summarization is enabled or disabled for areas on each router.

When you disable the summary LSAs, the change takes effect immediately. If you apply the option to a previously configured area, the router flushes all of the summary LSAs it has generated (as an ABR) from the area.

NOTE
This feature applies only when the Brocade device is configured as an Area Border Router (ABR) for the area. To completely prevent summary LSAs from being sent to the area, disable the summary LSAs on each OSPF router that is an ABR for the area.

For example, to disable summary LSAs for stub area 40 and specify an additional metric of 99, enter the following command.

```
FastIron(config-ospf6-router)#area 40 stub 99 no-summary
```

Syntax: `area <number> | <ipv4-address> stub <metric> [no-summary]`

The `<number> | <ipv4-address>` parameter specifies the area number, which can be a number or in IPv4 address format. If you specify a number, the number can be from 0 – 2,147,483,647.

The `stub <metric>` parameter specifies an additional cost for using a route to or from this area and can be from 1 – 16777215. There is no default. Normal areas do not use the cost parameter.

The `no-summary` parameter applies only to stub areas and disables summary LSAs from being sent into the area.

Assigning interfaces to an area

After you define OSPF V3 areas, you must assign router interfaces to the areas. All router interfaces must be assigned to one of the defined areas on an OSPF router. When an interface is assigned to an area, all corresponding subnets on that interface are automatically included in the assignment.

For example, to assign Ethernet interface 3/1 to area 192.5.0.0, enter the following commands.

```
FastIron(config)#interface ethernet 3/1
FastIron(config-if-e100-3/1)#ipv6 ospf area 192.5.0.0
```

Syntax: `[no] ipv6 ospf area <number> | <ipv4-address>`
The `<number> | <ipv4-address>` parameter specifies the area number, which can be a number or in IPv4 address format. If you specify a number, the number can be from 0 – 2,147,483,647.

To remove the interface from the specified area, use the `no` form of this command.

Configuring virtual links

All ABRs must have either a direct or indirect link to an OSPF backbone area (0.0.0.0 or 0). If an ABR does not have a physical link to a backbone area, you can configure a virtual link from the ABR to another router within the same area that has a physical connection to the backbone area.

The path for a virtual link is through an area shared by the neighbor ABR (router with a physical backbone connection) and the ABR requiring a logical connection to the backbone.

Two parameters must be defined for all virtual links—transit area ID and neighbor router:

- The transit area ID represents the shared area of the two ABRs and serves as the connection point between the two routers. This number should match the area ID value.
- When assigned from the router interface requiring a logical connection, the neighbor router field is the router ID (IPv4 address) of the router that is physically connected to the backbone. When assigned from the router interface with the physical connection, the neighbor router is the router ID (IPv4) address of the router requiring a logical connection to the backbone.

NOTE

By default, the Brocade router ID is the IPv4 address configured on the lowest numbered loopback interface. If the Brocade device does not have a loopback interface, the default router ID is the lowest numbered IPv4 address configured on the device.

NOTE

When you establish an area virtual link, you must configure it on both of the routers (both ends of the virtual link).

For example, imagine that ABR1 in areas 1 and 2 is cut off from the backbone area (area 0). To provide backbone access to ABR1, you can add a virtual link between ABR1 and ABR2 in area 1 using area 1 as a transit area. To configure the virtual link, you define the link on the router that is at each end of the link. No configuration for the virtual link is required on the routers in the transit area.

To define the virtual link on ABR1, enter the following command on ABR1.

```
FastIron(config-ospf6-router)#area 1 virtual-link 209.157.22.1
```

To define the virtual link on ABR2, enter the following command on ABR2.

```
FastIron(config-ospf6-router)#area 1 virtual-link 10.0.0.1
```

Syntax: `area <number> | <ipv4-address> virtual-link <router-id>`

The `area <number> | <ipv4-address>` parameter specifies the transit area.

The `<router-id>` parameter specifies the router ID of the OSPF router at the remote end of the virtual link. To display the router ID on a router, enter the `show ip` command.
Assigning a virtual link source address

When routers at both ends of a virtual link need to communicate with one another, the source address included in the packets must be a global IPv6 address. Therefore, you must determine the global IPv6 address to be used by the routers for communication across the virtual link. You can specify that a router uses the IPv6 global address assigned to one of its interfaces.

For example, to specify the global IPv6 address assigned to Ethernet interface 3/1 on ABR1 as the source address for the virtual link on ABR1, enter the following command on ABR1.

```
FastIron(config-ospf6-router)#virtual-link-if-address interface ethernet 3/1
```

To specify the global IPv6 address assigned to tunnel interface 1 on ABR2 as the source address for the virtual link on ABR2, enter the following command on ABR2.

```
FastIron(config-ospf6-router)#virtual-link-if-address interface tunnel 1
```

Syntax: `virtual-link-if-address interface ethernet <port> | loopback <number> | tunnel <number> | ve <number>`

The `ethernet | loopback | tunnel | ve` parameter specifies the interface from which the router derives the source IPv6 address for communication across the virtual link. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a loopback, tunnel, or VE interface, also specify the number associated with the respective interface.

To delete the source address for the virtual link, use the `no` form of this command.

Modifying virtual link parameters

You can modify the following virtual link parameters:

- **Dead-interval**: The number of seconds that a neighbor router waits for a hello packet from the current router before declaring the router is down. The range is 1 – 65535 seconds. The default is 40 seconds.
- **Hello-interval**: The length of time between the transmission of hello packets. The range is 1 – 65535 seconds. The default is 10 seconds.
- **Retransmit-interval**: The interval between the re-transmission of link state advertisements to router adjacencies for this interface. The range is 0 – 3600 seconds. The default is 5 seconds.
- **Transmit-delay**: The period of time it takes to transmit Link State Update packets on the interface. The range is 0 – 3600 seconds. The default is 1 second.

NOTE

The values of the `dead-interval` and `hello-interval` parameters must be the same at both ends of a virtual link. Therefore, if you modify the values of these parameters at one end of a virtual link, you must remember to make the same modifications on the other end of the link.

The values of the other virtual link parameters do not require synchronization.

For example, to change the dead interval to 60 seconds on the virtual links defined on ABR1 and ABR2, enter the following command on ABR1.

```
FastIron(config-ospf6-router)#area 1 virtual-link 209.157.22.1 dead-interval 60
```

Enter the following command on ABR2.

```
FastIron(config-ospf6-router)#area 1 virtual-link 10.0.0.1 dead-interval 60
```
Configuring OSPF V3

Syntax: area <number> | <ipv4-address> virtual-link <router-id> [dead-interval <seconds> | hello-interval <seconds> | retransmit-interval <seconds> | transmit-delay <seconds>]

The area <number> | <ipv4-address> parameter specifies the transit area.

The <router-id> parameter specifies the router ID of the OSPF router at the remote end of the virtual link. To display the router ID on a router, enter the show ip command.

The dead-interval, hello-interval, retransmit-interval, and transmit-delay parameters are discussed earlier in this section.

Changing the reference bandwidth for the cost on OSPF V3 interfaces

Each interface on which OSPF V3 is enabled has a cost associated with it. The Brocade device advertises its interfaces and their costs to OSPF V3 neighbors. For example, if an interface has an OSPF cost of ten, the Brocade device advertises the interface with a cost of ten to other OSPF routers.

By default, an interface OSPF cost is based on the port speed of the interface. The software uses the following formula to calculate the cost.

Cost = reference-bandwidth/interface-speed

By default, the reference bandwidth is 100 Mbps. If the resulting cost is less than 1, the software rounds the cost up to 1. The default reference bandwidth results in the following costs:

- 10 Mbps port cost = 100/10 = 10
- 100 Mbps port cost = 100/100 = 1
- 1000 Mbps port cost = 100/1000 = 0.10, which is rounded up to 1
- 155 Mbps port cost = 100/155 = 0.65, which is rounded up to 1
- 622 Mbps port cost = 100/622 = 0.16, which is rounded up to 1
- 2488 Mbps port cost = 100/2488 = 0.04, which is rounded up to 1

The bandwidth for interfaces that consist of more than one physical port is calculated as follows:

- Trunk group – The combined bandwidth of all the ports.
- Virtual (Ethernet) interface – The combined bandwidth of all the ports in the port-based VLAN that contains the virtual interface.

You can change the default reference bandwidth from 100 Mbps to a value from 1 – 4294967 Mbps.

If a change to the reference bandwidth results in a cost change to an interface, the Brocade device sends a link state update to update the costs of interfaces advertised by the Brocade device.

NOTE

If you specify the cost for an individual interface, the cost you specify overrides the cost calculated by the software.

Some interface types are not affected by the reference bandwidth and always have the same cost regardless of the reference bandwidth in use:

- The cost of a loopback interface is always 0.
The cost of a virtual link is calculated using the Shortest Path First (SPF) algorithm and is not affected by the auto-cost feature.

For example, to change the reference bandwidth to 500, enter the following command.

```
FastIron(config-ospf6-router)#auto-cost reference-bandwidth 500
```

The reference bandwidth specified in this example results in the following costs:

- 10 Mbps port cost = 500/10 = 50
- 100 Mbps port cost = 500/100 = 5
- 1000 Mbps port cost = 500/1000 = 0.5, which is rounded up to 1
- 155 Mbps port cost = 500/155 = 3.23, which is rounded up to 4
- 622 Mbps port cost = 500/622 = 0.80, which is rounded up to 1
- 2488 Mbps port cost = 500/2488 = 0.20, which is rounded up to 1

The costs for 10 Mbps, 100 Mbps, and 155 Mbps ports change as a result of the changed reference bandwidth. Costs for higher-speed interfaces remain the same.

Syntax: `[no] auto-cost reference-bandwidth <number>`

The `<number>` parameter specifies the reference bandwidth and can be a value from 1 – 4294967. The default is 100.

To restore the reference bandwidth to its default value and thus restore the default costs of interfaces to their default values, enter the `no` form of this command.

Redistributing routes into OSPF V3

In addition to specifying which routes are redistributed into OSPF V3, you can configure the following aspects related to route redistribution:

- Default metric
- Metric type
- Advertisement of an external aggregate route

Configuring route redistribution into OSPF V3

You can configure the Brocade device to redistribute routes from the following sources into OSPF V3:

- IPv6 static routes
- Directly connected IPv6 networks
- RIPng

You can redistribute routes in the following ways:

- By route types, for example, the Brocade device redistributes all IPv6 static and RIPng routes.
- By using a route map to filter which routes to redistribute, for example, the Brocade device redistributes specified IPv6 static and RIPng routes only.

For example, to configure the redistribution of all IPv6 static RIPng routes, enter the following commands.

```
FastIron(config-ospf6-router)#redistribute static
FastIron(config-ospf6-router)#redistribute rip
```
Syntax: `no` redistribute bgp | connected | rip | static [metric <number> | metric-type <type>]]

The `connected` | rip | static keywords specify the route source.

The `metric <number>` parameter specifies the metric used for the redistributed route. If a value is not specified for this option, and the value for the `default-metric` command is set to 0, its default metric, then routes redistributed from the various routing protocols will have the metric value of the protocol from which they are redistributed. For information about the `default-metric` command, refer to “Modifying default metric for routes redistributed into OSPF version 3” on page 1232

The `metric-type <type>` parameter specifies an OSPF metric type for the redistributed route. You can specify external type 1 or external type 2. If a value is not specified for this option, the Brocade device uses the value specified by the `metric-type` command. For information about modifying the default metric type using the `metric-type` command, refer to “Modifying default metric for routes redistributed into OSPF version 3” on page 1232

For example, to configure a route map and use it for redistribution of routes into OSPF V3, enter commands such as the following:

```
FastIron(config)#ipv6 route 2001:1::/32 4823:eoff:343e::23
FastIron(config)#ipv6 route 2001:2::/32 4823:eoff:343e::23
FastIron(config)#ipv6 route 2001:3::/32 4823:eoff:343e::23 metric 5
FastIron(config)#route-map abc permit 1
FastIron(config-route-map abc)#match metric 5
FastIron(config-route-map abc)#set metric 8
FastIron(config-route-map abc)#ipv6 router ospf
FastIron(config-ospf6-router)#redistribute static route-map abc
```

The commands in this example configure some static IPv6 routes and a route map, and use the route map for redistributing the static IPv6 routes into OSPF V3.

The `ipv6 route` commands configure the static IPv6 routes.

The `route-map` command begins configuration of a route map called “abc”. The number indicates the route map entry (called the “instance”) you are configuring. A route map can contain multiple entries. The software compares packets to the route map entries in ascending numerical order and stops the comparison once a match is found.

NOTE
The default action rule for route-map is to deny all routes that are not explicitly permitted. Refer to “Configuring an OSPF V3 redistribution list using a route map that uses a prefix list” on page 1236.

The `match` command in the route map matches on routes that have 5 for their metric value (cost). The `set` command changes the metric in routes that match the route map to 8.

The `redistribute` command configures the redistribution of static IPv6 routes into OSPF V3, and uses route map “abc” to control the routes that are redistributed. In this example, the route map allows a static IPv6 route to be redistributed into OSPF only if the route has a metric of 5, and changes the metric to 8 before placing the route into the OSPF route redistribution table.

Syntax: `[no] redistribute bgp | connected | isis | rip | static [route-map <map-name>]`

The `bgp` | connected | isis | rip | static keywords specify the route source.

The `route-map <map-name>` parameter specifies the route map name. The following match parameters are valid for OSPF V3 redistribution:

- `match metric <number>`

The following set parameters are valid for OSPF redistribution:
• set metric [+ | -] <number> | none
• set metric-type type-1 | type-2

NOTE
You must configure the route map before you configure a redistribution filter that uses the route map.

NOTE
When you use a route map for route redistribution, the software disregards the permit or deny action of the route map.

NOTE
For an external route that is redistributed into OSPF V3 through a route map, the metric value of the route remains the same unless the metric is set by a set metric command inside the route map or the default-metric <num> command. For a route redistributed without using a route map, the metric is set by the metric parameter if set or the default-metric <num> command if the metric parameter is not set.

Modify default metric for routes redistributed into OSPF version 3

The default metric is a global parameter that specifies the cost applied by default to routes redistributed into OSPF V3. The default value is 0.

If the metric parameter for the redistribute command is not set and the default-metric command is set to 0, its default value, then routes redistributed from the various routing protocols will have the metric value of the protocol from which they are redistributed. For information about the redistribute command, refer to “Configuring route redistribution into OSPF V3” on page 1230.

NOTE
You also can define the cost on individual interfaces. The interface cost overrides the default cost. For information about defining the cost on individual interfaces, refer to “Modifying OSPF V3 interface defaults” on page 1241 and “Changing the reference bandwidth for the cost on OSPF V3 interfaces” on page 1229.

To assign a default metric of 4 to all routes imported into OSPF V3, enter the following command.

FastIron(config-ospf6-router)#default-metric 4

Syntax: no| default-metric <number>

You can specify a value from 0 – 65535. The default is 0.

To restore the default metric to the default value, use the no form of this command.

Modifying metric type for routes redistributed into OSPF version 3

The Brocade device uses the metric-type parameter by default for all routes redistributed into OSPF V3 unless you specify a different metric type for individual routes using the redistribute command. (For more information about using the redistribute command, refer to “Redistributing routes into OSPF V3” on page 1230).

A type 1 route specifies a small metric (two bytes), while a type 2 route specifies a big metric (three bytes). The default value is type 2.

To modify the default value of type 2 to type 1, enter the following command.
FastIron(config-ospf6-router)#metric-type type1

Syntax: no | metric-type type1 | type2

To restore the metric type to the default value, use the no form of this command.

Configuring external route summarization

When the Brocade device is an OSPF Autonomous System Boundary Router (ASBR), you can configure it to advertise one external route as an aggregate for all redistributed routes that are covered by a specified IPv6 address range.

When you configure an address range, the range takes effect immediately. All the imported routes are summarized according to the configured address range. Imported routes that have already been advertised and that fall within the range are flushed out of the AS and a single route corresponding to the range is advertised.

If a route that falls within a configured address range is imported by the Brocade device, no action is taken if the device has already advertised the aggregate route; otherwise, the device advertises the aggregate route. If an imported route that falls within a configured address range is removed by the device, no action is taken if there are other imported routes that fall within the same address range; otherwise the aggregate route is flushed.

You can configure up to 32 address ranges. The Brocade device sets the forwarding address of the aggregate route to zero and sets the tag to zero.

If you delete an address range, the advertised aggregate route is flushed and all imported routes that fall within the range are advertised individually.

If an external link state database overflow (LSDB) condition occurs, all aggregate routes are flushed out of the AS, along with other external routes. When the Brocade device exits the external LSDB overflow condition, all the imported routes are summarized according to the configured address ranges.

NOTE

If you use redistribution filters in addition to address ranges, the Brocade device applies the redistribution filters to routes first, then applies them to the address ranges.

NOTE

If you disable redistribution, all the aggregate routes are flushed, along with other imported routes.

NOTE

This option affects only imported, type 5 external routes. A single type 5 LSA is generated and flooded throughout the AS for multiple external routes.

To configure the summary address 2201::/24 for routes redistributed into OSPF V3, enter the following command.

FastIron(config-ospf6-router)#summary-address 2201::/24

In this example, the summary prefix 2201::/24 includes addresses 2201::/1 through 2201::/24. Only the address FEC0::/24 is advertised in an external link-state advertisement.

Syntax: summary-address <ipv6-prefix>/<prefix-length>

You must specify the <ipv6-prefix> parameter in hexadecimal using 16-bit values between colons as documented in RFC 2373.
You must specify the `<prefix-length>` parameter as a decimal value. A slash mark (/) must follow the `<ipv6-prefix>` parameter and precede the `<prefix-length>` parameter.

Filtering OSPF V3 routes

You can filter the routes to be placed in the OSPF V3 route table by configuring distribution lists. OSPF V3 distribution lists can be applied globally or to an interface.

The functionality of OSPF V3 distribution lists is similar to that of OSPFv2 distribution lists. However, unlike OSPFv2 distribution lists, which filter routes based on criteria specified in an Access Control List (ACL), OSPF V3 distribution lists can filter routes using information specified in an IPv6 prefix list or a route map.

Configuration examples

The following sections show examples of filtering OSPF V3 routes using prefix lists globally and for a specific interface, as well as filtering OSPF V3 routes using a route map.

You can configure the device to use all three types of filtering. When you do this, filtering using route maps has higher priority over filtering using global prefix lists. Filtering using prefix lists for a specific interface has lower priority than the other two filtering methods.

The example in this section assume the following routes are in the OSPF V3 route table.

FastIron#show ipv6 ospf route

```
Current Route count: 5
 Intra: 3 Inter: 0 External: 2 (Type1 0/Type2 2)
 Equal-cost multi-path: 0
 Destination                      Options     Area         Cost    Type2 Cost Outgoing Interface
Next Hop Router                  Area        Cost
*IA 3001::/64                  --------- 0.0.0.1    0     0
     ::                         ve 10
*E2 3010::/64                  --------- 0.0.0.0    10    0
     fe80::2e0:52ff:fe00:10     ve 10
*IA 3015::/64                  V6E---R-- 0.0.0.0    11    0
     fe80::2e0:52ff:fe00:10     ve 10
*IA 3020::/64                  --------- 0.0.0.0    10    0
     ::                         ve 11
*E2 6001:5000::/64              --------- 0.0.0.0    10    0
     fe80::2e0:52ff:fe00:10     ve 10
```

Configuring an OSPF V3 distribution list using an IPv6 prefix list as input

The following example illustrates how to use an IPv6 prefix list is used to filter OSPF V3 routes.

To specify an IPv6 prefix list called filterOspfRoutes that denies route 3010::/64, enter the following commands.

```
FastIron(config)#ipv6 prefix-list filterOspfRoutes seq 5 deny 3010::/64
FastIron(config)#ipv6 prefix-list filterOspfRoutes seq 7 permit ::/0 ge 1 le 128
```

Syntax:

```
ipv6 prefix-list <name> [seq <seq-value>] [description <string>] deny | permit <ipv6-addr>/<<mask-bits>> [ge <ge-value>] [le <le-value>]
```

To configure a distribution list that applies the filterOspfRoutes prefix list globally.
FastIron(config)#ipv6 router ospf
FastIron(config-ospf6-router)#distribute-list prefix-list filterOspfRoutes in

Syntax: [no] distribute-list prefix-list <name> in [<interface>]

After this distribution list is configured, route 3010::/64 would be omitted from the OSPF V3 route table.

FastIron#show ipv6 ospf route

Current Route count: 4
Intra: 3 Inter: 0 External: 1 (Type1 0/Type2 1)
Equal-cost multi-path: 0

<table>
<thead>
<tr>
<th>Destination</th>
<th>Options</th>
<th>Area</th>
<th>Cost</th>
<th>Type2</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IA 3001::/64</td>
<td>--------</td>
<td>0.0.0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>::</td>
<td></td>
<td>ve 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IA 3015::/64</td>
<td>V6E---R--</td>
<td>0.0.0.0</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>fe80::2e0:52ff:fe00:10</td>
<td></td>
<td>ve 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IA 3020::/64</td>
<td>--------</td>
<td>0.0.0.0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>::</td>
<td></td>
<td>ve 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*E2 6001:5000::/64</td>
<td>--------</td>
<td>0.0.0.0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fe80::2e0:52ff:fe00:10</td>
<td></td>
<td>ve 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following commands specify an IPv6 prefix list called filterOspfRoutesVe that denies route 3015::/64.

FastIron(config)#ipv6 prefix-list filterOspfRoutesVe seq 5 deny 3015::/64
FastIron(config)#ipv6 prefix-list filterOspfRoutesVe seq 10 permit ::/0 ge 1 le 128

The following commands configure a distribution list that applies the filterOspfRoutesVe prefix list to routes pointing to virtual interface 10.

FastIron(config)#ipv6 router ospf
FastIron(config-ospf6-router)#distribute-list prefix-list filterOspfRoutes in ve 10

After this distribution list is configured, route 3015::/64, pointing to virtual interface 10, would be omitted from the OSPF V3 route table.

FastIron#show ipv6 ospf route

Current Route count: 4
Intra: 3 Inter: 0 External: 1 (Type1 0/Type2 1)
Equal-cost multi-path: 0

<table>
<thead>
<tr>
<th>Destination</th>
<th>Options</th>
<th>Area</th>
<th>Cost</th>
<th>Type2</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IA 3001::/64</td>
<td>--------</td>
<td>0.0.0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>::</td>
<td></td>
<td>ve 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*E2 3010::/64</td>
<td>--------</td>
<td>0.0.0.0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fe80::2e0:52ff:fe00:10</td>
<td></td>
<td>ve 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IA 3020::/64</td>
<td>--------</td>
<td>0.0.0.0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>::</td>
<td></td>
<td>ve 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*E2 6001:5000::/64</td>
<td>--------</td>
<td>0.0.0.0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fe80::2e0:52ff:fe00:10</td>
<td></td>
<td>ve 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring an OSPF V3 distribution list using a route map as input

The following commands configure a route map that matches internal routes.

FastIron(config)#route-map allowInternalRoutes permit 10
FastIron(config-route-map allowInternalRoutes)#match route-type internal

Refer to “Policy-Based Routing” for information on configuring route maps.

The following commands configure a distribution list that applies the allowInternalRoutes route map globally to OSPF V3 routes.

FastIron(config)#ipv6 router ospf
FastIron(config-ospf6-router)#distribute-list route-map allowInternalRoutes in

Syntax: [no] distribute-list route-map <name> in

After this distribution list is configured, the internal routes would be included, and the external routes would be omitted from the OSPF V3 route table.

FastIron#show ipv6 ospf route

Current Route count: 3
 Intra: 3 Inter: 0 External: 0 (Type1 0/Type2 0)
 Equal-cost multi-path: 0
 Destination Options Area Cost Type2 Cost
 Next Hop Router Outgoing Interface
*IA 3001::/64 0.0.0.1 0 0
 :: ve 10
*IA 3015::/64 V6E---R-- 0.0.0.0 11 0
 fe80::2e0:52ff:fe00:10 ve 10
*IA 3020::/64 0.0.0.0 10 0
 :: ve 11

Configuring an OSPF V3 distribution list using a route map that uses a prefix list

When you configure route redistribution into OSPF V3 using a route map that uses a prefix list, the device supports both permit and deny statements in the route map and permit statements only in the prefix list. Therefore, the action to permit or deny is determined by the route map, and the conditions for the action are contained in the prefix list. The following shows an example configuration.

FastIron(config)#route-map v64 deny 10
FastIron(config-route-map v64)#match ipv6 next-hop prefix-list ospf-filter5
FastIron(config-route-map v64)#match ipv6 address prefix-list ospf-filter2
FastIron(config-route-map v64)#route-map v64 permit 12
FastIron(config-route-map v64)#exit
FastIron(config)#ipv6 prefix-list ospf-filter2 seq 15 permit
2001:aa:2001:102::/64 ge 65 le 96
FastIron(config)#ipv6 prefix-list ospf-filter5 seq 15 permit
fe80::2e0:52ff:fe00:100/128

In this example the prefix lists, ospf-filter2 and ospf-filter5, contain a range of IPv6 routes and one host route to be denied, and the route map v64 defines the deny action.
NOTE
The default action rule for `route-map` is to deny all routes that are not explicitly permitted. If you configure a “deny” route map but want to permit other routes that do not match the rule, configure an “empty” permit route map. For example.

```
FastIron(config)#route-map abc deny 10
FastIron(config-route-map abc)#match metric 20
FastIron(config-route-map abc)#route-map abc permit 20
```

Without the last line in the above example, all routes would be denied.

Configuring default route origination

When the Brocade device is an OSPF Autonomous System Boundary Router (ASBR), you can configure it to automatically generate a default external route into an OSPF V3 routing domain. This feature is called “default route origination” or “default information origination.”

By default, the Brocade device does not advertise the default route into the OSPF V3 domain. If you want the device to advertise the OSPF default route, you must explicitly enable default route origination.

When you enable OSPF default route origination, the device advertises a type 5 default route that is flooded throughout the AS (except stub areas).

The device advertises the default route into OSPF even if OSPF route redistribution is not enabled, and even if the default route is learned through an IBGP neighbor.

NOTE
The Brocade device does not advertise the OSPF default route, regardless of other configuration parameters, unless you explicitly enable default route origination.

If default route origination is enabled and you disable it, the default route originated by the device is flushed. Default routes generated by other OSPF routers are not affected. If you re-enable the feature, the feature takes effect immediately and thus does not require you to reload the software.

For example, to create and advertise a default route with a metric of 2 and as a type 1 external route, enter the following command.

```
FastIron(config-ospf6-router)#default-information-originate always metric 2 metric-type type1
```

Syntax: `[no] default-information-originate [always] [metric <value>] [metric-type <type>]`

The `always` keyword originates a default route regardless of whether the device has learned a default route. This option is disabled by default.

The `metric <value>` parameter specifies a metric for the default route. If this option is not used, the value of the `default-metric` command is used for the route. For information about this command, refer to “Modifying default metric for routes redistributed into OSPF version 3” on page 1232.

The `metric-type <type>` parameter specifies the external link type associated with the default route advertised into the OSPF routing domain. The `<type>` can be one of the following:

- 1 – Type 1 external route
- 2 – Type 2 external route

If you do not use this option, the default redistribution metric type is used for the route type.
NOTE
If you specify a metric and metric type, the values you specify are used even if you do not use the always option.

To disable default route origination, enter the no form of the command.

Modifying shortest path first timers

The Brocade device uses the following timers when calculating the shortest path for OSPF V3 routes:

- **SPF delay** – When the Brocade device receives a topology change, the software waits before it starts a Shortest Path First (SPF) calculation. By default, the software waits 5 seconds. You can configure the SPF delay to a value from 0 – 65535 seconds. If you set the SPF delay to 0 seconds, the software immediately begins the SPF calculation after receiving a topology change.

- **SPF hold time** – The Brocade device waits a specific amount of time between consecutive SPF calculations. By default, the device waits 10 seconds. You can configure the SPF hold time to a value from 0 – 65535 seconds. If you set the SPF hold time to 0 seconds, the software does not wait between consecutive SPF calculations.

You can set the SPF delay and hold time to lower values to cause the device to change to alternate paths more quickly if a route fails. Note that lower values for these parameters require more CPU processing time.

You can change one or both of the timers.

NOTE
If you want to change only one of the timers, for example, the SPF delay timer, you must specify the new value for this timer as well as the current value of the SPF hold timer, which you want to retain. The Brocade device does not accept only one timer value.

To change the SPF delay to 10 seconds and the SPF hold to 20 seconds, enter the following command.

```
FastIron(config-ospf6-router)#timers spf 10 20
```

Syntax: `timers spf <delay> <hold-time>`

For the `<delay>` and `<hold-time>` parameters, specify a value from 0 – 65535 seconds.

To set the timers back to their default values, enter the no version of this command.

Modifying administrative distance

The Brocade device can learn about networks from various protocols, including IPv6, RIPvng, and OSPF V3. Consequently, the routes to a network may differ depending on the protocol from which the routes were learned. By default, the administrative distance for OSPF V3 routes is 110.

The device selects one route over another based on the source of the route information. To do so, the device can use the administrative distances assigned to the sources. You can influence the device decision by changing the default administrative distance for OSPF V3 routes.
Configuring administrative distance based on route type

You can configure a unique administrative distance for each type of OSPF V3 route. For example, you can use this feature to influence the Brocade device to prefer a static route over an OSPF inter-area route and to prefer OSPF intra-area routes to static routes.

The distance you specify influences the choice of routes when the device has multiple routes to the same network from different protocols. The device prefers the route with the lower administrative distance.

You can specify unique default administrative distances for the following OSPF V3 route types:

- Intra-area routes
- Inter-area routes
- External routes

The default for all of these OSPF V3 route types is 110.

NOTE
This feature does not influence the choice of routes within OSPF V3. For example, an OSPF intra-area route is always preferred over an OSPF inter-area route, even if the intra-area route distance is greater than the inter-area route distance.

For example, to change the default administrative distances for intra-area routes to 80, inter-area routes to 90, and external routes to 100, enter the following commands.

```
FastIron(config-ospf6-router)#distance intra-area 80
FastIron(config-ospf6-router)#distance inter-area 90
FastIron(config-ospf6-router)#distance external 100
```

Syntax: `distance external | inter-area | intra-area <distance>`

The `external | inter-area | intra-area` keywords specify the route type for which you are changing the default administrative distance.

The `<distance>` parameter specifies the new distance for the specified route type. You can specify a value from 1 – 255.

To reset the administrative distance of a route type to its system default, enter the `no` form of this command.

Configuring the OSPF V3 LSA pacing interval

The Brocade device paces OSPF V3 LSA refreshes by delaying the refreshes for a specified time interval instead of performing a refresh each time an individual LSA refresh timer expires. The accumulated LSAs constitute a group, which the Brocade device refreshes and sends out together in one or more packets.

The pacing interval, which is the interval at which the Brocade device refreshes an accumulated group of LSAs, is configurable to a range from 10 – 1800 seconds (30 minutes). The default is 240 seconds (four minutes). Thus, every four minutes, the Brocade device refreshes the group of accumulated LSAs and sends the group together in the same packets.
The pacing interval is inversely proportional to the number of LSAs the Brocade device is refreshing and aging. For example, if you have approximately 10,000 LSAs, decreasing the pacing interval enhances performance. If you have a very small database (40 – 100 LSAs), increasing the pacing interval to 10 – 20 minutes might enhance performance only slightly.

To change the OSPF V3 LSA pacing interval to two minutes (120 seconds), enter the following command.

```plaintext
FastIron(config)#ipv6 router ospf
FastIron(config-ospf6-router)#timers lsa-group-pacing 120
```

Syntax:

```
[no] timers lsa-group-pacing <seconds>
```

The `<seconds>` parameter specifies the number of seconds and can be from 10 – 1800 (30 minutes). The default is 240 seconds (four minutes).

To restore the pacing interval to its default value, use the `no` form of the command.

Modifying exit overflow interval

If a database overflow condition occurs on the Brocade device, the device eliminates the condition by removing entries that originated on the device. The exit overflow interval allows you to set how often a device checks to see if the overflow condition has been eliminated. The default value is 0. If the configured value of the database overflow interval is 0, then the device never leaves the database overflow condition.

For example, to modify the exit overflow interval to 60 seconds, enter the following command.

```plaintext
FastIron(config-ospf6-router)#database-overflow-interval 60
```

Syntax:

```
[no] auto-cost reference-bandwidth <number>
```

The `<seconds>` parameter can be a value from 0 – 86400 seconds (24 hours).

To reset the exit overflow interval to its system default, enter the `no` form of this command.

Modifying external link state database limit

By default, the link state database can hold a maximum of 2000 entries for external (type 5) LSAs. You can change the maximum number of entries from 500 – 8000. After changing this limit, make sure to save the running-config file and reload the software. The change does not take effect until you reload or reboot the software.

For example, to change the maximum number entries from the default of 2000 to 3000, enter the following command.

```plaintext
FastIron(config-ospf6-router)#external-lsdb-limit 3000
```

Syntax:

```
ipv6 ospf area <number> | <ipv4-address>
```

The `<entries>` parameter can be a numerical value from 500 – 8000 seconds.

To reset the maximum number of entries to its system default, enter the `no` form of this command.
Modifying OSPF V3 interface defaults

OSPF V3 has interface parameters that you can configure. For simplicity, each of these parameters has a default value. No change to these default values is required except as needed for specific network configurations.

You can modify the default values for the following OSPF interface parameters:

- **Cost**: Indicates the overhead required to send a packet across an interface. You can modify the cost to differentiate between 100 Mbps and 1000 Mbps (1 Gbps) links. The command syntax is `ipv6 ospf cost <number>`. The default cost is calculated by dividing 100 million by the bandwidth. For 10 Mbps links, the cost is 10. The cost for both 100 Mbps and 1000 Mbps links is 1, because the speed of 1000 Mbps was not in use at the time the OSPF cost formula was devised.

- **Dead-interval**: Indicates the number of seconds that a neighbor router waits for a hello packet from the current router before declaring the router down. The command syntax is `ipv6 ospf dead-interval <seconds>`. The value can be from 1 – 2147483647 seconds. The default is 40 seconds.

- **Hello-interval**: Represents the length of time between the transmission of hello packets. The command syntax is `ipv6 ospf hello-interval <seconds>`. The value can be from 1 – 65535 seconds. The default is 10 seconds.

- **Instance**: Indicates the number of OSPF V3 instances running on an interface. The command syntax is `ipv6 ospf instance <number>`. The value can be from 0 – 255. The default is 1.

- **MTU-ignore**: Allows you to disable a check that verifies the same MTU is used on an interface shared by neighbors. The command syntax is `ipv6 ospf mtu-ignore`. By default, the mismatch detection is enabled.

- **Network**: Allows you to configure the OSPF network type. The command syntax is `ipv6 ospf network [point-to-multipoint]`. The default setting of the parameter depends on the network type.

- **Passive**: When you configure an OSPF interface to be passive, that interface does not send or receive OSPF route updates. This option affects all IPv6 subnets configured on the interface. The command syntax is `ipv6 ospf passive`. By default, all OSPF interfaces are active and thus can send and receive OSPF route information. Since a passive interface does not send or receive route information, the interface is in effect a stub network.

- **Priority**: Allows you to modify the priority of an OSPF router. The priority is used when selecting the designated router (DR) and backup designated routers (BDRs). The command syntax is `ipv6 ospf priority <number>`. The value can be from 0 – 255. The default is 1. If you set the priority to 0, the router does not participate in DR and BDR election.

- **Retransmit-interval**: The time between retransmissions of LSAs to adjacent routers for an interface. The command syntax is `ipv6 ospf retransmit-interval <seconds>`. The value can be from 0 – 3600 seconds. The default is 5 seconds.

- **Transmit-delay**: The time it takes to transmit Link State Update packets on this interface. The command syntax is `ipv6 ospf transmit-delay <seconds>`. The value can be from 0 – 3600 seconds. The default is 1 second.

Disabling or re-enabling event logging

OSPF V3 does not currently support the generation of SNMP traps. Instead, you can disable or re-enable the logging of OSPF V3-related events such as neighbor state changes and database overflow conditions. By default, the Brocade device logs these events.
To disable the logging of events, enter the following command.

```
FastIron(config-ospf6-router)#no log-status-change
```

Syntax: `[no] log-status-change

To re-enable the logging of events, enter the following command.

```
FastIron(config-ospf6-router)#log-status-change
```

Displaying OSPF V3 Information

You can display the information for the following OSPF V3 parameters:

- Areas
- Link state databases
- Interfaces
- Memory usage
- Neighbors
- Redistributed routes
- Routes
- SPF
- Virtual links
- Virtual neighbors

Displaying OSPF V3 area information

To display global OSPF V3 area information for the Brocade device, enter the following command at any CLI level.

```
FastIron#show ipv6 ospf area
```

Area 0:
 Interface attached to this area: loopback 2 ethe 3/2 tunnel 2
 Number of Area scoped LSAs is 6
 Statistics of Area 0:
 SPF algorithm executed 16 times
 SPF last updated: 335256 sec ago
 Current SPF node count: 3
 Router: 2 Network: 1
 Maximum of Hop count to nodes: 2
	...

Syntax: `show ipv6 ospf area [<area id>]`

You can specify the `<area-id>` parameter in the following formats:

- As an IPv4 address, for example, 192.168.1.1.
- As a numerical value from 0 – 2,147,483,647.

The `<area-id>` parameter restricts the display to the specified OSPF area.

This display shows the following information.
Displaying OSPF V3 Information

You can display a summary of the link state database or detailed information about a specified LSA type.

To display a summary of a device link state database, enter the following command at any CLI level.

```
FastIron#show ipv6 ospf database
```

TABLE 202 OSPF V3 area information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>The area number.</td>
</tr>
<tr>
<td>Interface attached to this area</td>
<td>The router interfaces attached to the area.</td>
</tr>
<tr>
<td>Number of Area scoped LSAs</td>
<td>Number of LSAs with a scope of the specified area.</td>
</tr>
<tr>
<td>SPF algorithm executed</td>
<td>The number of times the OSPF Shortest Path First (SPF) algorithm is executed within the area.</td>
</tr>
<tr>
<td>SPF last updated</td>
<td>The interval in seconds that the SPF algorithm was last executed within the area.</td>
</tr>
<tr>
<td>Current SPF node count</td>
<td>The current number of SPF nodes in the area.</td>
</tr>
<tr>
<td>Router</td>
<td>Number of router LSAs in the area.</td>
</tr>
<tr>
<td>Network</td>
<td>Number of network LSAs in the area.</td>
</tr>
<tr>
<td>Indx</td>
<td>The row number of the entry in the router OSPF area table.</td>
</tr>
<tr>
<td>Area</td>
<td>The area number.</td>
</tr>
<tr>
<td>Maximum hop count to nodes</td>
<td>The maximum number of hop counts to an SPF node within the area.</td>
</tr>
</tbody>
</table>

Displaying OSPF V3 database information

You can display a summary of the link state database or detailed information about a specified LSA type.

To display a summary of a device link state database, enter the following command at any CLI level.

```
FastIron#show ipv6 ospf database
```

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Type</th>
<th>LS ID</th>
<th>Adv Rtr</th>
<th>Seg(Hex)</th>
<th>Age</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Link</td>
<td>000001e6</td>
<td>223.223.223.223</td>
<td>800000ab</td>
<td>1547</td>
<td>8955</td>
<td>68</td>
</tr>
<tr>
<td>0</td>
<td>Link</td>
<td>000000d8</td>
<td>1.1.1.1</td>
<td>800000aa</td>
<td>1295</td>
<td>0639</td>
<td>68</td>
</tr>
<tr>
<td>0</td>
<td>Link</td>
<td>00000185</td>
<td>223.223.223.223</td>
<td>800000ab</td>
<td>1481</td>
<td>966a</td>
<td>56</td>
</tr>
<tr>
<td>0</td>
<td>Iap</td>
<td>00000077</td>
<td>223.223.223.223</td>
<td>800000aa</td>
<td>1404</td>
<td>912c</td>
<td>56</td>
</tr>
<tr>
<td>0</td>
<td>Rtr</td>
<td>00000124</td>
<td>223.223.223.223</td>
<td>800000bd</td>
<td>1397</td>
<td>912c</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>Net</td>
<td>00000016</td>
<td>223.223.223.223</td>
<td>800000aa</td>
<td>1388</td>
<td>1b09</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>Iap</td>
<td>000001d1</td>
<td>223.223.223.223</td>
<td>800000bd</td>
<td>1379</td>
<td>a072</td>
<td>72</td>
</tr>
<tr>
<td>0</td>
<td>Iap</td>
<td>000000c3</td>
<td>1.1.1.1</td>
<td>800000ae</td>
<td>1325</td>
<td>e021</td>
<td>52</td>
</tr>
<tr>
<td>0</td>
<td>Rtr</td>
<td>00000170</td>
<td>1.1.1.1</td>
<td>800000ad</td>
<td>1280</td>
<td>af8e</td>
<td>40</td>
</tr>
<tr>
<td>N/A</td>
<td>ExtN</td>
<td>00000062</td>
<td>223.223.223.223</td>
<td>800000ae</td>
<td>1409</td>
<td>0ca7</td>
<td>32</td>
</tr>
<tr>
<td>N/A</td>
<td>ExtN</td>
<td>0000021d</td>
<td>223.223.223.223</td>
<td>800000aa</td>
<td>1319</td>
<td>41ae</td>
<td>32</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 ospf database [advrtr <ipv4-address> | as-external | extensive | inter-prefix | inter-router | intra-prefix | link | link-id <number> | network | router [scope <area-id> | as | link]]`

The `advrtr <ipv4-address>` parameter displays detailed information about the LSAs for a specified advertising router only.

The `as-external` keyword displays detailed information about the AS externals LSAs only.

The `extensive` keyword displays detailed information about all LSAs in the database.

The `inter-prefix` keyword displays detailed information about the inter-area prefix LSAs only.

The `inter-router` keyword displays detailed information about the inter-area router LSAs only.
The \textbf{intra-prefix} keyword displays detailed information about the intra-area prefix LSAs only.
The \textbf{link} keyword displays detailed information about the link LSAs only.
The \textbf{link-id} <\textit{number}> parameter displays detailed information about the specified link LSAs only.
The \textbf{network} <\textit{number}> displays detailed information about the network LSAs only.
The \textbf{router} <\textit{number}> displays detailed information about the router LSAs only.
The \textbf{scope} <\textit{area-id}> parameter displays detailed information about the LSAs for a specified area, AS, or link.

This display shows the following information.

TABLE 203 OSPF V3 database summary fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The OSPF area in which the Brocade device resides.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of LSA. LSA types can be the following:</td>
</tr>
<tr>
<td></td>
<td>• Rtr – Router LSAs (Type 1).</td>
</tr>
<tr>
<td></td>
<td>• Net – Network LSAs (Type 2).</td>
</tr>
<tr>
<td></td>
<td>• Inap – Inter-area prefix LSAs for ABRs (Type 3).</td>
</tr>
<tr>
<td></td>
<td>• Inar – Inter-area router LSAs for ASBRs (Type 4).</td>
</tr>
<tr>
<td></td>
<td>• Extn – AS external LSAs (Type 5).</td>
</tr>
<tr>
<td></td>
<td>• Link – Link LSAs (Type 8).</td>
</tr>
<tr>
<td></td>
<td>• Iap – Intra-area prefix LSAs (Type 9).</td>
</tr>
<tr>
<td>LS ID</td>
<td>The ID of the LSA, in hexadecimal, from which the device learned this route.</td>
</tr>
<tr>
<td>Adv Rtr</td>
<td>The device that advertised the route.</td>
</tr>
<tr>
<td>Seq(Hex)</td>
<td>The sequence number of the LSA. The OSPF neighbor that sent the LSA stamps it with a sequence number to enable the Brocade device and other OSPF routers to determine which LSA for a given route is the most recent.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the LSA, in seconds.</td>
</tr>
<tr>
<td>Chksum</td>
<td>A checksum for the LSA packet. The checksum is based on all the fields in the packet except the age field. The Brocade device uses the checksum to verify that the packet is not corrupted.</td>
</tr>
<tr>
<td>Len</td>
<td>The length, in bytes, of the LSA.</td>
</tr>
</tbody>
</table>

For example, to display detailed information about all LSAs in the database, enter the following command at any CLI level.
NOTE

Portions of this display are truncated for brevity. The purpose of this display is to show all possible fields that might display rather than to show complete output.

The fields that display depend upon the LSA type as shown in the following table.
TABLE 204 OSPF V3 detailed database information fields

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router LSA (Type 1) (Rtr) fields</td>
<td></td>
</tr>
<tr>
<td>Capability Bits</td>
<td>A bit that indicates the capability of the Brocade device. The bit can be set to one of the following:</td>
</tr>
<tr>
<td></td>
<td>• B – The device is an area border router.</td>
</tr>
<tr>
<td></td>
<td>• E – The device is an AS boundary router.</td>
</tr>
<tr>
<td></td>
<td>• V – The device is a virtual link endpoint.</td>
</tr>
<tr>
<td></td>
<td>• W – The device is a wildcard multicast receiver.</td>
</tr>
<tr>
<td>Options</td>
<td>A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following:</td>
</tr>
<tr>
<td></td>
<td>V6 – The device should be included in IPv6 routing calculations.</td>
</tr>
<tr>
<td></td>
<td>E – The device floods AS-external-LSAs as described in RFC 2740.</td>
</tr>
<tr>
<td></td>
<td>MC – The device forwards multicast packets as described in RFC 1586.</td>
</tr>
<tr>
<td></td>
<td>N – The device handles type 7 LSAs as described in RFC 1584.</td>
</tr>
<tr>
<td></td>
<td>R – The originator is an active router.</td>
</tr>
<tr>
<td></td>
<td>DC – The device handles demand circuits.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of interface. Possible types can be the following:</td>
</tr>
<tr>
<td></td>
<td>• Point-to-point – A point-to-point connection to another router.</td>
</tr>
<tr>
<td></td>
<td>• Transit – A connection to a transit network.</td>
</tr>
<tr>
<td></td>
<td>• Virtual link – A connection to a virtual link.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of using this router interface for outbound traffic.</td>
</tr>
<tr>
<td>Interface ID</td>
<td>The ID assigned to the router interface.</td>
</tr>
<tr>
<td>Neighbor Interface ID</td>
<td>The interface ID that the neighboring router has been advertising in hello packets sent on the attached link.</td>
</tr>
<tr>
<td>Neighbor Router ID</td>
<td>The router ID (IPv4 address) of the neighboring router that advertised the route. (By default, the Brocade router ID is the IPv4 address configured on the lowest numbered loopback interface. If the Brocade device does not have a loopback interface, the default router ID is the lowest numbered IPv4 address configured on the device.)</td>
</tr>
</tbody>
</table>
Table 204: OSPF V3 detailed database information fields (Continued)

<table>
<thead>
<tr>
<th>Field Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network LSA (Type 2) (Net) fields</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following: V6 – The device should be included in IPv6 routing calculations. E – The device floods AS-external-LSAs as described in RFC 2740. MC – The device forwards multicast packets as described in RFC 1586. N – The device handles type 7 LSAs as described in RFC 1584. R – The originator is an active router. DC – The device handles demand circuits.</td>
</tr>
<tr>
<td>Attached Router</td>
<td>The address of the neighboring router that advertised the route.</td>
</tr>
<tr>
<td>Inter-Area Prefix LSA (Type 3) (Inap) fields</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of the route.</td>
</tr>
<tr>
<td>Prefix Options</td>
<td>An 8-bit field describing various capabilities associated with the prefix.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The IPv6 prefix included in the LSA.</td>
</tr>
<tr>
<td>Inter-Area Router LSA (Type 4) (Inar) fields</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following: V6 – The device should be included in IPv6 routing calculations. E – The device floods AS-external-LSAs as described in RFC 2740. MC – The device forwards multicast packets as described in RFC 1586. N – The device handles type 7 LSAs as described in RFC 1584. R – The originator is an active router. DC – The device handles demand circuits.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of the route.</td>
</tr>
<tr>
<td>Destination Router ID</td>
<td>The ID of the router described in the LSA.</td>
</tr>
<tr>
<td>AS External LSA (Type 5) (Extn) fields</td>
<td></td>
</tr>
<tr>
<td>Bits</td>
<td>The bit can be set to one of the following: E – If bit E is set, a Type 2 external metric. If bit E is zero, a Type 1 external metric. F – A forwarding address is included in the LSA. T – An external route tag is included in the LSA.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of this route, which depends on bit E.</td>
</tr>
<tr>
<td>Prefix Options</td>
<td>An 8-bit field describing various capabilities associated with the prefix.</td>
</tr>
<tr>
<td>Referred LS Type</td>
<td>If non-zero, an LSA with this LS type is associated with the LSA.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The IPv6 prefix included in the LSA.</td>
</tr>
<tr>
<td>Link LSA (Type 8) (Link) fields</td>
<td></td>
</tr>
<tr>
<td>Router Priority</td>
<td>The router priority of the interface attaching the originating router to the link.</td>
</tr>
<tr>
<td>Options</td>
<td>The set of options bits that the router would like set in the network LSA that will be originated for the link.</td>
</tr>
<tr>
<td>Link Local Address</td>
<td>The originating router link-local interface address on the link.</td>
</tr>
<tr>
<td>Number of Prefix</td>
<td>The number of IPv6 address prefixes contained in the LSA.</td>
</tr>
</tbody>
</table>
Displaying OSPF V3 Information

You can display a summary of information for all OSPF V3 interfaces or detailed information about a specified OSPF V3 interface.

To display a summary of OSPF V3 interfaces, enter the following command at any CLI level.

`FastIron#show ipv6 ospf interface`

<table>
<thead>
<tr>
<th>Interface</th>
<th>OSPF Status</th>
<th>State</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethe 3/1</td>
<td>up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ethe 3/2</td>
<td>enabled</td>
<td>up</td>
<td>DR</td>
</tr>
<tr>
<td>ethe 3/4</td>
<td>disabled</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>loopback 2</td>
<td>enabled</td>
<td>up</td>
<td>Loopback</td>
</tr>
<tr>
<td>tunnel 1</td>
<td>disabled</td>
<td>down</td>
<td></td>
</tr>
<tr>
<td>tunnel 2</td>
<td>enabled</td>
<td>up</td>
<td>P2P</td>
</tr>
<tr>
<td>tunnel 6</td>
<td></td>
<td>up</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 ospf interface [ethernet <port> | loopback <number> | tunnel <number> | ve <number>]`

The `ethernet` | `loopback` | `tunnel` | `ve` parameter specifies the interface for which to display information. If you specify an Ethernet interface, also specify the port number associated with the interface. If you specify a loopback, tunnel, or VE interface, also specify the number associated with the interface.

This display shows the following information.

TABLE 204 OSPF V3 detailed database information fields (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Options</td>
<td>An 8-bit field of capabilities that serve as input to various routing calculations:</td>
</tr>
<tr>
<td></td>
<td>• NU – The prefix is excluded from IPv6 unicast calculations.</td>
</tr>
<tr>
<td></td>
<td>• LA – The prefix is an IPv6 interface address of the advertising router.</td>
</tr>
<tr>
<td></td>
<td>• MC – The prefix is included in IPv6 multicast routing calculations.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The IPv6 prefix included in the LSA.</td>
</tr>
</tbody>
</table>

Intra-Area Prefix LSAs (Type 9) (iap) fields

<table>
<thead>
<tr>
<th>Number of Prefix</th>
<th>The number of prefixes included in the LSA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenced LS Type, Referenced LS ID</td>
<td>Identifies the router-LSA or network-LSA with which the IPv6 address prefixes are associated.</td>
</tr>
<tr>
<td>Referenced Advertising Router</td>
<td>The address of the neighboring router that advertised the route.</td>
</tr>
<tr>
<td>Prefix Options</td>
<td>An 8-bit field describing various capabilities associated with the prefix.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of using the advertised prefix.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The IPv6 prefix included in the LSA.</td>
</tr>
<tr>
<td>Number of Prefix</td>
<td>The number of prefixes included in the LSA.</td>
</tr>
</tbody>
</table>
Displaying OSPF V3 Information

For example, to display detailed information about Ethernet interface 2, enter the following command at any level of the CLI.

```
FastIron#show ipv6 ospf interface ethernet 3/2
```

```
ethe 3/2 is up, type BROADCAST
IPv6 Address:
  2002:c0a8:46a::1/64
  2000:4::106/64
Instance ID 0, Router ID 223.223.223.223
Area ID 0, Cost 1
State DR, Transmit Delay 1 sec, Priority 1
Timer intervals :
  Hello 10, Dead 40, Retransmit 5
DR:223.223.223.223 BDR:1.1.1.1 Number of I/F scoped LSAs is 2
DRElection: 5 times, DelayedLSAck: 523 times
Neighbor Count = 1, Adjacent Neighbor Count= 1
Neighbor:
  1.1.1.1 (BDR)
Statistics of interface ethe 3/2:
  Type       tx   rx tx-byte rx-byte
  Unknown     0    0       0       0
  Hello 3149  3138 1259284 1255352
  DbDesc 7  6     416     288
  LSReq  2  2     80     152
  LSUpdate 1508  530  109508  39036
  LSAck  526 1398  19036  54568
```

This display shows the following information.

TABLE 205 Summary of OSPF V3 interface information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface type, and the port number or number of the interface.</td>
</tr>
<tr>
<td>OSPF</td>
<td>The state of OSPF V3 on the interface. Possible states include the following:</td>
</tr>
<tr>
<td></td>
<td>• Enabled.</td>
</tr>
<tr>
<td></td>
<td>• Disabled.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the link. Possible status include the following:</td>
</tr>
<tr>
<td></td>
<td>• Up.</td>
</tr>
<tr>
<td></td>
<td>• Down.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the interface. Possible states includes the following:</td>
</tr>
<tr>
<td></td>
<td>• DR – The interface is functioning as the Designated Router for OSPF V3.</td>
</tr>
<tr>
<td></td>
<td>• BDR – The interface is functioning as the Backup Designated Router for OSPF V3.</td>
</tr>
<tr>
<td></td>
<td>• Loopback – The interface is functioning as a loopback interface.</td>
</tr>
<tr>
<td></td>
<td>• P2P – The interface is functioning as a point-to-point interface.</td>
</tr>
<tr>
<td></td>
<td>• Passive – The interface is up but it does not take part in forming an adjacency.</td>
</tr>
<tr>
<td></td>
<td>• Waiting – The interface is trying to determine the identity of the BDR for the network.</td>
</tr>
<tr>
<td></td>
<td>• None – The interface does not take part in the OSPF interface state machine.</td>
</tr>
<tr>
<td></td>
<td>• Down – The interface is unusable. No protocol traffic can be sent or received on such a interface.</td>
</tr>
<tr>
<td></td>
<td>• DR other – The interface is a broadcast or NBMA network on which another router is selected to be the DR.</td>
</tr>
<tr>
<td>Area</td>
<td>The OSPF area to which the interface belongs.</td>
</tr>
</tbody>
</table>
Table 206: Detailed OSPF V3 Interface Information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface status</td>
<td>The status of the interface. Possible status includes the following:</td>
</tr>
<tr>
<td></td>
<td>• Up.</td>
</tr>
<tr>
<td></td>
<td>• Down.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of OSPF V3 circuit running on the interface. Possible types include the following:</td>
</tr>
<tr>
<td></td>
<td>• BROADCAST</td>
</tr>
<tr>
<td></td>
<td>• POINT TO POINT UNKNOWN</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>The IPv6 address(es) assigned to the interface.</td>
</tr>
<tr>
<td>Instance ID</td>
<td>An identifier for an instance of OSPF V3.</td>
</tr>
<tr>
<td>Router ID</td>
<td>The IPv4 address of the Brocade device. By default, the Brocade router ID is the IPv4 address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest numbered IPv4 address configured on the device.</td>
</tr>
<tr>
<td>Area ID</td>
<td>The IPv4 address or numerical value of the area in which the interface belongs.</td>
</tr>
<tr>
<td>Cost</td>
<td>The overhead required to send a packet through the interface.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the interface. Possible states include the following:</td>
</tr>
<tr>
<td></td>
<td>• DR – The interface is functioning as the Designated Router for OSPF V3.</td>
</tr>
<tr>
<td></td>
<td>• BDR – The interface is functioning as the Backup Designated Router for OSPF V3.</td>
</tr>
<tr>
<td></td>
<td>• Loopback – The interface is functioning as a loopback interface.</td>
</tr>
<tr>
<td></td>
<td>• P2P – The interface is functioning as a point-to-point interface.</td>
</tr>
<tr>
<td></td>
<td>• Passive – The interface is up but it does not take part in forming an adjacency.</td>
</tr>
<tr>
<td></td>
<td>• Waiting – The interface is trying to determine the identity of the BDR for the network.</td>
</tr>
<tr>
<td></td>
<td>• None – The interface does not take part in the OSPF interface state machine.</td>
</tr>
<tr>
<td></td>
<td>• Down – The interface is unusable. No protocol traffic can be sent or received on such an interface.</td>
</tr>
<tr>
<td></td>
<td>• DR other – The interface is a broadcast or NBMA network on which another router is selected to be the DR.</td>
</tr>
<tr>
<td>Transmit delay</td>
<td>The amount of time, in seconds, it takes to transmit Link State Updates packets on the interface.</td>
</tr>
<tr>
<td>Priority</td>
<td>The priority used when selecting the DR and the BDR. If the priority is 0, the interface does not participate in the DR and BDR election.</td>
</tr>
<tr>
<td>Timer intervals</td>
<td>The interval, in seconds, of the hello-interval, dead-interval, and retransmit-interval timers.</td>
</tr>
<tr>
<td>DR</td>
<td>The router ID (IPv4 address) of the DR.</td>
</tr>
<tr>
<td>BDR</td>
<td>The router ID (IPv4 address) of the BDR.</td>
</tr>
<tr>
<td>Number of I/F scoped LSAs</td>
<td>The number of interface LSAs scoped for a specified area, AS, or link.</td>
</tr>
<tr>
<td>DR Election</td>
<td>The number of times the DR election occurred.</td>
</tr>
<tr>
<td>Delayed LSA Ack</td>
<td>The number of the times the interface sent a delayed LSA acknowledgement.</td>
</tr>
<tr>
<td>Neighbor Count</td>
<td>The number of neighbors to which the interface is connected.</td>
</tr>
<tr>
<td>Adjacent Neighbor Count</td>
<td>The number of neighbors with which the interface has formed an active adjacency.</td>
</tr>
</tbody>
</table>
Displaying OSPF V3 Information

To display information about OSPF V3 memory usage, enter the following command at any level of the CLI.

```
FastIron#show ipv6 ospf memory
Total Static Memory Allocated : 5829 bytes
Total Dynamic Memory Allocated : 0 bytes
```

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Size</th>
<th>Allocated</th>
<th>Max-alloc</th>
<th>Alloc-Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTYPE_OSPF6_TOP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_LSA_HDR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_RMAP_COMPILED</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_OTHER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_THREAD_MASTER</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_AREA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_AREA_RANGE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_SUMMARY_ADDRE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_IF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_NEIGHBOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_ROUTE_NODE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_ROUTE_INFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_PREFIX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_LSA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_VERTEX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_SPFTREE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_NEXTHOP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_OSPF6_EXTERNAL_INFO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MTYPE_THREAD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Syntax: show ipv6 ospf memory

This display shows the following information.
Displaying OSPF V3 Information

You can display a summary of OSPF V3 neighbor information for the Brocade device or detailed information about a specified neighbor.

To display a summary of OSPF V3 neighbor information for the device, enter the following command at any CLI level.

```
FastIron#show ipv6 ospf neighbor
```

Displaying OSPF V3 neighbor information

You can display a summary of OSPF V3 neighbor information for the Brocade device or detailed information about a specified neighbor.

To display a summary of OSPF V3 neighbor information for the device, enter the following command at any CLI level.

```
FastIron#show ipv6 ospf neighbor
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The IPv4 address of the neighbor. By default, the Brocade router ID is the IPv4 address configured on the lowest numbered loopback interface. If the device does not have a loopback interface, the default router ID is the lowest numbered IPv4 address configured on the device.</td>
</tr>
<tr>
<td>Pri</td>
<td>The OSPF V3 priority of the neighbor. The priority is used during election of the DR and BDR.</td>
</tr>
<tr>
<td>State</td>
<td>The state between the Brocade device and the neighbor. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Down</td>
</tr>
<tr>
<td></td>
<td>• Attempt</td>
</tr>
<tr>
<td></td>
<td>• Init</td>
</tr>
<tr>
<td></td>
<td>• 2-Way</td>
</tr>
<tr>
<td></td>
<td>• ExStart</td>
</tr>
<tr>
<td></td>
<td>• Exchange</td>
</tr>
<tr>
<td></td>
<td>• Loading</td>
</tr>
<tr>
<td></td>
<td>• Full</td>
</tr>
<tr>
<td>DR</td>
<td>The router ID (IPv4 address) of the DR.</td>
</tr>
</tbody>
</table>

TABLE 207 OSPF V3 memory usage information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Static Memory Allocated</td>
<td>A summary of the amount of static memory allocated, in bytes, to OSPF V3.</td>
</tr>
<tr>
<td>Total Dynamic Memory Allocated</td>
<td>A summary of the amount of dynamic memory allocated, in bytes, to OSPF V3.</td>
</tr>
<tr>
<td>Memory Type</td>
<td>The type of memory used by OSPF V3. (This information is for use by Brocade technical support in case of a problem.)</td>
</tr>
<tr>
<td>Size</td>
<td>The size of a memory type.</td>
</tr>
<tr>
<td>Allocated</td>
<td>The amount of memory currently allocated to a memory type.</td>
</tr>
<tr>
<td>Max-alloc</td>
<td>The maximum amount of memory that was allocated to a memory type.</td>
</tr>
<tr>
<td>Alloc-Fails</td>
<td>The number of times an attempt to allocate memory to a memory type failed.</td>
</tr>
</tbody>
</table>
For example, to display detailed information about a neighbor with the router ID of 1.1.1.1, enter the following command at any CLI level.

```
FastIron#show ipv6 ospf neighbor router-id 3.3.3.3
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RouterID</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>Pri</td>
<td>1</td>
</tr>
<tr>
<td>State</td>
<td>Full</td>
</tr>
<tr>
<td>DR</td>
<td>3.3.3.3</td>
</tr>
<tr>
<td>BDR</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Interface</td>
<td>ve 10</td>
</tr>
<tr>
<td>[State]</td>
<td>[BDR]</td>
</tr>
</tbody>
</table>

DbDesc bit for this neighbor: --s
Nbr Ifindex of this router: 1
Nbr DRDecision: DR 3.3.3.3, BDR 1.1.1.1
Last received DbDesc: opt:xxx ifmtu:0 bit:--s segnum:0
Number of LSAs in DbDesc retransmitting: 0
Number of LSAs in SummaryList: 0
Number of LSAs in RequestList: 0
Number of LSAs in RetransList: 0
SeqnumMismatch 0 times, BadLSReq 0 times
OnewayReceived 0 times, InactivityTimer 0 times
DbDescRetrans 0 times, LSReqRetrans 0 times
LSUpdateRetrans 1 times
LSAReceived 12 times, LSUpdateReceived 6 times

This display shows the following information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>For information about this field, refer to Table 208 on page 1252.</td>
</tr>
<tr>
<td>Pri</td>
<td>For information about this field, refer to Table 208 on page 1252.</td>
</tr>
<tr>
<td>State</td>
<td>For information about this field, refer to Table 208 on page 1252.</td>
</tr>
<tr>
<td>DR</td>
<td>For information about this field, refer to Table 208 on page 1252.</td>
</tr>
<tr>
<td>BDR</td>
<td>For information about this field, refer to Table 208 on page 1252.</td>
</tr>
<tr>
<td>Interface</td>
<td>For information about this field, refer to Table 208 on page 1252.</td>
</tr>
<tr>
<td>[State]</td>
<td>For information about this field, refer to Table 208 on page 1252.</td>
</tr>
</tbody>
</table>
Displaying routes redistributed into OSPF V3

You can display all IPv6 routes or a specified IPv6 route that the Brocade device has redistributed into OSPF V3.

To display all IPv6 routes that the device has redistributed into OSPF V3, enter the following command at any level of the CLI.

```
Displaying routes redistributed into OSPF V3
```

Displaying OSPF V3 Information

TABLE 209 Detailed OSPF V3 neighbor information (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DbDesc bit...</td>
<td>The Database Description packet, which includes 3 bits of information:</td>
</tr>
<tr>
<td>◆ The first bit can be “i” or “-”. “i” indicates the inet bit is set. “-” indicates the inet bit is not set.</td>
<td></td>
</tr>
<tr>
<td>◆ The second bit can be “m” or “-”. “m” indicates the more bit is set. “-” indicates the more bit is not set.</td>
<td></td>
</tr>
<tr>
<td>◆ The third bit can be “m” or “s”. An “m” indicates the master. An “s” indicates standby.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>The ID of the LSA from which the neighbor learned of the router.</td>
</tr>
<tr>
<td>DR Decision</td>
<td>The router ID (IPv4 address) of the neighbor elected DR and BDR.</td>
</tr>
<tr>
<td>Last Received Db Desc</td>
<td>The content of the last database description received from the specified neighbor.</td>
</tr>
<tr>
<td>Number of LSAs in Db Desc retransmitting</td>
<td>The number of LSAs that need to be retransmitted to the specified neighbor.</td>
</tr>
<tr>
<td>Number of LSAs in Summary List</td>
<td>The number of LSAs in the neighbor summary list.</td>
</tr>
<tr>
<td>Number of LSAs in Request List</td>
<td>The number of LSAs in the neighbor request list.</td>
</tr>
<tr>
<td>Number of LSAs in Retransmit List</td>
<td>The number of LSAs in the neighbor retransmit list.</td>
</tr>
<tr>
<td>Seqnum Mismatch</td>
<td>The number of times sequence number mismatches occurred.</td>
</tr>
<tr>
<td>BadLSReq</td>
<td>The number of times the neighbor received a bad link-state request from the Brocade device.</td>
</tr>
<tr>
<td>One way received</td>
<td>The number of times a hello packet, which does not mention the router, is received from the neighbor. This omission in the hello packet indicates that the communication with the neighbor is not bidirectional.</td>
</tr>
<tr>
<td>Inactivity Timer</td>
<td>The number of times that the neighbor inactivity timer expired.</td>
</tr>
<tr>
<td>Db Desc Retransmission</td>
<td>The number of times sequence number mismatches occurred.</td>
</tr>
<tr>
<td>LSReqRetrans</td>
<td>The number of times the neighbor retransmitted link-state requests to the Brocade device.</td>
</tr>
<tr>
<td>LSUpdateRetrans</td>
<td>The number of times the neighbor retransmitted link-state updates to the Brocade device.</td>
</tr>
<tr>
<td>LSA Received</td>
<td>The number of times the neighbor received LSAs from the Brocade device.</td>
</tr>
<tr>
<td>LS Update Received</td>
<td>The number of times the neighbor received link-state updates from the Brocade device.</td>
</tr>
</tbody>
</table>
Syntax: show ipv6 ospf redistribute route [<ipv6-prefix>]

The <ipv6-prefix> parameter specifies an IPv6 network prefix. (You do not need to specify the length of the prefix.)

For example, to display redistribution information for the prefix 2002::, enter the following command at any level of the CLI.

FastIron#show ipv6 ospf redistribute route 2002::

<table>
<thead>
<tr>
<th>Id</th>
<th>Prefix</th>
<th>Protocol</th>
<th>Metric Type</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2002::/16</td>
<td>Static</td>
<td>Type-2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2002:1234::/32</td>
<td>Static</td>
<td>Type-2</td>
<td>1</td>
</tr>
</tbody>
</table>

These displays show the following information.

TABLE 210 OSPF V3 redistribution information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>An ID for the redistributed route.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The IPv6 routes redistributed into OSPF V3.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The protocol from which the route is redistributed into OSPF V3. Redistributed protocols can be the following:</td>
</tr>
<tr>
<td></td>
<td>• RIP – RIPv2.</td>
</tr>
<tr>
<td></td>
<td>• Static – IPv6 static route table.</td>
</tr>
<tr>
<td></td>
<td>• Connected – A directly connected network.</td>
</tr>
<tr>
<td>Metric Type</td>
<td>The metric type used for routes redistributed into OSPF V3. The metric type can be the following:</td>
</tr>
<tr>
<td></td>
<td>• Type-1 – Specifies a small metric (2 bytes).</td>
</tr>
<tr>
<td></td>
<td>• Type-2 – Specifies a big metric (3 bytes).</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the default redistribution metric, which is the OSPF cost of redistributing the route into OSPF V3.</td>
</tr>
</tbody>
</table>

Displaying OSPF V3 route information

You can display the entire OSPF V3 route table for the Brocade device or only the route entries for a specified destination.

To display the entire OSPF V3 route table for the device, enter the following command at any level of the CLI.

FastIron#show ipv6 ospf route
FastIron#show ipv6 ospf routes
Current Route count: 4
Intra: 4 Inter: 0 External: 0 (Type1 0/Type2 0)

<table>
<thead>
<tr>
<th>Destination</th>
<th>Options</th>
<th>Area</th>
<th>Cost</th>
<th>Type2</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IA 2000:4::/64</td>
<td>V6E---R--</td>
<td>0.0.0.0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>::</td>
<td>ethe 3/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IA 2002:c0a8:46a::/64</td>
<td>V6E---R--</td>
<td>0.0.0.0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>::</td>
<td>ethe 3/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IA 2999::1/128</td>
<td>------</td>
<td>0.0.0.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>::</td>
<td>loopback 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IA 2999::2/128</td>
<td>V6E---R--</td>
<td>0.0.0.0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>::</td>
<td>ethe 3/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FastIron#show ipv6 ospf routes 2000:4::

<table>
<thead>
<tr>
<th>Destination</th>
<th>Options</th>
<th>Area</th>
<th>Cost</th>
<th>Type2</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IA 2000:4::/64</td>
<td>V6E---R--</td>
<td>0.0.0.0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>::</td>
<td>ethe 3/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ipv6 ospf routes [ipv6-prefix]

The <ipv6-prefix> parameter specifies a destination IPv6 prefix. (You do not need to specify the length of the prefix.) If you use this parameter, only the route entries for this destination are shown.

For example, to display route information for the destination prefix 2000:4::, enter the following command at any level of the CLI.

These displays show the following information.

TABLE 211 OSPF V3 route information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Route Count (Displays with the entire OSPF V3 route table only)</td>
<td>The number of route entries currently in the OSPF V3 route table.</td>
</tr>
<tr>
<td>Intra/Inter/External (Type1/Type2) (Displays with the entire OSPF V3 route table only)</td>
<td>The breakdown of the current route entries into the following route types:</td>
</tr>
<tr>
<td>Equal-cost multi-path (Displays with the entire OSPF V3 route table only)</td>
<td>The number of equal-cost routes to the same destination in the OSPF V3 route table. If load sharing is enabled, the router equally distributes traffic among the routes.</td>
</tr>
<tr>
<td>Destination</td>
<td>The IPv6 prefixes of destination networks to which the Brocade device can forward IPv6 packets. "*IA" indicates the next router is an intra-area router.</td>
</tr>
<tr>
<td>Options</td>
<td>A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following:</td>
</tr>
</tbody>
</table>
 - V6 – The device should be included in IPv6 routing calculations. |
 - E – The device floods AS-external-LSAs as described in RFC 2740. |
 - MC – The device forwards multicast packets as described in RFC 1586. |
 - N – The device handles type 7 LSAs as described in RFC 1584. |
 - R – The originator is an active router. |
 - DC –The device handles demand circuits. |
Displaying OSPF V3 SPF information

You can display the following OSPF V3 SPF information:

- SPF node information for a specified area.
- SPF table for a specified area.
- SPF tree for a specified area.

For example, to display information about SPF nodes in area 0, enter the following command at any level of the CLI:

```
FastIron#show ipv6 ospf spf node area 0
SPF node for Area 0
SPF node 223.223.223.223,  cost: 0,  hops: 0
    nexthops to node:
        parent nodes: 223.223.223.223
        child nodes: 223.223.223.223:88

SPF node 223.223.223.223:88,  cost: 1,  hops: 1
    nexthops to node: :: ethe 3/2
        parent nodes: 223.223.223.223
        child nodes: 1.1.1.1:0

SPF node 1.1.1.1:0,  cost: 1,  hops: 2
    nexthops to node: fe80::2e0:52ff:fe91:bb37 ethe 3/2
        parent nodes: 223.223.223.223:88
        child nodes:
```

Syntax: `show ipv6 ospf spf node area [<area-id>]`

The `node` keyword displays SPF node information.

The `area <area-id>` parameter specifies a particular area. You can specify the `<area-id>` in the following formats:

- As an IPv4 address; for example, 192.168.1.1.
- As a numerical value from 0 – 2,147,483,647.

This display shows the following information.
For example, to display the SPF table for area 0, enter the following command at any level of the CLI:

```
FastIron#show ipv6 ospf spf table area 0
```

TABLE 212 OSPF V3 SPF node information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF node</td>
<td>Each SPF node is identified by its router ID (IPv4 address). If the node is a child node, it is additionally identified by an interface on which the node can be reached appended to the router ID in the format <router-id>:<interface-id>.</td>
</tr>
<tr>
<td>Cost</td>
<td>The cost of traversing the SPF node to reach the destination.</td>
</tr>
<tr>
<td>Hops</td>
<td>The number of hops needed to reach the parent SPF node.</td>
</tr>
<tr>
<td>Next Hops to Node</td>
<td>The IPv6 address of the next hop-router or the router interface, or both, through which to access the next-hop router.</td>
</tr>
<tr>
<td>Parent Nodes</td>
<td>The SPF node parent nodes. A parent node is an SPF node at the highest level of the SPF tree, which is identified by its router ID.</td>
</tr>
<tr>
<td>Child Nodes</td>
<td>The SPF node child nodes. A child node is an SPF node at a lower level of the SPF tree, which is identified by its router ID and interface on which the node can be reached.</td>
</tr>
</tbody>
</table>

TABLE 213 OSPF V3 SPF table

<table>
<thead>
<tr>
<th>Destination</th>
<th>Bits Options</th>
<th>Cost</th>
<th>Nexthop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 1.1.1.1</td>
<td>V6E---R-</td>
<td>1</td>
<td>fe80::2e0:52ff:fe91:bb37</td>
<td>ethe 3/2</td>
</tr>
<tr>
<td>N 223.223.223.223[88]</td>
<td>V6E---R-</td>
<td>1</td>
<td>:</td>
<td>ethe 3/2</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 ospf spf table area <area-id>`

The **table** parameter displays the SPF table.

The **area** `<area-id>` parameter specifies a particular area. You can specify the `<area-id>` in the following formats:

- As an IPv4 address, for example, 192.168.1.1.
- As a numerical value from 0 – 2,147,483,647.

This display shows the following information.

TABLE 213 OSPF V3 SPF table

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>The destination of a route, which is identified by the following:</td>
</tr>
<tr>
<td></td>
<td>• “R”, which indicates the destination is a router. “N”, which indicates the destination is a network.</td>
</tr>
<tr>
<td></td>
<td>• An SPF node router ID (IPv4 address). If the node is a child node, it is additionally identified by an interface on which the node can be reached appended to the router ID in the format <router-id>:<interface-id>.</td>
</tr>
<tr>
<td>Bits</td>
<td>A bit that indicates the capability of the Brocade device. The bit can be set to one of the following:</td>
</tr>
<tr>
<td></td>
<td>• B – The device is an area border router.</td>
</tr>
<tr>
<td></td>
<td>• E – The device is an AS boundary router.</td>
</tr>
<tr>
<td></td>
<td>• V – The device is a virtual link endpoint.</td>
</tr>
<tr>
<td></td>
<td>• W – The device is a wildcard multicast receiver.</td>
</tr>
</tbody>
</table>
For example, to display the SPF tree for area 0, enter the following command at any level of the CLI.

```
FastIron#show ipv6 ospf spf tree area 0
SPF tree for Area 0
  +- 223.223.223.223 cost 0
      +- 223.223.223.223:88 cost 1
      +- 1.1.1.1:0 cost 1
```

Syntax: `show ipv6 ospf spf tree area <area-id>`

The `tree` keyword displays the SPF table.

The `<area-id>` parameter specifies a particular area. You can specify the `<area-id>` in the following formats:

- As an IPv4 address; for example, 192.168.1.1.
- As a numerical value from 0 – 2,147,483,647.

In this sample output, consider the SPF node with the router ID 223.223.223.223 to be the top (root) of the tree and the local router. Consider all other layers of the tree (223.223.223.223:88 and 1.1.1.1:0) to be destinations in the network. Therefore, traffic destined from router 223.223.223.223 to router 1.1.1.1:0 must first traverse router 223.223.223.223:88.

Displaying IPv6 OSPF virtual link information

To display OSPF V3 virtual link information for the Brocade device, enter the following command at any level of the CLI.

```
FastIron#show ipv6 ospf virtual-link
Index Transit Area ID  Router ID  Interface Address  State
 1     1             1.1.1.1  3003::2        P2P
```

Syntax: `show ipv6 ospf virtual-link`

This display shows the following information.

TABLE 213 OSPF V3 SPF table (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td>A 24-bit field that enables IPv6 OSPF routers to support the optional capabilities. When set, the following bits indicate the following: V6 – The router should be included in IPv6 routing calculations. E – The router floods AS-external-LSAs as described in RFC 2740. MC – The router forwards multicast packets as described in RFC 1586. N – The router handles type 7 LSAs as described in RFC 1584. R – The originator is an active router. DC – The router handles demand circuits.</td>
</tr>
<tr>
<td>Cost</td>
<td>The cost of traversing the SPF node to reach the destination.</td>
</tr>
<tr>
<td>Next hop</td>
<td>The IPv6 address of the next hop-router.</td>
</tr>
<tr>
<td>Interface</td>
<td>The router interface through which to access the next-hop router.</td>
</tr>
</tbody>
</table>

Notes:

- The `tree` keyword displays the SPF table.
- The `<area-id>` parameter specifies a particular area. You can specify the `<area-id>` in the following formats:
 - As an IPv4 address; for example, 192.168.1.1.
 - As a numerical value from 0 – 2,147,483,647.
- In this sample output, consider the SPF node with the router ID 223.223.223.223 to be the top (root) of the tree and the local router. Consider all other layers of the tree (223.223.223.223:88 and 1.1.1.1:0) to be destinations in the network. Therefore, traffic destined from router 223.223.223.223 to router 1.1.1.1:0 must first traverse router 223.223.223.223:88.
Displaying OSPF V3 Information

To display OSPF V3 virtual neighbor information for the Brocade device, enter the following command at any level of the CLI.

```
FastIron#show ipv6 ospf virtual-neighbor
```

<table>
<thead>
<tr>
<th>Index</th>
<th>Router ID</th>
<th>Address</th>
<th>State</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1.1.1</td>
<td>3002::1</td>
<td>Full</td>
<td>ethe 2/3</td>
</tr>
</tbody>
</table>

Syntax: `show ipv6 ospf virtual-neighbor`

This display shows the following information.

Displaying OSPF V3 virtual neighbor information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An index number associated with the virtual neighbor.</td>
</tr>
<tr>
<td>Router ID</td>
<td>IPv4 address of the virtual neighbor.</td>
</tr>
<tr>
<td>Address</td>
<td>The IPv6 address to be used for communication with the virtual neighbor.</td>
</tr>
</tbody>
</table>
| State | The state between the Brocade device and the virtual neighbor. The state can be one of the following:
• Down
• Attempt
• Init
• 2-Way
• ExStart
• Exchange
• Loading
• Full |
| Interface | The IPv6 address of the virtual neighbor. |
This chapter describes how to configure Brocade Layer 3 Switches with the following router redundancy protocols:

- **VRRP Extended (VRRPE)** – An enhanced version of VRRP that overcomes limitations in the standard protocol.

NOTE

VRRP and VRRPE are separate protocols. You cannot use them together. VRRPE is not supported on FWS devices.

NOTE

You can use a Brocade Layer 3 Switch configured for VRRP with another Brocade Layer 3 Switch or a third-party router that is also configured for VRRP. However, you can use a Brocade Layer 3 Switch configured for VRRPE only with another Brocade Layer 3 Switch that also is configured for VRRPE.

For a summary of how these two router redundancy protocols differ, refer to “Comparison of VRRP and VRRPE” on page 1269.

Overview

The following sections describe VRRP and VRRPE. The protocols both provide redundant paths for IP addresses. However, the protocols differ in a few important ways. For clarity, each protocol is described separately.

Overview of VRRP

Platform Support:

- FESX and FSX running pre-release 02.4.00 software – L3
- FESX and FSX running software release 02.4.00 and later – BL3, L3
- FGS and FLS devices running software release 04.0.00 and later – BL3
- FGS-STK and FLS-STK devices running software release 05.0.00 and later
- FWS devices running software release 04.3.00 or later
- FGS and FLS devices running software release 04.3.01 and later
- FCX-S devices running software release 06.0.00 and later
- Turbolron X Series devices running software release 04.2.00 and later

NOTE

VRRP support in the base Layer 3 code is the same as in the full Layer 3 code.
VRRP is a protocol that provides redundancy to routers within a LAN. VRRP allows you to provide alternate router paths for a host without changing the IP address or MAC address by which the host knows its gateway. Consider the situation shown in Figure 153.

FIGURE 153 Switch 1 is Host1 default gateway but is a single point of failure

Switch 1 as the host default gateway out of the subnet. If this interface goes down, Host1 is cut off from the rest of the network. Switch 1 is thus a single point of failure for Host1 access to other networks.

If Switch 1 fails, you could configure Host1 to use Switch 2. Configuring one host with a different default gateway might not require too much extra administration. However, consider a more realistic network with dozens or even hundreds of hosts per subnet; reconfiguring the default gateways for all the hosts is impractical. It is much simpler to configure a VRRP virtual router on Switch 1 and Switch 2 to provide a redundant path for the hosts.

Figure 154 shows the same example network shown in **Figure 153**, but with a VRRP virtual router configured on Switch 1 and Switch 2.
FIGURE 154 Switch 1 and Switch 2 are configured as a VRRP virtual router for redundant network access for Host1

The dashed box in Figure 154 represents a VRRP virtual router. When you configure a virtual router, one of the configuration parameters is the virtual router ID (VRID), which can be a number from 1 – 255. In this example, the VRID is 1.

NOTE
You can provide more redundancy by also configuring a second VRID with Switch 2 as the Owner and Switch 1 as the Backup. This type of configuration is sometimes called Multigroup VRRP.

Virtual Router ID (VRID)

A VRID consists of one Master router and one or more Backup routers. The Master router is the router that owns the IP address(es) you associate with the VRID. For this reason, the Master router is sometimes called the “Owner”. Configure the VRID on the router that owns the default gateway interface. The other router in the VRID does not own the IP address(es) associated with VRID but provides the backup path if the Master router becomes unavailable.

Virtual router MAC address

Notice the MAC address associated with VRID1. The first five octets of the address are the standard MAC prefix for VRRP packets, as described in RFC 2338. The last octet is the VRID. The VRID number becomes the final octet in the virtual MAC address associated with the virtual router.
When you configure a VRID, the software automatically assigns its MAC address. When a VRID becomes active, the Master router broadcasts a gratuitous ARP request containing the virtual router MAC address for each IP address associated with the virtual router. In Figure 154, Switch 1 sends a gratuitous ARP with MAC address 00-00-5e-00-01-01 and IP address 192.53.5.1. Hosts use the virtual router MAC address in routed traffic they send to their default IP gateway (in this example, 192.53.5.1).

Virtual router IP address

VRRP does not use virtual IP addresses. Thus, there is no virtual IP address associated with a virtual router. Instead, you associate the virtual router with one or more real interface IP addresses configured on the router that owns the real IP address(es). In Figure 154, the virtual router with VRID1 is associated with real IP address 192.53.5.1, which is configured on interface e1/6 on Switch 1. VRIDs are interface-level parameters, not system-level parameters, so the IP address you associate with the VRID must already be a real IP address configured on the Owner interface.

NOTE

You also can associate a virtual router with a virtual interface. A virtual interface is a named set of physical interfaces.

When you configure the Backup router for the VRID, specify the same IP address as the one you specify on the Owner. This is the IP address used by the host as its default gateway. The IP address cannot also exist on the Backup router. The interface on which you configure the VRID on the Backup router must have an IP address in the same subnet.

NOTE

If you delete a real IP address used by a VRRP entry, the VRRP entry also is deleted automatically.

NOTE

When a Backup router takes over forwarding responsibilities from a failed Master router, the Backup forwards traffic addressed to the VRID MAC address, which the host believes is the MAC address of the router interface for its default gateway. However, the Backup cannot reply to IP pings sent to the IP address(es) associated with the VRID. Because the IP address(es) are owned by the Owner, if the Owner is unavailable, the IP addresses are unavailable as packet destinations.

Master negotiation

The routers within a VRID use the VRRP priority values associated with each router to determine which router becomes the Master. When you configure the VRID on a router interface, you specify whether the router is the Owner of the IP addresses you plan to associate with the VRID or a Backup. If you indicate that the router is the Owner of the IP addresses, the software automatically sets the router VRRP priority for the VRID to 255, the highest VRRP priority. The router with the highest priority becomes the Master.

Backup routers can have a priority from 3 – 254, which you assign when you configure the VRID on the Backup router interfaces. The default VRRP priority for Backup routers is 100.

Because the router that owns the IP addresses associated with the VRID always has the highest priority, when all the routers in the virtual router are operating normally, the negotiation process results in the Owner of the VRID IP addresses becoming the Master router. Thus, the VRRP negotiation results in the normal case, in which the hosts’ path to the default route is to the router that owns the interface for that route.
Hello messages

VRRP routers use Hello messages for negotiation to determine the Master router. VRRP routers send Hello messages to IP Multicast address 224.0.0.18. The frequency with which the Master sends Hello messages is the Hello Interval. Only the Master sends Hello messages. However, a Backup uses the Hello interval you configure for the Backup if it becomes the Master.

The Backup routers wait for a period of time called the Dead Interval for a Hello message from the Master. If a Backup router does not receive a Hello message by the time the dead interval expires, the Backup router assumes that the Master router is dead and negotiates with the other Backups to select a new Master router. The Backup router with the highest priority becomes the new Master.

If the Owner becomes unavailable, but then comes back online, the Owner again becomes the Master router. The Owner becomes the Master router again because it has the highest priority. The Owner always becomes the Master again when the Owner comes back online.

NOTE

If you configure a track port on the Owner and the track port is down, the Owner priority is changed to the track priority. In this case, the Owner does not have a higher priority than the Backup that is acting as Master and the Owner therefore does not resume its position as Master. For more information about track ports, refer to “Track ports and track priority” on page 1265.

By default, if a Backup is acting as the Master, and the Master is still unavailable, another Backup can “preempt” the Backup that is acting as the Master. This can occur if the new Backup has a higher priority than the Backup who is acting as Master. You can disable this behavior if you want. When you disable preemption, a Backup router that has a higher priority than the router who is currently acting as Master does not preempt the new Master by initiating a new Master negotiation. Refer to “Backup preempt” on page 1279.

NOTE

Regardless of the setting for the preempt parameter, the Owner always becomes the Master again when it comes back online.

Track ports and track priority

The Brocade implementation of VRRP enhances the protocol by giving a VRRP router the capability to monitor the state of the interfaces on the other end of the route path through the router. For example, in Figure 154 on page 1263, interface e1/6 on Switch 1 owns the IP address to which Host1 directs route traffic on its default gateway. The exit path for this traffic is through Router1 e2/4 interface.

Suppose interface e2/4 goes down. Even if interface e1/6 is still up, Host1 is nonetheless cut off from other networks. In conventional VRRP, Switch 1 would continue to be the Master router despite the unavailability of the exit interface for the path the router is supporting. However, if you configure interface e1/6 to track the state of interface e2/4, if e2/4 goes down, interface e1/6 responds by changing Switch 1 VRRP priority to the value of the track priority. In the configuration shown in Figure 154 on page 1263, Switch 1 priority changes from 255 to 20. One of the parameters contained in the Hello messages the Master router sends to its Backups is the Master router priority. If the track port feature results in a change in the Master router priority, the Backup routers quickly become aware of the change and initiate a negotiation for Master router.
In Figure 154 on page 1263, the track priority results in Switch 1 VRRP priority becoming lower than Switch 2 VRRP priority. As a result, when Switch 2 learns that it now has a higher priority than Switch 1, Switch 2 initiates negotiation for Master router and becomes the new Master router, thus providing an open path for Host1 traffic. To take advantage of the track port feature, make sure the track priorities are always lower than the VRRP priorities. The default track priority for the router that owns the VRID IP addresses is 2. The default track priority for Backup routers is 1. If you change the track port priorities, make sure you assign a higher track priority to the Owner of the IP addresses than the track priority you assign on the Backup routers.

Suppression of RIP advertisements for backed up interfaces

The Brocade implementation also enhances VRRP by allowing you to configure the protocol to suppress RIP advertisements for the backed up paths from Backup routers. Normally, a VRRP Backup router includes route information for the interface it is backing up in RIP advertisements. As a result, other routers receive multiple paths for the interface and might sometimes unsuccessfully use the path to the Backup rather than the path to the Master. If you enable the Brocade implementation of VRRP to suppress the VRRP Backup routers from advertising the backed up interface in RIP, other routers learn only the path to the Master router for the backed up interface.

Authentication

The Brocade implementation of VRRP can use simple passwords to authenticate VRRP packets. The VRRP authentication type is not a parameter specific to the VRID. Instead, VRRP uses the authentication type associated with the interfaces on which you define the VRID. For example, if you configure your router interfaces to use a simple password to authenticate traffic, VRRP uses the same simple password and VRRP packets that do not contain the password are dropped. If your interfaces do not use authentication, neither does VRRP.

NOTE
The MD5 authentication type is not supported for VRRP.

Independent operation of VRRP alongside RIP, OSPF, and BGP4

VRRP operation is independent of the RIP, OSPF, and BGP4 protocols. Their operation is unaffected when VRRP is enabled on a RIP, OSPF, or BGP4 interface.

Dynamic VRRP configuration

All VRRP global and interface parameters take effect immediately. You do not need to reset the system to place VRRP configuration parameters into effect.
NOTE

VRRPE is not supported in the base Layer 3 code.

VRRPE is similar to VRRP, but differs in the following respects:

- Owners and Backup:
 - VRRP has an Owner and one or more Backups for each VRID. The Owner is the router on which the VRID's IP address is also configured as a real address. All the other routers supporting the VRID are Backups.
 - VRRPE does not use Owners. All routers are Backups for a given VRID. The router with the highest priority becomes Master. If there is a tie for highest priority, the router with the highest IP address becomes Master. The elected Master owns the virtual IP address and answers ping and ARP requests and so on.

- VRID's IP address:
 - VRRP requires that the VRID also be a real IP address configured on the VRID's interface on the Owner.
 - VRRPE requires only that the VRID be in the same subnet as an interface configured on the VRID's interface. In fact, VRRPE does not allow you to specify a real IP address configured on the interface as the VRID IP address.

- VRID's MAC Address:
 - VRRP source MAC is a virtual MAC address defined as 00-00-5E-00-01-<vrid>, where <vrid> is the VRID. The Master owns the Virtual MAC address.
 - VRRPE uses the interface actual MAC address as the source MAC address. The MAC address is 02-E0-52-<hash-value>-<vrid>, where <hash-value> is a two-octet hashed value for the IP address and <vrid> is the VRID.

- Hello packets:
 - VRRP sends Hello messages to IP Multicast address 224.0.0.18.
 - VRRPE uses UDP to send Hello messages in IP multicast messages. The Hello packets use the interface actual MAC address and IP address as the source addresses. The destination MAC address is 01-00-5E-00-00-02, and the destination IP address is 224.0.0.2 (the well-known IP multicast address for “all routers”). Both the source and destination UDP port number is 8888. VRRP messages are encapsulated in the data portion of the packet.

- Track ports and track priority:
 - VRRP changes the priority of the VRID to the track priority, which typically is lower than the VRID priority and lower than the VRID priorities configured on the Backups. For example, if the VRRP interface priority is 100 and a tracked interface with track priority 20 goes down, the software changes the VRRP interface priority to 20.
 - VRRPE reduces the priority of a VRRPE interface by the amount of a tracked interface priority if the tracked interface link goes down. For example, if the VRRPE interface priority is 200 and a tracked interface with track priority 20 goes down, the software changes the VRRPE interface priority to 180. If another tracked interface goes down, the software reduces the VRID priority again, by the amount of the tracked interface track priority.

The most important difference is that all VRRPE routers are Backups. There is no Owner router. VRRP overcomes the limitations in standard VRRP by removing the Owner.

Figure 155 shows an example of a VRRPE configuration.
In this example, Switch 1 and Switch 2 use VRRPE to load share as well as provide redundancy to the hosts. The load sharing is accomplished by creating two VRRPE groups. Each group has its own virtual IP addresses. Half of the clients point to VRID 1’s virtual IP address as their default gateway and the other half point to VRID 2’s virtual IP address as their default gateway. This will enable some of the outbound Internet traffic to go through Switch 1 and the rest to go through Switch 2.

Switch 1 is the master for VRID 1 (backup priority = 110) and Switch 2 is the backup for VRID 1 (backup priority = 100). Switch 1 and Switch 2 both track the uplinks to the Internet. If an uplink failure occurs on Switch 1, its backup priority is decremented by 20 (track priority = 20), so that all traffic destined to the Internet is sent through Switch 2 instead.

Similarly, Switch 2 is the master for VRID 2 (backup priority = 110) and Switch 1 is the backup for VRID 2 (backup priority = 100). Switch 1 and Switch 2 are both tracking the uplinks to the Internet. If an uplink failure occurs on Switch 1, its backup priority is decremented by 20 (track priority = 20), so that all traffic destined to the Internet is sent through Switch 2 instead.

Configuration note

VRRP-E is supported in the full Layer 3 code only. It is not supported in the Base Layer 3 code.
Comparison of VRRP and VRRPE

This section compares router redundancy protocols.

VRRP

VRRP is a standards-based protocol, described in RFC 2338. The Brocade implementation of VRRP contains the features in RFC 2338. The Brocade implementation also provides the following additional features:

- **Track ports** – A Brocade feature that enables you to diagnose the health of all the Layer 3 Switch ports used by the backed-up VRID, instead of only the port connected to the client subnet. Refer to “Track ports and track priority” on page 1265.

- **Suppression of RIP advertisements on Backup routes for the backed up interface** – You can enable the Layer 3 Switches to advertise only the path to the Master router for the backed up interface. Normally, a VRRP Backup router includes route information for the interface it is backing up in RIP advertisements.

Brocade Layer 3 Switches configured for VRRP can interoperate with third-party routers using VRRP.

VRRPE

VRRPE is a Brocade protocol that provides the benefits of VRRP without the limitations. VRRPE is unlike VRRP in the following ways:

- There is no “Owner” router. You do not need to use an IP address configured on one of the Layer 3 Switches as the virtual router ID (VRID), which is the address you are backing up for redundancy. The VRID is independent of the IP interfaces configured in the Layer 3 Switches. As a result, the protocol does not have an “Owner” as VRRP does.

- There is no restriction on which router can be the default master router. In VRRP, the “Owner” (the Layer 3 Switch on which the IP interface that is used for the VRID is configured) must be the default Master.

Brocade Layer 3 Switches configured for VRRPE can interoperate only with other Brocade Layer 3 Switches.

Architectural differences

The protocols have the following architectural differences:

Management protocol

- **VRRP** – VRRP routers send VRRP Hello and Hello messages to IP Multicast address 224.0.0.18.

- **VRRPE** – VRRPE sends messages to destination MAC address 01-00-5E-00-00-02 and destination IP address 224.0.0.2 (the standard IP multicast address for “all routers”).
Virtual router IP address (the address you are backing up)

- **VRRP** – The virtual router IP address is the same as an IP address or virtual interface configured on one of the Layer 3 Switches, which is the “Owner” and becomes the default Master.
- **VRRPE** – The virtual router IP address is the gateway address you want to backup, but does not need to be an IP interface configured on one of the Layer 3 Switch ports or a virtual interface.

Master and Backups

- **VRRP** – The “Owner” of the IP address of the VRID is the default Master and has the highest priority (255). The precedence of the Backups is determined by their priorities. The default Master is always the Owner of the IP address of the VRID.
- **VRRPE** – The Master and Backups are selected based on their priority. You can configure any of the Layer 3 Switches to be the Master by giving it the highest priority. There is no Owner.

VRRP and VRRPE parameters

Table 216 lists the VRRP and VRRPE parameters. Most of the parameters and default values are the same for both protocols. The exceptions are noted in the table.

TABLE 216 VRRP and VRRPE parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>The Virtual Router Redundancy Protocol (VRRP) based on RFC 2338 or VRRP-Extended, the Brocade enhanced implementation of VRRP</td>
<td>Disabled</td>
<td>page 1273</td>
</tr>
<tr>
<td>VRRP or VRRPE router</td>
<td>The Brocade Layer 3 Switch active participation as a VRRP or VRRPE router. Enabling the protocol does not activate the Layer 3 Switch for VRRP or VRRPE. You must activate the device as a VRRP or VRRPE router after you configure the VRRP or VRRPE parameters.</td>
<td>Inactive</td>
<td>page 1273</td>
</tr>
<tr>
<td>Virtual Router ID (VRID)</td>
<td>The ID of the virtual router you are creating by configuring multiple routers to back up an IP interface. You must configure the same VRID on each router that you want to use to back up the address. No default.</td>
<td>None</td>
<td>page 1273, page 1264, page 1273</td>
</tr>
</tbody>
</table>
| **Virtual Router IP address** | This is the address you are backing up. No default:
- VRRP – The virtual router IP address must be a real IP address configured on the VRID interface on one of the VRRP routers. This router is the IP address Owner and is the default Master.
- VRRPE – The virtual router IP address must be in the same subnet as a real IP address configured on the VRRPE interface, but cannot be the same as a real IP address configured on the interface. | None | page 1273 |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
</table>
| VRID MAC address | The source MAC address in VRRP or VRRPE packets sent from the VRID interface, and the destination for packets sent to the VRID:
 - VRRP – A virtual MAC address defined as 00-00-5e-00-01-<vrid>. The Master owns the Virtual MAC address.
 - VRRPE – A virtual MAC address defined as 02-E0-52-<hash-value>-<vrid>, where <hash-value> is a two-octet hashed value for the IP address and <vrid> is the VRID. |
| | | Not configurable | page 1263 |
| Authentication type | The type of authentication the VRRP or VRRPE routers use to validate VRRP or VRRPE packets. The authentication type must match the authentication type the VRID port uses with other routing protocols such as OSPF:
 - No authentication – The interfaces do not use authentication. This is the VRRP default.
 - Simple – The interface uses a simple text-string as a password in packets sent on the interface. If the interface uses simple password authentication, the VRID configured on the interface must use the same authentication type and the same password. |
| | | No authentication | page 1266 page 1275 |
| Router type | Whether the router is an Owner or a Backup. | VRRP – The Owner is always the router that has the real IP address used by the VRID. All other routers for the VRID are Backups.
 - Owner (VRRP only) – The router on which the real IP address used by the VRID is configured.
 - Backup – Routers that can provide routing services for the VRID but do not have a real IP address matching the VRID. |
| | | page 1276 | |
| Backup priority | A numeric value that determines a Backup preferability for becoming the Master for the VRID. During negotiation, the router with the highest priority becomes the Master.
 - VRRP – The Owner has the highest priority (255); other routers can have a priority from 3 – 254.
 - VRRPE – All routers are Backups and have the same priority by default.
 If two or more Backups are tied with the highest priority, the Backup interface with the highest IP address becomes the Master for the VRID. |
| | | VRRP – 255 for the Owner; 100 for each Backup VRRPE – 100 for all Backups | page 1276 |
| Suppression of RIP advertisements| A router that is running RIP normally advertises routes to a backed up VRID even when the router is not currently the active router for the VRID. Suppression of these advertisements helps ensure that other routers do not receive invalid route paths for the VRID. |
| | | Disabled | page 1277 |
| Hello interval | The number of seconds between Hello messages from the Master to the Backups for a given VRID. The interval can from 1 – 84 seconds. |
| | | One second | page 1265 page 1277 |
VRRP and VRRPE parameters (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead interval</td>
<td>The number of seconds a Backup waits for a Hello message from the Master for the VRID before determining that the Master is no longer active. If the Master does not send a Hello message before the dead interval expires, the Backups negotiate (compare priorities) to select a new Master for the VRID.</td>
<td>Three times the Hello Interval plus one-half second</td>
<td>page 1265 page 1278</td>
</tr>
<tr>
<td>Backup Hello interval</td>
<td>The number of seconds between Hello messages from a Backup to the Master. The message interval can be from 60 – 3600 seconds. You must enable the Backup to send the messages. The messages are disabled by default on Backups. The current Master (whether the VRRP Owner or a Backup) sends Hello messages by default.</td>
<td>Disabled 60 seconds when enabled</td>
<td>page 1265 page 1278</td>
</tr>
<tr>
<td>Track port</td>
<td>Another Layer 3 Switch port or virtual interface whose link status is tracked by the VRID interface. If the link for a tracked interface goes down, the VRRP or VRRPE priority of the VRID interface is changed, causing the devices to renegotiate for Master.</td>
<td>None</td>
<td>page 1265 page 1278</td>
</tr>
<tr>
<td>Track priority</td>
<td>A VRRP or VRRPE priority value assigned to the tracked ports. If a tracked port link goes down, the VRID port VRRP or VRRPE priority changes: • VRRP – The priority changes to the value of the tracked port priority. • VRRPE – The VRID port priority is reduced by the amount of the tracked port priority.</td>
<td>VRRP – 2 VRRPE – 5</td>
<td>page 1265 page 1279</td>
</tr>
<tr>
<td>Backup preempt mode</td>
<td>Prevents a Backup with a higher VRRP priority from taking control of the VRID from another Backup that has a lower priority but has already assumed control of the VRID.</td>
<td>Enabled</td>
<td>page 1279</td>
</tr>
<tr>
<td>Timer scale</td>
<td>Adjusts the timers for the Hello interval, Dead interval, Backup Hello interval, and Hold-down interval.</td>
<td>1</td>
<td>page 1280</td>
</tr>
<tr>
<td>VRRP-E slow start timer</td>
<td>This feature causes a specified amount of time to elapse between the time the Master is restored and when it takes over from the Backup. This interval allows time for OSPF convergence when the Master is restored.</td>
<td>Disabled</td>
<td>page 1281</td>
</tr>
</tbody>
</table>
Configuring basic VRRP parameters

To implement a simple VRRP configuration using all the default values, enter commands such as the following.

Configuring the Owner

Router1(config)# router vrrp
Router1(config)# int e 1/6
Router1(config-if-1/6)# ip address 192.53.5.1
Router1(config-if-1/6)# ip vrrp vrid 1
Router1(config-if-1/6-vrid-1)# owner
Router1(config-if-1/6-vrid-1)# ip-address 192.53.5.1
Router1(config-if-1/6-vrid-1)# activate

Configuring a Backup

Router2(config)# router vrrp
Router2(config)# int e 1/5
Router2(config-if-1/5)# ip address 192.53.5.3
Router2(config-if-1/5)# ip vrrp vrid 1
Router2(config-if-1/5-vrid-1)# backup
Router2(config-if-1/5-vrid-1)# advertise backup
Router2(config-if-1/5-vrid-1)# ip-address 192.53.5.1
Router2(config-if-1/5-vrid-1)# activate

Configuration rules for VRRP

- The interfaces of all routers in a VRID must be in the same IP subnet.
- The IP addresses associated with the VRID must already be configured on the router that will be the Owner router.
- An IP address associated with the VRID must be on only one router.
- The Hello interval must be set to the same value on both the Owner and Backups for the VRID.
- The Dead interval must be set to the same value on both the Owner and Backups for the VRID.
- The track priority on a router must be lower than the router VRRP priority. Also, the track priority on the Owner must be higher than the track priority on the Backups.

Configuring basic VRRPE parameters

To implement a simple VRRPE configuration using all the default values, enter commands such as the following on each Layer 3 Switch.

Router2(config)# router vrrp-extended
Router2(config)# int e 1/5
Router2(config-if-1/5)# ip address 192.53.5.3
Router2(config-if-1/5)# ip vrrp-extended vrid 1
Router2(config-if-1/5-vrid-1)# backup
Router2(config-if-1/5-vrid-1)# advertise backup
Router2(config-if-1/5-vrid-1)# ip-address 192.53.5.254
Router2(config-if-1/5-vrid-1)# activate
Note regarding disabling VRRP or VRRPE

If you disable VRRP or VRRPE, the Layer 3 Switch removes all the configuration information for the disabled protocol from the running-config. Moreover, when you save the configuration to the startup-config file after disabling one of these protocols, all the configuration information for the disabled protocol is removed from the startup-config file.

The CLI displays a warning message such as the following.

Router1(config-vrrp-router)# no router vrrp
router vrrp mode now disabled. All vrrp config data will be lost when writing to flash!

If you have disabled the protocol but have not yet saved the configuration to the startup-config file and reloaded the software, you can restore the configuration information by re-entering the command to enable the protocol (ex: `router vrrp`). If you have already saved the configuration to the startup-config file and reloaded the software, the information is gone.

If you are testing a VRRP or VRRPE configuration and are likely to disable and re-enable the protocol, you might want to make a backup copy of the startup-config file containing the protocol configuration information. This way, if you remove the configuration information by saving the configuration after disabling the protocol, you can restore the configuration by copying the backup copy of the startup-config file onto the flash memory.

Configuring additional VRRP and VRRPE parameters

You can modify the following VRRP and VRRPE parameters on an individual VRID basis. These parameters apply to both protocols:

- Authentication type (if the interfaces on which you configure the VRID use authentication)
- Router type (Owner or Backup)

For VRRP, change the router type only if you have moved the real IP address from one router to another or you accidentally configured the IP address Owner as a Backup.

For VRRPE, the router type is always Backup. You cannot change the type to Owner.
Configuring additional VRRP and VRRPE parameters

- Backup priority
- Suppression of RIP advertisements on Backup routes for the backed up interface
- Hello interval
- Dead interval
- Backup Hello messages and message timer (Backup advertisement)
- Track port
- Track priority
- Backup preempt mode
- Timer scale
- VRRP-E slow start timer

For information about the fields, see the parameter descriptions in the following sections.

Refer to “VRRP and VRRPE parameters” on page 1270 for a summary of the parameters and their defaults.

Authentication type

If the interfaces on which you configure the VRID use authentication, the VRRP or VRRPE packets on those interfaces also must use the same authentication. The Brocade implementation of VRRP and VRRPE supports the following authentication types:

- **No authentication** – The interfaces do not use authentication. This is the default for VRRP and VRRPE.
- **Simple** – The interfaces use a simple text-string as a password in packets sent on the interface. If the interfaces use simple password authentication, the VRID configured on the interfaces must use the same authentication type and the same password.

To configure the VRID interface on Router1 for simple-password authentication using the password “ourpword”, enter the following commands.

Configuring Router 1

Router1(config)# inter e 1/6
Router1(config-if-1/6)# ip vrrp auth-type simple-text-auth ourpword

Configuring Router 2

Router2(config)# inter e 1/5
Router2(config-if-1/5)# ip vrrp auth-type simple-text-auth ourpword

VRRP syntax

Syntax: ip vrrp auth-type no-auth | simple-text-auth <auth-data>

The **auth-type no-auth** parameter indicates that the VRID and the interface it is configured on do not use authentication.

The **auth-type simple-text-auth <auth-data>** parameter indicates that the VRID and the interface it is configured on use a simple text password for authentication. The **<auth-data>** parameter is the password. If you use this parameter, make sure all interfaces on all the routers supporting this VRID are configured for simple password authentication and use the same password.

VRRPE syntax

Syntax: ip vrrp-extended auth-type no-auth | simple-text-auth <auth-data>
Configuring additional VRRP and VRRPE parameters

The parameter values are the same as for VRRP.

Router type

A VRRP interface is either an Owner or a Backup for a given VRID. By default, the Owner becomes the Master following the negotiation. A Backup becomes the Master only if the Master becomes unavailable.

A VRRPE interface is always a Backup for its VRID. The Backup with the highest VRRP priority becomes the Master.

This section describes how to specify the interface type, how to change the type for VRRP, and how to set or change the interface VRRP or VRRPE priority and track priority for the VRID.

NOTE

You can force a VRRP master router to abdicate (give away control) of the VRID to a Backup by temporarily changing the Master VRRP priority to a value less than the Backup. Refer to “Forcing a Master router to abdicate to a standby router” on page 1281.

NOTE

The type Owner is not applicable to VRRPE.

NOTE

The IP address(es) you associate with the Owner must be a real IP address (or addresses) on the interface on which you configure the VRID.

When you configure a Backup router, the router interface on which you are configuring the VRID must have a real IP address that is in the same subnet as the address associated with the VRID by the Owner. However, the address cannot be the same.

To configure Router1 as a VRRP VRID Owner, enter the following commands.

```
Router1(config)# inter e 1/6
Router1(config-if-1/6)# ip vrrp vrid 1
Router1(config-if-1/6-vrid-1)# owner
```

To configure Router2 as a VRRP Backup for the same VRID, enter the following commands.

```
Router2(config)# inter e 1/5
Router2(config-if-1/5)# ip vrrp vrid 1
Router2(config-if-1/5-vrid-1)# backup
Router2(config-if-1/5-vrid-1)# advertise backup
```

To configure a VRRPE interface as a Backup for a VRID and set its VRRPE priority and track priority, enter commands such as the following.

```
FastIron(config)# inter e 1/1
FastIron(config-if-1/1)# ip vrrp-extended vrid 1
FastIron(config-if-1/1-vrid-1)# backup priority 50 track-priority 10
Router2(config-if-1/1-vrid-1)# advertise backup
```

VRRP syntax

Syntax: owner [track-priority <value>]

The *track-priority* `<value>` parameter changes the track-port priority for this interface and VRID from the default (2) to a value from 1 – 254.
Syntax: \texttt{backup [priority \textless value\textgreater] [track-priority \textless value\textgreater]}

The \texttt{priority \textless value\textgreater} parameter specifies the VRRP priority for this interface and VRID. You can specify a value from 3 – 254. The default is 100.

The \texttt{track-priority \textless value\textgreater} parameter is the same as above.

\textbf{NOTE}

You cannot set the priority of a VRRP Owner. The Owner priority is always 255.

\textbf{VRRPE syntax}

Syntax: \texttt{backup [priority \textless value\textgreater] [track-priority \textless value\textgreater]}

The software requires you to identify a VRRPE in interface as a Backup for its VRID before you can activate the interface for the VRID. However, after you configure the VRID, you can use this command to change its priority or track priority. The parameter values are the same as for VRRP.

\textbf{Suppression of RIP advertisements on Backup routers for the Backup interface}

Normally, a VRRP or VRRPE Backup includes route information for the virtual IP address (the backed up interface) in RIP advertisements. As a result, other routers receive multiple paths for the backed up interface and might sometimes unsuccessfully use the path to the Backup rather than the path to the Master.

You can prevent the Backups from advertising route information for the backed up interface by enabling suppression of the advertisements.

To suppress RIP advertisements for the backed up interface in Router2, enter the following commands.

\begin{verbatim}
Router2(config)# router rip
Router2(config-rip-router)# use-vrrp-path
\end{verbatim}

Syntax: \texttt{use-vrrp-path}

The syntax is the same for VRRP and VRRPE.

\textbf{Hello interval}

The Master periodically sends Hello messages to the Backups. The Backups use the Hello messages as verification that the Master is still on-line. If the Backup routers stop receiving the Hello messages for the period of time specified by the Dead interval, the Backup routers determine that the Master router is dead. At this point, the Backup router with the highest priority becomes the new Master router. The Hello interval can be from 1 – 84 seconds. The default is 1 second.

\textbf{NOTE}

The default Dead interval is three times the Hello Interval plus one-half second. Generally, if you change the Hello interval, you also should change the Dead interval on the Backup routers.

To change the Hello interval on the Master to 10 seconds, enter the following commands.

\begin{verbatim}
Router1(config)# int e 1/6
Router1(config-if-1/6)# ip vrrp vrid 1
Router1(config-if-1/6-vrid-1)# hello-interval 10
\end{verbatim}

Syntax: \texttt{hello-interval \textless value\textgreater}

The syntax is the same for VRRP and VRRPE.
Dead interval

The Dead interval is the number of seconds a Backup waits for a Hello message from the Master before determining that the Master is dead. When Backups determine that the Master is dead, the Backup with the highest priority becomes the new Master. The Dead interval can be from 1 – 84 seconds. The default is 3.5 seconds. This is three times the default Hello interval (1 second) plus one-half second added by the router software. The software automatically adds one-half second to the Dead interval value you enter.

To change the Dead interval on a Backup to 30 seconds, enter the following commands.

```plaintext
Router2(config)# inter e 1/5
Router2(config-if-1/5)# ip vrrp vrid 1
Router2(config-if-1/5-vrid-1)# dead-interval 30
```

Syntax: `dead-interval <value>`

The syntax is the same for VRRP and VRRPE.

Backup Hello message state and interval

By default, Backup do not send Hello messages to advertise themselves to the Master. You can enable these messages if desired and also change the message interval.

To enable a Backup to send Hello messages to the Master, enter commands such as the following.

```plaintext
FastIron(config)# router vrrp
FastIron(config)# inter e 1/6
FastIron(config-if-1/6)# ip vrrp vrid 1
FastIron(config-if-1/6-vrid-1)# advertise backup
```

Syntax: `[no] advertise backup`

When you enable a Backup to send Hello messages, the Backup sends a Hello messages to the Master every 60 seconds by default. You can change the interval to be up to 3600 seconds. To do so, enter commands such as the following.

```plaintext
FastIron(config)# router vrrp
FastIron(config)# inter e 1/6
FastIron(config-if-1/6)# ip vrrp vrid 1
FastIron(config-if-1/6-vrid-1)# backup-hello-interval 180
```

Syntax: `[no] backup-hello-interval <num>`

The `<num>` parameter specifies the message interval and can be from 60 – 3600 seconds. The default is 60 seconds.

The syntax is the same for VRRP and VRRPE.

Track port

You can configure the VRID on one interface to track the link state of another interface on the Layer 3 Switch. This capability is quite useful for tracking the state of the exit interface for the path for which the VRID is providing redundancy. Refer to “Track ports and track priority” on page 1265.

To configure 1/6 on Router1 to track interface 2/4, enter the following commands.

```plaintext
Router1(config)# inter e 1/6
Router1(config-if-1/6)# ip vrrp vrid 1
Router1(config-if-1/6-vrid-1)# track-port e 2/4
```
Syntax: **track-port ethernet** [<slotnum>/]<portnum> | ve <num>

The syntax is the same for VRRP and VRRPE.

Track priority

When you configure a VRID to track the link state of other interfaces, if one of the tracked interface goes down, the software changes the VRRP or VRRPE priority of the VRID interface:

- For VRRP, the software changes the priority of the VRID to the track priority, which typically is lower than the VRID priority and lower than the VRID priorities configured on the Backups. For example, if the VRRPE interface priority is 100 and a tracked interface with track priority 60 goes down, the software changes the VRRPE interface priority to 60.
- For VRRPE, the software reduces the VRID priority by the amount of the priority of the tracked interface that went down. For example, if the VRRPE interface priority is 100 and a tracked interface with track priority 60 goes down, the software changes the VRRPE interface priority to 40. If another tracked interface goes down, the software reduces the VRID priority again, by the amount of the tracked interface track priority.

The default track priority for a VRRP Owner is 2. The default track priority for Backups is 1.

You enter the track priority as a parameter with the **owner** or **backup** command. Refer to “**Track port**” on page 1278.

Syntax: **owner** [track-priority <value>]

Syntax: **backup** [priority <value>] [track-priority <value>]

The syntax is the same for VRRP and VRRPE.

Backup preempt

By default, a Backup that has a higher priority than another Backup that has become the Master can preempt the Master, and take over the role of Master. If you want to prevent this behavior, disable preemption.

Preemption applies only to Backups and takes effect only when the Master has failed and a Backup has assumed ownership of the VRID. The feature prevents a Backup with a higher priority from taking over as Master from another Backup that has a lower priority but has already become the Master of the VRID.

Preemption is especially useful for preventing flapping in situations where there are multiple Backups and a Backup with a lower priority than another Backup has assumed ownership, because the Backup with the higher priority was unavailable when ownership changed.

If you enable the non-preempt mode (thus disabling the preemption feature) on all the Backups, the Backup that becomes the Master following the disappearance of the Master continues to be the Master. The new Master is not preempted.

In the VRRP non-preempt mode, the VRRP router controlling the IP addresses associated with the virtual router becomes the Master. When the Master becomes unavailable, the Backup router with highest priority becomes the Master. If the Master router changes its priority to lower priority (due to track port going down), the Backup router in the non-preempt mode does not take over.

NOTE

In VRRP, regardless of the setting for the preempt parameter, the Owner always becomes the Master again when it comes back online.
To disable preemption on a Backup, enter commands such as the following.

Router1(config)# interface e 1/6
Router1(config-if-1/6)# ip vrrp vrid 1
Router1(config-if-1/6-vrid-1)# non-preempt-mode

Syntax: non-preempt-mode

The syntax is the same for VRRP and VRRPE.

Changing the timer scale

To achieve sub-second failover times, you can shorten the duration of all scale timers for VSRP, VRRP, and VRRP-E by adjusting the timer scale. The **timer scale** is a value used by the software to calculate the timers. By default, the scale value is 1. If you increase the timer scale, each timer's value is divided by the scale value. Using the timer scale to adjust timer values enables you to easily change all the timers while preserving the ratios among their values. Here is an example.

<table>
<thead>
<tr>
<th>Timer</th>
<th>Timer scale</th>
<th>Timer value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello interval</td>
<td>1</td>
<td>1 second</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.5 seconds</td>
</tr>
<tr>
<td>Dead interval</td>
<td>1</td>
<td>3 seconds</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.5 seconds</td>
</tr>
<tr>
<td>Backup Hello interval</td>
<td>1</td>
<td>60 seconds</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Hold-down interval</td>
<td>1</td>
<td>2 seconds</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1 second</td>
</tr>
</tbody>
</table>

If you configure the device to receive its timer values from the Master, the Backup also receives the timer scale value from the Master.

NOTE

The Backups always use the value of the timer scale received from the Master, regardless of whether the timer values that are saved in the configuration are the values configured on the Backup or the values received from the Master.

To change the timer scale, enter a command such as the following at the global CONFIG level of the CLI.

FastIron(config)# scale-timer 2

This command changes the scale to 2. All VSRP, VRRP, and VRRP-E timer values will be divided by 2.

Syntax: `[no] scale-timer <num>`

The `<num>` parameter specifies the multiplier. You can specify a timer scale from 1 – 10.
VRRP-E slow start timer

In a VRRP-E configuration, if a Master router goes down, the Backup router with the highest priority takes over. When the Master comes back up again, it takes over from the Backup. By default, this transition from Backup back to Master takes place immediately. However, you can configure the VRRP-E slow start timer feature, which causes a specified amount of time to elapse between the time the Master is restored and when it takes over from the Backup. This interval allows time for OSPF convergence when the Master is restored.

NOTE
This feature is not supported on FGS, FWS, or FLS devices.

To set the VRRP-E slow start timer to 30 seconds, enter the following commands.

```
FastIron(config)# router vrrp-e
FastIron(config-vrrpe-router)# slow-start 30
```

Syntax:
```
[no] slow-start <seconds>
```
For `<seconds>`, enter a value from 1 – 255.

When the VRRP-E slow start timer is enabled, if the Master goes down, the Backup takes over immediately. If the Master subsequently comes back up again, the amount of time specified by the VRRP-E slow start timer elapses (in this example, 30 seconds) before the Master takes over from the Backup.

The VRRP-E slow start timer is effective only if another VRRP-E Master (Standby) is detected. It is not effective during the initial boot up.

NOTE
The VRRP-E slow start timer applies only to VRRP-E configurations. It does not apply to VRRP configurations.

Forcing a Master router to abdicate to a standby router

You can force a VRRP Master to abdicate (give away control) of a VRID to a Backup by temporarily changing the Master priority to a value less than the Backup.

The VRRP Owner always has priority 255. You can even use this feature to temporarily change the Owner priority to a value from 1 – 254.

NOTE
When you change a VRRP Owner priority, the change takes effect only for the current power cycle. The change is not saved to the startup-config file when you save the configuration and is not retained across a reload or reboot. Following a reload or reboot, the VRRP Owner again has priority 255.

To temporarily change the Master priority, use the following CLI method.

```
To change the Master priority, enter commands such as the following.
```

```
FastIron(config)# ip int eth 1/6
FastIron(config-if-1/6)# ip vrrp vrid 1
FastIron(config-if-1/6-vrid-1)# owner priority 99
```

Syntax:
```
[no] owner priority | track-priority <num>
```
The `<num>` parameter specifies the new priority and can be a number from 1 – 254.

When you press Enter, the software changes the priority of the Master to the specified priority. If the new priority is lower than at least one Backup priority for the same VRID, the Backup takes over and becomes the new Master until the next software reload or system reset.

To verify the change, enter the following command from any level of the CLI.

```
FastIron# show ip vrrp
Total number of VRRP routers defined: 1
Interface ethernet 1/6
auth-type no authentication
VRID 1
  state backup
  administrative-status enabled
  mode owner
  priority 99
  current priority 99
  hello-interval 1 sec
  ip-address 192.53.5.1
  backup routers 192.53.5.2
```

This example shows that even though this Layer 3 Switch is the Owner of the VRID (“mode owner”), the Layer 3 Switch priority for the VRID is only 99 and the state is now “backup” instead of “active”. In addition, the administrative status is “enabled”.

To change the Master priority back to the default Owner priority 255, enter “no” followed by the command you entered to change the priority. For example, to change the priority of a VRRP Owner back to 255 from 99, enter the following command.

```
FastIron(config-if-1/6-vrid-1)# no owner priority 99
```

You cannot set the priority to 255 using the `owner priority` command.

Displaying VRRP and VRRPE information

You can display the following information for VRRP or VRRPE:

- Summary configuration and status information
- Detailed configuration and status information
- VRRP and VRRPE Statistics
- CPU utilization statistics

Displaying summary information

To display summary information for a Layer 3 Switch, enter the following command at any level of the CLI.

```
FastIron# show ip vrrp brief
Total number of VRRP routers defined: 1
Interface VRID CurPri P State Master addr Backup addr VIP
1/6 1 255 P Init 192.53.5.1 192.53.5.3 192.53.5.1
```

The above example is for VRRP. Here is an example for VRRPE.
Displaying VRRP and VRRPE information

FastIron# show ip vrrp-extended brief

Total number of VRRP-Extended routers defined: 1
Interface VRID CurPri P State Master addr Backup addr VIP
1/6 1 255 P Init 192.53.5.2 192.53.5.3 192.53.5.254

Syntax: show ip vrrp brief | ethernet [<slotnum>/]<portnum> | ve <num> | stat

Syntax: show ip vrrp-extended brief | ethernet [<slotnum>/]<portnum> | ve <num> | stat

The brief parameter displays the summary information. If you do not use this parameter, detailed information is displayed instead. Refer to “Displaying detailed information” on page 1284.

The <slotnum> parameter is required on chassis devices if you specify a port number.

The <portnum> parameter specifies an Ethernet port. If you use this parameter, the command displays VRRP or VRRPE information only for the specified port.

The ve <num> parameter specifies a virtual interface. If you use this parameter, the command displays VRRP or VRRPE information only for the specified virtual interface.

The stat parameter displays statistics. Refer to “Displaying statistics” on page 1289.

This display shows the following information.

TABLE 217 CLI display of VRRP or VRRPE summary information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of VRRP (or VRRP-Extended) routers defined</td>
<td>The total number of VRIDs configured on this Layer 3 Switch. NOTE: The total applies only to the protocol the Layer 3 Switch is running. For example, if the Layer 3 Switch is running VRRPE, the total applies only to VRRPE routers.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface on which VRRP or VRRPE is configured. If VRRP or VRRPE is configured on multiple interfaces, information for each interface is listed separately.</td>
</tr>
<tr>
<td>VRID</td>
<td>The VRID configured on this interface. If multiple VRIDs are configured on the interface, information for each VRID is listed in a separate row.</td>
</tr>
<tr>
<td>CurPri</td>
<td>The current VRRP or VRRPE priority of this Layer 3 Switch for the VRID.</td>
</tr>
<tr>
<td>P</td>
<td>Whether the backup preempt mode is enabled. If the backup preempt mode is enabled, this field contains a “P”. If the mode is disabled, this field is blank.</td>
</tr>
</tbody>
</table>
| State | This Layer 3 Switch VRRP or VRRPE state for the VRID. The state can be one of the following:

 - **Init** – The VRID is not enabled (activated). If the state remains Init after you activate the VRID, make sure that the VRID is also configured on the other routers and that the routers can communicate with each other.

 NOTE: If the state is Init and the mode is incomplete, make sure you have specified the IP address for the VRID.

 - **Backup** – This Layer 3 Switch is a Backup for the VRID.

 - **Master** – This Layer 3 Switch is the Master for the VRID. |
| Master addr | IP address of the router interface that is currently Master for the VRID. |
| Backup addr | IP addresses of router interfaces that are currently Backups for the VRID. |
| VIP | The virtual IP address that is being backed up by the VRID. |
Displaying detailed information

To display detailed VRRP or VRRPE information, enter the following command at any level of the CLI.

FastIron# show ip vrrp

Total number of VRRP routers defined: 1
Interface ethernet 1/6
 auth-type no authentication
VRID 1
 state master
 administrative-status enabled
 mode owner
 priority 255
 current priority 255
 hello-interval 10000 msec
 advertise backup: disabled
 track-port 2/4

This example is for a VRRP Owner. Here is an example for a VRRP Backup.

FastIron# show ip vrrp

Total number of VRRP routers defined: 1
Interface ethernet 1/5
 auth-type no authentication
VRID 1
 state backup
 administrative-status enabled
 mode non-owner(backup)
 priority 100
 current priority 100
 hello-interval 10000 msec
 dead-interval 30000 msec
 current dead-interval 10000 msec
 preempt-mode true
 advertise backup: enabled
 backup router 192.53.5.3 expires in 00:00:03.0
 next hello sent in 00:00:02.0
 track-port 3/2

Here is an example for a VRRPE Backup.
Displaying VRRP and VRRPE information

FastIron# show ip vrrp-extended

Total number of VRRP-Extended routers defined: 1
Interface ethernet 1/6
 auth-type no authentication
 VRID 1
 state master
 administrative-status enabled
 priority 200
 current priority 200
 hello-interval 10000 msec
 dead-interval 30000 msec
 current dead-interval 30000 msec
 preempt-mode true
 virtual ip address 192.53.5.254
 advertise backup: enabled
 master router 192.53.5.2 expires in 00:00:03.0
 track-port 2/4

Syntax: show ip vrrp brief | ethernet [<slotnum>/]<portnum> | ve <num> | stat
Syntax: show ip vrrp-extended brief | ethernet [<slotnum>/]<portnum> | ve <num> | stat

The brief parameter displays summary information. Refer to “Displaying summary information” on page 1282.

The <portnum> parameter specifies an Ethernet port. If you use this parameter, the command displays VRRP or VRRPE information only for the specified port. Also, you must specify the <slotnum> on chassis devices.

The ve <num> parameter specifies a virtual interface. If you use this parameter, the command displays VRRP or VRRPE information only for the specified virtual interface.

The stat parameter displays statistics. Refer to “Displaying statistics” on page 1289.

This display shows the following information.

TABLE 218 CLI display of VRRP or VRRPE detailed information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of VRRP (or VRRP-Extended) routers defined</td>
<td>The total number of VRIDs configured on this Layer 3 Switch. NOTE: The total applies only to the protocol the Layer 3 Switch is running. For example, if the Layer 3 Switch is running VRRPE, the total applies only to VRRPE routers.</td>
</tr>
</tbody>
</table>

Interface parameters

| Interface | The interface on which VRRP or VRRPE is configured. If VRRP or VRRPE is configured on multiple interfaces, information for each interface is listed separately. |
| auth-type | The authentication type enabled on the interface. |

VRID parameters

| VRID | The VRID configured on this interface. If multiple VRIDs are configured on the interface, information for each VRID is listed separately. |
TABLE 218 CLI display of VRRP or VRRPE detailed information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
</table>
| state | This Layer 3 Switch VRRP or VRRPE state for the VRID. The state can be one of the following:
• initialize – The VRID is not enabled (activated). If the state remains “initialize” after you activate the VRID, make sure that the VRID is also configured on the other routers and that the routers can communicate with each other.
NOTE: If the state is “initialize” and the mode is incomplete, make sure you have specified the IP address for the VRID.
• backup – This Layer 3 Switch is a Backup for the VRID.
• master – This Layer 3 Switch is the Master for the VRID. |
| administrative-status | The administrative status of the VRID. The administrative status can be one of the following:
• disabled – The VRID is configured on the interface but VRRP or VRRPE has not been activated on the interface.
• enabled – VRRP or VRRPE has been activated on the interface. |
| mode | Indicates whether the Layer 3 Switch is the Owner or a Backup for the VRID.
NOTE: If “incomplete” appears after the mode, configuration for this VRID is incomplete. For example, you might not have configured the virtual IP address that is being backed up by the VRID.
NOTE: This field applies only to VRRP. All Layer 3 Switches configured for VRRPE are Backups. |
| priority | The device preferability for becoming the Master for the VRID. During negotiation, the router with the highest priority becomes the Master. If two or more devices are tied with the highest priority, the Backup interface with the highest IP address becomes the active router for the VRID. |
| current priority | The current VRRP or VRRPE priority of this Layer 3 Switch for the VRID. The current priority can differ from the configured priority (see the row above) for the following reasons:
• The VRID is still in the initialization stage and has not become a Master or Backup yet. In this case, the current priority is 0.
• The VRID is configured with track ports and the link on a tracked interface has gone down. Refer to “Track ports and track priority” on page 1265. |
| hello-interval | The configured value for the hello interval. This is the amount of time between Hello messages from the Master to the Backups for a given VRID:
• Software releases prior to 03.0.00 show the dead interval in number of seconds.
• Software releases 03.0.00 and later show the dead interval in number of milliseconds. |
| dead-interval | The configured value for the dead interval. This is the amount of time a Backup waits for a Hello message from the Master for the VRID before determining that the Master is no longer active:
• Software releases prior to 03.0.00 show the dead interval in number of seconds.
• Software releases 03.0.00 and later show the dead interval in number of milliseconds.
If the Master does not send a Hello message before the dead interval expires, the Backups negotiate (compare priorities) to select a new Master for the VRID.
NOTE: If the value is 0, then you have not configured this parameter.
NOTE: This field does not apply to VRRP Owners. |
Displaying VRRP and VRRPE information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>current dead-interval</td>
<td>The current value of the dead interval. This is the value actually in use by this interface for the VRID:</td>
</tr>
<tr>
<td></td>
<td>• Software releases prior to 03.0.00 show the dead interval in number of seconds.</td>
</tr>
<tr>
<td></td>
<td>• Software releases 03.0.00 and later show the dead interval in number of milliseconds.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field does not apply to VRRP Owners.</td>
</tr>
<tr>
<td>preempt-mode</td>
<td>Whether the backup preempt mode is enabled.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field does not apply to VRRP Owners.</td>
</tr>
<tr>
<td>virtual ip address</td>
<td>The virtual IP addresses that this VRID is backing up.</td>
</tr>
<tr>
<td>advertise backup</td>
<td>The IP addresses of Backups that have advertised themselves to this Layer 3 Switch by sending Hello messages.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Hello messages from Backups are disabled by default. You must enable the Hello messages on the Backup for the Backup to advertise itself to the current Master. Refer to "Hello messages" on page 1265.</td>
</tr>
<tr>
<td>backup router <ip-addr> expires in <time></td>
<td>The IP addresses of Backups that have advertised themselves to this Master by sending Hello messages.</td>
</tr>
<tr>
<td></td>
<td>The <time> value indicates how long before the Backup expires. A Backup expires if you disable the advertise backup option on the Backup or the Backup becomes unavailable. Otherwise, the Backup next Hello message arrives before the Backup expires. The Hello message resets the expiration timer.</td>
</tr>
<tr>
<td></td>
<td>An expired Backup does not necessarily affect the Master. However, if you have not disabled the advertise backup option on the Backup, then the expiration may indicate a problem with the Backup.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field applies only when Hello messages are enabled on the Backups (using the advertise backup option).</td>
</tr>
<tr>
<td>next hello sent in <time></td>
<td>How long until the Backup sends its next Hello message.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field applies only when this Layer 3 Switch is the Master and the Backup is configured to send Hello messages (the advertise backup option is enabled).</td>
</tr>
<tr>
<td>master router <ip-addr> expires in <time></td>
<td>The IP address of the Master and the amount of time until the Master dead interval expires. If the Backup does not receive a Hello message from the Master by the time the interval expires, either the IP address listed for the Master will change to the IP address of the new Master, or this Layer 3 Switch itself will become the Master.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field applies only when this Layer 3 Switch is a Backup.</td>
</tr>
<tr>
<td>track port</td>
<td>The interfaces that the VRID interface is tracking. If the link for a tracked interface goes down, the VRRP or VRRPE priority of the VRID interface is changed, causing the devices to renegotiate for Master.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This field is displayed only if track interfaces are configured for this VRID.</td>
</tr>
</tbody>
</table>

TABLE 218 CLI display of VRRP or VRRPE detailed information (Continued)

Displaying detailed information for an individual VRID

You can display information about the settings configured for a specified VRRP Virtual Router ID (VRID). For example, to display information about VRID 1.
Syntax: `show ip vrrp vrid <num> [ethernet <num> | ve <num>]`

The `<num>` parameter specifies the VRID.

The `ethernet <num> | ve <num>` specifies an interface on which the VRID is configured. If you specify an interface, VRID information is displayed for that interface only. Otherwise, information is displayed for all the interfaces on which the specified VRID is configured.

This display shows the following information.

TABLE 219 Output from the `show ip vrrp vrid` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRID</td>
<td>The specified VRID.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface on which VRRP is configured.</td>
</tr>
<tr>
<td>State</td>
<td>This Layer 3 Switch VRRP state for the VRID. The state can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Init – The VRID is not enabled (activated). If the state remains Init after you activate the VRID, make sure that the VRID is also configured on the other routers and that the routers can communicate with each other.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If the state is Init and the mode is incomplete, make sure you have specified the IP address for the VRID:</td>
</tr>
<tr>
<td></td>
<td>• Backup – This Layer 3 Switch is a Backup for the VRID.</td>
</tr>
<tr>
<td></td>
<td>• Master – This Layer 3 Switch is the Master for the VRID.</td>
</tr>
<tr>
<td>priority</td>
<td>The configured VRRP priority of this Layer 3 Switch for the VRID.</td>
</tr>
<tr>
<td>current priority</td>
<td>The current VRRP priority of this Layer 3 Switch for the VRID.</td>
</tr>
<tr>
<td>track-priority</td>
<td>The new VRRP priority that the router receives for this VRID if the interface goes down</td>
</tr>
<tr>
<td>hello-interval</td>
<td>How often the Master router sends Hello messages to the Backups.</td>
</tr>
<tr>
<td>dead-interval</td>
<td>The amount of time a Backup waits for a Hello message from the Master before determining that the Master is dead.</td>
</tr>
<tr>
<td>current dead-interval</td>
<td>The current Dead interval. The software automatically adds one-half second to the Dead interval value you enter.</td>
</tr>
<tr>
<td>preempt-mode</td>
<td>Whether the backup preempt mode is enabled. If the backup preempt mode is enabled, this field contains “true”. If the mode is disabled, this field contains “false”.</td>
</tr>
<tr>
<td>advertise backup</td>
<td>Whether Backup routers send Hello messages to the Master.</td>
</tr>
</tbody>
</table>
Displaying statistics

To display statistics on most Brocade devices, enter a command such as the following at any level of the CLI.

```
FastIron# show ip vrrp statistic
```

```
Interface ethernet 1/5
  rxed vrrp header error count = 0
  rxed vrrp auth error count = 0
  rxed vrrp auth passwd mismatch error count = 0
  rxed vrrp vrid not found error count = 0
  VRID 1
    rxed arp packet drop count = 0
    rxed ip packet drop count = 0
    rxed vrrp port mismatch count = 0
    rxed vrrp ip address mismatch count = 0
    rxed vrrp hello interval mismatch count = 0
    rxed vrrp priority zero from master count = 0
    transitioned to master state count = 1
    transitioned to backup state count = 1
```

The same statistics are listed for VRRP and VRRPE.

Syntax: show ip vrrp brief | ethernet [<slotnum>/]<portnum> | ve <num> | statistic

Syntax: show ip vrrp-extended brief | ethernet [<slotnum>/]<portnum> | ve <num> | stat

The `brief` parameter displays summary information. Refer to “Displaying summary information” on page 1282.

If you specify a port, the `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter specifies an Ethernet port. If you use this parameter, the command displays detailed VRRP or VRRPE information only for the specified port. Refer to “Displaying detailed information” on page 1284.

The `ve <num>` parameter specifies a virtual interface. If you use this parameter, the command displays detailed VRRP or VRRPE information only for the specified virtual interface. Refer to “Displaying detailed information” on page 1284.

The `statistic` parameter displays statistics. This parameter is required for displaying the statistics.

This display shows the following information.

TABLE 220 CLI display of VRRP or VRRPE statistics

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface statistics</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>The interface on which VRRP or VRRPE is configured. If VRRP or VRRPE is configured on more than one interface, the display lists the statistics separately for each interface.</td>
</tr>
<tr>
<td>rxed vrrp header error count</td>
<td>The number of VRRP or VRRPE packets received by the interface that had a header error.</td>
</tr>
<tr>
<td>rxed vrrp auth error count</td>
<td>The number of VRRP or VRRPE packets received by the interface that had an authentication error.</td>
</tr>
</tbody>
</table>
Clearing VRRP or VRRPE statistics

Use the following methods to clear VRRP or VRRPE statistics.

To clear VRRP or VRRPE statistics, enter the following command at the Privileged EXEC level or any configuration level of the CLI.

Router1# clear ip vrrp-stat

Syntax: clear ip vrrp-stat

Displaying CPU utilization statistics

You can display CPU utilization statistics for VRRP and other IP protocols.

To display CPU utilization statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals, enter the following command at any level of the CLI.

TABLE 220 CLI display of VRRP or VRRPE statistics (Continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>rxed vrrp auth passwd mismatch error count</td>
<td>The number of VRRP or VRRPE packets received by the interface that had a password value that does not match the password used by the interface for authentication.</td>
</tr>
<tr>
<td>rxed vrrp vrid not found error count</td>
<td>The number of VRRP or VRRPE packets received by the interface that contained a VRID that is not configured on this interface.</td>
</tr>
<tr>
<td>VRID statistics</td>
<td></td>
</tr>
<tr>
<td>rxed arp packet drop count</td>
<td>The number of ARP packets addressed to the VRID that were dropped.</td>
</tr>
<tr>
<td>rxed ip packet drop count</td>
<td>The number of IP packets addressed to the VRID that were dropped.</td>
</tr>
<tr>
<td>rxed vrrp port mismatch count</td>
<td>The number of packets received that did not match the configuration for the receiving interface.</td>
</tr>
<tr>
<td>rxed vrrp ip address mismatch count</td>
<td>The number of packets received that did not match the configured IP addresses.</td>
</tr>
<tr>
<td>rxed vrrp hello interval mismatch count</td>
<td>The number of packets received that did not match the configured Hello interval.</td>
</tr>
<tr>
<td>rxed vrrp priority zero from master count</td>
<td>The current Master has resigned.</td>
</tr>
<tr>
<td>rxed vrrp higher priority count</td>
<td>The number of VRRP or VRRPE packets received by the interface that had a higher backup priority for the V RID than this Layer 3 Switch backup priority for the V RID.</td>
</tr>
<tr>
<td>transitioned to master state count</td>
<td>The number of times this Layer 3 Switch has changed from the backup state to the master state for the V RID.</td>
</tr>
<tr>
<td>transitioned to backup state count</td>
<td>The number of times this Layer 3 Switch has changed from the master state to the backup state for the V RID.</td>
</tr>
</tbody>
</table>
If the software has been running less than 15 minutes (the maximum interval for utilization statistics), the command indicates how long the software has been running. Here is an example.

```
FastIron# show process cpu
```

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.03</td>
<td>0.09</td>
<td>0.22</td>
<td>9</td>
</tr>
<tr>
<td>BGP</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.14</td>
<td>13</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.03</td>
<td>0.07</td>
<td>0.09</td>
<td>0.10</td>
<td>8</td>
</tr>
</tbody>
</table>

```
FastIron# show process cpu
```

The system has only been up for 6 seconds.

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

```
FastIron# show process cpu 2
```

Statistics for last 1 sec and 80 ms

<table>
<thead>
<tr>
<th>Process Name</th>
<th>Sec(%)</th>
<th>Time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

When you specify how many seconds’ worth of statistics you want to display, the software selects the sample that most closely matches the number of seconds you specified. In this example, statistics are requested for the previous two seconds. The closest sample available is actually for the previous 1 second plus 80 milliseconds.

Syntax: `show process cpu [<num>]`

The `<num>` parameter specifies the number of seconds and can be from 1 – 900. If you use this parameter, the command lists the usage statistics only for the specified number of seconds. If you do not use this parameter, the command lists the usage statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals.
Configuration examples

The following sections contain the CLI commands for implementing the VRRP and VRRPE configurations shown in Figure 154 on page 1263 and Figure 155 on page 1268.

VRRP example

To implement the VRRP configuration shown in Figure 154 on page 1263, use the following method.

Configuring Router1

To configure VRRP Router1, enter the following commands.

```
Router1(config)# router vrrp
Router1(config)# int e 1/6
Router1(config-if-1/6)# ip address 192.53.5.1
Router1(config-if-1/6)# ip vrrp vrid 1
Router1(config-if-1/6-vrid-1)# owner track-priority 20
Router1(config-if-1/6-vrid-1)# track-port ethernet 2/4
Router1(config-if-1/6-vrid-1)# ip-address 192.53.5.1
Router1(config-if-1/6-vrid-1)# activate
```

NOTE

When you configure the Master (Owner), the address you enter with the `ip-address` command must already be configured on the interface.

The `ip vrrp owner` command specifies that this router owns the IP address you are associating with the VRID. Because this router owns the IP address, this router is the default Master router and its VRRP priority is thus 255.

Configuring Router2

To configure Router2 in Figure 154 on page 1263 after enabling VRRP, enter the following commands.

```
Router2(config)# router vrrp
Router2(config)# int e 1/5
Router2(config-if-1/5)# ip address 192.53.5.3
Router2(config-if-1/5)# ip vrrp vrid 1
Router2(config-if-1/5-vrid-1)# backup priority 100 track-priority 19
Router2(config-if-1/5-vrid-1)# track-port ethernet 3/2
Router2(config-if-1/5-vrid-1)# ip-address 192.53.5.1
Router2(config-if-1/5-vrid-1)# activate
```

The `backup` command specifies that this router is a VRRP Backup for virtual router VRID1. The IP address entered with the `ip-address` command is the same IP address as the one entered when configuring Router1. In this case, the IP address cannot also exist on Router2, but the interface on which you are configuring the VRID Backup must have an IP address in the same subnet. By entering the same IP address as the one associated with this VRID on the Owner, you are configuring the Backup to back up the address, but you are not duplicating the address.
NOTE
When you configure a Backup router, the router interface on which you are configuring the VRID must have a real IP address that is in the same subnet as the address associated with the VRID by the Owner. However, the address cannot be the same.

The priority parameter establishes the router VRRP priority in relation to the other VRRP routers in this virtual router. The track-priority parameter specifies the new VRRP priority that the router receives for this VRID if the interface goes down. Refer to “Track ports and track priority” on page 1265.

The activate command activates the VRID configuration on this interface. The interface does not provide backup service for the virtual IP address until you activate the VRRP configuration.

Syntax: router vrrp
Syntax: ip vrrp vrid <vrid>
Syntax: owner [track-priority <value>]
Syntax: backup [priority <value>] [track-priority <value>]
Syntax: track-port ethernet [<slotnum>/<portnum> | ve <num>]
Syntax: ip-address <ip-addr>
Syntax: activate

VRRPE example
To implement the VRRPE configuration shown in Figure 155 on page 1268, use the following CLI method.

Configuring Router1
To configure VRRP Router1 in Figure 155 on page 1268, enter the following commands.

Router1(config)# router vrrp-extended
Router1(config)# interface ethernet 1/6
Router1(config-if-1/6)# ip address 192.53.5.2/24
Router1(config-if-1/6)# ip vrrp-extended vrid 1
Router1(config-if-1/6-vrid-1)# backup priority 110 track-priority 20
Router1(config-if-1/6-vrid-1)# track-port ethernet 2/4
Router1(config-if-1/6-vrid-1)# ip-address 192.53.5.254
Router1(config-if-1/6-vrid-1)# activate
VRRP router 1 for this interface is activating
Router1(config-if-1/6-vrid-1)# exit
Router1(config)# interface ethernet 1/6
Router1(config-if-1/6)# ip vrrp-extended vrid 2
Router1(config-if-1/6-vrid-1)# backup priority 100 track-priority 20
Router1(config-if-1/6-vrid-1)# track-port ethernet 2/4
Router1(config-if-1/6-vrid-1)# ip-address 192.53.5.253
Router1(config-if-1/6-vrid-1)# activate
VRRP router 2 for this interface is activating

NOTE
The address you enter with the ip-address command cannot be the same as a real IP address configured on the interface.
Configuring Router2

To configure Router2, enter the following commands.

Router1(config)# router vrrp-extended
Router1(config)# interface ethernet 5/1
Router1(config-if-5/1)# ip address 192.53.5.3/24
Router1(config-if-5/1)# ip vrrp-extended vrid 1
Router1(config-if-5/1-vrid-1)# backup priority 100 track-priority 20
Router1(config-if-5/1-vrid-1)# track-port ethernet 3/2
Router1(config-if-5/1-vrid-1)# ip-address 192.53.5.254
Router1(config-if-5/1-vrid-1)# activate

VRRP router 1 for this interface is activating

Router1(config-if-5/1-vrid-1)# exit
Router1(config)# interface ethernet 5/1
Router1(config-if-5/1)# ip vrrp-extended vrid 2
Router1(config-if-5/1-vrid-1)# backup priority 110 track-priority 20
Router1(config-if-5/1-vrid-1)# track-port ethernet 2/4
Router1(config-if-5/1-vrid-1)# ip-address 192.53.5.253
Router1(config-if-5/1-vrid-1)# activate

VRRP router 2 for this interface is activating

The **backup** command specifies that this router is a VRRPE Backup for virtual router VRID1. The IP address entered with the **ip-address** command is the same IP address as the one entered when configuring Router1. In this case, the IP address cannot also exist on Router2, but the interface on which you are configuring the VRID Backup must have an IP address in the same subnet. By entering the same IP address as the one associated with this VRID on the Owner, you are configuring the Backup to back up the address, but you are not duplicating the address.

NOTE

When you configure a Backup router, the router interface on which you are configuring the VRID must have a real IP address that is in the same subnet as the address associated with the VRID by the Owner. However, the address cannot be the same.

The **priority** parameter establishes the router VRRPE priority in relation to the other VRRPE routers in this virtual router. The **track-priority** parameter specifies the new VRRPE priority that the router receives for this VRID if the interface goes down. Refer to “Track ports and track priority” on page 1265.

The **activate** command activates the VRID configuration on this interface. The interface does not provide backup service for the virtual IP address until you activate the VRRPE configuration. Alternatively, you can use the **enable** command. The **activate** and **enable** commands do the same thing.

Syntax:
router vrrp-extended
Syntax:
ip vrrp-extended vrid \(<vrid>\)
Syntax:
backup [priority \(<value>\)] [track-priority \(<value>\)]
Syntax:
track-port ethernet [\(<slotnum>\)/]<portnum> | ve \(<num>\)
Syntax:
ip-address <\<ip-addr>
Syntax:
activate
This chapter provides details on how to configure Border Gateway Protocol version 4 (BGP4) on Brocade products using the CLI.

BGP4 is described in RFC 1771. The Brocade implementation fully complies with RFC 1771. The Brocade BGP4 implementation also supports the following RFCs:

- RFC 1745 (OSPF Interactions)
- RFC 1997 (BGP Communities Attributes)
- RFC 2385 (TCP MD5 Signature Option)
- RFC 2439 (Route Flap Dampening)
- RFC 2796 (Route Reflection)
- RFC 2842 (Capability Advertisement)
- RFC 3065 (BGP4 Confederations)

To display BGP4 configuration information and statistics, refer to “Displaying BGP4 information” on page 1372.

This chapter shows the commands you need in order to configure the Brocade Layer 3 Switch for BGP4.

NOTE
Your Layer 3 Switch management module must have 32MB or higher to run BGP4.

Overview of BGP4

BGP4 is the standard Exterior Gateway Protocol (EGP) used on the Internet to route traffic between Autonomous Systems (AS) and to maintain loop-free routing. An autonomous system is a collection of networks that share the same routing and administration characteristics. For example, a corporate intranet consisting of several networks under common administrative control might be considered an AS. The networks in an AS can but do not need to run the same routing protocol to be in the same AS, nor do they need to be geographically close.

Routers within an AS can use different Interior Gateway Protocols (IGPs) such as RIP and OSPF to communicate with one another. However, for routers in different ASs to communicate, they need to use an EGP. BGP4 is the standard EGP used by Internet routers and therefore is the EGP implemented on Brocade Layer 3 Switches.
Figure 156 on page 1296 shows a simple example of two BGP4 ASs. Each AS contains three BGP4 switches. All of the BGP4 switches within an AS communicate using IBGP. BGP4 switches communicate with other ASs using EBGP. Notice that each of the switches also is running an Interior Gateway Protocol (IGP). The switches in AS1 are running OSPF and the switches in AS2 are running RIP. Brocade Layer 3 Switches can be configured to redistribute routes among BGP4, RIP, and OSPF. They also can redistribute static routes.

FIGURE 156 Example BGP4 ASs

![Diagram of BGP4 ASs]

Relationship between the BGP4 route table and the IP route table

The Brocade Layer 3 Switch BGP4 route table can have multiple routes to the same destination, which are learned from different BGP4 neighbors. A BGP4 neighbor is another switch that also is running BGP4. BGP4 neighbors communicate using Transmission Control Protocol (TCP) port 179 for BGP communication. When you configure the Brocade Layer 3 Switch for BGP4, one of the configuration tasks you perform is to identify the Layer 3 Switch BGP4 neighbors.

Although a Layer 3 Switch BGP4 route table can have multiple routes to the same destination, the BGP4 protocol evaluates the routes and chooses only one of the routes to send to the IP route table. The route that BGP4 chooses and sends to the IP route table is the preferred route and will be used by the Brocade Layer 3 Switch. If the preferred route goes down, BGP4 updates the route information in the IP route table with a new BGP4 preferred route.

NOTE

If IP load sharing is enabled and you enable multiple equal-cost paths for BGP4, BGP4 can select more than one equal-cost path to a destination.

A BGP4 route consists of the following information:

- **Network number (prefix)** – A value comprised of the network mask bits and an IP address (\(<IP address>/ <mask bits>\)); for example, 192.215.129.0/18 indicates a network mask of 18 bits applied to the IP address 192.215.129.0. When a BGP4 Layer 3 Switch advertises a route to one of its neighbors, the route is expressed in this format.
• **AS-path** – A list of the other ASs through which a route passes. BGP4 routers can use the AS-path to detect and eliminate routing loops. For example, if a route received by a BGP4 router contains the AS that the router is in, the router does not add the route to its own BGP4 table. (The BGP4 RFCs refer to the AS-path as “AS_PATH”.)

• **Additional path attributes** – A list of additional parameters that describe the route. The route origin and next hop are examples of these additional path attributes.

NOTE
The Layer 3 Switch re-advertises a learned best BGP4 route to the Layer 3 Switch neighbors even when the software does not select that route for installation in the IP route table. The best BGP4 route is the route that the software selects based on comparison of the BGP4 route path attributes.

After a Brocade Layer 3 Switch successfully negotiates a BGP4 session with a neighbor (a BGP4 peer), the Brocade Layer 3 Switch exchanges complete BGP4 route tables with the neighbor. After this initial exchange, the Brocade Layer 3 Switch and all other RFC 1771-compliant BGP4 routers send UPDATE messages to inform neighbors of new, changed, or no longer feasible routes. BGP4 routers do not send regular updates. However, if configured to do so, a BGP4 router does regularly send KEEPALIVE messages to its peers to maintain BGP4 sessions with them if the router does not have any route information to send in an UPDATE message. Refer to “BGP4 message types” on page 1298 for information about BGP4 messages.

How BGP4 selects a path for a route

When multiple paths for the same route are known to a BGP4 router, the router uses the following algorithm to weigh the paths and determine the optimal path for the route. The optimal path depends on various parameters, which can be modified. (Refer to “Optional configuration tasks” on page 1317.)

1. If the next hop is not accessible though an Interior Gateway Protocol (IGP) route, ignore the route.

NOTE
The device does not use the default route to resolve BGP4 next hop. Also refer to “Enabling next-hop recursion” on page 1324.

2. Use the path with the largest weight.

3. If the weights are the same, prefer the route with the largest local preference.

4. If the routes have the same local preference, prefer the route that was originated locally (by this BGP4 Layer 3 Switch).

5. If the local preferences are the same, prefer the route with the shortest AS-path. An AS-SET counts as 1. A confederation path length, if present, is not counted as part of the path length.

6. If the AS-path lengths are the same, prefer the route with the lowest origin type. From low to high, route origin types are valued as follows:
 - IGP is lowest
 - EGP is higher than IGP but lower than INCOMPLETE
 - INCOMPLETE is highest
7. If the routes have the same origin type, prefer the route with the lowest MED. For a definition of MED, refer to “Configuring the Layer 3 Switch to always compare Multi-Exit Discriminators (MEDs)” on page 1329.

BGP4 compares the MEDs of two otherwise equivalent paths if and only if the routes were learned from the same neighboring AS. This behavior is called deterministic MED. Deterministic MED is always enabled and cannot be disabled. In addition, you can enable the Layer 3 Switch to always compare the MEDs, regardless of the AS information in the paths. To enable this comparison, enter the `always-compare-med` command at the BGP4 configuration level of the CLI. This option is disabled by default.

NOTE
By default, value 0 (most favorable) is used in MED comparison when the MED attribute is not present. The default MED comparison results in the Layer 3 Switch favoring the route paths that are missing their MEDs. You can use the `med-missing-as-worst` command to make the Layer 3 Switch regard a BGP route with a missing MED attribute as the least favorable route, when comparing the MEDs of the routes.

NOTE
MED comparison is not performed for internal routes originated within the local AS or confederation.

8. Prefer routes in the following order:
 - Routes received through EBGP from a BGP4 neighbor outside of the confederation
 - Routes received through EBGP from a BGP4 router within the confederation
 - Routes received through IBGP

9. If all the comparisons above are equal, prefer the route with the lowest IGP metric to the BGP4 next hop. This is the closest internal path inside the AS to reach the destination.

10. If the internal paths also are the same and BGP4 load sharing is enabled, load share among the paths. Otherwise, prefer the route that comes from the BGP4 router with the lowest router ID.

NOTE
Brocade Layer 3 Switches support BGP4 load sharing among multiple equal-cost paths. BGP4 load sharing enables the Layer 3 Switch to balance the traffic across the multiple paths instead of choosing just one path based on router ID. For EBGP routes, load sharing applies only when the paths are from neighbors within the same remote AS. EBGP paths from neighbors in different ASs are not compared.

BGP4 message types

BGP4 routers communicate with their neighbors (other BGP4 routers) using the following types of messages:

- OPEN
- UPDATE
- KEEPALIVE
- NOTIFICATION
OPEN message

After a BGP4 router establishes a TCP connection with a neighboring BGP4 router, the routers exchange OPEN messages. An OPEN message indicates the following:

- **BGP version** – Indicates the version of the protocol that is in use on the router. BGP version 4 supports Classless Interdomain Routing (CIDR) and is the version most widely used in the Internet. Version 4 also is the only version supported on Brocade Layer 3 Switches.

- **AS number** – A two-byte number that identifies the AS to which the BGP4 router belongs.

- **Hold Time** – The number of seconds a BGP4 router will wait for an UPDATE or KEEPALIVE message (described below) from a BGP4 neighbor before assuming that the neighbor is dead. BGP4 routers exchange UPDATE and KEEPALIVE messages to update route information and maintain communication. If BGP4 neighbors are using different Hold Times, the lowest Hold Time is used by the neighbors. If the Hold Time expires, the BGP4 router closes its TCP connection to the neighbor and clears any information it has learned from the neighbor and cached.

You can configure the Hold Time to be 0, in which case a BGP4 router will consider its neighbors to always be up. For directly-attached neighbors, you can configure the Brocade Layer 3 Switch to immediately close the TCP connection to the neighbor and clear entries learned from an EBGP neighbor if the interface to that neighbor goes down. This capability is provided by the fast external fallover feature, which is disabled by default.

- **BGP Identifier** – The router ID. The BGP Identifier (router ID) identifies the BGP4 router to other BGP4 routers. Brocade Layer 3 Switches use the same router ID for OSPF and BGP4. If you do not set a router ID, the software uses the IP address on the lowest numbered loopback interface configured on the router. If the Layer 3 Switch does not have a loopback interface, the default router ID is the lowest numbered IP address configured on the device. For more information or to change the router ID, refer to “Changing the router ID” on page 1002.

- **Parameter list** – An optional list of additional parameters used in peer negotiation with BGP4 neighbors.

UPDATE message

After BGP4 neighbors establish a BGP4 connection over TCP and exchange their BGP4 routing tables, they do not send periodic routing updates. Instead, a BGP4 neighbor sends an update to its neighbor when it has a new route to advertise or routes have changed or become unfeasible. An UPDATE message can contain the following information:

- **Network Layer Reachability Information (NLRI)** – The mechanism by which BGP4 supports Classless Interdomain Routing (CIDR). An NLRI entry consists of an IP prefix that indicates a network being advertised by the UPDATE message. The prefix consists of an IP network number and the length of the network portion of the number. For example, an UPDATE message with the NLRI entry 192.215.129.0/18 indicates a route to IP network 192.215.129.0 with network mask 255.255.192.0. The binary equivalent of this mask is 18 consecutive one bits, thus “18” in the NLRI entry.

- **Path attributes** – Parameters that indicate route-specific information such as path information, route preference, next hop values, and aggregation information. BGP4 uses the path attributes to make filtering and routing decisions.
Basic configuration and activation for BGP4

BGP4 is disabled by default. Follow the steps given below to enable BGP4 and place your Brocade Layer 3 Switch into service as a BGP4 router.

1. Enable the BGP4 protocol.
2. Set the local AS number.

 NOTE
 You must specify the local AS number for BGP4 to become functional.

3. Add each BGP4 neighbor (peer BGP4 router) and identify the AS the neighbor is in.
4. Save the BGP4 configuration information to the system configuration file.

Unreachable routes – A list of routes that have been in the sending router BGP4 table but are no longer feasible. The UPDATE message lists unreachable routes in the same format as new routes.

\(<\text{IP address}\>/\langle\text{CIDR prefix}\rangle>.

KEEPALIVE message

BGP4 routers do not regularly exchange UPDATE messages to maintain the BGP4 sessions. For example, if a Layer 3 Switch configured to perform BGP4 routing has already sent the latest route information to its peers in UPDATE messages, the router does not send more UPDATE messages. Instead, BGP4 routers send KEEPALIVE messages to maintain the BGP4 sessions. KEEPALIVE messages are 19 bytes long and consist only of a message header; they contain no routing data.

BGP4 routers send KEEPALIVE messages at a regular interval, the Keep Alive Time. The default Keep Alive Time on Brocade Layer 3 Switches is 60 seconds.

A parameter related to the Keep Alive Time is the Hold Time. A BGP4 router Hold Time determines how many seconds the router will wait for a KEEPALIVE or UPDATE message from a BGP4 neighbor before deciding that the neighbor is dead. The Hold Time is negotiated when BGP4 routers exchange OPEN messages; the lower Hold Time is then used by both neighbors. For example, if BGP4 Router A sends a Hold Time of 5 seconds and BGP4 Router B sends a Hold Time of 4 seconds, both routers use 4 seconds as the Hold Time for their BGP4 session. The default Hold Time is 180 seconds. Generally, the Hold Time is configured to three times the value of the Keep Alive Time.

If the Hold Time is 0, a BGP4 router assumes that its neighbor is alive regardless of how many seconds pass between receipt of UPDATE or KEEPALIVE messages.

NOTIFICATION message

When you close the router BGP4 session with a neighbor, or the router detects an error in a message received from the neighbor, or an error occurs on the router, the router sends a NOTIFICATION message to the neighbor. No further communication takes place between the BGP4 router that sent the NOTIFICATION and the neighbors that received the NOTIFICATION.
NOTE
By default, the Brocade router ID is the IP address configured on the lowest numbered loopback interface. If the Layer 3 Switch does not have a loopback interface, the default router ID is the lowest numbered IP interface address configured on the device. For more information or to change the router ID, refer to “Changing the router ID” on page 1002. If you change the router ID, all current BGP4 sessions are cleared.

FastIron># enable
FastIron# configure terminal
FastIron(config)# router bgp
BGP4: Please configure 'local-as' parameter in order to enable BGP4.
FastIron(config-bgp-router)# local-as 10
FastIron(config-bgp-router)# neighbor 209.157.23.99 remote-as 100
FastIron(config-bgp-router)# write memory

NOTE
When BGP4 is enabled on a Brocade Layer 3 Switch, you do not need to reset the system. The protocol is activated as soon as you enable it. Moreover, the router begins a BGP4 session with a BGP4 neighbor as soon as you add the neighbor.

Note regarding disabling BGP4
If you disable BGP4, the Layer 3 Switch removes all the running configuration information for the disabled protocol from the running-config. To restore the BGP4 configuration, you must reload the software to load the configuration from the startup-config. Moreover, when you save the configuration to the startup-config file after disabling the protocol, all the configuration information for the disabled protocol is removed from the startup-config file.

The CLI displays a warning message such as the following.

FastIron(config-bgp-router)# no router bgp
router bgp mode now disabled. All bgp config data will be lost when writing to flash!

If you are testing a BGP4 configuration and are likely to disable and re-enable the protocol, you might want to make a backup copy of the startup-config file containing the protocol configuration information. This way, if you remove the configuration information by saving the configuration after disabling the protocol, you can restore the configuration by copying the backup copy of the startup-config file onto the flash memory.

NOTE
To disable BGP4 without losing the BGP4 configuration information, remove the local AS (for example, by entering the no local-as <num> command). In this case, BGP4 retains the other configuration information but is not operational until you set the local AS again.

BGP4 parameters
You can modify or set the following BGP4 parameters:

- Optional – Define the router ID. (The same router ID also is used by OSPF.)
- Required – Specify the local AS number.
- Optional – Add a loopback interface for use with neighbors.
- Required – Identify BGP4 neighbors.
- Optional – Change the Keep Alive Time and Hold Time.
- Optional – Change the update timer for route changes.
- Optional – Enable fast external fallover.
- Optional – Specify a list of individual networks in the local AS to be advertised to remote ASs using BGP4.
- Optional – Change the default local preference for routes.
- Optional – Enable the default route (default-information-originate).
- Optional – Enable use of a default route to resolve a BGP4 next-hop route.
- Optional – Change the default MED (metric).
- Optional – Enable next-hop recursion.
- Optional – Change the default administrative distances for EBGP, IBGP, and locally originated routes.
- Optional – Require the first AS in an Update from an EBGP neighbor to be the neighbor AS.
- Optional – Change MED comparison parameters.
- Optional – Disable comparison of the AS-Path length.
- Optional – Enable comparison of the router ID.
- Optional – Enable auto summary to summarize routes at an IP class boundary (A, B, or C).
- Optional – Aggregate routes in the BGP4 route table into CIDR blocks.
- Optional – Configure the router as a BGP4 router reflector.
- Optional – Configure the Layer 3 Switch as a member of a BGP4 confederation.
- Optional – Change the default metric for routes that BGP4 redistributes into RIP or OSPF.
- Optional – Change the parameters for RIP, OSPF, or static routes redistributed into BGP4.
- Optional – Change the number of paths for BGP4 load sharing.
- Optional – Change other load-sharing parameters
- Optional – Define BGP4 address filters.
- Optional – Define BGP4 AS-path filters.
- Optional – Define BGP4 community filters.
- Optional – Define IP prefix lists.
- Optional – Define neighbor distribute lists.
- Optional – Define BGP4 route maps for filtering routes redistributed into RIP and OSPF.
- Optional – Define route flap dampening parameters.

NOTE
When using CLI, you set global level parameters at the BGP CONFIG Level of the CLI. You can reach the BGP CONFIG level by entering `router bgp`... at the global CONFIG level.

When parameter changes take effect

Some parameter changes take effect immediately while others do not take full effect until the router sessions with its neighbors are reset. Some parameters do not take effect until the router is rebooted.
Immediately

The following parameter changes take effect immediately:

- Enable or disable BGP.
- Set or change the local AS.
- Add neighbors.
- Change the update timer for route changes.
- Disable or enable fast external fallover.
- Specify individual networks that can be advertised.
- Change the default local preference, default information originate setting, or administrative distance.
- Enable or disable use of a default route to resolve a BGP4 next-hop route.
- Enable or disable MED (metric) comparison.
- Require the first AS in an Update from an EBGP neighbor to be the neighbor AS.
- Change MED comparison parameters.
- Disable comparison of the AS-Path length.
- Enable comparison of the router ID.
- Enable next-hop recursion.
- Enable or disable auto summary.
- Change the default metric.
- Disable or re-enable route reflection.
- Configure confederation parameters.
- Disable or re-enable load sharing.
- Change the maximum number of load-sharing paths.
- Change other load-sharing parameters.
- Define route flap dampening parameters.
- Add, change, or negate redistribution parameters (except changing the default MED; see below).
- Add, change, or negate route maps (when used by the network command or a redistribution command).

After resetting neighbor sessions

The following parameter changes take effect only after the router BGP4 sessions are cleared, or reset using the “soft” clear option. (Refer to “Closing or resetting a neighbor session” on page 1407.)

The parameter are as follows:

- Change the Hold Time or Keep Alive Time.
- Aggregate routes.
- Add, change, or negate filter tables.
After disabling and re-enabling redistribution

The following parameter change takes effect only after you disable and then re-enable redistribution:

- Change the default MED (metric).

Memory considerations

BGP4 handles a very large number of routes and therefore requires a lot of memory. For example, in a typical configuration with just a single BGP4 neighbor, a BGP4 router may need to be able to hold up to 80,000 routes. Many configurations, especially those involving more than one neighbor, can require the router to hold even more routes. Brocade Layer 3 Switches provide dynamic memory allocation for BGP4 data. These devices automatically allocate memory when needed to support BGP4 neighbors, routes, and route attribute entries. Dynamic memory allocation is performed automatically by the software and does not require a reload.

Table 221 lists the maximum total amount of system memory (DRAM) BGP4 can use. The maximum depends on the total amount of system memory on the device.

TABLE 221 Maximum memory usage

<table>
<thead>
<tr>
<th>Platform</th>
<th>Maximum memory BGP4 can use</th>
</tr>
</thead>
<tbody>
<tr>
<td>FESX with 128 MB</td>
<td>30 MB</td>
</tr>
<tr>
<td>FSX with Management 1 module</td>
<td>130 MB</td>
</tr>
<tr>
<td>with 256 MB</td>
<td></td>
</tr>
<tr>
<td>FSX with Management 2 module</td>
<td>400 MB</td>
</tr>
<tr>
<td>with 512 MB</td>
<td></td>
</tr>
</tbody>
</table>

The memory amounts listed in the table are for all BGP4 data, including routes received from neighbors, BGP route advertisements (routes sent to neighbors), and BGP route attribute entries. The routes sent to and received from neighbors use the most BGP4 memory. Generally, the actual limit to the number of neighbors, routes, or route attribute entries the device can accommodate depends on how many routes the Layer 3 Switch sends to and receives from the neighbors.

In some cases, where most of the neighbors do not send or receive a full BGP route table (about 80,000 routes), the memory can support a larger number of BGP4 neighbors. However, if most of the BGP4 neighbors send or receive full BGP route tables, the number of BGP neighbors the memory can support is less than in configurations where the neighbors send smaller route tables.

As a guideline, Layer 3 Switches with a 512 MB Management 4 module can accommodate 150 – 200 neighbors, with the assumption that the Layer 3 Switch receives about one million routes total from all neighbors and sends about eight million routes total to neighbors. For each additional one million incoming routes, the capacity for outgoing routes decreases by around two million.

Memory configuration options obsoleted by dynamic memory

Devices that support dynamic BGP4 memory allocation do not require or even support static configuration of memory for BGP4 neighbors, routes, or route attributes. Consequently, the following CLI commands and equivalent Web management options are not supported on these devices:

- max-neighbors <num>
Basic configuration tasks

The following sections describe how to perform the configuration tasks that are required to use BGP4 on the Brocade Layer 3 Switch. You can modify many parameters in addition to the ones described in this section. Refer to “Optional configuration tasks” on page 1317.

Enabling BGP4 on the router

When you enable BGP4 on the router, BGP4 is automatically activated. To enable BGP4 on the router, enter the following commands.

```plaintext
FastIron> enable
FastIron# configure terminal
FastIron(config)# router bgp
BGP4: Please configure 'local-as' parameter in order to enable BGP4.
FastIron(config-bgp-router)# local-as 10
FastIron(config-bgp-router)# neighbor 209.157.23.99 remote-as 100
FastIron(config-bgp-router)# write memory
```

Changing the router ID

The OSPF and BGP4 protocols use router IDs to identify the routers that are running the protocols. A router ID is a valid, unique IP address and sometimes is an IP address configured on the router. The router ID cannot be an IP address in use by another device.

By default, the router ID on a Brocade Layer 3 Switch is one of the following:

- If the router has loopback interfaces, the default router ID is the IP address configured on the lowest numbered loopback interface configured on the Layer 3 Switch. For example, if you configure loopback interfaces 1, 2, and 3 as follows, the default router ID is 9.9.9.9/24:
 - Loopback interface 1, 9.9.9.9/24
 - Loopback interface 2, 4.4.4.4/24
 - Loopback interface 3, 1.1.1.1/24
- If the device does not have any loopback interfaces, the default router ID is the lowest numbered IP interface address configured on the device.

NOTE
Brocade Layer 3 Switches use the same router ID for both OSPF and BGP4. If the router is already configured for OSPF, you may want to use the router ID that is already in use on the router rather than set a new one. To display the router ID, enter the `show ip` CLI command at any CLI level.

To change the router ID, enter a command such as the following.

```plaintext
FastIron(config)# ip router-id 209.157.22.26
```
Syntax: \texttt{ip router-id <ip-addr>}

The \texttt{<ip-addr>} can be any valid, unique IP address.

\textbf{NOTE}

You can specify an IP address used for an interface on the Brocade Layer 3 Switch, but do not specify an IP address in use by another device.

\section*{Setting the local AS number}

The local AS number identifies the AS the Brocade BGP4 router is in. The AS number can be from 1 – 65535. There is no default. AS numbers 64512 – 65535 are the well-known private BGP4 AS numbers and are not advertised to the Internet community.

To set the local AS number, enter commands such as the following.

\begin{verbatim}
FastIron(config)# router bgp
BGP4: Please configure 'local-as' parameter in order to enable BGP4.
FastIron(config-bgp-router)# local-as 10
FastIron(config-bgp-router)# write memory
\end{verbatim}

Syntax: \texttt{[no] local-as <num>}

The \texttt{<num>} parameter specifies the local AS number.

\section*{Adding a loopback interface}

You can configure the router to use a loopback interface instead of a specific port or virtual routing interface to communicate with a BGP4 neighbor. A loopback interface adds stability to the network by working around route flap problems that can occur due to unstable links between the router and its neighbors.

Loopback interfaces are always up, regardless of the states of physical interfaces. Loopback interfaces are especially useful for IBGP neighbors (neighbors in the same AS) that are multiple hops away from the router. When you configure a BGP4 neighbor on the router, you can specify whether the router uses the loopback interface to communicate with the neighbor. As long as a path exists between the router and its neighbor, BGP4 information can be exchanged. The BGP4 session is not associated with a specific link but instead is associated with the virtual interfaces.

You can add up to 24 IP addresses to each loopback interface.

\textbf{NOTE}

If you configure the Brocade Layer 3 Switch to use a loopback interface to communicate with a BGP4 neighbor, the peer IP address on the remote router pointing to your loopback address must be configured.

To add a loopback interface, enter commands such as those shown in the following example.

\begin{verbatim}
FastIron(config-bgp-router)# exit
FastIron(config)# int loopback 1
FastIron(config-lbif-1)# ip address 10.0.0.1/24
\end{verbatim}

Syntax: \texttt{interface loopback <num>}

The \texttt{<num>} value can be from 1 – 8 on Chassis Layer 3 Switches. The value can be from 1 – 4 on the Compact Layer 3 Switch.
Adding BGP4 neighbors

The BGP4 protocol does not contain a peer discovery process. Therefore, for each of the router BGP4 neighbors (peers), you must indicate the neighbor IP address and the AS each neighbor is in. Neighbors that are in different ASs communicate using EBGP. Neighbors within the same AS communicate using IBGP.

NOTE
If the Layer 3 Switch has multiple neighbors with similar attributes, you can simplify configuration by configuring a peer group, then adding individual neighbors to it. The configuration steps are similar, except you specify a peer group name instead of a neighbor IP address when configuring the neighbor parameters, then add individual neighbors to the peer group. Refer to “Adding a BGP4 peer group” on page 1313.

NOTE
The Layer 3 Switch attempts to establish a BGP4 session with a neighbor as soon as you enter a command specifying the neighbor IP address. If you want to completely configure the neighbor parameters before the Layer 3 Switch establishes a session with the neighbor, you can administratively shut down the neighbor. Refer to “Administratively shutting down a session with a BGP4 neighbor” on page 1316.

To add a BGP4 neighbor with IP address 209.157.22.26, enter the following command.

```
FastIron(config-bgp-router)# neighbor 209.157.22.26
```

The neighbor `<ip-addr>` must be a valid IP address.

The `neighbor` command has some additional parameters, as shown in the following syntax:

Syntax:
```
[no] neighbor <ip-addr> | <peer-group-name>
  [advertisement-interval <num>]
  [capability orf prefix [send | receive]]
  [default-originate [route-map <map-name>]]
  [description <string>]
  [distribute-list in | out <num,num,...> | <ACL-num> in | out]
  [ebgp-multihop <num>]
  [filter-list in | out <num,num,...> | <ACL-num> in | out | weight]
  [maximum-prefix <num> [threshold] [teardown]]
  [next-hop-self]
  [nlri multicast | unicast | multicast unicast]
  [password [0 | 1] <string>]
  [prefix-list <string> in | out]
  [remote-as <as-number>]
  [remove-private-as]
  [route-map in | out <map-name>]
  [route-reflector-client]
  [send-community]
  [soft-reconfiguration inbound]
  [shutdown]
  [timers keep-alive <num> hold-time <num>]
  [unsuppress-map <map-name>]
  [update-source <ip-addr> | ethernet [slotnum/]<portnum> | loopback <num> | ve <num>]
  [weight <num>]
```
The `<ip-addr> | <peer-group-name>` parameter indicates whether you are configuring an individual neighbor or a peer group. If you specify a neighbor IP address, you are configuring that individual neighbor. If you specify a peer group name, you are configuring a peer group. Refer to “Adding a BGP4 peer group” on page 1313.

`advertisement-interval <num>` specifies the minimum delay (in seconds) between messages to the specified neighbor. The default is 30 for EBGP neighbors (neighbors in other ASs). The default is 5 for IBGP neighbors (neighbors in the same AS). The range is 0 – 600.

NOTE
The Layer 3 Switch applies the advertisement interval only under certain conditions. The Layer 3 Switch does not apply the advertisement interval when sending initial updates to a BGP4 neighbor. As a result, the Layer 3 Switch sends the updates one immediately after another, without waiting for the advertisement interval.

`capability orf prefixlist [send | receive]` configures cooperative router filtering. The `send | receive` parameter specifies the support you are enabling:
- **send** – The Layer 3 Switch sends the IP prefix lists as Outbound Route Filters (ORFs) to the neighbor.
- **receive** – The Layer 3 Switch accepts filters as Outbound Route Filters (ORFs) from the neighbor.

If you do not specify the capability, both capabilities are enabled. The `prefixlist` parameter specifies the type of filter you want to send to the neighbor.

For more information, refer to “Configuring cooperative BGP4 route filtering” on page 1362.

NOTE
The current release supports cooperative filtering only for filters configured using IP prefix lists.

`default-originate [route-map <map-name>]` configures the Layer 3 Switch to send the default route 0.0.0.0 to the neighbor. If you use the route-map `<map-name>` parameter, the route map injects the default route conditionally, based on the match conditions in the route map.

`description <string>` specifies a name for the neighbor. You can enter an alphanumeric text string up to 80 characters long.

`distribute-list in | out <num,num,...>` specifies a distribute list to be applied to updates to or from the specified neighbor. The `in | out` keyword specifies whether the list is applied on updates received from the neighbor or sent to the neighbor. The `<num,num,...>` parameter specifies the list of address-list filters. The router applies the filters in the order in which you list them and stops applying the filters in the distribute list when a match is found.

Alternatively, you can specify `distribute-list <ACL-num> in | out` to use an IP ACL instead of a distribute list. In this case, `<ACL-num>` is an IP ACL.

NOTE
By default, if a route does not match any of the filters, the Layer 3 Switch denies the route. To change the default behavior, configure the last filter as “permit any any”.

NOTE
The address filter must already be configured. Refer to “Filtering specific IP addresses” on page 1345.
ebgp-multihop [<num>] specifies that the neighbor is more than one hop away and that the session type with the neighbor is thus EBGP-multihop. This option is disabled by default. The <num> parameter specifies the TTL you are adding for the neighbor. You can specify a number from 0 – 255. The default is 0. If you leave the EBGP TTL value set to 0, the software uses the IP TTL value.

filter-list in | out <num,num,...> specifies an AS-path filter list or a list of AS-path ACLs. The in | out keyword specifies whether the list is applied on updates received from the neighbor or sent to the neighbor. If you specify in or out, The <num,num,...> parameter specifies the list of AS-path filters. The router applies the filters in the order in which you list them and stops applying the filters in the AS-path filter list when a match is found. The weight <num> parameter specifies a weight that the Layer 3 Switch applies to routes received from the neighbor that match the AS-path filter or ACL. You can specify a number from 0 – 65535.

Alternatively, you can specify filter-list <ACL-num> in | out | weight to use an AS-path ACL instead of an AS-path filter list. In this case, <ACL-num> is an AS-path ACL.

NOTE
By default, if an AS-path does not match any of the filters or ACLs, the Layer 3 Switch denies the route. To change the default behavior, configure the last filter or ACL as “permit any any”.

NOTE
The AS-path filter or ACL must already be configured. Refer to “Filtering AS-paths” on page 1346.

maximum-prefix <num> specifies the maximum number of IP network prefixes (routes) that can be learned from the specified neighbor or peer group. You can specify a value from 0 – 4294967295. The default is 0 (unlimited):

- The <num> parameter specifies the maximum number. You can specify a value from 0 – 4294967295. The default is 0 (unlimited).
- The <threshold> parameter specifies the percentage of the value you specified for the maximum-prefix <num>, at which you want the software to generate a Syslog message. You can specify a value from 1 (one percent) to 100 (100 percent). The default is 100.
- The teardown parameter tears down the neighbor session if the maximum-prefix limit is exceeded. The session remains shutdown until you clear the prefixes using the clear ip bgp neighbor all or clear ip bgp neighbor <ip-addr> command, or change the neighbor maximum-prefix configuration. The software also generates a Syslog message.

next-hop-self specifies that the router should list itself as the next hop in updates sent to the specified neighbor. This option is disabled by default.

The nlri multicast | unicast | multicast unicast parameter specifies whether the neighbor is a multicast neighbor or a unicast neighbor. Optionally, you also can specify unicast if you want the Layer 3 Switch to exchange unicast (BGP4) routes as well as multicast routes with the neighbor. The default is unicast only.

password [0 | 1] <string> specifies an MD5 password for securing sessions between the Layer 3 Switch and the neighbor. You can enter a string up to 80 characters long. The string can contain any alphanumeric characters, but the first character cannot be a number. If the password contains a number, do not enter a space following the number.

The 0 | 1 parameter is the encryption option, which you can omit (the default) or which can be one of the following:
Basic configuration tasks

- **0** – Disables encryption for the authentication string you specify with the command. The password or string is shown as clear text in the output of commands that display neighbor or peer group configuration information.
- **1** – Assumes that the authentication string you enter is the encrypted form, and decrypts the value before using it.

For more information, refer to “Encryption of BGP MD5 authentication keys” on page 1311.

NOTE

If you want the software to assume that the value you enter is the clear-text form, and to encrypt display of that form, do not enter 0 or 1. Instead, omit the encryption option and allow the software to use the default behavior.

If you specify encryption option 1, the software assumes that you are entering the encrypted form of the password or authentication string. In this case, the software decrypts the password or string you enter before using the value for authentication. If you accidentally enter option 1 followed by the clear-text version of the password or string, authentication will fail because the value used by the software will not match the value you intended to use.

prefix-list <string> in | out specifies an IP prefix list. You can use IP prefix lists to control routes to and from the neighbor. IP prefix lists are an alternative method to AS-path filters. The **in | out** keyword specifies whether the list is applied on updates received from the neighbor or sent to the neighbor. You can configure up to 1000 prefix list filters. The filters can use the same prefix list or different prefix lists. To configure an IP prefix list, refer to “Defining IP prefix lists” on page 1352.

remote-as <as-number> specifies the AS the remote neighbor is in. The **<as-number>** can be a number from 1 – 65535. There is no default.

remove-private-as configures the router to remove private AS numbers from UPDATE messages the router sends to this neighbor. The router will remove AS numbers 64512 – 65535 (the well-known BGP4 private AS numbers) from the AS-path attribute in UPDATE messages the Layer 3 Switch sends to the neighbor. This option is disabled by default.

route-map in | out <map-name> specifies a route map the Layer 3 Switch will apply to updates sent to or received from the specified neighbor. The **in | out** keyword specifies whether the list is applied on updates received from the neighbor or sent to the neighbor.

NOTE

The route map must already be configured. Refer to “Defining route maps” on page 1353.

route-reflector-client specifies that this neighbor is a route-reflector client of the router. Use the parameter only if this router is going to be a route reflector. For information, refer to “Configuring route reflection parameters” on page 1330. This option is disabled by default.

send-community enables sending the community attribute in updates to the specified neighbor. By default, the router does not send the community attribute.

shutdown administratively shuts down the session with this neighbor. Shutting down the session allows you to completely configure the neighbor and save the configuration without actually establishing a session with the neighbor. This option is disabled by default.

soft-reconfiguration inbound enables the soft reconfiguration feature, which stores all the route updates received from the neighbor. If you request a soft reset of inbound routes, the software performs the reset by comparing the policies against the stored route updates, instead of requesting the neighbor BGP4 route table or resetting the session with the neighbor. Refer to “Using soft reconfiguration” on page 1401.
Basic configuration tasks

timers keep-alive `<num>` **hold-time** `<num>` overrides the global settings for the Keep Alive Time and Hold Time. For the Keep Alive Time, you can specify from 0 – 65535 seconds. For the Hold Time, you can specify 0 or 3 – 65535 (1 and 2 are not allowed). If you set the Hold Time to 0, the router waits indefinitely for messages from a neighbor without concluding that the neighbor is dead. The defaults for these parameters are the currently configured global Keep Alive Time and Hold Time. For more information about these parameters, refer to “Changing the Keep Alive Time and Hold Time” on page 1317.

unsuppress-map `<map-name>` removes route dampening from a neighbor routes when those routes have been dampened due to aggregation. Refer to “Removing route dampening from a neighbor routes suppressed due to aggregation” on page 1369.

update-source `<ip-addr>` | **ethernet** `<slotnum>/`<portnum>` | **loopback** `<num>` | **ve** `<num>` configures the router to communicate with the neighbor through the specified interface. There is no default.

weight `<num>` specifies a weight the Layer 3 Switch will add to routes received from the specified neighbor. BGP4 prefers larger weights over smaller weights. The default weight is 0.

Encryption of BGP4 MD5 authentication keys

When you configure a BGP4 neighbor or neighbor peer group, you can specify an MD5 authentication string for authenticating packets exchanged with the neighbor or peer group of neighbors.

For added security, the software encrypts display of the authentication string by default. The software also provides an optional parameter to disable encryption of the authentication string, on an individual neighbor or peer group basis. By default, the MD5 authentication strings are displayed in encrypted format in the output of the following commands:

- show running-config (or write terminal)
- show configuration
- show ip bgp config

When encryption of the authentication string is enabled, the string is encrypted in the CLI regardless of the access level you are using.

If you display the running-config after reloading, the BGP4 commands that specify an authentication string show the string in encrypted form.

In addition, when you save the configuration to the startup-config file, the file contains the new BGP4 command syntax and encrypted passwords or strings.

NOTE

Brocade recommends that you save a copy of the startup-config file for each switch you plan to upgrade.

Encryption example

The following commands configure a BGP4 neighbor and a peer group, and specify MD5 authentication strings (passwords) for authenticating packets exchanged with the neighbor or peer group.
Here is how the commands appear when you display the BGP4 configuration commands.

```
FastIron(config-bgp-router)# local-as 2
FastIron(config-bgp-router)# neighbor xyz peer-group
FastIron(config-bgp-router)# neighbor xyz password abc
FastIron(config-bgp-router)# neighbor 10.10.200.102 peer-group xyz
FastIron(config-bgp-router)# neighbor 10.10.200.102 password test
```

Notice that the software has converted the commands that specify an authentication string into the new syntax (described below), and has encrypted display of the authentication strings.

Command syntax

Since the default behavior does not affect the BGP4 configuration itself but does encrypt display of the authentication string, the CLI does not list the encryption options.

Syntax: `[no] neighbor <ip-addr> | <peer-group-name> password [0 | 1] <string>

The `<ip-addr> | <peer-group-name>` parameter indicates whether you are configuring an individual neighbor or a peer group. If you specify a neighbor IP address, you are configuring that individual neighbor. If you specify a peer group name, you are configuring a peer group.

The `password <string>` parameter specifies an MD5 authentication string for securing sessions between the Layer 3 Switch and the neighbor. You can enter a string up to 80 characters long. The string can contain any alphanumeric characters, but the first character cannot be a number. If the password contains a number, do not enter a space following the number.

The `0 | 1` parameter is the encryption option, which you can omit (the default) or which can be one of the following:

- **0** – Disables encryption for the authentication string you specify with the command. The password or string is shown as clear text in the output of commands that display neighbor or peer group configuration information.
- **1** – Assumes that the authentication string you enter is the encrypted form, and decrypts the value before using it.

NOTE

If you want the software to assume that the value you enter is the clear-text form, and to encrypt display of that form, do not enter 0 or 1. Instead, omit the encryption option and allow the software to use the default behavior.

If you specify encryption option 1, the software assumes that you are entering the encrypted form of the password or authentication string. In this case, the software decrypts the password or string you enter before using the value for authentication. If you accidentally enter option 1 followed by the clear-text version of the password or string, authentication will fail because the value used by the software will not match the value you intended to use.
Displaying the Authentication String
If you want to display the authentication string, enter the following commands.

```
FastIron(config)# enable password-display
FastIron# show ip bgp neighbors
```

The `enable password-display` command enables display of the authentication string, but only in the output of the `show ip bgp neighbors` command. Display of the string is still encrypted in the startup-config file and running-config. Enter the command at the global CONFIG level of the CLI.

NOTE
The command also displays SNMP community strings in clear text, in the output of the `show snmp server` command.

Adding a BGP4 peer group
A peer group is a set of BGP4 neighbors that share common parameters. Peer groups provide the following benefits:

- **Simplified neighbor configuration** – You can configure a set of neighbor parameters and then apply them to multiple neighbors. You do not need to individually configure the common parameters individually on each neighbor.
- **Flash memory conservation** – Using peer groups instead of individually configuring all the parameters for each neighbor requires fewer configuration commands in the startup-config file.

You can perform the following tasks on a peer-group basis:

- Reset neighbor sessions
- Perform soft-outbound resets (the Layer 3 Switch updates outgoing route information to neighbors but does not entirely reset the sessions with those neighbors)
- Clear BGP message statistics
- Clear error buffers

Peer group parameters
You can set all neighbor parameters in a peer group. When you add a neighbor to the peer group, the neighbor receives all the parameter settings you set in the group, except parameter values you have explicitly configured for the neighbor. If you do not set a neighbor parameter in the peer group and the parameter also is not set for the individual neighbor, the neighbor uses the default value.

Configuration rules
The following rules apply to peer group configuration:

- You must configure a peer group before you can add neighbors to the peer group.
- If you remove a parameter from a peer group, the value for that parameter is reset to the default for all the neighbors within the peer group, unless you have explicitly set that parameter on individual neighbors. In this case, the value you set on the individual neighbors applies to those neighbors, while the default value applies to neighbors for which you have not explicitly set the value.
NOTE
If you enter a command to remove the remote AS parameter from a peer group, the software checks to ensure that the peer group does not contain any neighbors. If the peer group does contain neighbors, the software does not allow you to remove the remote AS. The software prevents removing the remote AS in this case so that the neighbors in the peer group that are using the remote AS do not lose connectivity to the Layer 3 Switch.

• Once you add a neighbor to a peer group, you cannot configure the following outbound parameters (the parameters governing outbound traffic) for the neighbor:
 • Default-information-originate
 • Next-hop-self
 • Outbound route map
 • Outbound filter list
 • Outbound distribute list
 • Outbound prefix list
 • Remote AS, if configured for the peer group
 • Remove private AS
 • Route reflector client
 • Send community
 • Timers
 • Update source

If you want to change an outbound parameter for an individual neighbor, you must first remove the neighbor from the peer group. In this case, you cannot re-add the neighbor to the same peer group, but you can add the neighbor to a different peer group. All the neighbors within a peer group must have the same values for the outbound parameters. To change an outbound parameter to the same value for all neighbors within a peer group, you can change the parameter on a peer-group basis. In this case, you do not need to remove the neighbors and change the parameter individually for each neighbor.

• If you add an outbound parameter to a peer group, that parameter is automatically applied to all neighbors within the peer group.

• When you add a neighbor to a peer group, the software removes any outbound parameters for that neighbor from the running configuration (running-config). As a result, when you save the configuration to the startup-config file, the file does not contain any outbound parameters for the individual neighbors you have placed in a peer group. The only outbound parameters the startup-config file contains for neighbors within a peer group are the parameters associated with the peer group itself. However, the running-config and the startup-config file can contain individual parameters listed in the previous section as well as the settings for those parameters within a peer group.

You can override neighbor parameters that do not affect outbound policy on an individual neighbor basis.

• If you do not specify a parameter for an individual neighbor, the neighbor uses the value in the peer group.
• If you set the parameter for the individual neighbor, that value overrides the value you set in the peer group.
Basic configuration tasks

- If you add a parameter to a peer group that already contains neighbors, the parameter value is applied to neighbors that do not already have the parameter explicitly set. If a neighbor has the parameter explicitly set, the explicitly set value overrides the value you set for the peer group.
- If you remove the setting for a parameter from a peer group, the value for that parameter changes to the default value for all the neighbors in the peer group that do not have that parameter individually set.

Configuring a peer group

To configure a BGP4 peer group, enter commands such as the following at the BGP configuration level.

```
FastIron(config-bgp-router)# neighbor PeerGroup1 peer-group
FastIron(config-bgp-router)# neighbor PeerGroup1 description "EastCoast Neighbors"
FastIron(config-bgp-router)# neighbor PeerGroup1 remote-as 100
FastIron(config-bgp-router)# neighbor PeerGroup1 distribute-list out 1
```

The commands in this example configure a peer group called “PeerGroup1” and set the following parameters for the peer group:

- A description, “EastCoast Neighbors”
- A remote AS number, 100
- A distribute list for outbound traffic

The software applies these parameters to each neighbor you add to the peer group. You can override the description parameter for individual neighbors. If you set the description parameter for an individual neighbor, the description overrides the description configured for the peer group. However, you cannot override the remote AS and distribute list parameters for individual neighbors. Since these parameters control outbound traffic, the parameters must have the same values for all neighbors within the peer group.

Syntax: `neighbor <peer-group-name> peer-group`

The `<peer-group-name>` parameter specifies the name of the group and can be up to 80 characters long. The name can contain special characters and internal blanks. If you use internal blanks, you must use quotation marks around the name. For example, the command `neighbor "My Three Peers" peer-group` is valid, but the command `neighbor My Three Peers peer-group` is not valid.

Syntax:

```
[no] neighbor <ip-addr> | <peer-group-name>
 [advertisement-interval <num>]
 [default-originate [route-map <map-name>]]
 [description <string>]
 [distribute-list in | out <num,num,...> | <ACL-num> in | out]
 [ebgp-multihop [ <num>]]
 [filter-list in | out <num,num,...> | <ACL-num> in | out | weight]
 [maximum-prefix <num> [<threshold>] [teardown]]
 [next-hop-self]
 [password [0 | 1] <string>]
 [prefix-list <string> in | out]
 [remote-as <as-number>]
 [remove-private-as]
 [route-map in | out <map-name>]
 [route-reflector-client]
```
Basic configuration tasks

Basic configuration tasks

• [send-community]
• [soft-reconfiguration inbound]
• [shutdown]
• [timers keep-alive <num> hold-time <num>]
• [update-source loopback <num>]
• [weight <num>]

The <ip-addr> | <peer-group-name> parameter indicates whether you are configuring a peer group or an individual neighbor. You can specify a peer group name or IP address with the neighbor command. If you specify a peer group name, you are configuring a peer group. If you specify a neighbor IP address, you are configuring that individual neighbor. Use the <ip-addr> parameter if you are configuring an individual neighbor instead of a peer group. Refer to “Adding BGP4 neighbors” on page 1307.

The remaining parameters are the same ones supported for individual neighbors. Refer to “Adding BGP4 neighbors” on page 1307.

Applying a peer group to a neighbor

After you configure a peer group, you can add neighbors to the group. When you add a neighbor to a peer group, you are applying all the neighbor attributes specified in the peer group to the neighbor.

To add neighbors to a peer group, enter commands such as the following.

FastIron(config-bgp-router)# neighbor 192.168.1.12 peer-group PeerGroup1
FastIron(config-bgp-router)# neighbor 192.168.2.45 peer-group PeerGroup1
FastIron(config-bgp-router)# neighbor 192.168.3.69 peer-group PeerGroup1

The commands in this example add three neighbors to the peer group “PeerGroup1”. As members of the peer group, the neighbors automatically receive the neighbor parameter values configured for the peer group. You also can override the parameters (except parameters that govern outbound traffic) on an individual neighbor basis. For neighbor parameters not specified for the peer group, the neighbors use the default values.

Syntax: neighbor <ip-addr> peer-group <peer-group-name>

The <ip-addr> parameter specifies the IP address of the neighbor.

The <peer-group-name> parameter specifies the peer group name.

NOTE
You must add the peer group before you can add neighbors to it.

Administratively shutting down a session with a BGP4 neighbor

You can prevent the Layer 3 Switch from starting a BGP4 session with a neighbor by administratively shutting down the neighbor. This option is very useful for situations in which you want to configure parameters for a neighbor but are not ready to use the neighbor. You can shut the neighbor down as soon as you have added it the Layer 3 Switch, configure the neighbor parameters, then allow the Layer 3 Switch to re-establish a session with the neighbor by removing the shutdown option from the neighbor.

When you apply the new option to shut down a neighbor, the option takes place immediately and remains in effect until you remove the option. If you save the configuration to the startup-config file, the shutdown option remains in effect even after a software reload.
NOTE
The software also contains an option to end the session with a BGP4 neighbor and thus clear the routes learned from the neighbor. Unlike this clear option, the option for shutting down the neighbor can be saved in the startup-config file and thus can prevent the Layer 3 Switch from establishing a BGP4 session with the neighbor even after reloading the software.

NOTE
If you notice that a particular BGP4 neighbor never establishes a session with the Brocade Layer 3 Switch, check the Layer 3 Switch running-config and startup-config files to see whether the configuration contains a command that is shutting down the neighbor. The neighbor may have been shut down previously by an administrator.

To shut down a BGP4 neighbor, enter commands such as the following.

FastIron(config)# router bgp
FastIron(config-bgp-router)# neighbor 209.157.22.26 shutdown
FastIron(config-bgp-router)# write memory

Syntax: [no] neighbor <ip-addr> shutdown

The <ip-addr> parameter specifies the IP address of the neighbor.

Optional configuration tasks

The following sections describe how to perform optional BGP4 configuration tasks.

Changing the Keep Alive Time and Hold Time

The Keep Alive Time specifies how frequently the router will send KEEPALIVE messages to its BGP4 neighbors. The Hold Time specifies how long the router will wait for a KEEPALIVE or UPDATE message from a neighbor before concluding that the neighbor is dead. When the router concludes that a BGP4 neighbor is dead, the router ends the BGP4 session and closes the TCP connection to the neighbor.

The default Keep Alive time is 60 seconds. The default Hold Time is 180 seconds. To change the timers, use either of the following methods.

NOTE
Generally, you should set the Hold Time to three times the value of the Keep Alive Time.

NOTE
You can override the global Keep Alive Time and Hold Time on individual neighbors. Refer to “Adding BGP4 neighbors” on page 1307.

To change the Keep Alive Time to 30 and Hold Time to 90, enter the following command.

FastIron(config-bgp-router)# timers keep-alive 30 hold-time 90

Syntax: timers keep-alive <num> hold-time <num>
Optional configuration tasks

For each keyword, <num> indicates the number of seconds. The Keep Alive Time can be 0 – 65535. The Hold Time can be 0 or 3 – 65535 (1 and 2 are not allowed). If you set the Hold Time to 0, the router waits indefinitely for messages from a neighbor without concluding that the neighbor is dead.

Changing the BGP4 next-hop update timer

By default, the Layer 3 Switch updates its BGP4 next-hop tables and affected BGP4 routes five seconds after IGP route changes. You can change the update timer to a value from 1 – 30 seconds.

To change the BGP4 update timer value, enter a command such as the following at the BGP configuration level of the CLI.

FastIron(config-bgp-router)# update-time 15

This command changes the update timer to 15 seconds.

Syntax: [no] update-time <secs>

The <secs> parameter specifies the number of seconds and can be from 1 – 30. The default is 5.

Enabling fast external fallover

BGP4 routers rely on KEEPALIVE and UPDATE messages from neighbors to signify that the neighbors are alive. For BGP4 neighbors that are two or more hops away, such messages are the only indication that the BGP4 protocol has concerning the alive state of the neighbors. As a result, if a neighbor dies, the router will wait until the Hold Time expires before concluding that the neighbor is dead and closing its BGP4 session and TCP connection with the neighbor.

The router waits for the Hold Time to expire before ending the connection to a directly-attached BGP4 neighbor that dies.

For directly attached neighbors, the router immediately senses loss of a connection to the neighbor from a change of state of the port or interface that connects the router to its neighbor. For directly attached EBGP neighbors, the router can use this information to immediately close the BGP4 session and TCP connection to locally attached neighbors that die.

NOTE

The fast external fallover feature applies only to directly attached EBGP neighbors. The feature does not apply to IBGP neighbors.

If you want to enable the router to immediately close the BGP4 session and TCP connection to locally attached neighbors that die, use either of the following methods.

To enable fast external fallover, enter the following command.

FastIron(config-bgp-router)# fast-external-fallover

To disable fast external fallover again, enter the following command.

FastIron(config-bgp-router)# no fast-external-fallover

Syntax: [no] fast-external-fallover
Changing the maximum number of paths for BGP4 load sharing

Load sharing enables the Layer 3 Switch to balance traffic to a route across multiple equal-cost paths of the same type (EBGP or IBGP) for the route.

To configure the Layer 3 Switch to perform BGP4 load sharing:

- Enable IP load sharing if it is disabled.
- Set the maximum number of paths. The default maximum number of BGP4 load sharing paths is 1, which means no BGP4 load sharing takes place by default.

NOTE
The maximum number of BGP4 load sharing paths cannot be greater than the maximum number of IP load sharing paths.

How load sharing affects route selection

During evaluation of multiple paths to select the best path to a given destination for installment in the IP route table, the last comparison the Layer 3 Switch performs is a comparison of the internal paths:

- When IP load sharing is disabled, the Layer 3 Switch prefers the path to the router with the lower router ID.
- When IP load sharing and BGP4 load sharing are enabled, the Layer 3 Switch balances the traffic across the multiple paths instead of choosing just one path based on router ID.

Refer to “How BGP4 selects a path for a route” on page 1297 for a description of the BGP4 algorithm.

When you enable IP load sharing, the Layer 3 Switch can load balance BGP4 or OSPF routes across up to four equal paths by default. You can change the number of IP load sharing paths to a value from 2 – 6.

How load sharing works

Load sharing is performed in round-robin fashion and is based on the destination IP address only. The first time the router receives a packet destined for a specific IP address, the router uses a round-robin algorithm to select the path that was not used for the last newly learned destination IP address. Once the router associates a path with a particular destination IP address, the router will always use that path as long as the router contains the destination IP address in its cache.

NOTE
The Layer 3 Switch does not perform source routing. The router is concerned only with the paths to the next-hop routers, not the entire paths to the destination hosts.

A BGP4 destination can be learned from multiple BGP4 neighbors, leading to multiple BGP4 paths to reach the same destination. Each of the paths may be reachable through multiple IGP paths (multiple OSPF or RIP paths). In this case, the software installs all the multiple equal-cost paths in the BGP4 route table, up to the maximum number of BGP4 equal-cost paths allowed. The IP load sharing feature then distributes traffic across the equal-cost paths to the destination.
If an IGP path used by a BGP4 next-hop route path installed in the IP route table changes, then the BGP4 paths and IP paths are adjusted accordingly. For example, if one of the OSPF paths to reach the BGP4 next hop goes down, the software removes this path from the BGP4 route table and the IP route table. Similarly, if an additional OSPF path becomes available to reach the BGP4 next-hop router for a particular destination, the software adds the additional path to the BGP4 route table and the IP route table.

Changing the maximum number of shared BGP4 paths

When IP load sharing is enabled, BGP4 can balance traffic to a specific destination across up to four equal paths. You can set the maximum number of paths to a value from 1 – 4. The default is 1.

NOTE

The maximum number of BGP4 load sharing paths cannot be greater than the maximum number of IP load sharing paths. To increase the maximum number of IP load sharing paths, use the `ip load-sharing <num>` command at the global CONFIG level of the CLI.

To change the maximum number of shared paths, enter commands such as the following.

```
FastIron(config)# router bgp
FastIron(config-bgp-router)# maximum-paths 4
FastIron(config-bgp-router)# write memory
```

Syntax: `[no] maximum-paths <num>`

The `<num>` parameter specifies the maximum number of paths across which the Layer 3 Switch can balance traffic to a given BGP4 destination. You can change the maximum number of paths to a value from 2 – 4. The default is 1.

Customizing BGP4 load sharing

By default, when BGP4 load sharing is enabled, both IBGP and EBGP paths are eligible for load sharing, while paths from different neighboring ASs are not eligible. You can change load sharing to apply only to IBGP or EBGP paths, or to support load sharing among paths from different neighboring ASs.

To enable load sharing of IBGP paths only, enter the following command at the BGP configuration level of the CLI.

```
FastIron(config-bgp-router)# multipath ibgp
```

To enable load sharing of EBGP paths only, enter the following command at the BGP configuration level of the CLI.

```
FastIron(config-bgp-router)# multipath ebgp
```

To enable load sharing of paths from different neighboring ASs, enter the following command at the BGP configuration level of the CLI.

```
FastIron(config-bgp-router)# multipath multi-as
```

Syntax: `[no] multipath ebgp | ibgp | multi-as`

The `ebgp | ibgp | multi-as` parameter specifies the change you are making to load sharing:

- **ebgp** – Load sharing applies only to EBGP paths. Load sharing is disabled for IBGP paths.
- **ibgp** – Load sharing applies only to IBGP paths. Load sharing is disabled for EBGP paths.
• **multi-as** – Load sharing is enabled for paths from different ASs.

By default, load sharing applies to EBGP and IBGP paths, and does not apply to paths from different neighboring ASs.

Specifying a list of networks to advertise

By default, the router sends BGP4 routes only for the networks you identify using the `network` command or that are redistributed into BGP4 from RIP or OSPF. You can specify up to 600 networks.

To specify a network to be advertised, use either of the following methods.

NOTE
The exact route must exist in the IP route table before the Layer 3 Switch can create a local BGP route.

To configure the Layer 3 Switch to advertise network 209.157.22.0/24, enter the following command.

```
FastIron(config-bgp-router)# network 209.157.22.0 255.255.255.0
```

Syntax: `network <ip-addr> <ip-mask> [nri multicast | unicast | multicast unicast] [route-map <map-name>] | [weight <num>] | [backdoor]`

The `<ip-addr>` is the network number and the `<ip-mask>` specifies the network mask.

The `nri multicast | unicast | multicast unicast` parameter specifies whether the neighbor is a multicast neighbor or a unicast neighbor. Optionally, you also can specify `unicast` if you want the Layer 3 Switch to exchange unicast (BGP4) routes as well as multicast routes with the neighbor. The default is `unicast` only.

The `route-map <map-name>` parameter specifies the name of the route map you want to use to set or change BGP4 attributes for the network you are advertising. The route map must already be configured.

The `weight <num>` parameter specifies a weight to be added to routes to this network.

The `backdoor` parameter changes the administrative distance of the route to this network from the EBGP administrative distance (20 by default) to the Local BGP weight (200 by default), thus tagging the route as a backdoor route. Use this parameter when you want the router to prefer IGP routes such as RIP or OSPF routes over the EBGP route for the network.

Specifying a route map name when configuring BGP4 network information

You can specify a route map as one of the parameters when you configure a BGP4 network to be advertised. The Layer 3 Switch can use the route map to set or change BGP4 attributes when creating a local BGP4 route.

To configure network information and use a route map to set or change BGP4 attributes, use the following CLI method.

NOTE
You must configure the route map before you can specify the route map name in a BGP4 network configuration.
To configure a route map, and use it to set or change route attributes for a network you define for BGP4 to advertise, enter commands such as the following.

FastIron(config)# route-map set_net permit 1
FastIron(config-route-map set_net)# set community no-export
FastIron(config-route-map set_net)# exit
FastIron(config)# router bgp
FastIron(config-bgp-router)# network 100.100.1.0/24 route-map set_net

The first two commands in this example create a route map named “set_net” that sets the community attribute for routes that use the route map to “NO_EXPORT”. The next two commands change the CLI to the BGP4 configuration level. The last command configures a network for advertising from BGP4, and associates the “set_net” route map with the network. When BGP4 originates the 100.100.1.0/24 network, BGP4 also sets the community attribute for the network to “NO_EXPORT”.

Syntax: network <ip-addr> <ip-mask> [route-map <map-name>] | [weight <num>] | [backdoor]

The `route-map <map-name>` parameter specifies the name of the route map you want to use to set or change BGP4 attributes for the network you are advertising. The route map must already be configured.

For information about the other parameters, refer to “Defining route maps” on page 1353.

Changing the default local preference

When the router uses the BGP4 algorithm to select a route to send to the IP route table, one of the parameters the algorithm uses is the local preference. Local preference is an attribute that indicates a degree of preference for a route relative to other routes. BGP4 neighbors can send the local preference value as an attribute of a route in an UPDATE message.

Local preference applies only to routes within the local AS. BGP4 routers can exchange local preference information with neighbors who also are in the local AS, but BGP4 routers do not exchange local preference information with neighbors in remote ASs.

The default local preference is 100. For routes learned from EBGP neighbors, the default local preference is assigned to learned routes. For routes learned from IBGP neighbors, the local preference value is not changed for the route.

When the BGP4 algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen.

NOTE

To set the local preference for individual routes, use route maps. Refer to “Defining route maps” on page 1353. Refer to “How BGP4 selects a path for a route” on page 1297 for information about the BGP4 algorithm.

To change the default local preference to 200, enter the following command.

FastIron(config-bgp-router)# default-local-preference 200

Syntax: default-local-preference <num>

The `<num>` parameter indicates the preference and can be a value from 0 – 4294967295.
Using the IP default route as a valid next hop for a BGP4 route

By default, the Layer 3 Switch does not use a default route to resolve a BGP4 next-hop route. If the IP route lookup for the BGP4 next hop does not result in a valid IGP route (including static or direct routes), the BGP4 next hop is considered to be unreachable and the BGP4 route is not used.

In some cases, such as when the Layer 3 Switch is acting as an edge router, you might want to allow the device to use the default route as a valid next hop. To do so, enter the following command at the BGP4 configuration level of the CLI.

`FastIron(config-bgp-router)# next-hop-enable-default`

Syntax: `[no] next-hop-enable-default`

Advertising the default route

By default, the Layer 3 Switch does not originate and advertise a default route using BGP4. A BGP4 default route is the IP address 0.0.0.0 and the route prefix 0 or network mask 0.0.0.0. For example, 0.0.0.0/0 is a default route. You can enable the router to advertise a default BGP4 route using either of the following methods.

NOTE
The Brocade Layer 3 Switch checks for the existence of an IGP route for 0.0.0.0/0 in the IP route table before creating a local BGP route for 0.0.0.0/0.

To enable the router to originate and advertise a default BGP4 route, enter the following command.

`FastIron(config-bgp-router)# default-information-originate`

Syntax: `[no] default-information-originate`

Changing the default MED (Metric) used for route redistribution

The Brocade Layer 3 Switch can redistribute directly connected routes, static IP routes, RIP routes, and OSPF routes into BGP4. The MED (metric) is a global parameter that specifies the cost that will be applied to all routes by default when they are redistributed into BGP4. When routes are selected, lower metric values are preferred over higher metric values. The default BGP4 MED value is 0 and can be assigned a value from 0 – 4294967295.

NOTE
RIP and OSPF also have default metric parameters. The parameters are set independently for each protocol and have different ranges.

To change the default metric to 40, enter the following command.

`FastIron(config-bgp-router)# default-metric 40`

Syntax: `default-metric <num>`

The `<num>` indicates the metric and can be a value from 0 – 4294967295.
Enabling next-hop recursion

For each BGP4 route a Layer 3 Switch learns, the Layer 3 Switch performs a route lookup to obtain the IP address of the route next hop. A BGP4 route becomes eligible for installation into the IP route table only if the following conditions are true:

- The lookup succeeds in obtaining a valid next-hop IP address for the route.
- The path to the next-hop IP address is an Interior Gateway Protocol (IGP) path or a static route path.

By default, the software performs only one lookup for a BGP route next-hop IP address. If the next-hop lookup does not result in a valid next-hop IP address or the path to the next-hop IP address is a BGP path, the software considers the BGP route destination to be unreachable. The route is not eligible to be installed in the IP route table.

It is possible for the BGP route table to contain a route whose next-hop IP address is not reachable through an IGP route, even though a hop farther away can be reached by the Layer 3 Switch through an IGP route. This can occur when the IGPs do not learn a complete set of IGP routes, resulting in the Layer 3 Switch learning about an internal route through IBGP instead of through an IGP. In this case, the IP route table does not contain a route that can be used to reach the BGP route destination.

To enable the Layer 3 Switch to find the IGP route to a BGP route next-hop gateway, enable recursive next-hop lookups. When you enable recursive next-hop lookup, if the first lookup for a BGP route results in an IBGP path originated within the same Autonomous System (AS), rather than an IGP path or static route path, the Layer 3 Switch performs a lookup on the next-hop gateway next-hop IP address. If this second lookup results in an IGP path, the software considers the BGP route to be valid and thus eligible for installation in the IP route table. Otherwise, the Layer 3 Switch performs a lookup on the next-hop IP address of the next-hop gateway next hop, and so on, until one of the lookups results in an IGP route.

NOTE
The software does not support using the default route to resolve a BGP4 route’s next hop. Instead, you must configure a static route or use an IGP to learn the route to the EBGP multihop peer.

Previous software releases support use of the default route to resolve routes learned from EBGP multihop neighbors. However, even in this case Brocade recommends that you use a static route for the EBGP multihop neighbor instead. In general, we recommend that you do not use the default route as the next hop for BGP4 routes, especially when there are two or more BGP4 neighbors. Using the default route can cause loops.

Example when recursive route lookups are disabled

Here is an example of the results of an unsuccessful next-hop lookup for a BGP route. In this case, next-hop recursive lookups are disabled. The example is for the BGP route to network 240.0.0.0/24.
In this example, the Layer 3 Switch cannot reach 240.0.0.0/24, because the next-hop IP address for the route is an IBGP route instead of an IGP route, and thus is considered unreachable by the Layer 3 Switch. Here is the IP route table entry for the BGP route next-hop gateway (102.0.0.1/24).

```
FastIron# show ip bgp route
Total number of BGP Routes: 5
Prefix      Next Hop     Metric  LocPrf  Weight  Status
 1 0.0.0.0/0        10.1.0.2   0    100   0    BI
 2 102.0.0.0/24     10.0.0.1   1    100   0    BI
 3 104.0.0.0/24     10.1.0.2   0    100   0    BI
 4 240.0.0.0/24     102.0.0.1  1    100   0    I
 5 250.0.0.0/24     209.157.24.1 1    100   0    I

FastIron# show ip route 102.0.0.1
Total number of IP routes: 37
Network Address NetMask      Gateway     Port  Cost  Type
102.0.0.0    255.255.255.0   10.0.0.1   1/1   1    B

FastIron# show ip route 240.0.0.0/24
Total number of IP routes: 37
Network Address NetMask      Gateway     Port  Cost  Type
 0.0.0.0      0.0.0.0        10.0.0.202 1/1   1    S
```

In this example, the Layer 3 Switch cannot reach 240.0.0.0/24, because the next-hop IP address for the route is an IBGP route instead of an IGP route, and thus is considered unreachable by the Layer 3 Switch. Here is the IP route table entry for the BGP route next-hop gateway (102.0.0.1/24).

```
FastIron# show ip bgp route
Total number of BGP Routes: 5
Prefix      Next Hop     Metric  LocPrf  Weight  Status
 1 0.0.0.0/0        10.1.0.2   0    100   0    BI
 2 102.0.0.0/24     10.0.0.1   1    100   0    BI
 3 104.0.0.0/24     10.1.0.2   0    100   0    BI
 4 240.0.0.0/24     102.0.0.1  1    100   0    I
 5 250.0.0.0/24     209.157.24.1 1    100   0    I

FastIron# show ip route 102.0.0.1
Total number of IP routes: 37
Network Address NetMask      Gateway     Port  Cost  Type
102.0.0.0    255.255.255.0   10.0.0.1   1/1   1    B

FastIron# show ip route 240.0.0.0/24
Total number of IP routes: 37
Network Address NetMask      Gateway     Port  Cost  Type
 0.0.0.0      0.0.0.0        10.0.0.202 1/1   1    S
```

Example when recursive route lookups are enabled

When recursive next-hop lookups are enabled, the Layer 3 Switch recursively looks up the next-hop gateways along the route until the Layer 3 Switch finds an IGP route to the BGP route destination. Here is an example.
The first lookup results in an IBGP route, to network 102.0.0.0/24.

FastIron# show ip route 102.0.0.1
Total number of IP routes: 38
Network Address NetMask Gateway Port Cost Type
102.0.0.0 255.255.255.0 10.0.0.1 1/1 1 B
AS_PATH: 65001 4355 1

Since the route to 102.0.0.1/24 is not an IGP route, the Layer 3 Switch cannot reach the next hop through IP, and thus cannot use the BGP route. In this case, since recursive next-hop lookups are enabled, the Layer 3 Switch next performs a lookup on 102.0.0.1 next-hop gateway, 10.0.0.1.

FastIron# show ip bgp route 102.0.0.0
Number of BGP Routes matching display condition : 1
Prefix Next Hop Metric LocPrf Weight Status
102.0.0.0/24 10.0.0.1 1 100 0 BI
AS_PATH: 65001 4355 1

The next-hop IP address for 102.0.0.1 is not an IGP route, which means the BGP route destination still cannot be reached through IP. The recursive next-hop lookup feature performs a lookup on 102.0.0.1 next-hop gateway.

FastIron# show ip route 10.0.0.1
Total number of IP routes: 38
Network Address NetMask Gateway Port Cost Type
10.0.0.0 255.255.255.0 0.0.0.0 1/1 1 D
AS_PATH: 65001 4355 1

This lookup results in an IGP route. In fact, this route is a directly-connected route. As a result, the BGP route destination is now reachable through IGP, which means the BGP route is eligible for installation in the IP route table. Here is the BGP route in the IP route table.

FastIron# show ip bgp route 240.0.0.0/24
Number of BGP Routes matching display condition : 1
Prefix Next Hop Metric LocPrf Weight Status
240.0.0.0/24 10.0.0.1 1 100 0 B
AS_PATH: 65001 4355 1

FastIron# show ip bgp route
Total number of BGP Routes: 5
Prefix Next Hop Metric LocPrf Weight Status
0.0.0.0/0 10.1.0.2 0 100 0 BI
AS_PATH: 65001 4355 701 80
102.0.0.0/24 10.0.0.1 1 100 0 BI
AS_PATH: 65001 4355 1
104.0.0.0/24 10.1.0.2 0 100 0 BI
AS_PATH: 65001 4355 701 1 189
240.0.0.0/24 10.0.0.1 1 100 0 BI
AS_PATH: 65001 4355 3356 3356 7170 1455
250.0.0.0/24 209.157.24.1 1 100 0 I
AS_PATH: 65001 4355 701
This Layer 3 Switch can use this route because the Layer 3 Switch has an IP route to the next-hop gateway. Without recursive next-hop lookups, this route would not be in the IP route table.

Enabling recursive next-hop lookups

The recursive next-hop lookups feature is disabled by default. To enable recursive next-hop lookups, enter the following command at the BGP configuration level of the CLI.

```
FastIron(config-bgp-router)# next-hop-recursion
```

Syntax: `[no] next-hop-recursion`

Changing administrative distances

BGP4 routers can learn about networks from various protocols, including the EBGP portion of BGP4 and IGP s such as OSPF and RIP. Consequently, the routes to a network may differ depending on the protocol from which the routes were learned.

To select one route over another based on the source of the route information, the Layer 3 Switch can use the administrative distances assigned to the sources. The administrative distance is a protocol-independent metric that IP routers use to compare routes from different sources.

The Layer 3 Switch re-advertises a learned best BGP4 route to the Layer 3 Switch neighbors even when the software does not also select that route for installation in the IP route table. The best BGP4 routes is the BGP4 path that the software selects based on comparison of the paths’ BGP4 route parameters. Refer to “How BGP4 selects a path for a route” on page 1297.

When selecting a route from among different sources (BGP4, OSPF, RIP, static routes, and so on), the software compares the routes on the basis of each route administrative distance. If the administrative distance of the paths is lower than the administrative distance of paths from other sources (such as static IP routes, RIP, or OSPF), the BGP4 paths are installed in the IP route table.

NOTE

The software will replace a statically configured default route with a learned default route if the learned route administrative distance is lower than the statically configured default route distance. However, the default administrative distance for static routes is changed to 1, so only directly-connected routes are preferred over static routes when the default administrative distances for the routes are used.

The following default administrative distances are found on the Brocade Layer 3 Switch:

- Directly connected – 0 (this value is not configurable)
- Static – 1 (applies to all static routes, including default routes)
- EBGP – 20
- OSPF – 110
- RIP – 120
- IBGP – 200
- Local BGP – 200
- Unknown – 255 (the router will not use this route)
Lower administrative distances are preferred over higher distances. For example, if the router receives routes for the same network from OSPF and from RIP, the router will prefer the OSPF route by default. The administrative distances are configured in different places in the software. The Layer 3 Switch re-advertises a learned best BGP4 route to neighbors by default, regardless of whether the route administrative distance is lower than other routes from different route sources to the same destination.

- To change the EBGP, IBGP, and Local BGP default administrative distances, see the instructions in this section.
- To change the default administrative distance for OSPF, refer to “Modify administrative distance” on page 1204.
- To change the default administrative distance for RIP, refer to “Changing the administrative distance” on page 1147.
- To change the default administrative distance for static routes, refer to “Configuring static routes” on page 1015.

You can change the default EBGP, IBGP, and Local BGP administrative distances using either of the following methods.

To change the default administrative distances for EBGP, IBGP, and Local BGP, enter a command such as the following.

```
FastIron(config-bgp-router)# distance 180 160 40
```

Syntax: `distance <external-distance> <internal-distance> <local-distance>`

The `<external-distance>` sets the EBGP distance and can be a value from 1 – 255.

The `<internal-distance>` sets the IBGP distance and can be a value from 1 – 255.

The `<local-distance>` sets the Local BGP distance and can be a value from 1 – 255.

Requiring the first AS to be the neighbor AS

By default, the Brocade device does not require the first AS listed in the AS_SEQUENCE field of an AS path Update from an EBGP neighbor to be the AS that the neighbor who sent the Update is in. You can enable the Brocade device for this requirement.

When you enable the Brocade device to require the AS that an EBGP neighbor is in to be the same as the first AS in the AS_SEQUENCE field of an Update from the neighbor, the Brocade device accepts the Update only if the ASs match. If the ASs do not match, the Brocade device sends a Notification message to the neighbor and closes the session. The requirement applies to all Updates received from EBGP neighbors.

To enable this feature, enter the following command at the BGP configuration level of the CLI.

```
FastIron(config-bgp-router)# enforce-first-as
```

Syntax: `[no] enforce-first-as`

Disabling or re-enabling comparison of the AS-Path length

AS-Path comparison is Step 5 in the algorithm BGP4 uses to select the next path for a route. Comparison of the AS-Path length is enabled by default. To disable it, enter the following command at the BGP configuration level of the CLI.

```
FastIron(config-bgp-router)# as-path-ignore
```

Syntax: `as-path-ignore`
This command disables comparison of the AS-Path lengths of otherwise equal paths. When you disable AS-Path length comparison, the BGP4 algorithm shown in “How BGP4 selects a path for a route” on page 1297 skips from Step 4 to Step 6.

Syntax: `[no] as-path-ignore`

Enabling or disabling comparison of the router IDs

Router ID comparison is Step 10 in the algorithm BGP4 uses to select the next path for a route.

NOTE

Comparison of router IDs is applicable only when BGP4 load sharing is disabled.

When router ID comparison is enabled, the path comparison algorithm compares the router IDs of the neighbors that sent the otherwise equal paths:

- If BGP4 load sharing is disabled (maximum-paths 1), the Layer 3 Switch selects the path that came from the neighbor with the lower router ID.
- If BGP4 load sharing is enabled, the Layer 3 Switch load shares among the remaining paths. In this case, the router ID is not used to select a path.

NOTE

Router ID comparison is disabled by default. In previous releases, router ID comparison is enabled by default and cannot be disabled.

To enable router ID comparison, enter the following command at the BGP configuration level of the CLI.

```
FastIron(config-bgp-router)# compare-routerid
```

Syntax: `[no] compare-routerid`

For more information, refer to “How BGP4 selects a path for a route” on page 1297.

Configuring the Layer 3 Switch to always compare Multi-Exit Discriminators (MEDs)

A Multi-Exit Discriminator (MED) is a value that the BGP4 algorithm uses when comparing multiple paths received from different BGP4 neighbors in the same AS for the same route. In BGP4, a route MED is equivalent to its “metric”:

- BGP4 compares the MEDs of two otherwise equivalent paths if and only if the routes were learned from the same neighboring AS. This behavior is called deterministic MED. Deterministic MED is always enabled and cannot be disabled.

In addition, you can enable the Layer 3 Switch to always compare the MEDs, regardless of the AS information in the paths. To enable this comparison, enter the `always-compare-med` command at the BGP4 configuration level of the CLI. This option is disabled by default.

- The Layer 3 Switch compares the MEDs based on one or more of the following conditions. By default, the Layer 3 Switch compares the MEDs of paths only if the first AS in the paths is the same. (The Layer 3 Switch skips over the AS-CONFED-SEQUENCE if present.)
You can enable the Layer 3 Switch to always compare the MEDs, regardless of the AS information in the paths. For example, if the router receives UPDATES for the same route from neighbors in three ASs, the router would compare the MEDs of all the paths together, rather than comparing the MEDs for the paths in each AS individually.

NOTE
By default, value 0 (most favorable) is used in MED comparison when the MED attribute is not present. The default MED comparison results in the Layer 3 Switch favoring the route paths that are missing their MEDs. You can use the `med-missing-as-worst` command to make the Layer 3 Switch regard a BGP route with a missing MED attribute as the least favorable route, when comparing the MEDs of the routes.

NOTE
MED comparison is not performed for internal routes originated within the local AS or confederation.

To configure the router to always compare MEDs, enter the following command.

```
FastIron(config-bgp-router)# always-compare-med
```

Syntax: `[no] always-compare-med`

Treating missing MEDs as the worst MEDs

By default, the Layer 3 Switch favors a lower MED over a higher MED during MED comparison. Since the Layer 3 Switch assigns the value 0 to a route path MED if the MED value is missing, the default MED comparison results in the Layer 3 Switch favoring the route paths that are missing their MEDs.

To change this behavior so that the Layer 3 Switch favors a route that has a MED over a route that is missing its MED, enter the following command at the BGP4 configuration level of the CLI.

```
FastIron(config-bgp-router)# med-missing-as-worst
```

Syntax: `[no] med-missing-as-worst`

NOTE
This command affects route selection only when route paths are selected based on MED comparison. It is still possible for a route path that is missing its MED to be selected based on other criteria. For example, a route path with no MED can be selected if its weight is larger than the weights of the other route paths.

Configuring route reflection parameters

Normally, all the BGP routers within an AS are fully meshed. Each of the routers has an IBGP session with each of the other BGP routers in the AS. Each IBGP router thus has a route for each of its IBGP neighbors. For large ASs containing many IBGP routers, the IBGP route information in each of the fully-meshed IBGP routers can introduce too much administrative overhead.

To avoid this problem, you can hierarchically organize your IGP routers into clusters:
A cluster is a group of IGP routers organized into route reflectors and route reflector clients. You configure the cluster by assigning a cluster ID on the route reflector and identifying the IGP neighbors that are members of that cluster. All the configuration for route reflection takes place on the route reflectors. The clients are unaware that they are members of a route reflection cluster. All members of the cluster must be in the same AS. The cluster ID can be any number from 0 – 4294967295. The default is the router ID, expressed as a 32-bit number.

NOTE
If the cluster contains more than one route reflector, you need to configure the same cluster ID on all the route reflectors in the cluster. The cluster ID helps route reflectors avoid loops within the cluster.

A route reflector is an IGP router configured to send BGP route information to all the clients (other BGP4 routers) within the cluster. Route reflection is enabled on all Brocade BGP4 routers by default but does not take effect unless you add route reflector clients to the router.

A route reflector client is an IGP router identified as a member of a cluster. You identify a router as a route reflector client on the router that is the route reflector, not on the client. The client itself requires no additional configuration. In fact, the client does not know that it is a route reflector client. The client just knows that it receives updates from its neighbors and does not know whether one or more of those neighbors are route reflectors.

NOTE
Route reflection applies only among IBGP routers within the same AS. You cannot configure a cluster that spans multiple ASs.

Figure 157 shows an example of a route reflector configuration. In this example, two Layer 3 Switches are configured as route reflectors for the same cluster. The route reflectors provide redundancy in case one of the reflectors becomes unavailable. Without redundancy, if a route reflector becomes unavailable, its clients are cut off from BGP4 updates.

AS1 contains a cluster with two route reflectors and two clients. The route reflectors are fully meshed with other BGP4 routers, but the clients are not fully meshed. They rely on the route reflectors to propagate BGP4 route updates.
Support for RFC 2796

Route reflection on Brocade devices is based on RFC 2796. This updated RFC helps eliminate routing loops that are possible in some implementations of the older specification, RFC 1966.

NOTE
The configuration procedure for route reflection is the same regardless of whether your software release is using RFC 1966 or RFC 2796. However, the operation of the feature is different as explained below.

RFC 2796 provides more details than RFC 1966 regarding the use of the route reflection attributes, ORIGINATOR_ID and CLUSTER_LIST, to help prevent loops:

- **ORIGINATOR_ID** – Specifies the router ID of the BGP4 switch that originated the route. The route reflector inserts this attribute when reflecting a route to an IBGP neighbor. If a BGP4 switch receives an advertisement that contains its own router ID as the ORIGINATOR_ID, the switch discards the advertisement and does not forward it.

- **CLUSTER_LIST** – A list of the route reflection clusters through which the advertisement has passed. A cluster contains a route reflector and its clients. When a route reflector reflects a route, the route reflector adds its cluster ID to the front of the CLUSTER_LIST. If a route reflector receives a route that has its own cluster ID, the switch discards the advertisement and does not forward it.

The Brocade device handles the attributes as follows:

- The Layer 3 Switch adds the attributes only if it is a route reflector, and only when advertising IBGP route information to other IBGP neighbors. The attributes are not used when communicating with EBGP neighbors.
• A Layer 3 Switch configured as a route reflector sets the ORIGINATOR_ID attribute to the router ID of the router that originated the route. Moreover, the route reflector sets the attribute only if this is the first time the route is being reflected (sent by a route reflector). In previous software releases, the route reflector set the attribute to the router ID of the route reflector itself. When a Layer 3 Switch receives a route that already has the ORIGINATOR_ID attribute set, the Layer 3 Switch does not change the value of the attribute.

• If a Layer 3 Switch receives a route whose ORIGINATOR_ID attribute has the value of the Layer 3 Switch own router ID, the Layer 3 Switch discards the route and does not advertise it. By discarding the route, the Layer 3 Switch prevents a routing loop. The Layer 3 Switch did not discard the route in previous software releases.

• The first time a route is reflected by a Layer 3 Switch configured as a route reflector, the route reflector adds the CLUSTER_LIST attribute to the route. Other route reflectors who receive the route from an IBGP neighbor add their cluster IDs to the front of the route CLUSTER_LIST. If the route reflector does not have a cluster ID configured, the Layer 3 Switch adds its router ID to the front of the CLUSTER_LIST.

• If Layer 3 Switch configured as a route reflector receives a route whose CLUSTER_LIST contains the route reflector own cluster ID, the route reflector discards the route and does not forward it.

Configuration procedures

To configure a Brocade Layer 3 Switch to be a BGP4 route reflector, use either of the following methods.

NOTE
All configuration for route reflection takes place on the route reflectors, not on the clients.

Enter the following commands to configure a Brocade Layer 3 Switch as route reflector 1 in Figure 157 on page 1332. To configure route reflector 2, enter the same commands on the Layer 3 Switch that will be route reflector 2. The clients require no configuration for route reflection.

```
FastIron(config-bgp-router)# cluster-id 1
FastIron(config-bgp-router)# neighbor 10.0.1.0 route-reflector-client
FastIron(config-bgp-router)# neighbor 10.0.2.0 route-reflector-client
```

Syntax: `[no] cluster-id <num> | <ip-addr>

The `<num>` | `<ip-addr>` parameter specifies the cluster ID and can be a number from 0 – 4294967295 or an IP address. The default is the router ID. You can configure one cluster ID on the router. All route-reflector clients for the router are members of the cluster.

NOTE
If the cluster contains more than one route reflector, you need to configure the same cluster ID on all the route reflectors in the cluster. The cluster ID helps route reflectors avoid loops within the cluster.

To add an IBGP neighbor to the cluster, enter the following command.

Syntax: `neighbor <ip-addr> route-reflector-client`

For more information about the `neighbor` command, refer to "Adding BGP4 neighbors" on page 1307.
By default, the clients of a route reflector are not required to be fully meshed; the routes from a client are reflected to other clients. However, if the clients are fully meshed, route reflection is not required between clients.

If you need to disable route reflection between clients, enter the following command. When the feature is disabled, route reflection does not occur between clients but reflection does still occur between clients and non-clients.

```bash
FastIron(config-bgp-router)# no client-to-client-reflection
```

Enter the following command to re-enable the feature.

```bash
FastIron(config-bgp-router)# client-to-client-reflection
```

Syntax: `[no] client-to-client-reflection`

Configuration notes

A **confederation** is a BGP4 Autonomous System (AS) that has been subdivided into multiple, smaller ASs. Subdividing an AS into smaller ASs simplifies administration and reduces BGP-related traffic, thus reducing the complexity of the Interior Border Gateway Protocol (IBGP) mesh among the BGP routers in the AS.

The Brocade implementation of this feature is based on RFC 3065.

Normally, all BGP routers within an AS must be fully meshed, so that each BGP router has interfaces to all the other BGP routers within the AS. This is feasible in smaller ASs but becomes unmanageable in ASs containing many BGP routers.

When you configure BGP routers into a confederation, all the routers within a sub-AS (a subdivision of the AS) use IBGP and must be fully meshed. However, routers use EBGP to communicate between different sub-ASs.

NOTE

Another method for reducing the complexity of an IBGP mesh is to use route reflection. However, if you want to run different Interior Gateway Protocols (IGPs) within an AS, configure a confederation. You can run a separate IGP within each sub-AS.

To configure a confederation, configure groups of BGP routers into sub-ASs. A sub-AS is simply an AS. The term "sub-AS" distinguishes ASs within a confederation from ASs that are not in a confederation. For the viewpoint of remote ASs, the confederation ID is the AS ID. Remote ASs do not know that the AS represents multiple sub-ASs with unique AS IDs.

NOTE

You can use any valid AS numbers for the sub-ASs. If your AS is connected to the Internet, Brocade recommends that you use numbers from within the private AS range (64512 – 65535). These are private ASs numbers and BGP4 routers do not propagate these AS numbers to the Internet.

Figure 158 shows an example of a BGP4 confederation.
In this example, four switches are configured into two sub-ASs, each containing two of the switches. The sub-ASs are members of confederation 10. Switches within a sub-AS must be fully meshed and communicate using IBGP. In this example, Switches A and B use IBGP to communicate. Switches C and D also use IBGP. However, the sub-ASs communicate with one another using EBGP. For example, Switch A communicates with Switch C using EBGP. The switches in the confederation communicate with other ASs using EBGP.

Switches in other ASs are unaware that Switches A – D are configured in a confederation. In fact, when switches in confederation 10 send traffic to switches in other ASs, the confederation ID is the same as the AS number for the switches in the confederation. Thus, switches in other ASs see traffic from AS 10 and are unaware that the switches in AS 10 are subdivided into sub-ASs within a confederation.

Configuring a BGP confederation

Perform the following configuration tasks on each BGP router within the confederation:

- Configure the local AS number. The local AS number indicates membership in a sub-AS. All BGP switches with the same local AS number are members of the same sub-AS. BGP switches use the local AS number when communicating with other BGP switches within the confederation.

- Configure the confederation ID. The confederation ID is the AS number by which BGP switches outside the confederation know the confederation. Thus, a BGP switch outside the confederation is not aware and does not care that your BGP switches are in multiple sub-ASs. BGP switches use the confederation ID when communicating with switches outside the confederation. The confederation ID must be different from the sub-AS numbers.
Optional configuration tasks

- Configure the list of the sub-AS numbers that are members of the confederation. All the switches within the same sub-AS use IBGP to exchange switch information. Switches in different sub-ASs within the confederation use EBGP to exchange switch information.

To configure four Layer 3 Switches to be a member of confederation 10 (as shown in Figure 158), consisting of two sub-ASs (64512 and 64513), enter commands such as the following.

Commands for router A

- FastIronA(config)# router bgp
- FastIronA(config-bgp-router)# local-as 64512
- FastIronA(config-bgp-router)# confederation identifier 10
- FastIronA(config-bgp-router)# confederation peers 64512 64513
- FastIronA(config-bgp-router)# write memory

Syntax: local-as <num>

The <num> parameter with the local-as command indicates the AS number for the BGP switches within the sub-AS. You can specify a number from 1 – 65535. Brocade recommends that you use a number within the range of well-known private ASs, 64512 – 65535.

Syntax: confederation identifier <num>

The <num> parameter with the confederation identifier command indicates the confederation number. The confederation ID is the AS number by which BGP switches outside the confederation know the confederation. Thus, a BGP switch outside the confederation is not aware and does not care that your BGP switches are in multiple sub-ASs. BGP switches use the confederation ID when communicating with switches outside the confederation. The confederation ID must be different from the sub-AS numbers. You can specify a number from 1 – 65535.

Syntax: confederation peers <num> [<num> ...

The <num> parameter with the confederation peers command indicates the sub-AS numbers for the sub-ASs in the confederation. You must specify all the sub-ASs contained in the confederation. All the switches within the same sub-AS use IBGP to exchange switch information. Switches in different sub-ASs within the confederation use EBGP to exchange switch information. You can specify a number from 1 – 65535.

Commands for router B

- FastIronB(config)# router bgp
- FastIronB(config-bgp-router)# local-as 64512
- FastIronB(config-bgp-router)# confederation identifier 10
- FastIronB(config-bgp-router)# confederation peers 64512 64513
- FastIronB(config-bgp-router)# write memory

Commands for router C

- FastIronC(config)# router bgp
- FastIronC(config-bgp-router)# local-as 64513
- FastIronC(config-bgp-router)# confederation identifier 10
- FastIronC(config-bgp-router)# confederation peers 64512 64513
- FastIronC(config-bgp-router)# write memory

Commands for router D

- FastIronD(config)# router bgp
- FastIronD(config-bgp-router)# local-as 64513
- FastIronD(config-bgp-router)# confederation identifier 10
- FastIronD(config-bgp-router)# confederation peers 64512 64513
- FastIronD(config-bgp-router)# write memory
Aggregating routes advertised to BGP4 neighbors

By default, the Layer 3 Switch advertises individual routes for all the networks. The aggregation feature allows you to configure the Layer 3 Switch to aggregate routes in a range of networks into a single CIDR number. For example, without aggregation, the Layer 3 Switch will individually advertise routes for networks 207.95.1.0, 207.95.2.0, and 207.95.3.0. You can configure the Layer 3 Switch to instead send a single, aggregate route for the networks. The aggregate route would be advertised as 207.95.0.0.

NOTE
To summarize CIDR networks, you must use the aggregation feature. The auto summary feature does not summarize networks that use CIDR numbers instead of class A, B, or C numbers.

To aggregate routes for 209.157.22.0, 209.157.23.0, and 209.157.24.0, enter the following command.

```
FastIron(config-bgp-router)# aggregate-address 209.157.0.0 255.255.0.0
```

Syntax: aggregate-address \<ip-addr> \<ip-mask> [as-set] [nlri multicast | unicast | multicast unicast]
[summary-only] [suppress-map \<map-name>] [advertise-map \<map-name>]
[attribute-map \<map-name>]

The \<ip-addr> and \<ip-mask> parameters specify the aggregate value for the networks. Specify 0 for the host portion and for the network portion that differs among the networks in the aggregate. For example, to aggregate 10.0.1.0, 10.0.2.0, and 10.0.3.0, enter the IP address 10.0.0.0 and the network mask 255.255.0.0.

The as-set parameter causes the router to aggregate AS-path information for all the routes in the aggregate address into a single AS-path.

The nlri multicast | unicast | multicast unicast parameter specifies whether the neighbor is a multicast neighbor or a unicast neighbor. Optionally, you also can specify unicast if you want the Layer 3 Switch to exchange unicast (BGP4) routes as well as multicast routes with the neighbor. The default is unicast only.

The summary-only parameter prevents the router from advertising more specific routes contained within the aggregate route.

The suppress-map \<map-name> parameter prevents the more specific routes contained in the specified route map from being advertised.

The advertise-map \<map-name> parameter configures the router to advertise the more specific routes in the specified route map.

The attribute-map \<map-name> parameter configures the router to set attributes for the aggregate routes based on the specified route map.

NOTE
For the suppress-map, advertise-map, and attribute-map parameters, the route map must already be defined. Refer to “Defining route maps” on page 1353 for information on defining a route map.
BGP null0 routing

Platform Support:
- FastIron X Series devices running software release 03.0.00 and later

The null0 routes were previously treated as invalid routes for BGP next hop resolution. BGP now uses the null0 route to resolve its next hop. Thus, null0 route in the routing table (for example, static route) is considered as a valid route by BGP. If the next hop for BGP resolves into a null0 route, the BGP route is also installed as a null0 route in the routing table.

The null0 routing feature allows network administrators to block certain network prefixes, by using null0 routes and route-maps. The combined use of null0 routes and route maps blocks traffic from a particular network prefix, telling a remote router to drop all traffic for this network prefix by redistributing a null0 route into BGP.

Figure 159 shows a topology for a null0 routing application example.

FIGURE 159 Example of a null0 routing application

The following steps configure a null0 routing application for stopping denial of service attacks from remote hosts on the internet.

Configuration steps

1. Select one switch, S6, to distribute null0 routes throughout the BGP network.
2. Configure a route-map to match a particular tag (50) and set the next-hop address to an unused network address (199.199.1.1).
3. Set the local-preference to a value higher than any possible internal or external local-preference (50).

4. Complete the route map by setting origin to IGP.

5. On S6, redistribute the static routes into BGP, using route-map `<route-map-name>` (redistribute static route-map block user).

6. On S1, the router facing the internet, configure a null0 route matching the next-hop address in the route-map (ip route 199.199.1.1/32 null0).

7. Repeat step 3 for all switches interfacing with the internet (edge corporate routers). In this case, S2 has the same null0 route as S1.

8. On S6, configure the network prefixes associated with the traffic you want to drop. The static route IP address references a destination address. You are required to point the static route to the egress port, for example, Ethernet 3/7, and specify the tag 50, matching the route-map configuration.

Configuration examples

S6

The following configuration defines specific prefixes to filter.

```
FastIron(config)# ip route 110.0.0.40/29 ethernet 3/7 tag 50
FastIron(config)# ip route 115.0.0.192/27 ethernet 3/7 tag 50
FastIron(config)# ip route 120.014.0/23 ethernet 3/7 tag 50
```

The following configuration redistributes routes into BGP.

```
FastIron(config)# router bgp
FastIron(config-bgp-router)# local-as 100
FastIron(config-bgp-router)# neighbor <router1_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router2_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router3_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router4_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router5_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router7_int_ip address> remote-as 100
FastIron(config-bgp-router)# redistribute static route-map blockuser
FastIron(config-bgp-router)# exit
```

The following configuration defines the specific next hop address and sets the local preference to preferred.

```
FastIron(config)# route-map blockuser permit 10
FastIron(config-route-map blockuser)# match tag 50
FastIron(config-route-map blockuser)# set ip next-hop 199.199.1.1
FastIron(config-route-map blockuser)# set local-preference 1000000
FastIron(config-route-map blockuser)# set origin igp
FastIron(config-route-map blockuser)# exit
```

S1

The following configuration defines the null0 route to the specific next hop address. The next hop address 199.199.1.1 points to the null0 route.

```
FastIron(config)# ip route 199.199.1.1/32 null0
FastIron(config)# router bgp
FastIron(config-bgp-router)# local-as 100
FastIron(config-bgp-router)# neighbor <router2_int_ip address> remote-as 100
```
BGP null0 routing

FastIron(config-bgp-router)# neighbor <router3_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router4_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router5_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router6_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router7_int_ip address> remote-as 100

S2

The following configuration defines a null0 route to the specific next hop address. The next hop address 199.199.1.1 points to the null0 route, which gets blocked.

FastIron(config)# ip route 199.199.1.1/32 null0
FastIron(config)# router bgp
FastIron(config-bgp-router)# local-as 100
FastIron(config-bgp-router)# neighbor <router1_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router3_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router4_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router5_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router6_int_ip address> remote-as 100
FastIron(config-bgp-router)# neighbor <router7_int_ip address> remote-as 100

Show commands

After configuring the null0 application, you can display the output.

S6

The following is the Show ip route static output for S6.

FastIron# show ip route static
Type Codes - B:RIP D:Connected S:Static R:OSPF; Cost - Dist/Metric

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.0.0.40/29</td>
<td>DIRECT</td>
<td>eth 3/7</td>
<td>1/1</td>
<td>S</td>
</tr>
<tr>
<td>115.0.0.192/27</td>
<td>DIRECT</td>
<td>eth 3/7</td>
<td>1/1</td>
<td>S</td>
</tr>
<tr>
<td>120.0.140.0/23</td>
<td>DIRECT</td>
<td>eth 3/7</td>
<td>1/1</td>
<td>S</td>
</tr>
</tbody>
</table>

S1 and S2

The following is the Show ip route static output for S1 and S2.

FastIron# show ip route static
Type Codes - B:RIP D:Connected S:Static R:OSPF; Cost - Dist/Metric

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>199.199.1.1/32</td>
<td>DIRECT</td>
<td>drop</td>
<td>1/1</td>
<td>S</td>
</tr>
</tbody>
</table>

S6

The following is the Show BGP routing table output for S6
FastIron# show ip bgp route
Total number of BGP Routes: 126
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED E:EBGP
H:HISTORY I:IBGP L:LOCAL M:_MULTIPATH S:SUPPRESSED s:STALE

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0.1.0/24</td>
<td>40.0.1.3</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>BI</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>90.0.1.3</td>
<td>100</td>
<td>0</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>AS_PATH: 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>199.199.1.1/32</td>
<td>1</td>
<td>1000000 32768 BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS_PATH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>90.0.1.3</td>
<td>100</td>
<td>0</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>36</td>
<td>30.0.1.3</td>
<td>100</td>
<td>0</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>AS_PATH: 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>199.199.1.1/32</td>
<td>1</td>
<td>1000000 32768 BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS_PATH:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>70.0.1.3</td>
<td>100</td>
<td>0</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>AS_PATH: 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>199.199.1.1/32</td>
<td>1</td>
<td>1000000 32768 BL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| AS_PATH: .

S1 and S2

The `show ip route` output for S1 and S2 shows "drop" under the Port column for the network prefixes you configured with null0 routing.

FastIron# show ip route
Total number of IP routes: 133
Type Codes - B:BGP D:Connected S:Static R:RIP O:OSPF; Cost - Dist/Metric

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Port</th>
<th>Cost</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0.1.24/32</td>
<td>DIRECT</td>
<td>loopback 1</td>
<td>0/0</td>
<td>D</td>
</tr>
<tr>
<td>30.0.1.0/24</td>
<td>DIRECT</td>
<td>eth 2/7</td>
<td>0/0</td>
<td>D</td>
</tr>
<tr>
<td>40.0.1.0/24</td>
<td>DIRECT</td>
<td>eth 2/1</td>
<td>0/0</td>
<td>D</td>
</tr>
<tr>
<td>110.0.0.6/31</td>
<td>90.0.1.3</td>
<td>eth 2/2</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>110.0.0.16/30</td>
<td>90.0.1.3</td>
<td>eth 2/2</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>110.0.0.40/29</td>
<td>DIRECT</td>
<td>drop</td>
<td>200/0</td>
<td>B</td>
</tr>
<tr>
<td>115.0.0.192/27</td>
<td>DIRECT</td>
<td>drop</td>
<td>200/0</td>
<td>B</td>
</tr>
<tr>
<td>115.0.1.128/26</td>
<td>30.0.1.3</td>
<td>eth 2/7</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>120.0.7.0/24</td>
<td>70.0.1.3</td>
<td>eth 2/10</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>120.0.14.0/23</td>
<td>DIRECT</td>
<td>drop</td>
<td>200/0</td>
<td>B</td>
</tr>
<tr>
<td>130.144.0.0/12</td>
<td>80.0.1.3</td>
<td>eth 3/4</td>
<td>20/1</td>
<td>B</td>
</tr>
<tr>
<td>199.199.1.1/32</td>
<td>DIRECT</td>
<td>drop</td>
<td>1/1</td>
<td>S</td>
</tr>
</tbody>
</table>
Modifying redistribution parameters

By default, the Layer 3 Switch does not redistribute route information between BGP4 and the IP IGPs (RIP and OSPF). You can configure the switch to redistribute OSPF routes, RIP routes, directly connected routes, or static routes into BGP4 by using the following methods.

To enable redistribution of all OSPF routes and directly attached routes into BGP4, enter the following commands.

```
FastIron(config)# router bgp
FastIron(config-bgp-router)# redistribute ospf
FastIron(config-bgp-router)# redistribute connected
FastIron(config-bgp-router)# write memory
```

Syntax: `[no] redistribute connected | ospf | rip | static`

The `connected` parameter indicates that you are redistributing routes to directly attached devices into BGP.

The `ospf` parameter indicates that you are redistributing OSPF routes into BGP4.

```
NOTE
Entering `redistribute ospf` simply redistributes internal OSPF routes. If you want to redistribute external OSPF routes also, you must use the `redistribute ospf match external...` command. Refer to “Redistributing OSPF external routes” on page 1343.
```

The `rip` parameter indicates that you are redistributing RIP routes into BGP4.

The `static` parameter indicates that you are redistributing static routes into BGP.

Refer to the following sections for details on redistributing specific routes using the CLI:

- “Redistributing connected routes” on page 1342
- “Redistributing RIP routes” on page 1343
- “Redistributing OSPF external routes” on page 1343
- “Redistributing static routes” on page 1344

Redistributing connected routes

To configure BGP4 to redistribute directly connected routes, enter the following command.

```
FastIron(config-bgp-router)# redistribute connected
```

Syntax: `redistribute connected [metric <num>] [route-map <map-name>]`

The `connected` parameter indicates that you are redistributing routes to directly attached devices into BGP4.

The `metric <num>` parameter changes the metric. You can specify a value from 0 – 4294967295. The default is 0.

The `route-map <map-name>` parameter specifies a route map to be consulted before adding the RIP route to the BGP4 route table.

```
NOTE
The route map you specify must already be configured on the switch. Refer to “Defining route maps” on page 1353 for information about defining route maps.
```
Redistributing RIP routes

To configure BGP4 to redistribute RIP routes and add a metric of 10 to the redistributed routes, enter the following command.

FastIron(config-bgp-router)# redistribute rip metric 10

Syntax: redistribute rip [metric <num>] [route-map <map-name>]

The rip parameter indicates that you are redistributing RIP routes into BGP4.

The metric <num> parameter changes the metric. Specify a value from 0 – 4294967295. The default is 0.

The route-map <map-name> parameter specifies a route map to be consulted before adding the RIP route to the BGP4 route table.

NOTE

The route map you specify must already be configured on the switch. Refer to “Defining route maps” on page 1353 for information about defining route maps.

Redistributing OSPF external routes

To configure the Layer 3 Switch to redistribute OSPF external type 1 routes, enter the following command.

FastIron(config-bgp-router)# redistribute ospf match external1

Syntax: redistribute ospf [match internal | external1 | external2] [metric <num>] [route-map <map-name>]

The ospf parameter indicates that you are redistributing OSPF routes into BGP4.

The match internal | external1 | external2 parameter applies only to OSPF. This parameter specifies the types of OSPF routes to be redistributed into BGP4. The default is internal.

NOTE

If you do not enter a value for the match parameter, (for example, you enter redistribute ospf only) then only internal OSPF routes will be redistributed.

The metric <num> parameter changes the metric. Specify a value from 0 – 4294967295. The default is 0.

The route-map <map-name> parameter specifies a route map to be consulted before adding the OSPF route to the BGP4 route table.

NOTE

The route map you specify must already be configured on the switch. Refer to “Defining route maps” on page 1353 for information about defining route maps.

NOTE

If you use both the redistribute ospf route-map <map-name> command and the redistribute ospf match internal | external1 | external2 command, the software uses only the route map for filtering.
Modifying redistribution parameters

Redistributing static routes

To configure the Layer 3 Switch to redistribute static routes, enter the following command.

```
FastIron(config-bgp-router)# redistribute static
```

Syntax: `redistribute static [metric <num>] [route-map <map-name>]`

The `static` parameter indicates that you are redistributing static routes into BGP4.

The `metric <num>` parameter changes the metric. Specify a value from 0 – 4294967295. The default is 0.

The `route-map <map-name>` parameter specifies a route map to be consulted before adding the static route to the BGP4 route table.

NOTE
The route map you specify must already be configured on the switch. Refer to “Defining route maps” on page 1353 for information about defining route maps.

Disabling or re-enabling re-advertisement of all learned BGP4 routes to all BGP4 neighbors

By default, the Layer 3 Switch re-advertises all learned best BGP4 routes to BGP4 neighbors, unless the routes are discarded or blocked by route maps or other filters.

If you want to prevent the Layer 3 Switch from re-advertising a learned best BGP4 route unless that route also is installed in the IP route table, use the following CLI method.

To disable re-advertisement of BGP4 routes to BGP4 neighbors except for routes that the software also installs in the route table, enter the following command.

```
FastIron(config-bgp-router)# no readvertise
```

Syntax: `[no] readvertise`

To re-enable re-advertisement, enter the following command.

```
FastIron(config-bgp-router)# readvertise
```

Redistributing IBGP routes into RIP and OSPF

By default, the Layer 3 Switch does not redistribute IBGP routes from BGP4 into RIP or OSPF. This behavior helps eliminate routing loops. However, if your network can benefit from redistributing the IBGP routes from BGP4 into OSPF or RIP, you can enable the Layer 3 Switch to redistribute the routes. To do so, use the following CLI method.

To enable the Layer 3 Switch to redistribute BGP4 routes into OSPF and RIP, enter the following command.

```
FastIron(config-bgp-router)# bgp-redistribute-internal
```

Syntax: `[no] bgp-redistribute-internal`

To disable redistribution of IBGP routes into RIP and OSPF, enter the following command.

```
FastIron(config-bgp-router)# no bgp-redistribute-internal
```
Filtering

This section describes the following:

- “Filtering specific IP addresses” on page 1345
- “Filtering AS-paths” on page 1346
- “Filtering communities” on page 1349
- “Defining IP prefix lists” on page 1352
- “Defining neighbor distribute lists” on page 1353
- “Defining route maps” on page 1353
- “Using a table map to set the rag value” on page 1361
- “Configuring cooperative BGP4 route filtering” on page 1362

Filtering specific IP addresses

You can configure the router to explicitly permit or deny specific IP addresses received in updates from BGP4 neighbors by defining IP address filters. The router permits all IP addresses by default. You can define up to 100 IP address filters for BGP4.

- If you want **permit** to remain the default behavior, define individual filters to deny specific IP addresses.
- If you want to change the default behavior to **deny**, define individual filters to permit specific IP addresses.

NOTE

Once you define a filter, the default action for addresses that do not match a filter is “deny”. To change the default action to “permit”, configure the last filter as “permit any any”.

Address filters can be referred to by a BGP neighbor's distribute list number as well as by match statements in a route map.

NOTE

If the filter is referred to by a route map match statement, the filter is applied in the order in which the filter is listed in the match statement.

NOTE

You also can filter on IP addresses by using IP ACLs.

To define an IP address filter to deny routes to 209.157.0.0, enter the following command.

```
FastIron(config-bgp-router)# address-filter 1 deny 209.157.0.0 255.255.0.0
```

Syntax: `address-filter <num> permit | deny <ip-addr> <wildcard> <mask> <wildcard>`

The `<num>` parameter is the filter number.

The `permit | deny` parameter indicates the action the Layer 3 Switch takes if the filter match is true.

- If you specify **permit**, the Layer 3 Switch permits the route into the BGP4 table if the filter match is true.
- If you specify **deny**, the Layer 3 Switch denies the route from entering the BGP4 table if the filter match is true.
NOTE
Once you define a filter, the default action for addresses that do not match a filter is “deny”. To change the default action to “permit”, configure the last filter as “permit any any”.

The <ip-addr> parameter specifies the IP address. If you want the filter to match on all addresses, enter any.

The <wildcard> parameter specifies the portion of the IP address to match against. The <wildcard> is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example 0.0.0.255. Zeros in the mask mean the packet source address must match the <source-ip>. Ones mean any value matches. For example, the <ip-addr> and < wildcard > values 209.157.22.26 0.0.0.255 mean that all hosts in the Class C subnet 209.157.22.x match the policy.

If you prefer to specify the wildcard (mask value) in Classless Interdomain Routing (CIDR) format, you can enter a forward slash after the IP address, then enter the number of significant bits in the mask. For example, you can enter the CIDR equivalent of “209.157.22.26 0.0.0.255” as “209.157.22.26/24”. The CLI automatically converts the CIDR number into the appropriate mask (where zeros instead of ones are the significant bits) and changes the non-significant portion of the IP address into zeros. For example, if you specify 209.157.22.26/24 or 209.157.22.26 0.0.0.255, then save the changes to the startup-config file, the value appears as 209.157.22.0/24 (if you have enabled display of subnet lengths) or 209.157.22.0 0.0.0.255 in the startup-config file.

If you enable the software to display IP subnet masks in CIDR format, the mask is saved in the file in “/ <mask-bits>” format. To enable the software to display the CIDR masks, enter the ip show-subnet-length command at the global CONFIG level of the CLI. You can use the CIDR format to configure the filter regardless of whether the software is configured to display the masks in CIDR format.

The <mask> parameter specifies the network mask. If you want the filter to match on all destination addresses, enter any. The wildcard works the same as described above.

Filtering AS-paths

You can filter updates received from BGP4 neighbors based on the contents of the AS-path list accompanying the updates. For example, if you want to deny routes that have the AS 4.3.2.1 in the AS-path from entering the BGP4 route table, you can define a filter to deny such routes.

The Layer 3 Switch provides the following methods for filtering on AS-path information:

- AS-path filters
- AS-path ACLs

NOTE
The Layer 3 Switch cannot actively support AS-path filters and AS-path ACLs at the same time. Use one method or the other but do not mix methods.

NOTE
Once you define a filter or ACL, the default action for updates that do not match a filter is “deny”. To change the default action to “permit”, configure the last filter or ACL as “permit any any”.

AS-path filters or AS-path ACLs can be referred to by a BGP neighbor’s filter list number as well as by match statements in a route map.
Defining an AS-path filter

To define AS-path filter 4 to permit AS 2500, enter the following command.

FastIron(config-bgp-router)# as-path-filter 4 permit 2500

Syntax: as-path-filter <num> permit | deny <as-path>

The <num> parameter identifies the filter position in the AS-path filter list and can be from 1 – 100. Thus, the AS-path filter list can contain up to 100 filters. The Brocade Layer 3 Switch applies the filters in numerical order, beginning with the lowest-numbered filter. When a filter match is true, the Layer 3 Switch stops and does not continue applying filters from the list.

NOTE
If the filter is referred to by a route map match statement, the filter is applied in the order in which the filter is listed in the match statement.

The permit | deny parameter indicates the action the router takes if the filter match is true.

• If you specify permit, the router permits the route into the BGP4 table if the filter match is true.
• If you specify deny, the router denies the route from entering the BGP4 table if the filter match is true.

The <as-path> parameter indicates the AS-path information. You can enter an exact AS-path string if you want to filter for a specific value. You also can use regular expressions in the filter string.

Defining an AS-path ACL

To configure an AS-path list that uses ACL 1, enter a command such as the following.

FastIron(config)# ip as-path access-list 1 permit 100
FastIron(config)# router bgp
FastIron(config-bgp-router)# neighbor 10.10.10.1 filter-list 1 in

The ip as-path command configures an AS-path ACL that permits routes containing AS number 100 in their AS paths. The neighbor command then applies the AS-path ACL to advertisements and updates received from neighbor 10.10.10.1. In this example, the only routes the Layer 3 Switch permits from neighbor 10.10.10.1 are those whose AS-paths contain AS-path number 100.

Syntax: ip as-path access-list <string> [seq <seq-value>] deny | permit <regular-expression>

The <string> parameter specifies the ACL name. (If you enter a number, the CLI interprets the number as a text string.)

The seq <seq-value> parameter is optional and specifies the AS-path list sequence number. You can configure up to 199 entries in an AS-path list. If you do not specify a sequence number, the software numbers them in increments of 5, beginning with number 5. The software interprets the entries in an AS-path list in numerical order, beginning with the lowest sequence number.

The deny | permit parameter specifies the action the software takes if a route AS-path list matches a match statement in this ACL. To configure the AS-path match statements in a route map, use the match as-path command. Refer to “Matching based on AS-path ACL” on page 1356.

The <regular-expression> parameter specifies the AS path information you want to permit or deny to routes that match any of the match statements within the ACL. You can enter a specific AS number or use a regular expression. For the regular expression syntax, refer to “Using regular expressions” on page 1348.
The `neighbor` command uses the `filter-list` parameter to apply the AS-path ACL to the neighbor. Refer to “Adding BGP4 neighbors” on page 1307.

Using regular expressions

You use a regular expression for the `<as-path>` parameter to specify a single character or multiple characters as a filter pattern. If the AS-path matches the pattern specified in the regular expression, the filter evaluation is true; otherwise, the evaluation is false.

In addition, you can include special characters that influence the way the software matches the AS-path against the filter value.

To filter on a specific single-character value, enter the character for the `<as-path>` parameter. For example, to filter on AS-paths that contain the letter “z”, enter the following command.

```
FastIron(config-bgp-router)# as-path-filter 1 permit z
```

To filter on a string of multiple characters, enter the characters in brackets. For example, to filter on AS-paths that contain “x”, “y”, or “z”, enter the following command.

```
FastIron(config-bgp-router)# as-path-filter 1 permit [xyz]
```

Special characters

When you enter as single-character expression or a list of characters, you also can use the following special characters. Table 222 on page 1348 lists the special characters. The description for each special character includes an example. Notice that you place some special characters in front of the characters they control but you place other special characters after the characters they control. In each case, the examples show where to place the special character.

TABLE 222 BGP4 special characters for regular expressions

<table>
<thead>
<tr>
<th>Character</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>The period matches any single character, including a blank space. For example, the following regular expression matches for “aa”, “ab”, “ac”, and so on, but not just “a”.</td>
</tr>
<tr>
<td>a</td>
<td>a.</td>
</tr>
<tr>
<td>*</td>
<td>The asterisk matches on zero or more sequences of a pattern. For example, the following regular expression matches on an AS-path that contains the string “1111” followed by any value: 1111*</td>
</tr>
<tr>
<td>+</td>
<td>The plus sign matches on one or more sequences of a pattern. For example, the following regular expression matches on an AS-path that contains a sequence of “g”s, such as “deg”, “degg”, “deggg”, and so on: deg+</td>
</tr>
<tr>
<td>?</td>
<td>The question mark matches on zero occurrences or one occurrence of a pattern. For example, the following regular expression matches on an AS-path that contains “dg” or “deg”: de?g</td>
</tr>
<tr>
<td>^</td>
<td>A caret (when not used within brackets) matches on the beginning of an input string. For example, the following regular expression matches on an AS-path that begins with “3”: ^3</td>
</tr>
<tr>
<td>$</td>
<td>A dollar sign matches on the end of an input string. For example, the following regular expression matches on an AS-path that ends with “deg”: deg$</td>
</tr>
</tbody>
</table>
Filtering

If you want to filter for a special character instead of using the special character as described in Table 221 on page 1304, enter \"\" (backslash) in front of the character. For example, to filter on AS-path strings containing an asterisk, enter the asterisk portion of the regular expression as \"*\".

FastIron(config-bgp-router)# as-path-filter 2 deny *

To use the backslash as a string character, enter two slashes. For example, to filter on AS-path strings containing a backslash, enter the backslash portion of the regular expression as \"\\".

FastIron(config-bgp-router)# as-path-filter 2 deny \\

Filtering communities

You can filter routes received from BGP4 neighbors based on community names. Use either of the following methods to do so.
A community is an optional attribute that identifies the route as a member of a user-defined class of routes. Community names are arbitrary values made of two five-digit integers joined by a colon. You determine what the name means when you create the community name as one of a route attributes. Each string in the community name can be a number from 0 – 65535.

This format allows you to easily classify community names. For example, a common convention used in community naming is to configure the first string as the local AS and the second string as the unique community within that AS. Using this convention, communities 1:10, 1:20, and 1:30 can be easily identified as member communities of AS 1.

The Layer 3 Switch provides the following methods for filtering on community information:

- Community filters
- Community list ACLs

NOTE
The Layer 3 Switch cannot actively support community filters and community list ACLs at the same time. Use one method or the other but do not mix methods.

NOTE
Once you define a filter or ACL, the default action for communities that do not match a filter or ACL is “deny”. To change the default action to “permit”, configure the last filter or ACL entry as “permit any any”.

Community filters or ACLs can be referred to by match statements in a route map.

Defining a community filter

To define filter 3 to permit routes that have the NO_ADVERTISE community, enter the following command.

```
FastIron(config-bgp-router)# community-filter 3 permit no-advertise
```

Syntax:

```
community-filter <num> permit | deny <num>:<num> | internet | local-as | no-advertise | no-export
```

The `<num>` parameter identifies the filter position in the community filter list and can be from 1 – 100. Thus, the community filter list can contain up to 100 filters. The router applies the filters in numerical order, beginning with the lowest-numbered filter. When a filter match is true, the router stops and does not continue applying filters from the list.

NOTE
If the filter is referred to by a route map match statement, the filter is applied in the order in which the filter is listed in the match statement.

The `permit` | `deny` parameter indicates the action the router takes if the filter match is true.

- If you specify `permit`, the router permits the route into the BGP4 table if the filter match is true.
- If you specify `deny`, the router denies the route from entering the BGP4 table if the filter match is true.

The `<num>:<num>` parameter indicates a specific community number to filter. Use this parameter to filter for a private (administrator-defined) community. You can enter up to 20 community numbers with the same command.
If you want to filter for the well-known communities “LOCAL_AS”, “NO_EXPORT” or “NO_ADVERTISE”, use the corresponding keyword (described below).

The **internet** keyword checks for routes that do not have the community attribute. Routes without a specific community are considered by default to be members of the largest community, the Internet.

The **local-as** keyword checks for routes with the well-known community “LOCAL_AS”. This community applies only to confederations. The Layer 3 Switch advertises the route only within the sub-AS. For information about confederations, refer to “Configuration notes” on page 1334.

The **no-advertise** keyword filters for routes with the well-known community “NO_ADVERTISE”. A route in this community should not be advertised to any BGP4 neighbors.

The **no-export** keyword filters for routes with the well-known community “NO_EXPORT”. A route in this community should not be advertised to any BGP4 neighbors outside the local AS. If the router is a member of a confederation, the Layer 3 Switch advertises the route only within the confederation. For information about confederations, refer to “Configuration notes” on page 1334.

Defining a community ACL

To configure community ACL 1, enter a command such as the following.

```
FastIron(config)# ip community-list 1 permit 123:2
```

This command configures a community ACL that permits routes that contain community 123:2.

NOTE

Refer to “Matching based on community ACL” on page 1357 for information about how to use a community list as a match condition in a route map.

Syntax:

- For **standard** IP community lists:

  ```
  ip community-list standard <string> [seq <seq-value>] deny | permit <community-num>
  ```

- For **extended** IP community lists:

  ```
  ip community-list extended <string> [seq <seq-value>] deny | permit <community-num> | <regular-expression>
  ```

The `<string>` parameter specifies the ACL name. (If you enter a number, the CLI interprets the number as a text string.)

The **standard** or **extended** parameter specifies whether you are configuring a standard community ACL or an extended one. A standard community ACL does not support regular expressions whereas an extended one does. This is the only difference between standard and extended IP community lists.

The **seq** parameter is optional and specifies the community list sequence number. You can configure up to 199 entries in a community list. If you do not specify a sequence number, the software numbers them in increments of 5, beginning with number 5. The software interprets the entries in a community list in numerical order, beginning with the lowest sequence number.

The **deny** | **permit** parameter specifies the action the software takes if a route community list matches a match statement in this ACL. To configure the community-list match statements in a route map, use the **match community** command. Refer to “Matching based on community ACL” on page 1357.

The `<community-num>` parameter specifies the community type or community number. This parameter can have the following values:

- `<num>;<num>` – A specific community number
Filtering

- **internet** – The Internet community
- **no-export** – The community of sub-ASs within a confederation. Routes with this community can be exported to other sub-ASs within the same confederation but cannot be exported outside the confederation to other ASs or otherwise sent to EBGP neighbors.
- **local-as** – The local sub-AS within the confederation. Routes with this community can be advertised only within the local subAS.
- **no-advertise** – Routes with this community cannot be advertised to any other BGP4 routers at all.

The `<regular-expression>` parameter specifies a regular expression for matching on community names. For information about regular expression syntax, refer to “Using regular expressions” on page 1348. You can specify a regular expression only in an extended community ACL.

Defining IP prefix lists

An IP prefix list specifies a list of networks. When you apply an IP prefix list to a neighbor, the Layer 3 Switch sends or receives only a route whose destination is in the IP prefix list. You can configure up to 100 prefix lists. The software interprets the prefix lists in order, beginning with the lowest sequence number.

To configure an IP prefix list and apply it to a neighbor, enter commands such as the following.

```
FastIron(config)# ip prefix-list Routesfor20 permit 20.20.0.0/24
FastIron(config)# router bgp
FastIron(config-bgp-router)# neighbor 10.10.10.1 prefix-list Routesfor20 out
```

These commands configure an IP prefix list named Routesfor20, which permits routes to network 20.20.0.0/24. The `neighbor` command configures the Layer 3 Switch to use IP prefix list Routesfor20 to determine which routes to send to neighbor 10.10.10.1. The Layer 3 Switch sends routes that go to 20.20.x.x to neighbor 10.10.10.1 because the IP prefix list explicitly permits these routes to be sent to the neighbor.

Syntax: `ip prefix-list <name> [seq <seq-value>] [description <string>] deny | permit <network-addr>/ <mask-bits> [ge <ge-value>] [le <le-value>]`

The `<name>` parameter specifies the prefix list name. You use this name when applying the prefix list to a neighbor.

The `description <string>` parameter is a text string describing the prefix list.

The `seq <seq-value>` parameter is optional and specifies the IP prefix list sequence number. You can configure up to 100 prefix list entries. If you do not specify a sequence number, the software numbers them in increments of 5, beginning with prefix list entry 5. The software interprets the prefix list entries in numerical order, beginning with the lowest sequence number.

The `deny | permit` parameter specifies the action the software takes if a neighbor route is in this prefix list.

The prefix-list matches only on this network unless you use the `ge <ge-value>` or `le <le-value>` parameters. (See below.)

The `<network-addr>/ <mask-bits>` parameter specifies the network number and the number of bits in the network mask.

You can specify a range of prefix length for prefixes that are more specific than `<network-addr>/ <mask-bits>`.

- If you specify only `ge <ge-value>`, then the mask-length range is from `<ge-value>` to 32.
• If you specify only le <le-value>, then the mask-length range is from length to <le-value>. The <ge-value> or <le-value> you specify must meet the following condition.

\[
\text{length} < \text{ge-value} \leq \text{le-value} \leq 32
\]

If you do not specify ge <ge-value> or le <le-value>, the prefix list matches only on the exact network prefix you specify with the <network-addr>/<mask-bits> parameter.

For the syntax of the neighbor command shown in the example above, refer to “Adding BGP4 neighbors” on page 1307.

Defining neighbor distribute lists

A neighbor distribute list is a list of BGP4 address filters or ACLs that filter the traffic to or from a neighbor. To configure a neighbor distribute list, use either of the following methods.

To configure a distribute list that uses ACL 1, enter a command such as the following.

```plaintext
FastIron(config-bgp-router)# neighbor 10.10.10.1 distribute-list 1 in
```

This command configures the Layer 3 Switch to use ACL 1 to select the routes that the Layer 3 Switch will accept from neighbor 10.10.10.1.

Syntax: `neighbor <ip-addr> distribute-list <name-or-num> in | out`

The `<ip-addr>` parameter specifies the neighbor.

The `<name-or-num>` parameter specifies the name or number of a standard, extended, or named ACL.

The **in** | **out** parameter specifies whether the distribute list applies to inbound or outbound routes:

- **in** – controls the routes the Layer 3 Switch will accept from the neighbor.
- **out** – controls the routes sent to the neighbor.

NOTE

The command syntax shown above is new. However, the `neighbor <ip-addr> distribute-list in | out <num>` command (where the direction is specified before the filter number) is the same as in earlier software releases. Use the new syntax when you are using an IP ACL with the distribute list. Use the old syntax when you are using a BGP4 address filter with the distribute list.

Defining route maps

A **route map** is a named set of match conditions and parameter settings that the router can use to modify route attributes and to control redistribution of the routes into other protocols. A route map consists of a sequence of up to 50 **instances**. If you think of a route map as a table, an instance is a row in that table. The router evaluates a route according to a route map instances in ascending numerical order. The route is first compared against instance 1, then against instance 2, and so on. As soon as a match is found, the router stops evaluating the route against the route map instances.

Route maps can contain **match** statements and **set** statements. Each route map contains a “permit” or “deny” action for routes that match the match statements:

- If the route map contains a permit action, a route that matches a match statement is permitted; otherwise, the route is denied.
• If the route map contains a deny action, a route that matches a match statement is denied.
• If a route does not match any match statements in the route map, the route is denied. This is the default action. To change the default action, configure the last match statement in the last instance of the route map to “permit any any”.
• If there is no match statement, the software considers the route to be a match.
• For route maps that contain address filters, AS-path filters, or community filters, if the action specified by a filter conflicts with the action specified by the route map, the route map action takes precedence over the individual filter action.

If the route map contains set statements, routes that are permitted by the route map match statements are modified according to the set statements.

Match statements compare the route against one or more of the following:
• The route BGP4 MED (metric)
• A sequence of AS-path filters
• A sequence of community filters
• A sequence of address filters
• The IP address of the next hop router
• The route tag
• For OSPF routes only, the route type (internal, external type-1, or external type-2)
• An AS-path ACL
• A community ACL
• An IP prefix list
• An IP ACL

For routes that match all of the match statements, the route map set statements can perform one or more of the following modifications to the route attributes:
• Prepend AS numbers to the front of the route AS-path. By adding AS numbers to the AS-path, you can cause the route to be less preferred when compared to other routes on the basis of the length of the AS-path.
• Add a user-defined tag to the route or add an automatically calculated tag to the route.
• Set the community value.
• Set the local preference.
• Set the MED (metric).
• Set the IP address of the next hop router.
• Set the origin to IGP or INCOMPLETE.
• Set the weight.

For example, when you configure parameters for redistributing routes into RIP, one of the optional parameters is a route map. If you specify a route map as one of the redistribution parameters, the router will match the route against the match statements in the route map. If a match is found and if the route map contains set statements, the router will set attributes in the route according to the set statements.

To create a route map, you define instances of the map. Each instance is identified by a sequence number. A route map can contain up to 50 instances.

To define a route map, use the procedures in the following sections.
Entering the route map into the software

To add instance 1 of a route map named "GET_ONE" with a permit action, enter the following command.

```
FastIron(config)# route-map GET_ONE permit 1
FastIron(config-routemap GET_ONE)#
```

Syntax: `[no] route-map <map-name> permit | deny <num>

As shown in this example, the command prompt changes to the Route Map level. You can enter the match and set statements at this level. Refer to "Specifying the match conditions" on page 1355 and "Setting parameters in the routes" on page 1359.

The `<map-name>` is a string of characters that names the map. Map names can be up to 32 characters in length.

The `permit` | `deny` parameter specifies the action the router will take if a route matches a match statement.

- If you specify `deny`, the Layer 3 Switch does not advertise or learn the route.
- If you specify `permit`, the Layer 3 Switch applies the match and set statements associated with this route map instance.

The `<num>` parameter specifies the instance of the route map you are defining. Each route map can have up to 50 instances.

To delete a route map, enter a command such as the following. When you delete a route map, all the permit and deny entries in the route map are deleted.

```
FastIron(config)# no route-map Map1
```

This command deletes a route map named "Map1". All entries in the route map are deleted.

To delete a specific instance of a route map without deleting the rest of the route map, enter a command such as the following.

```
FastIron(config)# no route-map Map1 permit 10
```

This command deletes the specified instance from the route map but leaves the other instances of the route map intact.

Specifying the match conditions

Use the following command to define the match conditions for instance 1 of the route map GET_ONE. This instance compares the route updates against BGP4 address filter 11.

```
FastIron(config-routemap GET_ONE)# match address-filters 11
```

Syntax: `match [as-path <num>] | [address-filters | as-path-filters | community-filters <num,num,...>] | [community <num>] | [community <ACL> | exact-match] | [ip address <ACL> | prefix-list <string>] | [ip route-source <ACL> | prefix <name>] | [metric <num>] | [next-hop <address-filter-list>] | [nri multicast | unicast | multicast unicast] | [route-type internal | external-type1 | external-type2] | [tag <tag-value>]`

The `as-path <num>` parameter specifies an AS-path ACL. You can specify up to five AS-path ACLs. To configure an AS-path ACL, use the `ip as-path access-list` command. Refer to "Defining an AS-path ACL" on page 1347.
The **address-filters | as-path-filters | community-filters <num,num,...>** parameter specifies a filter or list of filters to be matched for each route. The router treats the first match as the best match. If a route does not match any filter in the list, then the router considers the match condition to have failed. To configure these types of filters, use commands at the BGP configuration level:

- To configure an address filter, refer to “Filtering specific IP addresses” on page 1345.
- To configure an AS-path filter or AS-path ACL, refer to “Filtering AS-paths” on page 1346.
- To configure a community filter or community ACL, refer to “Filtering communities” on page 1349.

You can enter up to six community names on the same command line.

NOTE
The filters must already be configured.

The **community <num>** parameter specifies a community ACL.

NOTE
The ACL must already be configured.

The **community <ACL> exact-match** parameter matches a route if (and only if) the route’s community attributes field contains the same community numbers specified in the match statement.

The **ip address | next-hop <ACL-num> | prefix-list <string>** parameter specifies an ACL or IP prefix list. Use this parameter to match based on the destination network or next-hop gateway. To configure an IP ACL for use with this command, use the **ip access-list** command. Refer to “ACL overview” on page 629. To configure an IP prefix list, use the **ip prefix-list** command. Refer to “Defining IP prefix lists” on page 1352.

The **ip route-source <ACL> | prefix <name>** parameter matches based on the source of a route (the IP address of the neighbor from which the Brocade device learned the route).

The **metric <num>** parameter compares the route MED (metric) to the specified value.

The **next-hop <address-filter-list>** parameter compares the IP address of the route next hop to the specified IP address filters. The filters must already be configured.

The **nlri multicast | unicast | multicast unicast** parameter specifies whether you want the route map to match on multicast routes, unicast routes, or both route types.

NOTE
By default, route maps apply to both unicast and multicast traffic.

The **route-type internal | external-type1 | external-type2** parameter applies only to OSPF routes. This parameter compares the route type to the specified value.

The **tag <tag-value>** parameter compares the route tag to the specified value.

Match examples using ACLs

The following sections show some detailed examples of how to configure route maps that include match statements that match on ACLs.

Matching based on AS-path ACL

To construct a route map that matches based on AS-path ACL 1, enter the following commands.
FastIron(config)# route-map PathMap permit 1
FastIron(config-routemap PathMap)# match as-path 1

Syntax: match as-path <num>

The <num> parameter specifies an AS-path ACL and can be a number from 1 – 199. You can specify up to five AS-path ACLs. To configure an AS-path ACL, use the ip as-path access-list command. Refer to “Defining an AS-path ACL” on page 1347.

Matching based on community ACL

To construct a route map that matches based on community ACL 1, enter the following commands.

FastIron(config)# ip community-list 1 permit 123:2
FastIron(config)# route-map CommMap permit 1
FastIron(config-routemap CommMap)# match community 1

Syntax: match community <string>

The <string> parameter specifies a community list ACL. To configure a community list ACL, use the ip community-list command. Refer to “Defining a community ACL” on page 1351.

Matching based on destination network

To construct match statements for a route map that match based on destination network, use the following method. You can use the results of an IP ACL or an IP prefix list as the match condition.

FastIron(config)# route-map NetMap permit 1
FastIron(config-routemap NetMap)# match ip address 1

Syntax: match ip address <name-or-num>

Syntax: match ip address prefix-list <name>

The <name-or-num> parameter with the first command specifies an IP ACL and can be a number from 1 – 199 or the ACL name if it is a named ACL. To configure an IP ACL, use the ip access-list or access-list command. Refer to Chapter 17, “Configuring Rule-Based IP Access Control Lists (ACLs)”.

The <name> parameter with the second command specifies an IP prefix list name. To configure an IP prefix list, refer to “Defining IP prefix lists” on page 1352.

Matching based on next-hop router

To construct match statements for a route map that match based on the IP address of the next-hop router, use either of the following methods. You can use the results of an IP ACL or an IP prefix list as the match condition.

To construct a route map that matches based on the next-hop router, enter commands such as the following.

FastIron(config)# route-map HopMap permit 1
FastIron(config-routemap HopMap)# match ip next-hop 2

Syntax: match ip next-hop <num>

Syntax: match ip next-hop prefix-list <name>

The <num> parameter with the first command specifies an IP ACL and can be a number from 1 – 199 or the ACL name if it is a named ACL. To configure an IP ACL, use the ip access-list or access-list command. Refer to Chapter 17, “Configuring Rule-Based IP Access Control Lists (ACLs)”.

The <name> parameter with the second command specifies an IP prefix list name. To configure an IP prefix list, refer to “Defining IP prefix lists” on page 1352.
Matching based on the route source
To match a BGP4 route based on its source, use the `match ip route-source` statement. Here is an example.

```
FastIron(config)# access-list 10 permit 192.168.6.0 0.0.0.255
FastIron(config)# route-map bgp1 permit 1
FastIron(config-route-map bgp1)# match ip route-source 10
```

The first command configures an IP ACL that matches on routes received from 192.168.6.0/24. The remaining commands configure a route map that matches on all BGP4 routes advertised by the BGP4 neighbors whose addresses match addresses in the IP prefix list. You can add a set statement to change a route attribute in the routes that match. You also can use the route map as input for other commands, such as the `neighbor` and `network` commands and some `show` commands.

Syntax: `match ip route-source <ACL> | prefix <name>

The `<ACL> | prefix <name>` parameter specifies the name or ID of an IP ACL, or an IP prefix list.

Matching on routes containing a specific set of communities
Brocade software enables you to match routes based on the presence of a community name or number in a route, and to match when a route contains exactly the set of communities you specify. To match based on a set of communities, configure a community ACL that lists the communities, then compare routes against the ACL.

Here is an example.

```
FastIron(config)# ip community-list standard std_1 permit 12:34 no-export
FastIron(config)# route-map bgp2 permit 1
FastIron(config-route-map bgp2)# match community std_1 exact-match
```

The first command configures a community ACL that contains community number 12:34 and community name no-export. The remaining commands configure a route map that matches the community attributes field in BGP4 routes against the set of communities in the ACL. A route matches the route map only if the route contains all the communities in the ACL and no other communities.

Syntax: `match community <ACL> exact-match`

The `<ACL>` parameter specifies the name of a community list ACL. You can specify up to five ACLs. Separate the ACL names or IDs with spaces.

Here is another example.

```
FastIron(config)# ip community-list standard std_2 permit 23:45 56:78
FastIron(config)# route-map bgp3 permit 1
FastIron(config-route-map bgp3)# match community std_1 std_2 exact-match
```

These commands configure an additional community ACL, std_2, that contains community numbers 23:45 and 57:68. Route map bgp3 compares each BGP4 route against the sets of communities in ACLs std_1 and std_2. A BGP4 route that contains either but not both sets of communities matches the route map. For example, a route containing communities 23:45 and 57:68 matches. However, a route containing communities 23:45, 57:68 and 12:34, or communities 23:45, 57:68, 12:34, and no-export does not match. To match, the route communities must be the same as those in exactly one of the community ACLs used by the match community statement.
Setting parameters in the routes

Use the following command to define a set statement that prepends an AS number to the AS path on each route that matches the corresponding match statement.

FastIron(config-routemap GET_ONE)# set as-path prepend 65535

Syntax: set [as-path [prepend <as-num,as-num,...>]] | [automatic-tag] | [comm-list <ACL> delete] | [community <num>:<num> | <num> | internet | local-as | no-advertise | no-export] | [dampening [half-life] | <reuse> | <suppress> | <max-suppress-time>] | [(default) interface null0 | [ip [default] next hop <ip-addr> | [ip next-hop peer-address] | [local-preference <num>] | [metric [+ | -]<num> | none] | [metric-type type-1 | type-2] | [metric-type internal] | [next-hop <ip-addr>] | [nhrp multicast | unicast | multicast unicast] | [origin igp | incomplete] | [tag <tag-value>] | [weight <num>]

The as-path prepend <num,num,...> parameter adds the specified AS numbers to the front of the AS-path list for the route.

The automatic-tag parameter calculates and sets an automatic tag value for the route.

NOTE
This parameter applies only to routes redistributed into OSPF.

The comm-list parameter deletes a community from a BGP4 route community attributes field.

The community parameter sets the community attribute for the route to the number or well-known type you specify.

The dampening [half-life] | <reuse> | <suppress> | <max-suppress-time>] parameter sets route dampening parameters for the route. The half-life parameter specifies the number of minutes after which the route penalty becomes half its value. The reuse parameter specifies how low a route penalty must become before the route becomes eligible for use again after being suppressed. The suppress parameter specifies how high a route penalty can become before the Layer 3 Switch suppresses the route. The max-suppress-time parameter specifies the maximum number of minutes that a route can be suppressed regardless of how unstable it is. For information and examples, refer to “Configuring route flap dampening” on page 1365.

The [default] interface null0 parameter redirects the traffic to the specified interface. You can send the traffic to the null0 interface, which is the same as dropping the traffic. You can specify more than one interface, in which case the Layer 3 Switch uses the first available port. If the first port is unavailable, the Layer 3 Switch sends the traffic to the next port in the list. If you specify default, the route map redirects the traffic to the specified interface only if the Layer 3 Switch does not already have explicit routing information for the traffic. This option is used in Policy-Based Routing (PBR).

The ip [default] next hop <ip-addr> parameter sets the next-hop IP address for traffic that matches a match statement in the route map. If you specify default, the route map sets the next-hop gateway only if the Layer 3 Switch does not already have explicit routing information for the traffic. This option is used in Policy-Based Routing (PBR).

The ip next-hop peer-address parameter sets the BGP4 next hop for a route to the specified neighbor address.

The local-preference <num> parameter sets the local preference for the route. You can set the preference to a value from 0 – 4294967295.

The metric [+ | -]<num> | none parameter sets the MED (metric) value for the route. The default MED value is 0. You can set the preference to a value from 0 – 4294967295.
- set metric <num> – Sets the route metric to the number you specify.
- set metric +<num> – Increases route metric by the number you specify.
- set metric -<num> – Decreases route metric by the number you specify.
- set metric none – Removes the metric from the route (removes the MED attribute from the BGP4 route).

The metric-type type-1 | type-2 parameter changes the metric type of a route redistributed into OSPF.

The metric-type internal parameter sets the route's MED to the same value as the IGP metric of the BGP4 next-hop route. The parameter does this when advertising a BGP4 route to an EBGP neighbor.

The next-hop <ip-addr> parameter sets the IP address of the route next hop router.

The nlri multicast | unicast | multicast unicast parameter redistributes routes into the multicast Routing Information Base (RIB) instead of the unicast RIB.

NOTE
Setting the NLRI type to multicast applies only when you are using the route map to redistribute directly-connected routes. Otherwise, the set option is ignored.

The origin igp | incomplete parameter sets the route origin to IGP or INCOMPLETE.

The tag <tag-value> parameter sets the route tag. You can specify a tag value from 0 – 4294967295.

NOTE
This parameter applies only to routes redistributed into OSPF.

NOTE
You also can set the tag value using a table map. The table map changes the value only when the Layer 3 Switch places the route in the IP route table instead of changing the value in the BGP route table. Refer to “Using a table map to set the tag value” on page 1361.

The weight <num> parameter sets the weight for the route. You can specify a weight value from 0 – 4294967295.

Setting a BP4 route MED to the same value as the IGP metric of the next-hop route
To set a route's MED to the same value as the IGP metric of the BGP4 next-hop route, when advertising the route to a neighbor, enter commands such as the following.

FastIron(config)# access-list 1 permit 192.168.9.0 0.0.0.255
FastIron(config)# route-map bgp4 permit 1
FastIron(config-route-map bgp4)# match ip address 1
FastIron(config-route-map bgp4)# set metric-type internal

The first command configures an ACL that matches on routes with destination network 192.168.9.0. The remaining commands configure a route map that matches on the destination network in ACL 1, then sets the metric type for those routes to the same value as the IGP metric of the BGP4 next-hop route.

Syntax: set metric-type internal
Setting the next hop of a BGP4 route
To set the next hop address of a BGP4 route to a neighbor address, enter commands such as the following.

```
FastIron(config)# route-map bgp5 permit 1
FastIron(config-route-map bgp5)# match ip address 1
FastIron(config-route-map bgp5)# set ip next-hop peer-address
```

These commands configure a route map that matches on routes whose destination network is specified in ACL 1, and sets the next hop in the routes to the neighbor address (inbound filtering) or the local IP address of the BGP4 session (outbound filtering).

Syntax: `set ip next-hop peer-address`

The value that the software substitutes for `peer-address` depends on whether the route map is used for inbound filtering or outbound filtering:

- When you use the `set ip next-hop peer-address` command in an inbound route map filter, `peer-address` substitutes for the neighbor IP address.
- When you use the `set ip next-hop peer-address` command in an outbound route map filter, `peer-address` substitutes for the local IP address of the BGP4 session.

NOTE
You can use this command for a peer group configuration.

Deleting a community from a BGP4 route
To delete a community from a BGP4 route community attributes field, enter commands such as the following.

```
FastIron(config)# ip community-list standard std_3 permit 12:99 12:86
FastIron(config)# route-map bgp6 permit 1
FastIron(config-route-map bgp6)# match ip address 1
FastIron(config-route-map bgp6)# set comm-list std_3 delete
```

The first command configures a community ACL containing community numbers 12:99 and 12:86. The remaining commands configure a route map that matches on routes whose destination network is specified in ACL 1, and deletes communities 12:99 and 12:86 from those routes. The route does not need to contain all the specified communities in order for them to be deleted. For example, if a route contains communities 12:86, 33:44, and 66:77, community 12:86 is deleted.

Syntax: `set comm-list <ACL> delete`

The `<ACL>` parameter specifies the name of a community list ACL.

Using a table map to set the tag value
Route maps that contain set statements change values in routes when the routes are accepted by the route map. For inbound route maps (route maps that filter routes received from neighbors), this means that the routes are changed before they enter the BGP4 route table.

For tag values, if you do not want the value to change until a route enters the IP route table, you can use a table map to change the value. A table map is a route map that you have associated with the IP routing table. The Layer 3 Switch applies the set statements for tag values in the table map to routes before adding them to the route table.
To configure a table map, you configure the route map, then identify it as a table map. The table map does not require separate configuration. You create it simply by calling an existing route map a table map. You can have one table map.

NOTE
Use table maps only for setting the tag value. Do not use table maps to set other attributes. To set other route attributes, use route maps or filters.

To create a route map and identify it as a table map, enter commands such as following. These commands create a route map that uses an address filter. For routes that match the address filter, the route map changes the tag value to 100. This route map is then identified as a table map. As a result, the route map is applied only to routes that the Layer 3 Switch places in the IP route table. The route map is not applied to all routes. This example assumes that address filter 11 has already been configured.

```
FastIron(config)# route-map TAG_IP permit 1
FastIron(config-route-map TAG_IP)# match address-filters 11
FastIron(config-route-map TAG_IP)# set tag 100
FastIron(config-route-map TAG_IP)# router bgp
FastIron(config-bgp-router)# table-map TAG_IP
```

Configuring cooperative BGP4 route filtering

By default, the Layer 3 Switch performs all filtering of incoming routes locally, on the Layer 3 Switch itself. You can use cooperative BGP4 route filtering to cause the filtering to be performed by a neighbor before it sends the routes to the Layer 3 Switch. Cooperative filtering conserves resources by eliminating unnecessary route updates and filter processing. For example, the Layer 3 Switch can send a deny filter to its neighbor, which the neighbor uses to filter out updates before sending them to the Layer 3 Switch. The neighbor saves the resources it would otherwise use to generate the route updates, and the Layer 3 Switch saves the resources it would use to filter out the routes.

When you enable cooperative filtering, the Layer 3 Switch advertises this capability in its Open message to the neighbor when initiating the neighbor session. The Open message also indicates whether the Layer 3 Switch is configured to send filters, receive filters or both, and the types of filters it can send or receive. The Layer 3 Switch sends the filters as Outbound Route Filters (ORFs) in Route Refresh messages.

To configure cooperative filtering, perform the following tasks on the Layer 3 Switch and on its BGP4 neighbor:

- Configure the filter.

NOTE
The current release supports cooperative filtering only for filters configured using IP prefix lists.

- Apply the filter as in **inbound** filter to the neighbor.
- Enable the cooperative route filtering feature on the Layer 3 Switch. You can enable the Layer 3 Switch to send ORFs to the neighbor, to receive ORFs from the neighbor, or both. The neighbor uses the ORFs you send as outbound filters when it sends routes to the Layer 3 Switch. Likewise, the Layer 3 Switch uses the ORFs it receives from the neighbor as outbound filters when sending routes to the neighbor.
- Reset the BGP4 neighbor session to send and receive ORFs.
- Perform these steps on the other device.
NOTE
If the Layer 3 Switch has inbound filters, the filters are still processed even if equivalent filters have been sent as ORFs to the neighbor.

Enabling cooperative filtering

To configure cooperative filtering, enter commands such as the following.

FastIron(config)# ip prefix-list Routesfrom1234 deny 20.20.0.0/24
FastIron(config)# ip prefix-list Routesfrom1234 permit 0.0.0.0/0 le 32
FastIron(config)# router bgp
FastIron(config-bgp-router)# neighbor 1.2.3.4 prefix-list Routesfrom1234 in
FastIron(config-bgp-router)# neighbor 1.2.3.4 capability orf prefixlist send

The first two commands configure statements for the IP prefix list Routesfrom1234. The first command configures a statement that denies routes to 20.20.0.0/24. The second command configures a statement that permits all other routes. (Once you configure an IP prefix list statement, all routes not explicitly permitted by statements in the prefix list are denied.)

The next two commands change the CLI to the BGP4 configuration level, then apply the IP prefix list to neighbor 1.2.3.4. The last command enables the Layer 3 Switch to send the IP prefix list as an ORF to neighbor 1.2.3.4. When the Layer 3 Switch sends the IP prefix list to the neighbor, the neighbor filters out the 20.20.0.x routes from its updates to the Layer 3 Switch. (This assumes that the neighbor also is configured for cooperative filtering.)

The \(<ip-addr> | <peer-group-name>\) parameter specifies the IP address of a neighbor or the name of a peer group of neighbors.

The \(send | receive\) parameter specifies the support you are enabling:

- \(send\) – The Layer 3 Switch sends the IP prefix lists to the neighbor.
- \(receive\) – The Layer 3 Switch accepts filters from the neighbor.

If you do not specify the capability, both capabilities are enabled.

The \(prefixlist\) parameter specifies the type of filter you want to send to the neighbor.

NOTE
The current release supports cooperative filtering only for filters configured using IP prefix lists.

Sending and receiving ORFs

Cooperative filtering affects neighbor sessions that start after the filtering is enabled, but do not affect sessions that are already established.

To activate cooperative filtering, reset the session with the neighbor. This is required because the cooperative filtering information is exchanged in Open messages during the start of a session.

To place a prefix-list change into effect after activating cooperative filtering, perform a soft reset of the neighbor session. A soft reset does not end the current session, but sends the prefix list to the neighbor in the next route refresh message.

NOTE
Make sure cooperative filtering is enabled on the Layer 3 Switch and on the neighbor before you send the filters.
To reset a neighbor session and send ORFs to the neighbor, enter a command such as the following.

```bash
FastIron# clear ip bgp neighbor 1.2.3.4
```

This command resets the BGP4 session with neighbor 1.2.3.4 and sends the ORFs to the neighbor. If the neighbor sends ORFs to the Layer 3 Switch, the Layer 3 Switch accepts them if the send capability is enabled.

To perform a soft reset of a neighbor session and send ORFs to the neighbor, enter a command such as the following.

```bash
FastIron# clear ip bgp neighbor 1.2.3.4 soft in prefix-list
```

Syntax: `clear ip bgp neighbor <ip-addr> [soft in prefix-filter]`

If you use the `soft in prefix-filter` parameter, the Layer 3 Switch sends the updated IP prefix list to the neighbor as part of its route refresh message to the neighbor.

NOTE

If the Layer 3 Switch or the neighbor is not configured for cooperative filtering, the command sends a normal route refresh message.

Displaying cooperative filtering information

You can display the following cooperative filtering information:

- The cooperative filtering configuration on the Layer 3 Switch.
- The ORFs received from neighbors.

To display the cooperative filtering configuration on the Layer 3 Switch, enter a command such as the following. The line shown in bold type shows the cooperative filtering status.

```bash
FastIron# show ip bgp neighbor 10.10.10.1
```

```
1   IP Address: 10.10.10.1, AS: 65200 (IBGP), RouterID: 10.10.10.1
    State: ESTABLISHED, Time: 0h0m7s, KeepAliveTime: 60, HoldTime: 180
    RefreshCapability: Received
    CooperativeFilteringCapability: Received

    Messages:  Open  Update  KeepAlive  Notification  Refresh-Req
    Sent:  1  0  1  0  1
    Received:  1  0  1  0  1

    Last Update Time: NLRI  Withdraw  NLRI  Withdraw
    Tx:  ---  ---  Rx:  ---  ---

    Last Connection Reset Reason: Unknown
    Notification Sent:  Unspecified
    Notification Received: Unspecified
    TCP Connection state: ESTABLISHED
    Byte Sent:  110, Received: 110
    Local host:  10.10.10.2, Local Port: 8138
    Remote host:  10.10.10.1, Remote Port: 179
    INSentSeq:  460  SendNext:  571  TotUnAck:  0
    TotSent:  111  ReTrans:  0  UnAckSeq:  571
    IRCvSeq:  7349  RcvNext:  7460  SendWnd:  16384
    TotalRcv:  111  DupliRcv:  0  RcvWnd:  16384
    SendQue:  0  RcvQue:  0  CngstWnd:  5325
```

Syntax: `show ip bgp neighbor <ip-addr>`

To display the ORFs received from a neighbor, enter a command such as the following.
Configuring route flap dampening

A “route flap” is the change in a route state, from up to down or down to up. When a route state changes, the state change causes changes in the route tables of the routers that support the route. Frequent changes in a route state can cause Internet instability and add processing overhead to the routers that support the route.

Route flap dampening is a mechanism that reduces the impact of route flap by changing a BGP4 router response to route state changes. When route flap dampening is configured, the Layer 3 Switch suppresses unstable routes until the route state changes reduce enough to meet an acceptable degree of stability. The Brocade implementation of route flap dampening is based on RFC 2439.

Route flap dampening is disabled by default. You can enable the feature globally or on an individual route basis using route maps.

NOTE
The Layer 3 Switch applies route flap dampening only to routes learned from EBGP neighbors.

The route flap dampening mechanism is based on penalties. When a route exceeds a configured penalty value, the Layer 3 Switch stops using that route and also stops advertising it to other routers. The mechanism also allows a route penalties to reduce over time if the route stability improves. The route flap dampening mechanism uses the following parameters:

- **Suppression threshold** – Specifies the penalty value at which the Layer 3 Switch stops using the route. Each time a route becomes unreachable or is withdrawn by a BGP4 UPDATE from a neighbor, the route receives a penalty of 1000. By default, when a route has a penalty value greater than 2000, the Layer 3 Switch stops using the route. Thus, by default, if a route goes down more than twice, the Layer 3 Switch stops using the route. You can set the suppression threshold to a value from 1 – 20000. The default is 2000.

- **Half-life** – Once a route has been assigned a penalty, the penalty decreases exponentially and decreases by half after the half-life period. The default half-life period is 15 minutes. The software reduces route penalties every five seconds. For example, if a route has a penalty of 2000 and does not receive any more penalties (it does not go down again) during the half-life, the penalty is reduced to 1000 after the half-life expires. You can configure the half-life to be from 1 – 45 minutes. The default is 15 minutes.

- **Reuse threshold** – Specifies the minimum penalty a route can have and still be suppressed by the Layer 3 Switch. If the route's penalty falls below this value, the Layer 3 Switch un-suppresses the route and can use it again. The software evaluates the dampened routes every ten seconds and un-suppresses the routes that have penalties below the reuse threshold. You can set the reuse threshold to a value from 1 – 20000. The default is 750.

```shell
FastIron# show ip bgp neighbor 10.10.10.1 received prefix-filter
ip prefix-list 10.10.10.1: 4 entries
  seq 5 permit 10.10.0.0/16 ge 18 le 28
  seq 10 permit 20.20.10.0/24
  seq 15 permit 30.0.0.0/8 le 32
  seq 20 permit 40.10.0.0/16 ge 18
```
• **Maximum suppression time** – Specifies the maximum number of minutes a route can be suppressed regardless of how unstable the route has been before this time. You can set the parameter to a value from 1 – 20000 minutes. The default is four times the half-life. When the half-life value is set to its default (15 minutes), the maximum suppression time defaults to 60 minutes.

You can configure route flap dampening globally or for individual routes using route maps. If you configure route flap dampening parameters globally and also use route maps, the settings in the route maps override the global values.

Globally configuring route flap dampening

To enable route flap dampening using the default values, enter the following command.

```
FastIron(config-bgp-router)# dampening
```

Syntax: `dampening [<half-life> <reuse> <suppress> <max-suppress-time>]`

The `<half-life>` parameter specifies the number of minutes after which the route penalty becomes half its value. The route penalty allows routes that have remained stable for a while despite earlier instability to eventually become eligible for use again. The decay rate of the penalty is proportional to the value of the penalty. After the half-life expires, the penalty decays to half its value. Thus, a dampened route that is no longer unstable can eventually become eligible for use again. You can configure the half-life to be from 1 - 45 minutes. The default is 15 minutes.

The `<reuse>` parameter specifies how low a route penalty must become before the route becomes eligible for use again after being suppressed. You can set the reuse threshold to a value from 1 – 20000. The default is 750 (0.75, or three-fourths, of the penalty assessed for a one “flap”).

The `<suppress>` parameter specifies how high a route penalty can become before the Layer 3 Switch suppresses the route. You can set the suppression threshold to a value from 1 – 20000. The default is 2000 (two “flaps”).

The `<max-suppress-time>` parameter specifies the maximum number of minutes that a route can be suppressed regardless of how unstable it is. You can set the maximum suppression time to a value from 1 – 20000 minutes. The default is four times the half-life setting. Thus, if you use the default half-life of 15 minutes, the maximum suppression time is 60 minutes.

The following example shows how to change the dampening parameters.

```
FastIron(config-bgp-router)# dampening 20 200 2500 40
```

This command changes the half-life to 20 minutes, the reuse threshold to 200, the suppression threshold to 2500, and the maximum number of minutes a route can be dampened to 40.

NOTE

To change any of the parameters, you must specify all the parameters with the command. If you want to leave some parameters unchanged, enter their default values.
Using a route map to configure route flap dampening for specific routes

Route maps enable you to fine tune route flap dampening parameters for individual routes. To configure route flap dampening parameters using route maps, configure BGP4 address filters for each route you want to set the dampening parameters for, then configure route map entries that set the dampening parameters for those routes. The following sections show examples.

To configure address filters and a route map for dampening specific routes, enter commands such as the following.

```
FastIron(config)# router bgp
FastIron(config-bgp-router)# address-filter 9 permit 209.157.22.0 255.255.255.0
255.255.255.0 255.255.255.0
FastIron(config-bgp-router)# address-filter 10 permit 209.157.23.0 255.255.255.0
255.255.255.0 255.255.255.0
FastIron(config-bgp-router)# exit
FastIron(config)# route-map DAMPENING_MAP permit 9
FastIron(config-routemap DAMPENING_MAP)# match address-filters 9
FastIron(config-routemap DAMPENING_MAP)# set dampening 10 200 2500 40
FastIron(config-routemap DAMPENING_MAP)# exit
FastIron(config)# route-map DAMPENING_MAP permit 10
FastIron(config-routemap DAMPENING_MAP)# match address-filters 10
FastIron(config-routemap DAMPENING_MAP)# set dampening 20 200 2500 60
FastIron(config-routemap DAMPENING_MAP)# router bgp
FastIron(config-bgp-router)# dampening route-map DAMPENING_MAP
```

The address-filter commands in this example configure two BGP4 address filters, for networks 209.157.22.0 and 209.157.23.0. The first route-map command creates an entry in a route map called "DAMPENING_MAP". Within this entry of the route map, the match command matches based on address filter 9, and the set command sets the dampening parameters for the route that matches. Thus, for BGP4 routes to 209.157.22.0, the Layer 3 Switch uses the route map to set the dampening parameters. These parameters override the globally configured dampening parameters.

The commands for the second entry in the route map (instance 10 in this example) perform the same functions for route 209.157.23.0. Notice that the dampening parameters are different for each route.

Using a route map to configure route flap dampening for a specific neighbor

You can use a route map to configure route flap dampening for a specific neighbor by performing the following tasks:

- Configure an empty route map with no match or set statements. This route map does not specify particular routes for dampening but does allow you to enable dampening globally when you refer to this route map from within the BGP configuration level.
- Configure another route map that explicitly enables dampening. Use a set statement within the route map to enable dampening. When you associate this route map with a specific neighbor, the route map enables dampening for all routes associated with the neighbor. You also can use match statements within the route map to selectively perform dampening on some routes from the neighbor.
Configuring route flap dampening

NOTE
You still need to configure the first route map to enable dampening globally. The second route map does not enable dampening by itself; it just applies dampening to a neighbor.

- Apply the route map to the neighbor.

To enable route flap dampening for a specific BGP4 neighbor, enter commands such as the following.

```plaintext
FastIron(config)# route-map DAMPENING_MAP_ENABLE permit 1
FastIron(config)# route-map DAMPENING_MAP_NEIGHBOR_A permit 1
FastIron(config)# set dampening
FastIron(config)# router bgp
FastIron(config-router)# dampening route-map DAMPENING_MAP_ENABLE
FastIron(config-router)# neighbor 10.10.10.1 route-map in DAMPENING_MAP_NEIGHBOR_A
```

In this example, the first command globally enables route flap dampening. This route map does not contain any match or set statements. At the BGP configuration level, the `dampening route-map` command refers to the DAMPENING_MAP_ENABLE route map created by the first command, thus enabling dampening globally.

The third and fourth commands configure a second route map that explicitly enables dampening. Notice that the route map does not contain a match statement. The route map implicitly applies to all routes. Since the route map will be applied to a neighbor at the BGP configuration level, the route map will apply to all routes associated with the neighbor.

Although the second route map enables dampening, the first route map is still required. The second route map enables dampening for the neighbors to which the route map is applied. However, unless dampening is already enabled globally by the first route map, the second route map has no effect.

The last two commands apply the route maps. The `dampening route-map` command applies the first route map, which enables dampening globally. The `neighbor` command applies the second route map to neighbor 10.10.10.1. Since the second route map does not contain match statements for specific routes, the route map enables dampening for all routes received from the neighbor.

Removing route dampening from a route

You can un-suppress routes by removing route flap dampening from the routes. The Layer 3 Switch allows you to un-suppress all routes at once or un-suppress individual routes.

To un-suppress all the suppressed routes, enter the following command at the Privileged EXEC level of the CLI.

```plaintext
FastIron(config)# clear ip bgp damping
```

Syntax: `clear ip bgp damping <ip-addr> <ip-mask>`

The `<ip-addr>` parameter specifies a particular network.

The `<ip-mask>` parameter specifies the network mask.

To un-suppress a specific route, enter a command such as the following.

```plaintext
FastIron(config)# clear ip bgp damping 209.157.22.0 255.255.255.0
```

This command un-suppresses only the routes for network 209.157.22.0/24.
Removing route dampening from a neighbor routes suppressed due to aggregation

You can selectively unsuppress more-specific routes that have been suppressed due to aggregation, and allow the routes to be advertised to a specific neighbor or peer group.

Here is an example.

```
FastIron(config-bgp-router)# aggregate-address 209.1.0.0 255.255.0.0
summary-only
FastIron(config-bgp-router)# show ip bgp route 209.1.0.0/16 longer
Number of BGP Routes matching display condition : 2
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
Prefix Next Hop Metric LocPrf Weight Status
1 209.1.0.0/16 0.0.0.0 101 32768 BAL
AS_PATH:
2 209.1.44.0/24 10.2.0.1 1 101 32768 BLS
AS_PATH:

The `aggregate-address` command configures an aggregate address. The `summary-only` parameter prevents the Layer 3 Switch from advertising more specific routes contained within the aggregate route. The `show ip bgp route` command shows that the more specific routes aggregated into 209.1.0.0/16 have been suppressed. In this case, the route to 209.1.44.0/24 has been suppressed. The following command indicates that the route is not being advertised to the Layer 3 Switch BGP4 neighbors.

```
FastIron(config)# show ip bgp route 209.1.44.0/24
Number of BGP Routes matching display condition : 1
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST C:CONFED_EBGP D:DAMPED
Prefix Next Hop Metric LocPrf Weight Status
1 209.1.44.0/24 10.2.0.1 1 101 32768 BLS
AS_PATH:
Route is not advertised to any peers
```

If you want to override the `summary-only` parameter and allow a specific route to be advertised to a neighbor, enter commands such as the following.

```
FastIron(config)# ip prefix-list Unsuppress1 permit 209.1.44.0/24
FastIron(config)# route-map RouteMap1 permit 1
FastIron(config-routeemap RouteMap1)# match prefix-list Unsuppress1
FastIron(config-routeemap RouteMap1)# exit
FastIron(config)# router bgp
FastIron(config-bgp-router)# neighbor 10.1.0.2 unsuppress-map RouteMap1
FastIron(config-bgp-router)# clear ip bgp neighbor 10.1.0.2 soft-out
```

The `ip prefix-list` command configures an IP prefix list for network 209.1.44.0/24, which is the route you want to unsuppress. The next two commands configure a route map that uses the prefix list as input. The `neighbor` command enables the Layer 3 Switch to advertise the routes specified in the route map to neighbor 10.1.0.2. The `clear` command performs a soft reset of the session with the neighbor so that the Layer 3 Switch can advertise the unsuppressed route.

**Syntax:** `[no] neighbor <ip-addr> | <peer-group-name> unsuppress-map <map-name>
```
The following command verifies that the route has been unsuppressed.
Configuring route flap dampening

Displaying and clearing route flap dampening statistics

The software provides many options for displaying and clearing route flap statistics. To display the statistics, use either of the following methods.

Displaying route flap dampening statistics

To display route dampening statistics or all the dampened routes, enter the following command at any level of the CLI.

FastIron# show ip bgp route 209.1.44.0/24
Number of BGP Routes matching display condition : 1
Status A:AGGREGATE B:BEST b:NOT-INSTALLED BEST C:CONFED_EBGP D:DAMPED
Prefix Next Hop Metric LocPrf Weight Status
1 209.1.44.0/24 10.2.0.1 1 101 32768 BLS AS_PATH:
Route is advertised to 1 peers: 10.1.0.2(4)

FastIron# show ip bgp flap-statistics
Total number of flapping routes: 414
Status Code >:best d:damped h:history *:valid

<table>
<thead>
<tr>
<th>Network</th>
<th>From</th>
<th>Flaps Since</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>h> 192.50.206.0/23</td>
<td>166.90.213.77</td>
<td>1 0 :0 :13 0 :0 :0 65001 4355 1 701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h> 203.255.192.0/20</td>
<td>166.90.213.77</td>
<td>1 0 :0 :13 0 :0 :0 65001 4355 1 7018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h> 203.252.165.0/24</td>
<td>166.90.213.77</td>
<td>1 0 :0 :13 0 :0 :0 65001 4355 1 7018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h> 192.50.208.0/23</td>
<td>166.90.213.77</td>
<td>1 0 :0 :13 0 :0 :0 65001 4355 1 701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h> 133.33.0.0/16</td>
<td>166.90.213.77</td>
<td>1 0 :0 :13 0 :0 :0 65001 4355 1 701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* > 204.17.220.0/24</td>
<td>166.90.213.77</td>
<td>1 0 :1 :4 0 :0 :0 65001 4355 701 62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip bgp flap-statistics [regular-expression <regular-expression> | <address> <mask> [longer-prefixes] | neighbor <ip-addr>]

The regular-expression <regular-expression> parameter is a regular expression. The regular expressions are the same ones supported for BGP4 AS-path filters. Refer to “Using regular expressions” on page 1348.

The <address> <mask> parameter specifies a particular route. If you also use the optional longer-prefixes parameter, then all statistics for routes that match the specified route or have a longer prefix than the specified route are displayed. For example, if you specify 209.157.0.0 longer, then all routes with the prefix 209.157. or that have a longer prefix (such as 209.157.22.) are displayed.

The neighbor <ip-addr> parameter displays route flap dampening statistics only for routes learned from the specified neighbor. You also can display route flap statistics for routes learned from a neighbor by entering the following command: show ip bgp neighbor <ip-addr> flap-statistics.

This display shows the following information.
Generating traps for BGP

You also can display all the dampened routes by entering the following command.

```
show ip bgp dampened-paths
```

Clearing route flap dampening statistics

To clear route flap dampening statistics, use the following CLI method.

NOTE

Clearing the dampening statistics for a route does not change the dampening status of the route.

To clear all the route dampening statistics, enter the following command at any level of the CLI.

```
FastIron# clear ip bgp flap-statistics
```

Syntax: `clear ip bgp flap-statistics [regular-expression <regular-expression> | <address> <mask> | neighbor <ip-addr>]`

The parameters are the same as those for the `show ip bgp flap-statistics` command (except the `longer-prefixes` option is not supported). Refer to “Displaying route flap dampening statistics” on page 1370.

NOTE

The `clear ip bgp damping` command not only clears statistics but also un-suppresses the routes. Refer to “Displaying route flap dampening statistics” on page 1370.

Generating traps for BGP

You can enable and disable SNMP traps for BGP. BGP traps are enabled by default.

To enable BGP traps after they have been disabled, enter the following command.

```
FastIron(config)# snmp-server enable traps bgp
```
Displaying BGP4 information

You can display the following configuration information and statistics for the BGP4 protocol on the router:

- Summary BGP4 configuration information for the router
- Active BGP4 configuration information (the BGP4 information in the running-config)
- CPU utilization statistics
- Neighbor information
- Peer-group information
- Information about the paths from which BGP4 selects routes
- Summary BGP4 route information
- The router BGP4 route table
- Route flap dampening statistics
- Active route maps (the route map configuration information in the running-config)

Displaying summary BGP4 information

You can display the local AS number, the maximum number of routes and neighbors supported, and some BGP4 statistics.

To view summary BGP4 information for the router, enter the following command at any CLI prompt.

```
FastIron# show ip bgp summary
```

BGP4 Summary

Router ID: 101.0.0.1 Local AS Number : 4
Confederation Identifier : not configured
Confederation Peers: 4 5
Maximum Number of Paths Supported for Load Sharing : 1
Number of Neighbors Configured : 11
Number of Routes Installed : 2
Number of Routes Advertising to All Neighbors : 8
Number of Attribute Entries Installed : 6

<table>
<thead>
<tr>
<th>Neighbor Address</th>
<th>AS#</th>
<th>State</th>
<th>Time</th>
<th>Rt:Accepted</th>
<th>Filtered</th>
<th>Sent</th>
<th>ToSend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.3.4</td>
<td>200</td>
<td>ADMDN</td>
<td>0h44m56s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10.0.0.2</td>
<td>5</td>
<td>ADMDN</td>
<td>0h44m56s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.1.0.2</td>
<td>5</td>
<td>ESTAB</td>
<td>0h44m56s</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.2.0.2</td>
<td>5</td>
<td>ESTAB</td>
<td>0h44m55s</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.3.0.2</td>
<td>5</td>
<td>ADMDN</td>
<td>0h25m28s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.4.0.2</td>
<td>5</td>
<td>ADMDN</td>
<td>0h25m31s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.5.0.2</td>
<td>5</td>
<td>CONN</td>
<td>0h 0m 8s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.7.0.2</td>
<td>5</td>
<td>ADMDN</td>
<td>0h44m56s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100.0.0.1</td>
<td>4</td>
<td>ADMDN</td>
<td>0h44m56s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>102.0.0.1</td>
<td>4</td>
<td>ADMDN</td>
<td>0h44m56s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>150.150.150.150</td>
<td>0</td>
<td>ADMDN</td>
<td>0h44m56s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

This display shows the following information.
TABLE 224
BGP4 summary information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The Layer 3 Switch router ID.</td>
</tr>
<tr>
<td>Local AS Number</td>
<td>The BGP4 AS number the router is in.</td>
</tr>
<tr>
<td>Confederation Identifier</td>
<td>The AS number of the confederation the Layer 3 Switch is in.</td>
</tr>
<tr>
<td>Confederation Peers</td>
<td>The numbers of the local ASs contained in the confederation. This list matches the confederation peer list you configure on the Layer 3 Switch.</td>
</tr>
<tr>
<td>Maximum Number of Paths Supported for Load Sharing</td>
<td>The maximum number of route paths across which the device can balance traffic to the same destination. The feature is enabled by default but the default number of paths is 1. You can increase the number from 2 – 4 paths. Refer to “Changing the maximum number of paths for BGP4 load sharing” on page 1319.</td>
</tr>
<tr>
<td>Number of Neighbors Configured</td>
<td>The number of BGP4 neighbors configured on this Layer 3 Switch.</td>
</tr>
<tr>
<td>Number of Routes Installed</td>
<td>The number of BGP4 routes in the router BGP4 route table. To display the BGP4 route table, refer to “Displaying the BGP4 route table” on page 1391.</td>
</tr>
<tr>
<td>Number of Routes Advertising to All Neighbors</td>
<td>The total of the RtSent and RtToSend columns for all neighbors.</td>
</tr>
<tr>
<td>Number of Attribute Entries Installed</td>
<td>The number of BGP4 route-attribute entries in the router route-attributes table. To display the route-attribute table, refer to “Displaying BGP4 route-attribute entries” on page 1397.</td>
</tr>
<tr>
<td>Neighbor Address</td>
<td>The IP addresses of this router BGP4 neighbors.</td>
</tr>
<tr>
<td>AS#</td>
<td>The AS number.</td>
</tr>
</tbody>
</table>
Displaying BGP4 information

Table 224 BGP4 summary information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>The state of this router neighbor session with each neighbor. The states are from this router perspective of the session, not the neighbor perspective. The state values are based on the BGP4 state machine values described in RFC 1771 and can be one of the following for each router:</td>
</tr>
<tr>
<td></td>
<td>• IDLE – The BGP4 process is waiting to be started. Usually, enabling BGP4 or establishing a neighbor session starts the BGP4 process. A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• ADMND – The neighbor has been administratively shut down. Refer to “Administratively shutting down a session with a BGP4 neighbor” on page 1316. A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• CONNECT – BGP4 is waiting for the connection process for the TCP neighbor session to be completed.</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE – BGP4 is waiting for a TCP connection from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If the state frequently changes between CONNECT and ACTIVE, there may be a problem with the TCP connection.</td>
</tr>
<tr>
<td></td>
<td>• OPEN SENT – BGP4 is waiting for an Open message from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• OPEN CONFIRM – BGP4 has received an OPEN message from the neighbor and is now waiting for either a KEEPALIVE or NOTIFICATION message. If the router receives a KEEPALIVE message from the neighbor, the state changes to Established. If the message is a NOTIFICATION, the state changes to Idle.</td>
</tr>
<tr>
<td></td>
<td>• ESTABLISHED – BGP4 is ready to exchange UPDATE packets with the neighbor. If there is more BGP data in the TCP receiver queue, a plus sign (+) is also displayed.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If you display information for the neighbor using the show ip bgp neighbor <ip-addr> command, the TCP receiver queue value will be greater than 0.</td>
</tr>
<tr>
<td>Time</td>
<td>The time that has passed since the state last changed.</td>
</tr>
<tr>
<td>Accepted</td>
<td>The number of routes received from the neighbor that this router installed in the BGP4 route table. Usually, this number is lower than the RoutesRcvd number. The difference indicates that this router filtered out some of the routes received in the UPDATE messages.</td>
</tr>
<tr>
<td>Filtered</td>
<td>The routes or prefixes that have been filtered out:</td>
</tr>
<tr>
<td></td>
<td>• If soft reconfiguration is enabled, this field shows how many routes were filtered out (not placed in the BGP4 route table) but retained in memory.</td>
</tr>
<tr>
<td></td>
<td>• If soft reconfiguration is not enabled, this field shows the number of BGP4 routes that have been filtered out.</td>
</tr>
<tr>
<td>Sent</td>
<td>The number of BGP4 routes that the Layer 3 Switch has sent to the neighbor.</td>
</tr>
<tr>
<td>ToSend</td>
<td>The number of routes the Layer 3 Switch has queued to send to this neighbor.</td>
</tr>
</tbody>
</table>

Displaying the active BGP4 configuration

To view the active BGP4 configuration information contained in the running-config without displaying the entire running-config, use the following CLI method.

To display the device active BGP4 configuration, enter the following command at any level of the CLI.
FastIron# show ip bgp config
Current BGP configuration:
 router bgp
 address-filter 1 deny any any
 as-path-filter 1 permit ^65001$
 local-as 65002
 maximum-paths 4
 neighbor pg1 peer-group
 neighbor pg1 remote-as 65001
 neighbor pg1 description "FastIron group 1"
 neighbor pg1 distribute-list out 1
 neighbor 192.169.100.1 peer-group pg1
 neighbor 192.169.101.1 peer-group pg1
 neighbor 192.169.102.1 peer-group pg1
 neighbor 192.169.201.1 remote-as 65101
 neighbor 192.169.201.1 shutdown
 neighbor 192.169.220.3 remote-as 65432
 network 1.1.1.0 255.255.255.0
 network 2.2.2.0 255.255.255.0
 redistribute connected

Syntax: show ip bgp config

Displaying CPU utilization statistics

You can display CPU utilization statistics for BGP4 and other IP protocols.

To display CPU utilization statistics for BGP4 for the previous one-second, one-minute, five-minute, and fifteen-minute intervals, enter the following command at any level of the CLI.

FastIron# show process cpu

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.03</td>
<td>0.09</td>
<td>0.22</td>
<td>9</td>
</tr>
<tr>
<td>BGP</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.14</td>
<td>13</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

If the software has been running less than 15 minutes (the maximum interval for utilization statistics), the command indicates how long the software has been running. Here is an example.
Displaying BGP4 information

```
FastIron# show process cpu
The system has only been up for 6 seconds.

<table>
<thead>
<tr>
<th>Process Name</th>
<th>5Sec(%)</th>
<th>1Min(%)</th>
<th>5Min(%)</th>
<th>15Min(%)</th>
<th>Runtime(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

To display utilization statistics for a specific number of seconds, enter a command such as the following.

```
FastIron# show process cpu 2
Statistics for last 1 sec and 80 ms

<table>
<thead>
<tr>
<th>Process Name</th>
<th>Sec(%)</th>
<th>Time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>BGP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GVRP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>ICMP</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>RIP</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>STP</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>VRRP</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

When you specify how many seconds’ worth of statistics you want to display, the software selects the sample that most closely matches the number of seconds you specified. In this example, statistics are requested for the previous two seconds. The closest sample available is actually for the previous 1 second plus 80 milliseconds.

Syntax: `show process cpu [<num>]`

The `<num>` parameter specifies the number of seconds and can be from 1 – 900. If you use this parameter, the command lists the usage statistics only for the specified number of seconds. If you do not use this parameter, the command lists the usage statistics for the previous one-second, one-minute, five-minute, and fifteen-minute intervals.

Displaying summary neighbor information

To display summary neighbor information, enter a command such as the following at any level of the CLI.
Syntax: show ip bgp neighbor <ip-addr> [route-summary]

This display shows the following information.

TABLE 225 BGP4 route summary information for a neighbor

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the neighbor</td>
</tr>
<tr>
<td>Routes Received</td>
<td>How many routes the Layer 3 Switch has received from the neighbor during the current BGP4 session:</td>
</tr>
<tr>
<td></td>
<td>• Accepted/Installed – Indicates how many of the received routes the Layer 3 Switch accepted and installed in the BGP4 route table.</td>
</tr>
<tr>
<td></td>
<td>• Filtered/Kept – Indicates how many routes were filtered out, but were nonetheless retained in memory for use by the soft reconfiguration feature.</td>
</tr>
<tr>
<td></td>
<td>• Filtered – Indicates how many of the received routes were filtered out.</td>
</tr>
<tr>
<td>Routes Selected as BEST Routes</td>
<td>The number of routes that the Layer 3 Switch selected as the best routes to their destinations.</td>
</tr>
<tr>
<td>BEST Routes not Installed in IP</td>
<td>The number of routes received from the neighbor that are the best BGP4 routes to their destinations, but were nonetheless not installed in the IP route table because the Layer 3 Switch received better routes from other sources (such as OSPF, RIP, or static IP routes).</td>
</tr>
<tr>
<td>Forwarding Table</td>
<td></td>
</tr>
<tr>
<td>Unreachable Routes</td>
<td>The number of routes received from the neighbor that are unreachable because the Layer 3 Switch does not have a valid RIP, OSPF, or static route to the next hop.</td>
</tr>
<tr>
<td>History Routes</td>
<td>The number of routes that are down but are being retained for route flap dampening purposes.</td>
</tr>
<tr>
<td>NLRIs Received in Update Message</td>
<td>The number of routes received in Network Layer Reachability (NLRI) format in UPDATE messages:</td>
</tr>
<tr>
<td></td>
<td>• Withdraws – The number of withdrawn routes the Layer 3 Switch has received.</td>
</tr>
<tr>
<td></td>
<td>• Replacements – The number of replacement routes the Layer 3 Switch has received.</td>
</tr>
</tbody>
</table>
Displaying BGP4 information

To view BGP4 neighbor information including the values for all the configured parameters, enter the following command.

NOTE
The display shows all the configured parameters for the neighbor. Only the parameters that have values different from their defaults are shown.
Displaying BGP4 information

This example shows how to display information for a specific neighbor, by specifying the neighbor IP address with the command. None of the other display options are used; thus, all of the information is displayed for the neighbor. The number in the far left column indicates the neighbor for which information is displayed. When you list information for multiple neighbors, this number makes the display easier to read.

The TCP statistics at the end of the display show status for the TCP session with the neighbor. Most of the fields show information stored in the Layer 3 Switch Transmission Control Block (TCB) for the TCP session between the Layer 3 Switch and its neighbor. These fields are described in detail in section 3.2 of RFC 793, “Transmission Control Protocol Functional Specification”.

The <ip-addr> option lets you narrow the scope of the command to a specific neighbor.

The advertised-routes option displays only the routes that the Layer 3 Switch has advertised to the neighbor during the current BGP4 neighbor session.
The **attribute-entries** option shows the attribute-entries associated with routes received from the neighbor.

The **flap-statistics** option shows the route flap statistics for routes received from or sent to the neighbor.

The **last-packet-with-error** option displays the last packet from the neighbor that contained an error. The packet's contents are displayed in decoded (human-readable) format.

The **received prefix-filter** option shows the Outbound Route Filters (ORFs) received from the neighbor. This option applies to cooperative route filtering.

The **received-routes option** lists all the route information received in route updates from the neighbor since the soft reconfiguration feature was enabled. Refer to “Using soft reconfiguration” on page 1401.

The **routes** option lists the routes received in UPDATE messages from the neighbor. You can specify the following additional options:

- **best** – Displays the routes received from the neighbor that the Layer 3 Switch selected as the best routes to their destinations.
- **not-installed-best** – Displays the routes received from the neighbor that are the best BGP4 routes to their destinations, but were nonetheless not installed in the IP route table because the Layer 3 Switch received better routes from other sources (such as OSPF, RIP, or static IP routes).
- **unreachable** – Displays the routes that are unreachable because the Layer 3 Switch does not have a valid RIP, OSPF, or static route to the next hop.
- **detail** – Displays detailed information for the specified routes. You can refine your information request by also specifying one of the options above (best, not-installed-best, or unreachable).

The **rib-out-routes** option lists the route information base (RIB) for outbound routes. You can display all the routes or specify a network address.

The **routes-summary option** displays a summary of the following information:

- Number of routes received from the neighbor
- Number of routes accepted by this Layer 3 Switch from the neighbor
- Number of routes this Layer 3 Switch filtered out of the UPDATES received from the neighbor and did not accept
- Number of routes advertised to the neighbor
- Number of attribute entries associated with routes received from or advertised to the neighbor.

This display shows the following information.

TABLE 226 BGP4 neighbor information

<table>
<thead>
<tr>
<th>This field…</th>
<th>Displays…</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address of the neighbor.</td>
</tr>
<tr>
<td>AS</td>
<td>The AS the neighbor is in.</td>
</tr>
<tr>
<td>EIGP/IBGP</td>
<td>Whether the neighbor session is an IBGP session, an EIGP session, or a confederation EIGP session:</td>
</tr>
<tr>
<td></td>
<td>• EIGP – The neighbor is in another AS.</td>
</tr>
<tr>
<td></td>
<td>• EIGP_Conf – The neighbor is a member of another sub-AS in the same confederation.</td>
</tr>
<tr>
<td></td>
<td>• IBGP – The neighbor is in the same AS.</td>
</tr>
</tbody>
</table>
TABLE 226 BGP4 neighbor information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RouterID</td>
<td>The neighbor router ID.</td>
</tr>
<tr>
<td>Description</td>
<td>The description you gave the neighbor when you configured it on the Layer 3 Switch.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the router session with the neighbor. The states are from the router perspective of the session, not the neighbor perspective. The state values are based on the BGP4 state machine values described in RFC 1771 and can be one of the following for each router:</td>
</tr>
<tr>
<td></td>
<td>• IDLE – The BGP4 process is waiting to be started. Usually, enabling BGP4 or establishing a neighbor session starts the BGP4 process. A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• ADMND – The neighbor has been administratively shut down. Refer to “Administratively shutting down a session with a BGP4 neighbor” on page 1316. A minus sign (-) indicates that the session has gone down and the software is clearing or removing routes.</td>
</tr>
<tr>
<td></td>
<td>• CONNECT – BGP4 is waiting for the connection process for the TCP neighbor session to be completed.</td>
</tr>
<tr>
<td></td>
<td>• ACTIVE – BGP4 is waiting for a TCP connection from the neighbor. NOTE: If the state frequently changes between CONNECT and ACTIVE, there may be a problem with the TCP connection.</td>
</tr>
<tr>
<td></td>
<td>• OPEN SENT – BGP4 is waiting for an Open message from the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• OPEN CONFIRM – BGP4 has received an OPEN message from the neighbor and is now waiting for either a KEEPALIVE or NOTIFICATION message. If the router receives a KEEPALIVE message from the neighbor, the state changes to Established. If the message is a NOTIFICATION, the state changes to Idle.</td>
</tr>
<tr>
<td></td>
<td>• ESTABLISHED – BGP4 is ready to exchange UPDATE messages with the neighbor. If there is more BGP data in the TCP receiver queue, a plus sign (+) is also displayed. NOTE: If you display information for the neighbor using the <code>show ip bgp neighbor <ip-addr></code> command, the TCP receiver queue value will be greater than 0.</td>
</tr>
<tr>
<td>Time</td>
<td>The amount of time this session has been in its current state.</td>
</tr>
<tr>
<td>KeepAliveTime</td>
<td>The keep alive time, which specifies how often this router sends keep alive messages to the neighbor. Refer to “Changing the Keep Alive Time and Hold Time” on page 1317.</td>
</tr>
<tr>
<td>HoldTime</td>
<td>The hold time, which specifies how many seconds the router will wait for a KEEPALIVE or UPDATE message from a BGP4 neighbor before deciding that the neighbor is dead. Refer to “Changing the Keep Alive Time and Hold Time” on page 1317.</td>
</tr>
<tr>
<td>PeerGroup</td>
<td>The name of the peer group the neighbor is in, if applicable.</td>
</tr>
<tr>
<td>Multihop-EBGP</td>
<td>Whether this option is enabled for the neighbor.</td>
</tr>
<tr>
<td>RouteReflectorClient</td>
<td>Whether this option is enabled for the neighbor.</td>
</tr>
<tr>
<td>SendCommunity</td>
<td>Whether this option is enabled for the neighbor.</td>
</tr>
<tr>
<td>NextHopSelf</td>
<td>Whether this option is enabled for the neighbor.</td>
</tr>
<tr>
<td>DefaultOriginate</td>
<td>Whether this option is enabled for the neighbor.</td>
</tr>
<tr>
<td>MaximumPrefixLimit</td>
<td>Lists the maximum number of prefixes the Layer 3 Switch will accept from this neighbor.</td>
</tr>
</tbody>
</table>
TABLE 226 BGP4 neighbor information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RemovePrivateAs</td>
<td>Whether this option is enabled for the neighbor.</td>
</tr>
<tr>
<td>RefreshCapability</td>
<td>Whether this Layer 3 Switch has received confirmation from the neighbor that the neighbor supports the dynamic refresh capability.</td>
</tr>
<tr>
<td>CooperativeFilteringCapability</td>
<td>Whether the neighbor is enabled for cooperative route filtering.</td>
</tr>
<tr>
<td>Distribute-list</td>
<td>Lists the distribute list parameters, if configured.</td>
</tr>
<tr>
<td>Filter-list</td>
<td>Lists the filter list parameters, if configured.</td>
</tr>
<tr>
<td>Prefix-list</td>
<td>Lists the prefix list parameters, if configured.</td>
</tr>
<tr>
<td>Route-map</td>
<td>Lists the route map parameters, if configured.</td>
</tr>
<tr>
<td>Messages Sent</td>
<td>The number of messages this router has sent to the neighbor. The display shows statistics for the following message types:</td>
</tr>
<tr>
<td></td>
<td>• Open</td>
</tr>
<tr>
<td></td>
<td>• Update</td>
</tr>
<tr>
<td></td>
<td>• KeepAlive</td>
</tr>
<tr>
<td></td>
<td>• Notification</td>
</tr>
<tr>
<td></td>
<td>• Refresh-Req</td>
</tr>
<tr>
<td>Messages Received</td>
<td>The number of messages this router has received from the neighbor. The message types are the same as for the Message Sent field.</td>
</tr>
<tr>
<td>Last Update Time</td>
<td>Lists the last time updates were sent and received for the following:</td>
</tr>
<tr>
<td></td>
<td>• NLRis</td>
</tr>
<tr>
<td></td>
<td>• Withdraws</td>
</tr>
</tbody>
</table>
TABLE 226 BGP4 neighbor information (Continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Connection Reset</td>
<td>The reason the previous session with this neighbor ended. The reason can be</td>
</tr>
<tr>
<td>Reason</td>
<td>one of the following. Reasons described in the BGP specifications:</td>
</tr>
<tr>
<td></td>
<td>• Message Header Error</td>
</tr>
<tr>
<td></td>
<td>• Connection Not Synchronized</td>
</tr>
<tr>
<td></td>
<td>• Bad Message Length</td>
</tr>
<tr>
<td></td>
<td>• Bad Message Type</td>
</tr>
<tr>
<td></td>
<td>• OPEN Message Error</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Version Number</td>
</tr>
<tr>
<td></td>
<td>• Bad Peer AS Number</td>
</tr>
<tr>
<td></td>
<td>• Bad BGP Identifier</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Optional Parameter</td>
</tr>
<tr>
<td></td>
<td>• Authentication Failure</td>
</tr>
<tr>
<td></td>
<td>• Unacceptable Hold Time</td>
</tr>
<tr>
<td></td>
<td>• Unsupported Capability</td>
</tr>
<tr>
<td></td>
<td>• UPDATE Message Error</td>
</tr>
<tr>
<td></td>
<td>• Malformed Attribute List</td>
</tr>
<tr>
<td></td>
<td>• Unrecognized Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>• Missing Well-known Attribute</td>
</tr>
<tr>
<td></td>
<td>• Attribute Flags Error</td>
</tr>
<tr>
<td></td>
<td>• Attribute Length Error</td>
</tr>
<tr>
<td></td>
<td>• Invalid ORIGIN Attribute</td>
</tr>
<tr>
<td></td>
<td>• Invalid NEXT_HOP Attribute</td>
</tr>
<tr>
<td></td>
<td>• Optional Attribute Error</td>
</tr>
<tr>
<td></td>
<td>• Invalid Network Field</td>
</tr>
<tr>
<td></td>
<td>• Malformed AS_PATH</td>
</tr>
<tr>
<td></td>
<td>• Hold Timer Expired</td>
</tr>
<tr>
<td></td>
<td>• Finite State Machine Error</td>
</tr>
<tr>
<td></td>
<td>• Rcv Notification</td>
</tr>
</tbody>
</table>

Last Connection Reset	Reasons specific to the Brocade implementation:
Reason (cont.)	• Reset All Peer Sessions
	• User Reset Peer Session
	• Port State Down
	• Peer Removed
	• Peer Shutdown
	• Peer AS Number Change
	• Peer AS Confederation Change
	• TCP Connection KeepAlive Timeout
	• TCP Connection Closed by Remote
	• TCP Data Stream Error Detected
If the router receives a NOTIFICATION message from the neighbor, the message contains an error code corresponding to one of the following errors. Some errors have subcodes that clarify the reason for the error. Where applicable, the subcode messages are listed underneath the error code messages.

Message Header Error:
- Connection Not Synchronized
- Bad Message Length
- Bad Message Type
- Unspecified

Open Message Error:
- Unsupported Version
- Bad Peer As
- Bad BGP Identifier
- Unsupported Optional Parameter
- Authentication Failure
- Unacceptable Hold Time
- Unspecified

Update Message Error:
- Malformed Attribute List
- Unrecognized Attribute
- Missing Attribute
- Attribute Flag Error
- Attribute Length Error
- Invalid Origin Attribute
- Invalid NextHop Attribute
- Optional Attribute Error
- Invalid Network Field
- Malformed AS Path
- Unspecified

Hold Timer Expired

Finite State Machine Error
- Cease
- Unsatisfied

TABLE 226 BGP4 neighbor information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Sent</td>
<td>If the router receives a NOTIFICATION message from the neighbor, the message contains an error code corresponding to one of the following errors. Some errors have subcodes that clarify the reason for the error. Where applicable, the subcode messages are listed underneath the error code messages.</td>
</tr>
</tbody>
</table>

Message Header Error:
- Connection Not Synchronized
- Bad Message Length
- Bad Message Type
- Unspecified

Open Message Error:
- Unsupported Version
- Bad Peer As
- Bad BGP Identifier
- Unsupported Optional Parameter
- Authentication Failure
- Unacceptable Hold Time
- Unspecified

Update Message Error:
- Malformed Attribute List
- Unrecognized Attribute
- Missing Attribute
- Attribute Flag Error
- Attribute Length Error
- Invalid Origin Attribute
- Invalid NextHop Attribute
- Optional Attribute Error
- Invalid Network Field
- Malformed AS Path
- Unspecified

Hold Timer Expired

Finite State Machine Error
- Cease
- Unsatisfied

TABLE 226 BGP4 neighbor information (Continued)

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Received</td>
<td>See above.</td>
</tr>
</tbody>
</table>
TCP Connection state | The state of the connection with the neighbor. The connection can have one of the following states:
| | • LISTEN – Waiting for a connection request.
| | • SYN-SENT – Waiting for a matching connection request after having sent a connection request.
| | • SYN-RECEIVED – Waiting for a confirming connection request acknowledgment after having both received and sent a connection request.
| | • ESTABLISHED – Data can be sent and received over the connection. This is the normal operational state of the connection.
| | • FIN-WAIT-1 – Waiting for a connection termination request from the remote TCP, or an acknowledgment of the connection termination request previously sent.
| | • FIN-WAIT-2 – Waiting for a connection termination request from the remote TCP.
| | • CLOSE-WAIT – Waiting for a connection termination request from the local user.
| | • CLOSING – Waiting for a connection termination request acknowledgment from the remote TCP.
| | • LAST-ACK – Waiting for an acknowledgment of the connection termination request previously sent to the remote TCP (which includes an acknowledgment of its connection termination request).
| | • TIME-WAIT – Waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request.
| | • CLOSED – There is no connection state.

Byte Sent	The number of bytes sent.
Byte Received	The number of bytes received.
Local host	The IP address of the Layer 3 Switch.
Local port	The TCP port the Layer 3 Switch is using for the BGP4 TCP session with the neighbor.
Remote host	The IP address of the neighbor.
Remote port	The TCP port the neighbor is using for the BGP4 TCP session with the Layer 3 Switch.
ISentSeq	The initial send sequence number for the session.
SendNext	The next sequence number to be sent.
TotUnAck	The number of sequence numbers sent by the Layer 3 Switch that have not been acknowledged by the neighbor.
TotSent	The number of sequence numbers sent to the neighbor.
ReTrans	The number of sequence numbers that the Layer 3 Switch retransmitted because they were not acknowledged.
UnAckSeq	The current acknowledged sequence number.
IRcvSeq	The initial receive sequence number for the session.
RcvNext	The next sequence number expected from the neighbor.
SendWnd	The size of the send window.
TotalRcv	The number of sequence numbers received from the neighbor.
DuplRcv	The number of duplicate sequence numbers received from the neighbor.
Displaying BGP4 information

Displaying route information for a neighbor

You can display routes based on the following criteria:

- A summary of the routes for a specific neighbor.
- The routes received from the neighbor that the Layer 3 Switch selected as the best routes to their destinations.
- The routes received from the neighbor that are the best BGP4 routes to their destinations, but were nonetheless not installed in the IP route table because the Layer 3 Switch received better routes from other sources (such as OSPF, RIP, or static IP routes).
- The routes that are unreachable because the Layer 3 Switch does not have a valid RIP, OSPF, or static route to the next hop.
- Routes for a specific network advertised by the Layer 3 Switch to the neighbor.
- The Routing Information Base (RIB) for a specific network advertised to the neighbor. You can display the RIB regardless of whether the Layer 3 Switch has already sent it to the neighbor.

To display route information for a neighbor, use the following CLI methods.

Displaying summary route information

To display summary route information, enter a command such as the following at any level of the CLI.

FastIron# show ip bgp neighbor 10.1.0.2 routes-summary
1 IP Address: 10.1.0.2
Routes Accepted/Installed:1, Filtered/Kept:11, Filtered:11
Routes Selected as BEST Routes:1
 BEST Routes not Installed in IP Forwarding Table:0
Unreachable Routes (no IGP Route for NEXTHOP):0
History Routes:0
NLRIs Received in Update Message:24, Withdraws:0 (0), Replacements:1
NLRIs Discarded due to
 Maximum Prefix Limit:0, AS Loop:0
 Invalid Nexthop:0, Invalid Nexthop Address:0.0.0.0
 Duplicated Originator_ID:0, Cluster_ID:0
Routes Advertised:0, To be Sent:0, To be Withdrawn:0
NLRIs Sent in Update Message:0, Withdraws:0, Replacements:0
Peer Out of Memory Count for:
 Receiving Update Messages:0, Accepting Routes(NLRI):0
 Attributes:0, Outbound Routes(RIB-out):0

This display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RcvWnd</td>
<td>The size of the receive window.</td>
</tr>
<tr>
<td>SendQue</td>
<td>The number of sequence numbers in the send queue.</td>
</tr>
<tr>
<td>RcvQue</td>
<td>The number of sequence numbers in the receive queue.</td>
</tr>
<tr>
<td>CngstWnd</td>
<td>The number of times the window has changed.</td>
</tr>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Routes Received</td>
<td>How many routes the Layer 3 Switch has received from the neighbor during the current BGP4 session:</td>
</tr>
<tr>
<td></td>
<td>• Accepted/Installed – Indicates how many of the received routes the Layer 3 Switch accepted and installed in the BGP4 route table.</td>
</tr>
<tr>
<td></td>
<td>• Filtered – Indicates how many of the received routes the Layer 3 Switch did not accept or install because they were denied by filters on the Layer 3 Switch.</td>
</tr>
<tr>
<td>Routes Selected as BEST Routes</td>
<td>The number of routes that the Layer 3 Switch selected as the best routes to their destinations.</td>
</tr>
<tr>
<td>BEST Routes not Installed in IP</td>
<td>The number of routes received from the neighbor that are the best BGP4 routes to their destinations, but were nonetheless not installed in the IP route table because the Layer 3 Switch received better routes from other sources (such as OSPF, RIP, or static IP routes).</td>
</tr>
<tr>
<td>Forwarding Table</td>
<td></td>
</tr>
<tr>
<td>Unreachable Routes</td>
<td>The number of routes received from the neighbor that are unreachable because the Layer 3 Switch does not have a valid RIP, OSPF, or static route to the next hop.</td>
</tr>
<tr>
<td>History Routes</td>
<td>The number of routes that are down but are being retained for route flap dampening purposes.</td>
</tr>
<tr>
<td>NLRIs Received in Update Message</td>
<td>The number of routes received in Network Layer Reachability (NLRI) format in UPDATE messages:</td>
</tr>
<tr>
<td></td>
<td>• Withdraws – The number of withdrawn routes the Layer 3 Switch has received.</td>
</tr>
<tr>
<td></td>
<td>• Replacements – The number of replacement routes the Layer 3 Switch has received.</td>
</tr>
<tr>
<td>NLRIs Discarded due to</td>
<td>Indicates the number of times the Layer 3 Switch discarded an NLRI for the neighbor due to the following reasons:</td>
</tr>
<tr>
<td></td>
<td>• Maximum Prefix Limit – The Layer 3 Switch configured maximum prefix amount had been reached.</td>
</tr>
<tr>
<td></td>
<td>• AS Loop – An AS loop occurred. An AS loop occurs when the BGP4 AS-path attribute contains the local AS number.</td>
</tr>
<tr>
<td></td>
<td>• Invalid Nexthop – The next hop value was not acceptable.</td>
</tr>
<tr>
<td></td>
<td>• Duplicated Originator_ID – The originator ID was the same as the local router ID.</td>
</tr>
<tr>
<td></td>
<td>• Cluster_ID – The cluster list contained the local cluster ID, or contained the local router ID (see above) if the cluster ID is not configured.</td>
</tr>
<tr>
<td>Routes Advertised</td>
<td>The number of routes the Layer 3 Switch has advertised to this neighbor:</td>
</tr>
<tr>
<td></td>
<td>• To be Sent – The number of routes the Layer 3 Switch has queued to send to this neighbor.</td>
</tr>
</tbody>
</table>
| | • **To be Withdrawn** – The number of NLRIs for withdrawing routes the Layer 3 Switch has queued up to send to this neighbor in UPDATE messages.
Displaying BGP4 information

Displaying advertised routes
To display the routes the Layer 3 Switch has advertised to a specific neighbor for a specific network, enter a command such as the following at any level of the CLI.

FastIron# show ip bgp neighbors 192.168.4.211 advertised-routes
There are 2 routes advertised to neighbor 192.168.4.211
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST I:IBGP L:LOCAL

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.0.0.0/24</td>
<td>192.168.2.102</td>
<td>12</td>
<td>32768</td>
<td>BL</td>
<td></td>
</tr>
<tr>
<td>2 0.1.1.0/24</td>
<td>192.168.2.102</td>
<td>0</td>
<td>32768</td>
<td>BL</td>
<td></td>
</tr>
</tbody>
</table>

You also can enter a specific route, as in the following example.

FastIron# show ip bgp neighbors 192.168.4.211 advertised 200.1.1.0/24
Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST I:IBGP L:LOCAL

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 200.1.1.0/24</td>
<td>192.168.2.102</td>
<td>0</td>
<td>32768</td>
<td>BL</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: show ip bgp neighbor <ip-addr> advertised-routes [<ip-addr> / <prefix>]

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the show ip bgp display.

Displaying the best routes
To display the routes received from a specific neighbor that are the “best” routes to their destinations, enter a command such as the following at any level of the CLI.

FastIron# show ip bgp neighbor 192.168.4.211 routes best

Syntax: show ip bgp neighbor <ip-addr> routes best

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the show ip bgp display.
Displaying the best routes that were nonetheless not installed in the IP route table
To display the BGP4 routes received from a specific neighbor that are the “best” routes to their destinations but are not installed in the Layer 3 Switch IP route table, enter a command such as the following at any level of the CLI.

FastIron# show ip bgp neighbor 192.168.4.211 routes not-installed-best

Each of the displayed routes is a valid path to its destination, but the Layer 3 Switch received another path from a different source (such as OSPF, RIP, or a static route) that has a lower administrative distance. The Layer 3 Switch always selects the path with the lowest administrative distance to install in the IP route table.

Syntax: show ip bgp neighbor <ip-addr> routes not-installed-best

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the show ip bgp display.

Displaying the routes whose destinations are unreachable
To display BGP4 routes whose destinations are unreachable using any of the BGP4 paths in the BGP4 route table, enter a command such as the following at any level of the CLI.

FastIron# show ip bgp neighbor 192.168.4.211 routes unreachable

Syntax: show ip bgp neighbor <ip-addr> routes unreachable

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the show ip bgp display.

Displaying the Adj-RIB-Out for a neighbor
To display the Layer 3 Switch current BGP4 Routing Information Base (Adj-RIB-Out) for a specific neighbor and a specific destination network, enter a command such as the following at any level of the CLI.

FastIron# show ip bgp neighbor 192.168.4.211 rib-out-routes 192.168.1.0/24

Status A:AGGREGATE B:BEST b:NOT-INSTALLED-BEST I:IBGP L:LOCAL

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 200.1.1.0/24</td>
<td>0.0.0.0</td>
<td>0</td>
<td>101</td>
<td>32768</td>
<td>BL</td>
</tr>
</tbody>
</table>

The Adj-RIB-Out contains the routes that the Layer 3 Switch either has most recently sent to the neighbor or is about to send to the neighbor.

Syntax: show ip bgp neighbor <ip-addr> rib-out-routes [<ip-addr>/<prefix>]

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the show ip bgp display.

Displaying peer group information
You can display configuration information for peer groups.

To display peer-group information, enter a command such as the following at the Privileged EXEC level of the CLI.
Displaying BGP4 information

Displaying BGP4 information

Syntax: show ip bgp peer-group [<peer-group-name>]

Only the parameters that have values different from their defaults are listed.

Displaying summary route information

To display summary statistics for all the routes in the Layer 3 Switch BGP4 route table, enter a command such as the following at any level of the CLI.

FastIron# show ip bgp routes summary
 Total number of BGP routes (NLRIs) Installed : 20
 Distinct BGP destination networks : 20
 Filtered BGP routes for soft reconfig : 100178
 Routes originated by this router : 2
 Routes selected as BEST routes : 19
 BEST routes not installed in IP forwarding table : 1
 Unreachable routes (no IGP route for NEXTHOP) : 1
 IBGP routes selected as best routes : 0
 EBGP routes selected as best routes : 17

Syntax: show ip bgp routes summary

This display shows the following information.

TABLE 228 BGP4 summary route information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP routes (NLRIs) Installed</td>
<td>The number of BGP4 routes the Layer 3 Switch has installed in the BGP4 route table.</td>
</tr>
<tr>
<td>Distinct BGP destination networks</td>
<td>The number of destination networks the installed routes represent. The BGP4 route table can have multiple routes to the same network.</td>
</tr>
<tr>
<td>Filtered BGP routes for soft reconfig</td>
<td>The number of route updates received from soft-reconfigured neighbors or peer groups that have been filtered out but retained. For information about soft reconfiguration, refer to “Using soft reconfiguration” on page 1401.</td>
</tr>
<tr>
<td>Routes originated by this router</td>
<td>The number of routes in the BGP4 route table that this Layer 3 Switch originated.</td>
</tr>
<tr>
<td>Routes selected as BEST routes</td>
<td>The number of routes in the BGP4 route table that this Layer 3 Switch has selected as the best routes to the destinations.</td>
</tr>
<tr>
<td>BEST routes not installed in IP forwarding table</td>
<td>The number of BGP4 routes that are the best BGP4 routes to their destinations but were not installed in the IP route table because the Layer 3 Switch received better routes from other sources (such as OSPF, RIP, or static IP routes).</td>
</tr>
<tr>
<td>Unreachable routes (no IGP route for NEXTHOP)</td>
<td>The number of routes in the BGP4 route table whose destinations are unreachable because the next hop is unreachable.</td>
</tr>
</tbody>
</table>
Displaying BGP4 information

BGP4 uses filters you define as well as the algorithm described in “How BGP4 selects a path for a route” on page 1297 to determine the preferred route to a destination. BGP4 sends only the preferred route to the router IP table. However, if you want to view all the routes BGP4 knows about, you can display the BGP4 table using either of the following methods.

To view the BGP4 route table, enter the following command.

FastIron# show ip bgp routes
Total number of BGP Routes: 97371
Prefix Next Hop Metric LocPrf Weight Status
1 3.0.0.0/8 192.168.4.106 100 0 BE
 AS_PATH: 65001 4355 701 80
2 4.0.0.0/8 192.168.4.106 100 0 BE
 AS_PATH: 65001 4355 1
3 4.60.212.0/22 192.168.4.106 100 0 BE
 AS_PATH: 65001 4355 701 1 189
4 6.0.0.0/8 192.168.4.106 100 0 BE
 AS_PATH: 65001 4355 3356 7170 1455
5 8.8.1.0/24 192.168.4.106 0 100 0 BE
 AS_PATH: 65001

Syntax: show ip bgp routes [[network] <ip-addr> | [num] | [age <secs>] | [as-path-access-list <num>] | [best] | [cidr-only] | [community <num>] | [no-export] | [no-advertise] | [internet | [local-as] | [community-access-list <num>] | [community-list <num>] | [detail <option>] | [filter-list <num, num,...> | [next-hop <ip-addr>] | [not-best] | [not-installed-best] | [prefix-list <string> | [regular-expression <regular-expression>] | [route-map <map-name> | [summary] | [unreachable]

The <ip-addr> option displays routes for a specific network. The network keyword is optional. You can enter the network address without entering “network” in front of it.

The <num> option specifies the table entry with which you want the display to start. For example, if you want to list entries beginning with table entry 100, specify 100.

The age <secs> parameter displays only the routes that have been received or updated more recently than the number of seconds you specify.

The as-path-access-list <num> parameter filters the display using the specified AS-path ACL.

The best parameter displays the routes received from the neighbor that the Layer 3 Switch selected as the best routes to their destinations.

The cidr-only option lists only the routes whose network masks do not match their class network length.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBGP routes selected as best routes</td>
<td>The number of “best” routes in the BGP4 route table that are IBGP routes.</td>
</tr>
<tr>
<td>EBGP routes selected as best routes</td>
<td>The number of “best” routes in the BGP4 route table that are EBGP routes.</td>
</tr>
</tbody>
</table>
The **community** option lets you display routes for a specific community. You can specify **local-as**, **no-export**, **no-advertise**, **internet**, or a private community number. You can specify the community number as either two five-digit integer values of up to 1–65535, separated by a colon (for example, 12345:6789) or a single long integer value.

The **community-access-list <num>** parameter filters the display using the specified community ACL.

The **community-list** option lets you display routes that match a specific community filter.

The **detail** option lets you display more details about the routes. You can refine your request by also specifying one of the other display options after the detail keyword.

The **filter-list** option displays routes that match a specific address filter list.

The **next-hop <ip-addr>** option displays the routes for a given next-hop IP address.

The **no-best** option displays the routes for which none of the routes to a given prefix were selected as the best route. The IP route table does not contain a BGP4 route for any of the routes listed by the command.

The **not-installed-best** option displays the routes received from the neighbor that are the best BGP4 routes to their destinations, but were nonetheless not installed in the IP route table because the Layer 3 Switch received better routes from other sources (such as OSPF, RIP, or static IP routes).

The **prefix-list <string>** parameter filters the display using the specified IP prefix list.

The **regular-expression <regular-expression>** option filters the display based on a regular expression. Refer to “Using regular expressions” on page 1348.

The **route-map <map-name>** parameter filters the display using the specified route map. The software displays only the routes that match the match statements in the route map. The software disregards the route map set statements.

The **summary** option displays summary information for the routes.

The **unreachable** option displays the routes that are unreachable because the Layer 3 Switch does not have a valid RIP, OSPF, or static route to the next hop.

Displaying the best BGP4 routes

To display all the BGP4 routes in the Layer 3 Switch BGP4 route table that are the best routes to their destinations, enter a command such as the following at any level of the CLI.

```
FastIron# show ip bgp routes best
Searching for matching routes, use ^C to quit...
Prefix             Next Hop        Metric     LocPrf     Weight Status
1      3.0.0.0/8          192.168.4.106               100        0      BE
   AS_PATH: 65001 4355 701 80
2      4.0.0.0/8          192.168.4.106               100        0      BE
   AS_PATH: 65001 4355 1
3      4.60.212.0/22      192.168.4.106               100        0      BE
   AS_PATH: 65001 4355 701 1 189
4      6.0.0.0/8          192.168.4.106               100        0      BE
   AS_PATH: 65001 4355 701 1 189
5      9.2.0.0/16         192.168.4.106               100        0      BE
   AS_PATH: 65001 4355 701

Syntax: show ip bgp routes best
Displaying BGP4 information

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the `show ip bgp` display.

**Displaying those best BGP4 routes that are nonetheless not in the IP route table**

When the Layer 3 Switch has multiple routes to a destination from different sources (such as BGP4, OSPF, RIP, or static routes), the Layer 3 Switch selects the route with the lowest administrative distance as the best route, and installs that route in the IP route table.

To display the BGP4 routes that are the “best” routes to their destinations but are not installed in the Layer 3 Switch IP route table, enter a command such as the following at any level of the CLI.

```
FastIron# show ip bgp routes not-installed-best
```

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the `show ip bgp` display.

**NOTE**

To display the routes that the Layer 3 Switch has selected as the best routes and installed in the IP route table, display the IP route table using the `show ip route` command.

**Displaying BGP4 routes whose destinations are unreachable**

To display BGP4 routes whose destinations are unreachable using any of the BGP4 paths in the BGP4 route table, enter a command such as the following at any level of the CLI.

```
FastIron# show ip bgp routes unreachable
```

For information about the fields in this display, refer to Table 229 on page 1394. The fields in this display also appear in the `show ip bgp` display.
Displaying information for a specific route

To display BGP4 network information by specifying an IP address within the network, enter a command such as the following at any level of the CLI.

```
FastIron# show ip bgp 9.3.4.0
Number of BGP Routes matching display condition : 1
Status codes: s suppressed, d damped, h history, * valid, > best, i internal
Origin codes: i - IGP, e - EGP, ? - incomplete
```

```
Network Next Hop Metric LocPrf Weight Path
9.3.4.0/24 192.168.4.106 100 0 65001 4355 1 1221 ?
```

Last update to IP routing table: 0h11m38s, 1 path(s) installed:
```
Gateway Port
192.168.2.1 2/1
```

Route is advertised to 1 peers:
```
20.20.20.2(65300)
```


If you use the `route` option, the display for the information is different, as shown in the following example.

```
FastIron# show ip bgp route 9.3.4.0
Number of BGP Routes matching display condition : 1
```

```
Prefix Next Hop Metric LocPrf Status
9.3.4.0/24 192.168.4.106 100 0 BE
```

AS_PATH: 65001 4355 1 1221

Last update to IP routing table: 0h12m1s, 1 path(s) installed:
```
Gateway Port
192.168.2.1 2/1
```

Route is advertised to 1 peers:
```
20.20.20.2(65300)
```

These displays show the following information.

**TABLE 229**  BGP4 network information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of BGP Routes matching display condition</td>
<td>The number of routes that matched the display parameters you entered. This is the number of routes displayed by the command.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route status. The status code appears in the left column of the display, to the left of each route. The status codes are described in the command output. <strong>NOTE:</strong> This field appears only if you do not enter the <code>route</code> option.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The network address and prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The next-hop router for reaching the network from the Layer 3 Switch.</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the route MED attribute. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>LocPrf</td>
<td>The degree of preference for this route relative to other routes in the local AS. When the BGP4 algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 – 4294967295.</td>
</tr>
</tbody>
</table>
Displaying BGP4 information

Here is an example of the information displayed when you use the `detail` option. In this example, the information for one route is shown.

```
FastIron# show ip bgp routes detail
Total number of BGP Routes: 2
Status A: AGGREGATE B: BEST b: NOT-INSTALLED-BEST C: CONFED_EBGP D: DAMPED
1 Prefix: 10.5.0.0/24, Status: BME, Age: 0h28m28s
 NEXT_HOP: 201.1.1.2, Learned from Peer: 10.1.0.2 (5)
 LOCAL_PREF: 101, MED: 0, ORIGIN: igp, Weight: 10
 AS_PATH: 5
 Adj_RIB_out count: 4, Admin distance 20
```
These displays show the following information.

**TABLE 230**  BGP4 route information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Routes</td>
<td>The number of BGP4 routes.</td>
</tr>
<tr>
<td>Status codes</td>
<td>A list of the characters the display uses to indicate the route status. The status code is appears in the left column of the display, to the left of each route. The status codes are described in the command output.</td>
</tr>
<tr>
<td>Prefix</td>
<td>The network prefix and mask length.</td>
</tr>
<tr>
<td>Status</td>
<td>The route status, which can be one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• A – AGGREGATE. The route is an aggregate route for multiple networks.</td>
</tr>
<tr>
<td></td>
<td>• B – BEST. BGP4 has determined that this is the optimal route to the destination.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> If the “b” is shown in lowercase, the software was not able to install the route in the IP route table.</td>
</tr>
<tr>
<td></td>
<td>• b – NOT-INSTALLED-BEST. The routes received from the neighbor are the best BGP4 routes to their destinations, but were nonetheless not installed in the IP route table because the Layer 3 Switch received better routes from other sources (such as OSPF, RIP, or static IP routes).</td>
</tr>
<tr>
<td></td>
<td>• C – CONFED_EBGP. The route was learned from a neighbor in the same confederation and AS, but in a different sub-AS within the confederation.</td>
</tr>
<tr>
<td></td>
<td>• D – DAMPED. This route has been dampened (by the route dampening feature), and is currently unusable.</td>
</tr>
<tr>
<td></td>
<td>• H – HISTORY. Route dampening is configured for this route, and the route has a history of flapping and is unreachable now.</td>
</tr>
<tr>
<td></td>
<td>• I – INTERNAL. The route was learned through BGP4.</td>
</tr>
<tr>
<td></td>
<td>• L – LOCAL. The route originated on this Layer 3 Switch.</td>
</tr>
<tr>
<td></td>
<td>• M – MULTIPATH. BGP4 load sharing is enabled and this route was selected as one of the best ones to the destination. The best route among the multiple paths also is marked with “B”.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> If the “m” is shown in lowercase, the software was not able to install the route in the IP route table.</td>
</tr>
<tr>
<td></td>
<td>• S – SUPPRESSED. This route was suppressed during aggregation and thus is not advertised to neighbors.</td>
</tr>
<tr>
<td>Age</td>
<td>The last time an update occurred.</td>
</tr>
<tr>
<td>Next_Hop</td>
<td>The next-hop router for reaching the network from the Layer 3 Switch.</td>
</tr>
<tr>
<td>Learned from Peer</td>
<td>The IP address of the neighbor that sent this route.</td>
</tr>
<tr>
<td>Local_Pref</td>
<td>The degree of preference for this route relative to other routes in the local AS. When the BGP4 algorithm compares routes on the basis of local preferences, the route with the higher local preference is chosen. The preference can have a value from 0 – 4294967295.</td>
</tr>
<tr>
<td>MED</td>
<td>The route metric. If the route does not have a metric, this field is blank.</td>
</tr>
<tr>
<td>Origin</td>
<td>The source of the route information. The origin can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• EGP – The routes with this set of attributes came to BGP through EGP.</td>
</tr>
<tr>
<td></td>
<td>• IGP – The routes with this set of attributes came to BGP through IGP.</td>
</tr>
<tr>
<td></td>
<td>• INCOMPLETE – The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPF or RIP. When BGP4 compares multiple routes to a destination to select the best route, IGP is preferred over EGP and both are preferred over INCOMPLETE.</td>
</tr>
</tbody>
</table>
Displaying BGP4 route-attribute entries

The route-attribute entries table lists the sets of BGP4 attributes stored in the router memory. Each set of attributes is unique and can be associated with one or more routes. In fact, the router typically has fewer route attribute entries than routes. To display the route-attribute entries table, use one of the following methods.

To display the IP route table, enter the following command.

FastIron# show ip bgp attribute-entries

Syntax: show ip bgp attribute-entries

Here is an example of the information displayed by this command. A zero value indicates that the attribute is not set.

<table>
<thead>
<tr>
<th>FastIron# show ip bgp attribute-entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Attribute Entries: 7753</td>
</tr>
<tr>
<td>1  Next Hop :192.168.11.1  Metric :0  Origin:IGP</td>
</tr>
<tr>
<td>Originator:0.0.0.0  Cluster List:None</td>
</tr>
<tr>
<td>Aggregator:AS Number :0  Router-ID:0.0.0.0  Atomic:FALSE</td>
</tr>
<tr>
<td>Local Pref:100  Communities:Internet</td>
</tr>
<tr>
<td>AS Path  :(65002) 65001 4355 2548 3561 5400 6669 5548</td>
</tr>
<tr>
<td>2  Next Hop :192.168.11.1  Metric :0  Origin:IGP</td>
</tr>
<tr>
<td>Originator:0.0.0.0  Cluster List:None</td>
</tr>
<tr>
<td>Aggregator:AS Number :0  Router-ID:0.0.0.0  Atomic:FALSE</td>
</tr>
<tr>
<td>Local Pref:100  Communities:Internet</td>
</tr>
<tr>
<td>AS Path  :(65002) 65001 4355 2548</td>
</tr>
</tbody>
</table>

This display shows the following information.
TABLE 231  BGP4 route-attribut entries information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of BGP Attribute Entries</td>
<td>The number of routes contained in this router BGP4 route table.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The IP address of the next hop router for routes that have this set of attributes.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost of the routes that have this set of attributes.</td>
</tr>
</tbody>
</table>
| Origin | The source of the route information. The origin can be one of the following:  
  • EGP – The routes with this set of attributes came to BGP through EGP.  
  • IGP – The routes with this set of attributes came to BGP through IGP.  
  • INCOMPLETE – The routes came from an origin other than one of the above. For example, they may have been redistributed from OSPF or RIP.  When BGP4 compares multiple routes to a destination to select the best route, IGP is preferred over EGP and both are preferred over INCOMPLETE. |
| Originator | The originator of the route in a route reflector environment. |
| Cluster List | The route-reflector clusters through which this set of attributes has passed. |
| Aggregator | Aggregator information:  
  • AS Number shows the AS in which the network information in the attribute set was aggregated. This value applies only to aggregated routes and is otherwise 0.  
  • Router-ID shows the router that originated this aggregator. |
| Atomic | Whether the network information in this set of attributes has been aggregated and this aggregation has resulted in information loss:  
  • TRUE – Indicates information loss has occurred  
  • FALSE – Indicates no information loss has occurred  
  NOTE: Information loss under these circumstances is a normal part of BGP4 and does not indicate an error. |
| Local Pref | The degree of preference for routes that use this set of attributes relative to other routes in the local AS. |
| Communities | The communities that routes with this set of attributes are in. |
| AS Path | The ASs through which routes with this set of attributes have passed. The local AS is shown in parentheses. |

Displaying the routes BGP4 has placed in the IP route table

The IP route table indicates the routes it has received from BGP4 by listing “BGP” as the route type.

To display the IP route table, enter the following command.

FastIron# show ip route

Syntax: show ip route [<ip-addr> | <num> | bgp | ospf | rip]

Here is an example of the information displayed by this command. Notice that most of the routes in this example have type “B”, indicating that their source is BGP4.
Displaying BGP4 information

FastIron# show ip route
Total number of IP routes: 50834
B:BGP D:Directly-Connected O:OSPF R:RIP S:Static
Network Address   NetMask          Gateway          Port      Cost   Type
3.0.0.0          255.0.0.0        192.168.13.2     1/1       0      B
4.0.0.0          255.0.0.0        192.168.13.2     1/1       0      B
9.20.0.0         255.255.0.0      192.168.13.2     1/1       0      B
10.1.0.0         255.255.0.0      0.0.0.0          1/1       1      D
10.10.11.0       255.255.255.0    0.0.0.0          2/24      1      D
12.2.97.0        255.255.255.0    192.168.13.2     1/1       0      B
12.3.63.0        255.255.255.0    192.168.13.2     1/1       0      B
12.3.123.0       255.255.255.0    192.168.13.2     1/1       0      B
12.5.252.0       255.255.254.0    192.168.13.2     1/1       0      B
12.6.42.0        255.255.254.0    192.168.13.2     1/1       0      B
remaining 50824 entries not shown...

Displaying route flap dampening statistics

To display route dampening statistics or all the dampened routes, enter the following command at any level of the CLI.

FastIron# show ip bgp flap-statistics
Total number of flapping routes: 414

<table>
<thead>
<tr>
<th>Status Code</th>
<th>From</th>
<th>Flaps Since</th>
<th>Reuse</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>h&gt;</td>
<td>192.50.206.0/23</td>
<td>166.90.213.77</td>
<td>1</td>
<td>0:13:0:0:0:65001:4355:701</td>
</tr>
<tr>
<td>h&gt;</td>
<td>203.255.192.0/20</td>
<td>166.90.213.77</td>
<td>1</td>
<td>0:13:0:0:0:65001:4355:7018</td>
</tr>
<tr>
<td>h&gt;</td>
<td>203.252.165.0/24</td>
<td>166.90.213.77</td>
<td>1</td>
<td>0:13:0:0:0:65001:4355:7018</td>
</tr>
<tr>
<td>h&gt;</td>
<td>192.50.208.0/23</td>
<td>166.90.213.77</td>
<td>1</td>
<td>0:13:0:0:0:65001:4355:7018</td>
</tr>
<tr>
<td>h&gt;</td>
<td>133.33.0.0/16</td>
<td>166.90.213.77</td>
<td>1</td>
<td>0:13:0:0:0:65001:4355:701</td>
</tr>
<tr>
<td>*</td>
<td>204.17.220.0/24</td>
<td>166.90.213.77</td>
<td>1</td>
<td>0:1:4:0:0:65001:4355:701:62</td>
</tr>
</tbody>
</table>

Syntax: show ip bgp flap-statistics [regular-expression <regular-expression> | <address> <mask> [longer-prefixes] | neighbor <ip-addr> | filter-list <num>...]

The regular-expression <regular-expression> parameter is a regular expression. The regular expressions are the same ones supported for BGP4 AS-path filters. Refer to “Using regular expressions” on page 1348.

The <address> <mask> parameter specifies a particular route. If you also use the optional longer-prefixes parameter, then all statistics for routes that match the specified route or have a longer prefix than the specified route are displayed. For example, if you specify 209.157.0.0 longer, then all routes with the prefix 209.157 or that have a longer prefix (such as 209.157.22) are displayed.

The neighbor <ip-addr> parameter displays route flap dampening statistics only for routes learned from the specified neighbor. You also can display route flap statistics for routes learned from a neighbor by entering the following command: show ip bgp neighbor <ip-addr> flap-statistics.

The filter-list <num> parameter specifies one or more filters. Only the routes that have been dampened and that match the specified filters are displayed.

This display shows the following information.
You also can display all the dampened routes by entering the following command.

`show ip bgp dampened-paths`

### Displaying the active route map configuration

To view the device active route map configuration (contained in the running-config) without displaying the entire running-config, enter the following command at any level of the CLI.

```
FastIron# show route-map
route-map permitnet4 permit 10
 match ip address prefix-list plist1
route-map permitnet1 permit 1
 match ip address prefix-list plist2
route-map setcomm permit 1
 set community 1234:2345 no-export
route-map test111 permit 111
 match address-filters 11
 set community 11:12 no-export
route-map permit1122 permit 12
 match ip address 11
route-map permit1122 permit 13
 match ip address std_22
```

This example shows that the running-config contains six route maps. Notice that the match and set statements within each route map are listed beneath the command for the route map itself. In this simplified example, each route map contains only one match or set statement.

To display the active configuration for a specific route map, enter a command such as the following, which specifies a route map name.

```
FastIron# show route-map setcomm
route-map setcomm permit 1
 set community 1234:2345 no-export
```
This example shows the active configuration for a route map called “setcomm”.

Syntax: show route-map [<map-name>]

Updating route information and resetting a neighbor session

The following sections describe ways to update route information with a neighbor, reset the session with a neighbor, and close a session with a neighbor.

Whenever you change a policy (ACL, route map, and so on) that affects the routes that the Layer 3 Switch learns from a BGP4 neighbor or peer group of neighbors, you must enter a command to place the changes into effect. The changes take place automatically, but only affect new route updates. To make changes retroactive for routes received or sent before the changes were made, you need to enter a clear command.

You can update the learned routes using either of the following methods:

- Request the complete BGP4 route table from the neighbor or peer group. You can use this method if the neighbor supports the refresh capability (RFCs 2842 and 2858).
- Clear (reset) the session with the neighbor or peer group. This is the only method you can use if the neighbor does not support the refresh capability.

Each of these methods is effective, but can be disruptive to the network. The first method adds overhead while the Layer 3 Switch learns and filters the neighbor or group entire route table, while the second method adds more overhead while the devices re-establish their BGP4 sessions.

You also can clear and reset the BGP4 routes that have been installed in the IP route table. Refer to “Clearing and resetting BGP4 routes in the IP route table” on page 1407.

Using soft reconfiguration

The soft reconfiguration feature places policy changes into effect without resetting the BGP4 session. Soft reconfiguration does not request the neighbor or group to send its entire BGP4 table, nor does the feature reset the session with the neighbor or group. Instead, the soft reconfiguration feature stores all the route updates received from the neighbor or group. When you request a soft reset of inbound routes, the software performs route selection by comparing the policies against the stored route updates, instead of requesting the neighbor BGP4 route table or resetting the session with the neighbor.

When you enable the soft reconfiguration feature, it sends a refresh message to the neighbor or group if the neighbor or group supports dynamic refresh. Otherwise, the feature resets the neighbor session. This step is required to ensure that the soft reconfiguration feature has a complete set of updates to use, and occurs only once, when you enable the feature. The feature accumulates all the route updates from the neighbor, eliminating the need for additional refreshes or resets when you change policies in the future.

To use soft reconfiguration:

- Enable the feature.
- Make the policy changes.
- Apply the changes by requesting a soft reset of the inbound updates from the neighbor or group.
Use the following CLI methods to configure soft configuration, apply policy changes, and display information for the updates that are filtered out by the policies.

**Enabling soft reconfiguration**

To configure a neighbor for soft reconfiguration, enter a command such as the following.

```
FastIron(config-bgp-router)# neighbor 10.10.200.102 soft-reconfiguration inbound
```

This command enables soft reconfiguration for updates received from 10.10.200.102. The software dynamically refreshes or resets the session with the neighbor, then retains all route updates from the neighbor following the reset.

**Syntax:** `[no] neighbor <ip-addr> | <peer-group-name> soft-reconfiguration inbound

**NOTE**
The syntax related to soft reconfiguration is shown. For complete command syntax, refer to “Adding BGP4 neighbors” on page 1307.

**Placing a policy change into effect**

To place policy changes into effect, enter a command such as the following.

```
FastIron(config-bgp-router)# clear ip bgp neighbor 10.10.200.102 soft in
```

This command updates the routes by comparing the route policies against the route updates that the Layer 3 Switch has stored. The command does not request additional updates from the neighbor or otherwise affect the session with the neighbor.

**Syntax:** `clear ip bgp neighbor <ip-addr> | <peer-group-name> soft in

**NOTE**
If you do not specify “in”, the command applies to both inbound and outbound updates.

**NOTE**
The syntax related to soft reconfiguration is shown. For complete command syntax, refer to “Dynamically refreshing routes” on page 1404.

**Displaying the filtered routes received from the neighbor or peer group**

When you enable soft reconfiguration, the Layer 3 Switch saves all updates received from the specified neighbor or peer group. This includes updates that contain routes that are filtered out by the BGP4 route policies in effect on the Layer 3 Switch. To display the routes that have been filtered out, enter the following command at any level of the CLI.
Updating route information and resetting a neighbor session

The routes displayed by the command are the routes that the Layer 3 Switch BGP4 policies filtered out. The Layer 3 Switch did not place the routes in the BGP4 route table, but did keep the updates. If a policy change causes these routes to be permitted, the Layer 3 Switch does not need to request the route information from the neighbor, but instead uses the information in the updates.

Syntax: `show ip bgp filtered-routes [<ip-addr>] [as-path-access-list <num>] [detail] [prefix-list <string>]`

The `<ip-addr>` parameter specifies the IP address of the destination network.

The `as-path-access-list <num>` parameter specifies an AS-path ACL. Only the routes permitted by the AS-path ACL are displayed.

The `detail` parameter displays detailed information for the routes. (The example above shows summary information.) You can specify any of the other options after `detail` to further refine the display request.

The `prefix-list <string>` parameter specifies an IP prefix list. Only the routes permitted by the prefix list are displayed.

**NOTE**
The syntax for displaying filtered routes is shown. For complete command syntax, refer to “Displaying the BGP4 route table” on page 1391.

**Displaying all the routes received from the neighbor**

To display all the route information received in route updates from a neighbor since you enabled soft reconfiguration, enter a command such as the following at any level of the CLI.

Syntax: `show ip bgp neighbors <ip-addr> received-routes [detail]`
The **detail** parameter displays detailed information for the routes. The example above shows summary information.

---

**NOTE**
The syntax for displaying received routes is shown. For complete command syntax, refer to “Displaying BGP4 neighbor information” on page 1378.

---

**NOTE**
The **show ip bgp neighbor** `<ip-addr>` received-routes syntax supported in previous software releases is changed to the following syntax: **show ip bgp neighbor `<ip-addr>` routes**.

---

**Dynamically requesting a route refresh from a BGP4 neighbor**

You can easily apply changes to filters that control BGP4 routes received from or advertised to a neighbor, without resetting the BGP4 session between the Layer 3 Switch and the neighbor. For example, if you add, change, or remove a BGP4 address filter that denies specific routes received from a neighbor, you can apply the filter change by requesting a route refresh from the neighbor. If the neighbor also supports dynamic route refreshes, the neighbor resends its Adj-RIB-Out, its table of BGP4 routes. Using the route refresh feature, you do not need to reset the session with the neighbor.

The route refresh feature is based on the following specifications:

- RFC 2842. This RFC specifies the Capability Advertisement, which a BGP4 router uses to dynamically negotiate a capability with a neighbor.
- RFC 2858 for Multi-protocol Extension.

**NOTE**
The Brocade implementation of dynamic route refresh supports negotiation of IP version 4 unicast only.

- RFC 2918, which describes the dynamic route refresh capability

The dynamic route refresh capability is enabled by default and cannot be disabled. When the Layer 3 Switch sends a BGP4 OPEN message to a neighbor, the Layer 3 Switch includes a Capability Advertisement to inform the neighbor that the Layer 3 Switch supports dynamic route refresh.

**NOTE**
The option for dynamically refreshing routes received from a neighbor requires the neighbor to support dynamic route refresh. If the neighbor does not support this feature, the option does not take effect and the software displays an error message. The option for dynamically re-advertising routes to a neighbor does not require the neighbor to support dynamic route refresh.

To use the dynamic refresh feature, use either of the following methods.

**Dynamically refreshing routes**

The following sections describe how to dynamically refresh BGP4 routes to place new or changed filters into effect.

To request a dynamic refresh of all routes from a neighbor, enter a command such as the following.
Updating route information and resetting a neighbor session

FastIron(config-bgp-router)# clear ip bgp neighbor 192.168.1.170 soft in

This command asks the neighbor to send its BGP4 table (Adj-RIB-Out) again. The Layer 3 Switch applies its filters to the incoming routes and adds, modifies, or removes BGP4 routes as necessary.

**Syntax:**
```
clear ip bgp neighbor all | <ip-addr> | <peer-group-name> | <as-num> [soft-outbound | soft [in | out]]
```

The `all | <ip-addr> | <peer-group-name> | <as-num>` specifies the neighbor. The `<ip-addr>` parameter specifies a neighbor by its IP interface with the Layer 3 Switch. The `<peer-group-name>` specifies all neighbors in a specific peer group. The `<as-num>` parameter specifies all neighbors within the specified AS. The `all` parameter specifies all neighbors.

The `soft-outbound` parameter updates all outbound routes by applying the new or changed filters, but sends only the existing routes affected by the new or changed filters to the neighbor.

The `soft [in | out]` parameter specifies whether you want to refresh the routes received from the neighbor or sent to the neighbor:

- **soft in** does one of the following:
  - If you enabled soft reconfiguration for the neighbor or peer group, `soft in` updates the routes by comparing the route policies against the route updates that the Layer 3 Switch has stored. Soft reconfiguration does not request additional updates from the neighbor or otherwise affect the session with the neighbor. Refer to “Using soft reconfiguration” on page 1401.
  - If you did not enable soft reconfiguration, `soft in` requests the neighbor entire BGP4 route table (Adj-RIB-Out), then applies the filters to add, change, or exclude routes.
  - If a neighbor does not support dynamic refresh, `soft in` resets the neighbor session.

- **soft out** updates all outbound routes, then sends the Layer 3 Switch entire BGP4 route table (Adj-RIB-Out) to the neighbor, after changing or excluding the routes affected by the filters.

If you do not specify `in` or `out`, the Layer 3 Switch performs both options.

**NOTE**
The `soft-outbound` parameter updates all outbound routes by applying the new or changed filters, but sends only the existing routes affected by the new or changed filters to the neighbor. The `soft out` parameter updates all outbound routes, then sends the Layer 3 Switch entire BGP4 route table (Adj-RIB-Out) to the neighbor, after changing or excluding the routes affected by the filters. Use `soft-outbound` if only the outbound policy is changed.

To dynamically resend all the Layer 3 Switch BGP4 routes to a neighbor, enter a command such as the following.

FastIron(config-bgp-router)# clear ip bgp neighbor 192.168.1.170 soft out

This command applies its filters for outgoing routes to the Layer 3 Switch BGP4 route table (Adj-RIB-Out), changes or excludes routes accordingly, then sends the resulting Adj-RIB-Out to the neighbor.

**NOTE**
The Brocade Layer 3 Switch does not automatically update outbound routes using a new or changed outbound policy or filter when a session with the neighbor goes up or down. Instead, the Layer 3 Switch applies a new or changed policy or filter when a route is placed in the outbound queue (Adj-RIB-Out).
To place a new or changed outbound policy or filter into effect, you must enter a `clear ip bgp neighbor` command regardless of whether the neighbor session is up or down. You can enter the command without optional parameters or with the `soft out` or `soft-outbound` option. Either way, you must specify a parameter for the neighbor (`<ip-addr>`, `<as-num>`, `<peer-group-name>`, or `all`).

**Displaying dynamic refresh information**

You can use the `show ip bgp neighbors` command to display information for dynamic refresh requests. For each neighbor, the display lists the number of dynamic refresh requests the Layer 3 Switch has sent to or received from the neighbor and indicates whether the Layer 3 Switch received confirmation from the neighbor that the neighbor supports dynamic route refresh.

The RefreshCapability field indicates whether this Layer 3 Switch has received confirmation from the neighbor that the neighbor supports the dynamic refresh capability. The statistics in the Message Sent and Message Received rows under Refresh-Req indicate how many dynamic refreshes have been sent to and received from the neighbor. The statistic is cumulative across sessions.

```
FastIron# show ip bgp neighbor 10.4.0.2
1 IP Address: 10.4.0.2, AS: 5 (EBGP), RouterID: 100.0.0.1
 Description: neighbor 10.4.0.2
 State: ESTABLISHED, Time: 0h1m0s, KeepAliveTime: 0, HoldTime: 0
 PeerGroup: pg1
 MultiHop-EBGP: yes, ttl: 1
 RouteReflectorClient: yes
 SendCommunity: yes
 NextHopSelf: yes
 DefaultOriginate: yes (default sent)
 MaximumPrefixLimit: 90000
 RemovePrivateAs: : yes
 RefreshCapability: Received

 Route Filter Policies:
 Distribute-list: (out) 20
 Filter-list: (in) 30
 Prefix-list: (in) pf1
 Route-map: (in) setnp1 (out) setnp2

 Messages: Open Update KeepAlive Notification Refresh-Req
 Sent : 1 1 1 0 0
 Received: 1 8 1 0 0
 Last Update Time: NLRI Withdraw NLRI Withdraw
 Tx: 0h0m59s --- Rx: 0h0m59s ---
 Last Connection Reset Reason: Unknown
 Notification Sent: Unspecified
 Notification Received: Unspecified

 TCP Connection state: ESTABLISHED
 Byte Sent: 115, Received: 492
 Local host: 10.4.0.1, Local Port: 179
 Remote host: 10.4.0.2, Remote Port: 8053
 ISentSeq: 52837276 SendNext: 52837392 TotUnAck: 0
 TotSent: 116 Retrans: 0 UnAckSeq: 52837392
 IRCvSeq: 2155052043 RcvNext: 2155052536 SendWnd: 16384
 TotalRcv: 493 DupliRcv: 0 RcvWnd: 16384
 SendQue: 0 RcvQue: 0 CngstWnd: 1460
```
Closing or resetting a neighbor session

You can close a neighbor session or resend route updates to a neighbor.

If you make changes to filters or route maps and the neighbor does not support dynamic route refresh, use the following methods to ensure that neighbors contain only the routes you want them to contain:

- If you close a neighbor session, the Layer 3 Switch and the neighbor clear all the routes they learned from each other. When the Layer 3 Switch and neighbor establish a new BGP4 session, they exchange route tables again. Use this method if you want the Layer 3 Switch to relearn routes from the neighbor and resend its own route table to the neighbor.

- If you use the soft-outbound option, the Layer 3 Switch compiles a list of all the routes it would normally send to the neighbor at the beginning of a session. However, before sending the updates, the Brocade Layer 3 Switch also applies the filters and route maps you have configured to the list of routes. If the filters or route maps result in changes to the list of routes, the Layer 3 Switch sends updates to advertise, change, or even withdraw routes on the neighbor as needed. This ensures that the neighbor receives only the routes you want it to contain. Even if the neighbor already contains a route learned from the Layer 3 Switch that you later decided to filter out, using the soft-outbound option removes that route from the neighbor.

You can specify a single neighbor or a peer group.

To close a neighbor session and thus flush all the routes exchanged by the Layer 3 Switch and the neighbor, enter the following command.

```plaintext
FastIron# clear ip bgp neighbor all
```

**Syntax:** clear ip bgp neighbor all | <ip-addr> | <peer-group-name> | <as-num> [soft-outbound | soft [in | out]]

The `all` | `<ip-addr>` | `<peer-group-name>` | `<as-num>` specifies the neighbor. The `<ip-addr>` parameter specifies a neighbor by its IP interface with the Layer 3 Switch. The `<peer-group-name>` specifies all neighbors in a specific peer group. The `<as-num>` parameter specifies all neighbors within the specified AS. The `all` parameter specifies all neighbors.

To resend routes to a neighbor without closing the neighbor session, enter a command such as the following.

```plaintext
FastIron# clear ip bgp neighbor 10.0.0.1 soft out
```

Clearing and resetting BGP4 routes in the IP route table

To clear BGP4 routes from the IP route table and reset the routes, enter a command such as the following.

```plaintext
FastIron# clear ip bgp routes
```

**Syntax:** clear ip bgp routes [\(<ip-addr>>\/<prefix-length>\)]

**NOTE**
The `clear ip bgp routes` command has the same effect as the `clear ip route` command, but applies only to routes that come from BGP4.
Clearing traffic counters

You can clear the counters (reset them to 0) for BGP4 messages. To do so, use one of the following methods.

To clear the BGP4 message counter for all neighbors, enter the following command.

`FastIron# clear ip bgp traffic`

**Syntax:** clear ip bgp traffic

To clear the BGP4 message counter for a specific neighbor, enter a command such as the following.

`FastIron# clear ip bgp neighbor 10.0.0.1 traffic`

To clear the BGP4 message counter for all neighbors within a peer group, enter a command such as the following.

`FastIron# clear ip bgp neighbor PeerGroup1 traffic`

**Syntax:** clear ip bgp neighbor all | <ip-addr> | <peer-group-name> | <as-num> traffic

The `all` | `<ip-addr>` | `<peer-group-name>` | `<as-num>` specifies the neighbor. The `<ip-addr>` parameter specifies a neighbor by its IP interface with the Layer 3 Switch. The `<peer-group-name>` specifies all neighbors in a specific peer group. The `<as-num>` parameter specifies all neighbors within the specified AS. The `all` parameter specifies all neighbors.

Clearing route flap dampening statistics

To clear route flap dampening statistics, use the following CLI method.

**NOTE**  
Clearing the dampening statistics for a route does not change the dampening status of the route.

To clear all the route dampening statistics, enter the following command at any level of the CLI.

`FastIron# clear ip bgp flap-statistics`

**Syntax:** clear ip bgp flap-statistics [regular-expression | <address> <mask> | neighbor <ip-addr>]

The parameters are the same as those for the `show ip bgp flap-statistics` command (except the `longer-prefixes` option is not supported). Refer to “Displaying route flap dampening statistics” on page 1370.

**NOTE**  
The `clear ip bgp damping` command not only clears statistics but also un-suppresses the routes. Refer to “Displaying route flap dampening statistics” on page 1370.

Removing route flap dampening

You can un-suppress routes by removing route flap dampening from the routes. The Layer 3 Switch allows you to un-suppress all routes at once or un-suppress individual routes.
To un-suppress all the suppressed routes, enter the following command at the Privileged EXEC level of the CLI.

```
FastIron# clear ip bgp damping
```

**Syntax:** `clear ip bgp damping [ <ip-addr> <ip-mask> ]`

The `<ip-addr>` parameter specifies a particular network.

The `<ip-mask>` parameter specifies the network mask.

To un-suppress a specific route, enter a command such as the following.

```
FastIron# clear ip bgp damping 209.157.22.0 255.255.255.0
```

This command un-suppresses only the routes for network 209.157.22.0/24.

### Clearing diagnostic buffers

The Layer 3 Switch stores the following BGP4 diagnostic information in buffers:

- The first 400 bytes of the last packet that contained an error
- The last NOTIFICATION message either sent or received by the Layer 3 Switch

To display these buffers, use options with the `show ip bgp neighbors` command. Refer to “Displaying BGP4 neighbor information” on page 1378.

This information can be useful if you are working with Brocade Technical Support to resolve a problem. The buffers do not identify the system time when the data was written to the buffer. If you want to ensure that diagnostic data in a buffer is recent, you can clear the buffers. You can clear the buffers for a specific neighbor or for all neighbors.

If you clear the buffer containing the first 400 bytes of the last packet that contained errors, all the bytes are changed to zeros. The Last Connection Reset Reason field of the BGP neighbor table also is cleared.

If you clear the buffer containing the last NOTIFICATION message sent or received, the buffer contains no data.

You can clear the buffers for all neighbors, for an individual neighbor, or for all the neighbors within a specific peer group.

To clear these buffers for neighbor 10.0.0.1, enter the following commands.

```
FastIron# clear ip bgp neighbor 10.0.0.1 last-packet-with-error
FastIron# clear ip bgp neighbor 10.0.0.1 notification-errors
```

**Syntax:**
```
clear ip bgp neighbor all | <ip-addr> | <peer-group-name> | <as-num> last-packet-with-error | notification-errors
```

The `all` | `<ip-addr>` | `<peer-group-name>` | `<as-num>` specifies the neighbor. The `<ip-addr>` parameter specifies a neighbor by its IP interface with the Layer 3 Switch. The `<peer-group-name>` specifies all neighbors in a specific peer group. The `<as-num>` parameter specifies all neighbors within the specified AS. The `all` parameter specifies all neighbors.
This chapter explains how to secure access to management functions on a Brocade device.

**NOTE**
For all Brocade devices, RADIUS Challenge is supported for 802.1x authentication but not for login authentication. Also, multiple challenges are supported for TACACS+ login authentication.

### Securing access methods

The following table lists the management access methods available on a Brocade device, how they are secured by default, and the ways in which they can be secured.

**TABLE 233** Ways to secure management access to Brocade devices

<table>
<thead>
<tr>
<th>Access method</th>
<th>How the access method is secured by default</th>
<th>Ways to secure the access method</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial access to the CLI</td>
<td>Not secured</td>
<td>Establish passwords for management privilege levels</td>
<td>page 1426</td>
</tr>
<tr>
<td>Access to the Privileged EXEC and CONFIG levels of the CLI</td>
<td>Not secured</td>
<td>Establish a password for Telnet access to the CLI</td>
<td>page 1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish passwords for management privilege levels</td>
<td>page 1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set up local user accounts</td>
<td>page 1430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure TACACS/TACACS+ security</td>
<td>page 1441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure RADIUS security</td>
<td>page 1460</td>
</tr>
</tbody>
</table>
## Securing access methods

TABLE 233  Ways to secure management access to Brocade devices (Continued)

<table>
<thead>
<tr>
<th>Access method</th>
<th>How the access method is secured by default</th>
<th>Ways to secure the access method</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telnet access</td>
<td>Not secured</td>
<td>Regulate Telnet access using ACLs</td>
<td>page 1414</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow Telnet access only from specific IP addresses</td>
<td>page 1417</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restrict Telnet access based on a client MAC address</td>
<td>page 1418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow Telnet access only from specific MAC addresses</td>
<td>page 1420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specify the maximum number of login attempts for Telnet access</td>
<td>page 1420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable Telnet access</td>
<td>page 1424</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish a password for Telnet access</td>
<td>page 1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish passwords for privilege levels of the CLI</td>
<td>page 1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set up local user accounts</td>
<td>page 1430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure TACACS/TACACS+ security</td>
<td>page 1441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure RADIUS security</td>
<td>page 1460</td>
</tr>
<tr>
<td>Secure Shell (SSH) access</td>
<td>Not configured</td>
<td>Configure SSH</td>
<td>page 1483</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regulate SSH access using ACLs</td>
<td>page 1415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow SSH access only from specific IP addresses</td>
<td>page 1417</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow SSH access only from specific MAC addresses</td>
<td>page 1418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish passwords for privilege levels of the CLI</td>
<td>page 1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set up local user accounts</td>
<td>page 1430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure TACACS/TACACS+ security</td>
<td>page 1441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure RADIUS security</td>
<td>page 1460</td>
</tr>
</tbody>
</table>
### Restricting remote access to management functions

You can restrict access to management functions from remote sources, including Telnet, the Web Management Interface, and SNMP. The following methods for restricting remote access are supported:

**TABLE 233  Ways to secure management access to Brocade devices (Continued)**

<table>
<thead>
<tr>
<th>Access method</th>
<th>How the access method is secured by default</th>
<th>Ways to secure the access method</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web management access</td>
<td>SNMP read or read-write community strings</td>
<td>Regulate Web management access using ACLs</td>
<td>page 1415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow Web management access only from specific IP addresses</td>
<td>page 1418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow Web management access only to clients connected to a specific VLAN</td>
<td>page 1421</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable Web management access</td>
<td>page 1424</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure SSL security for the Web Management Interface</td>
<td>page 1439</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set up local user accounts</td>
<td>page 1430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish SNMP read or read-write community strings for SNMP versions 1 and 2</td>
<td>page 1667</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establishing user groups for SNMP version 3</td>
<td>page 1672</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure TACACS/TACACS+ security</td>
<td>page 1441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configure RADIUS security</td>
<td>page 1460</td>
</tr>
<tr>
<td>SNMP (IronView Network Manager) access</td>
<td>SNMP read or read-write community strings and the password to the Super User privilege level</td>
<td>Regulate SNMP access using ACLs</td>
<td>page 1416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow SNMP access only from specific IP addresses</td>
<td>page 1418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable SNMP access</td>
<td>page 1425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow SNMP access only to clients connected to a specific VLAN</td>
<td>page 1421</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish passwords to management levels of the CLI</td>
<td>page 1426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set up local user accounts</td>
<td>page 1430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Establish SNMP read or read-write community strings</td>
<td>page 1441</td>
</tr>
<tr>
<td>TFTP access</td>
<td>Not secured</td>
<td>Allow TFTP access only to clients connected to a specific VLAN</td>
<td>page 1421</td>
</tr>
<tr>
<td>Access for Stacked Devices</td>
<td>Access to multiple consoles must be secured after AAA is enabled</td>
<td>Extra steps must be taken to secure multiple consoles in an IronStack.</td>
<td>page 1442</td>
</tr>
</tbody>
</table>

**NOTE:** SNMP read or read-write community strings are always required for SNMP access to the device.
Using ACLs to restrict remote access

You can use standard ACLs to control the following access methods to management functions on a Brocade device:

- Telnet
- SSH
- Web management
- SNMP

Consider the following to configure access control for these management access methods.

1. Configure an ACL with the IP addresses you want to allow to access the device.
2. Configure a Telnet access group, SSH access group, Web access group, and SNMP community strings. Each of these configuration items accepts an ACL as a parameter. The ACL contains entries that identify the IP addresses that can use the access method.

The following sections present examples of how to secure management access using ACLs. Refer to Chapter 17, “Configuring Rule-Based IP Access Control Lists (ACLs)” for more information on configuring ACLs.

Using an ACL to restrict Telnet access

To configure an ACL that restricts Telnet access to the device, enter commands such as the following.

```
FastIron(config)# access-list 10 deny host 209.157.22.32 log
FastIron(config)# access-list 10 deny 209.157.23.0 0.0.0.255 log
FastIron(config)# access-list 10 deny 209.157.24.0 0.0.0.255 log
FastIron(config)# access-list 10 deny 209.157.25.0/24 log
FastIron(config)# access-list 10 permit any
FastIron(config)# telnet access-group 10
FastIron(config)# write memory
```

Syntax: `telnet access-group <num>`

The `<num>` parameter specifies the number of a standard ACL and must be from 1 – 99.

The commands above configure ACL 10, then apply the ACL as the access list for Telnet access. The device allows Telnet access to all IP addresses except those listed in ACL 10.
Restricting remote access to management functions

To configure a more restrictive ACL, create permit entries and omit the `permit any` entry at the end of the ACL.

**Example**

```
FastIron(config)# access-list 10 permit host 209.157.22.32
FastIron(config)# access-list 10 permit 209.157.23.0 0.0.0.255
FastIron(config)# access-list 10 permit 209.157.24.0 0.0.0.255
FastIron(config)# access-list 10 permit 209.157.25.0/24
FastIron(config)# telnet access-group 10
FastIron(config)# write memory
```

The ACL in this example permits Telnet access only to the IP addresses in the `permit` entries and denies Telnet access from all other IP addresses.

**Using an ACL to restrict SSH access**

To configure an ACL that restricts SSH access to the device, enter commands such as the following.

```
FastIron(config)# access-list 12 deny host 209.157.22.98 log
FastIron(config)# access-list 12 deny 209.157.23.0 0.0.0.255 log
FastIron(config)# access-list 12 deny 209.157.24.0/24 log
FastIron(config)# access-list 12 permit any
FastIron(config)# ssh access-group 12
FastIron(config)# write memory
```

**Syntax: ssh access-group <num>**

The `<num>` parameter specifies the number of a standard ACL and must be from 1 – 99.

These commands configure ACL 12, then apply the ACL as the access list for SSH access. The device denies SSH access from the IP addresses listed in ACL 12 and permits SSH access from all other IP addresses. Without the last ACL entry for permitting all packets, this ACL would deny SSH access from all IP addresses.

**NOTE**

In this example, the command `ssh access-group 10` could have been used to apply the ACL configured in the example for Telnet access. You can use the same ACL multiple times.

**Using an ACL to restrict Web management access**

To configure an ACL that restricts Web management access to the device, enter commands such as the following.

```
FastIron(config)# access-list 12 deny host 209.157.22.98 log
FastIron(config)# access-list 12 deny 209.157.23.0 0.0.0.255 log
FastIron(config)# access-list 12 deny 209.157.24.0/24 log
FastIron(config)# access-list 12 permit any
FastIron(config)# web access-group 12
FastIron(config)# write memory
```

**Syntax: web access-group <num>**

The `<num>` parameter specifies the number of a standard ACL and must be from 1 – 99.
These commands configure ACL 12, then apply the ACL as the access list for Web management access. The device denies Web management access from the IP addresses listed in ACL 12 and permits Web management access from all other IP addresses. Without the last ACL entry for permitting all packets, this ACL would deny Web management access from all IP addresses.

**Using ACLs to restrict SNMP access**

To restrict SNMP access to the device using ACLs, enter commands such as the following.

**NOTE**
The syntax for using ACLs for SNMP access is different from the syntax for controlling Telnet, SSH, and Web management access using ACLs.

```
FastIron(config)# access-list 25 deny host 209.157.22.98 log
FastIron(config)# access-list 25 deny 209.157.23.0 0.0.0.255 log
FastIron(config)# access-list 25 deny 209.157.24.0 0.0.0.255 log
FastIron(config)# access-list 25 permit any
FastIron(config)# access-list 30 deny 209.157.25.0 0.0.0.255 log
FastIron(config)# access-list 30 deny 209.157.26.0/24 log
FastIron(config)# access-list 30 permit any
FastIron(config)# snmp-server community public ro 25
FastIron(config)# snmp-server community private rw 30
FastIron(config)# write memory
```

**Syntax:** `snmp-server community <string> ro | rw <num>`

The `<string>` parameter specifies the SNMP community string the user must enter to gain SNMP access.

The `ro` parameter indicates that the community string is for read-only (“get”) access. The `rw` parameter indicates the community string is for read-write (“set”) access.

The `<num>` parameter specifies the number of a standard ACL and must be from 1 – 99.

These commands configure ACLs 25 and 30, then apply the ACLs to community strings.

ACL 25 is used to control read-only access using the “public” community string. ACL 30 is used to control read-write access using the “private” community string.

**NOTE**
When `snmp-server community` is configured, all incoming SNMP packets are validated first by their community strings and then by their bound ACLs.

**Defining the console idle time**

By default, a Brocade device does not time out serial console sessions. A serial session remains open indefinitely until you close it. You can however define how many minutes a serial management session can remain idle before it is timed out.

**NOTE**
You must enable AAA support for console commands, AAA authentication, and Exec authorization in order to set the console idle time.

To configure the idle time for a serial console session, use the following command.

```
FastIron(config)# console timeout 120
```
Restricting remote access to management functions

Syntax: [no] console timeout <0 – 240>
Possible values: 0 – 240 minutes
Default value: 0 minutes (no timeout)

**NOTE**
In RADIUS, the standard attribute Idle-Timeout is used to define the console session timeout value. The attribute Idle-Timeout value is specified in seconds. Within the switch, it is truncated to the nearest minute, because the switch configuration is defined in minutes.

Restricting remote access to the device to specific IP addresses

By default, a Brocade device does not control remote management access based on the IP address of the managing device. You can restrict remote management access to a single IP address for the following access methods:

- Telnet access
- SSH access
- Web management access
- SNMP access

In addition, you can restrict all access methods to the same IP address using a single command.

The following examples show the CLI commands for restricting remote access. You can specify only one IP address with each command. However, you can enter each command ten times to specify up to ten IP addresses.

**NOTE**
You cannot restrict remote management access using the Web Management Interface.

**Restricting Telnet access to a specific IP address**

To allow Telnet access to the Brocade device only to the host with IP address 209.157.22.39, enter the following command.

```
FastIron(config)# telnet-client 209.157.22.39
```

**Syntax:** [no] telnet-client <ip-addr> | <ipv6-addr>

**Restricting SSH access to a specific IP address**

To allow SSH access to the Brocade device only to the host with IP address 209.157.22.39, enter the following command.

```
FastIron(config)# ip ssh client 209.157.22.39
```

**Syntax:** [no] ip ssh client <ip-addr> | <ipv6-addr>
Restricting remote access to management functions

**Restricting Web management access to a specific IP address**

To allow Web management access to the Brocade device only to the host with IP address 209.157.22.26, enter the following command.

FastIron(config)# web-client 209.157.22.26

Syntax: [no] web-client <ip-addr> | <ipv6-addr>

**Restricting SNMP access to a specific IP address**

To allow SNMP access (which includes IronView Network Manager) to the Brocade device only to the host with IP address 209.157.22.14, enter the following command.

FastIron(config)# snmp-client 209.157.22.14

Syntax: [no] snmp-client <ip-addr> | <ipv6-addr>

**Restricting all remote management access to a specific IP address**

To allow Telnet, Web, and SNMP management access to the Brocade device only to the host with IP address 209.157.22.69, enter three separate commands (one for each access type) or enter the following command.

FastIron(config)# all-client 209.157.22.69

Syntax: [no] all-client <ip-addr> | <ipv6-addr>

**Restricting access to the device based on IP or MAC address**

Platform Support:
- FastIron X Series devices running software release 03.0.00 and later
- FGS devices running software release 02.5.00 and later
- FLS devices running software release 03.0.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later (IPv4 only)

You can restrict remote management access to the Brocade device, using Telnet, SSH, HTTP, and HTTPS, based on the connecting client IP or MAC address.

**Restricting Telnet connection**

You can restrict Telnet connection to a device based on the client IP address or MAC address.

To allow Telnet access to the Brocade device only to the host with IP address 209.157.22.39 and MAC address 0007.e90f.e9a0, enter the following command.

FastIron(config)# telnet client 209.157.22.39 0007.e90f.e9a0

Syntax: [no] telnet client <ip-addr> | <ipv6-addr> <mac-addr>
NOTE
For FastIron CX devices, this feature applies only to IPv4 clients.

The following command allows Telnet access to the Brocade device to a host with any IP address and MAC address 0007.e90f.e9a0.

```
FastIron(config)# telnet client any 0007.e90f.e9a0
```

Syntax: `[no] telnet client any <mac-addr>`

Restricting SSH connection

Platform Support:
- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 02.5.00 and later
- FLS devices running software release 03.0.00 and later
- FWS devices running software release 04.3.00 or later
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

You can restrict SSH connection to a device based on the client IP address or MAC address.

To allow SSH access to the Brocade device only to the host with IP address 209.157.22.39 and MAC address 0007.e90f.e9a0, enter the following command.

```
FastIron(config)# ip ssh client 209.157.22.39 0007.e90f.e9a0
```

Syntax: `[no] ip ssh client <ip-addr> | <ipv6-addr> <mac-addr>`

To allow SSH access to the Brocade device to a host with any IP address and MAC address 0007.e90f.e9a0, enter the following command.

```
FastIron(config)# ip ssh client any 0007.e90f.e9a0
```

Syntax: `[no] ip ssh client any <mac-addr>`

Restricting HTTP and HTTPS connection

Platform Support:
- FGS and FLS devices running software release 02.6.00 and later
- FWS devices running software release 04.3.00 or later
- FastIron X Series devices running software release 03.3.00 and later
- Turbolron X Series devices running software release 04.1.00 and later
- FCX-S devices running software release 06.0.00 and later

You can restrict an HTTP or HTTPS connection to a device based on the client IP address or MAC address.

To allow HTTP and HTTPS access to the Brocade device only to the host with IP address 209.157.22.40 and MAC address 0007.e90f.ab1c, enter the following command.

```
FastIron(config)# web client 209.157.22.40 0007.e90f.ab1c
```

Syntax: `[no] web client <ip-addr> | <ipv6-addr> <mac-addr>`
The following command allows HTTP and HTTPS access to the Brocade device to a host with any IP address and MAC address 0007.e90f.10ba.

```
FastIron(config)# web client any 0007.e90f.10ba
```

**Syntax:**  
```
[no] web client any <mac-addr>
```

**Specifying the maximum number of login attempts for Telnet access**

If you are connecting to the Brocade device using Telnet, the device prompts you for a username and password. By default, you have up to 4 chances to enter a correct username and password. If you do not enter a correct username or password after 4 attempts, the Brocade device disconnects the Telnet session.

You can specify the number of attempts a Telnet user has to enter a correct username and password before the device disconnects the Telnet session. For example, to allow a Telnet user up to 5 chances to enter a correct username and password, enter the following command.

```
FastIron(config)# telnet login-retries 5
```

**Syntax:**  
```
[no] telnet login-retries <number>
```

You can specify from 0 – 5 attempts. The default is 4 attempts.

**Restricting remote access to the device to specific VLAN IDs**

You can restrict management access to a Brocade device to ports within a specific port-based VLAN. VLAN-based access control applies to the following access methods:

- Telnet access
- Web management access
- SNMP access
- TFTP access

By default, access is allowed for all the methods listed above on all ports. Once you configure security for a given access method based on VLAN ID, access to the device using that method is restricted to only the ports within the specified VLAN.

VLAN-based access control works in conjunction with other access control methods. For example, suppose you configure an ACL to permit Telnet access only to specific client IP addresses, and you also configure VLAN-based access control for Telnet access. In this case, the only Telnet clients that can access the device are clients that have one of the IP addresses permitted by the ACL and are connected to a port that is in a permitted VLAN. Clients who have a permitted IP address but are connected to a port in a VLAN that is not permitted still cannot access the device through Telnet.

**Restricting Telnet access to a specific VLAN**

To allow Telnet access only to clients in a specific VLAN, enter a command such as the following.

```
FastIron(config)# telnet server enable vlan 10
```
Restricting remote access to management functions

The command in this example configures the device to allow Telnet management access only to clients connected to ports within port-based VLAN 10. Clients connected to ports that are not in VLAN 10 are denied management access.

Syntax: [no] telnet server enable vlan <vlan-id>

Restricting Web management access to a specific VLAN

To allow Web management access only to clients in a specific VLAN, enter a command such as the following.

```
FastIron(config)# web-management enable vlan 10
```

The command in this example configures the device to allow Web management access only to clients connected to ports within port-based VLAN 10. Clients connected to ports that are not in VLAN 10 are denied management access.

Syntax: [no] web-management enable vlan <vlan-id>

Restricting SNMP access to a specific VLAN

To allow SNMP access only to clients in a specific VLAN, enter a command such as the following.

```
FastIron(config)# snmp-server enable vlan 40
```

The command in this example configures the device to allow SNMP access only to clients connected to ports within port-based VLAN 40. Clients connected to ports that are not in VLAN 40 are denied access.

Syntax: [no] snmp-server enable vlan <vlan-id>

Restricting TFTP access to a specific VLAN

To allow TFTP access only to clients in a specific VLAN, enter a command such as the following.

```
FastIron(config)# tftp client enable vlan 40
```

The command in this example configures the device to allow TFTP access only to clients connected to ports within port-based VLAN 40. Clients connected to ports that are not in VLAN 40 are denied access.

Syntax: [no] tftp client enable vlan <vlan-id>

Designated VLAN for Telnet management sessions to a Layer 2 Switch

All Brocade FastIron devices support the creation of management VLANs. By default, the management IP address you configure on a Layer 2 Switch applies globally to all the ports on the device. This is true even if you divide the device ports into multiple port-based VLANs.

If you want to restrict the IP management address to a specific port-based VLAN, you can make that VLAN the designated management VLAN for the device. When you configure a VLAN to be the designated management VLAN, the management IP address you configure on the device is associated only with the ports in the designated VLAN. To establish a Telnet management session with the device, a user must access the device through one of the ports in the designated VLAN.
You also can configure up to five default gateways for the designated VLAN, and associate a metric with each one. The software uses the gateway with the lowest metric. The other gateways reside in the configuration but are not used. To use one of the other gateways, modify the configuration so that the gateway you want to use has the lowest metric.

If more than one gateway has the lowest metric, the gateway that appears first in the running-config is used.

**NOTE**

If you have already configured a default gateway globally and you do not configure a gateway in the VLAN, the software uses the globally configured gateway and gives the gateway a metric value of 1.

To configure a designated management VLAN, enter commands such as the following.

```plaintext
FastIron(config)# vlan 10 by port
FastIron(config-vlan-10)# untag ethernet 1/1 to 1/4
FastIron(config-vlan-10)# management-vlan
FastIron(config-vlan-10)# default-gateway 10.10.10.1 1
FastIron(config-vlan-10)# default-gateway 20.20.20.1 2
```

These commands configure port-based VLAN 10 to consist of ports 1/1 – 1/4 and to be the designated management VLAN. The last two commands configure default gateways for the VLAN. Since the 10.10.10.1 gateway has a lower metric, the software uses this gateway. The other gateway remains in the configuration but is not used. You can use the other one by changing the metrics so that the 20.20.20.1 gateway has the lower metric.

**Syntax:**

```
[no] default-gateway <ip-addr> <metric>
```

The `<ip-addr>` parameters specify the IP address of the gateway router.

The `<metric>` parameter specifies the metric (cost) of the gateway. You can specify a value from 1 – 5. There is no default. The software uses the gateway with the lowest metric.

**Device management security**

By default, all management access is disabled. Each of the following management access methods must be specifically enabled as required in your installation:

- SSHv2
- SNMP
- Web management through HTTP
- Web management through HTTPS

The commands for granting access to each of these management interfaces is described in the following.

**SSHv2**

To allow SSHv2 access to the Brocade device, you must generate a Crypto Key as shown in the following command.

```plaintext
FastIron(config)# crypto key generate
```

**Syntax:** `crypto key [generate | zeroize]`

The `generate` parameter generates a dsa key pair.
The **zeroize** parameter deletes the currently operative dsa key pair.

In addition, you must use AAA authentication to create a password to allow SSHv2 access. For example, the following command configures AAA authentication to use TACACS+ for authentication as the default or local if TACACS+ is not available.

```
FastIron(config)# aaa authentication login default tacacs+ local
```

### SNMP

To allow SNMP access to the Brocade device, enter the following command.

```
FastIron(config)# snmp-server
```

**Syntax:** `[no] snmp-server`

### Web management through HTTP

To allow web management through HTTP for the Brocade device, you enable web management as shown in the following command.

```
FastIron(config)# web-management
```

**Syntax:** `[no] web-management [http | https]`

Using the web-management command without the `http` or `https` option makes web management available for both.

The `http` option specifies that web management is enabled for HTTP access.

The `https` option specifies that web management is enabled for HTTPS access.

### Web management through HTTPS

To allow web management through HTTPS, you must enable web management as shown in “Web management through HTTP”. Additionally, you must generate a crypto SSL certificate or import digital certificates issued by a third-party Certificate Authority (CA).

To generate a crypto SSL certificate use the following command.

```
FastIron(config)# crypto-ssl certificate generate
```

**Syntax:** `crypto-ssl certificate [generate | zeroize]`

Using the web-management command without the `http` or `https` option makes web management available for both.

The `generate` parameter generates an ssl certificate.

The `zeroize` parameter deletes the currently operative ssl certificate.

To import a digital certificate issued by a third-party Certificate Authority (CA) and save it in the flash memory, use the following command.

```
FastIron(config)# ip ssl certificate-data-file tftp 10.10.10.1 cacert.pem
```

**Syntax:** `ip ssl certificate-data-file tftp <ip-addr> <file-name>`

The `<ip-addr>` variable is the IP address of the TFTP server from which the digital certificate file is being downloaded.
Restricting remote access to management functions

The `<file-name>` variable is the file name of the digital certificate that you are importing to the router.

**Disabling specific access methods**

You can specifically disable the following access methods:

- Telnet access
- Web management access
- SNMP access
- TFTP

**NOTE**

If you disable Telnet access, you will not be able to access the CLI except through a serial connection to the management module. If you disable SNMP access, you will not be able to use IronView Network Manager or third-party SNMP management applications.

**Disabling Telnet access**

You can use a Telnet client to access the CLI on the device over the network. If you do not plan to use the CLI over the network and want to disable Telnet access to prevent others from establishing CLI sessions with the device, enter the following command.

```
FastIron(config)# no telnet server
```

To re-enable Telnet operation, enter the following command.

```
FastIron(config)# telnet server
```

**Syntax:** `[no] telnet server`

**NOTE**

The Telnet server is enabled by default.

**Disabling Web management access**

If you want to prevent access to the device through the Web Management Interface, you can disable the Web Management Interface.

**NOTE**

As soon as you make this change, the device stops responding to Web management sessions. If you make this change using your Web browser, your browser can contact the device, but the device will not reply once the change takes place.

To disable the Web Management Interface, enter the following command.

```
FastIron(config)# no web-management
```

To re-enable the Web Management Interface, enter the following command.

```
FastIron(config)# web-management
```

**Syntax:** `[no] web-management`
Disabling Web management access by HP ProCurve Manager

By default, TCP ports 80 and 280 are enabled on the Brocade device. TCP port 80 (HTTP) allows access to the device Web Management Interface. TCP port 280 allows access to the device by HP ProCurve Manager.

The `no web-management` command disables both TCP ports. However, if you want to disable only port 280 and leave port 80 enabled, use the `hp-top-tools` option with the command. Here is an example.

```
FastIron(config)# no web-management hp-top-tools
```

**Syntax:** `[no] web-management [allow-no-password | enable [vlan <vlan-id>] | front-panel | hp-top-tools | list-menu]`

The `hp-top-tools` parameter disables TCP port 280.

Disabling SNMP access

SNMP is required if you want to manage a Brocade device using IronView Network Manager.

To disable SNMP management of the device.

```
FastIron(config)# no snmp-server
```

To later re-enable SNMP management of the device.

```
FastIron(config)# snmp-server
```

**Syntax:** `no snmp-server`

Disabling TFTP access

On FastIron X Series and TurboIron X Series devices, you can globally disable TFTP to block TFTP client access. By default, TFTP client access is enabled.

To disable TFTP client access, enter the following command at the Global CONFIG level of the CLI.

```
FastIron(config)# tftp disable
```

When TFTP is disabled, users are prohibited from using the `copy tftp` command to copy files to the system flash. If users enter this command while TFTP is disabled, the system will reject the command and display an error message.

To re-enable TFTP client access once it is disabled, enter the following command.

```
FastIron(config)# no tftp disable
```

**Syntax:** `[no] tftp disable`

Setting passwords

Passwords can be used to secure the following access methods:

- Telnet access can be secured by setting a Telnet password. Refer to “Setting a Telnet password” on page 1426.
Setting passwords

- Access to the Privileged EXEC and CONFIG levels of the CLI can be secured by setting passwords for management privilege levels. Refer to “Setting passwords for management privilege levels” on page 1426.

This section also provides procedures for enhancing management privilege levels, recovering from a lost password, and disabling password encryption.

**NOTE**
You also can configure up to 16 user accounts consisting of a user name and password, and assign each user account a management privilege level. Refer to “Setting up local user accounts” on page 1430.

### Setting a Telnet password

By default, the device does not require a user name or password when you log in to the CLI using Telnet. You can assign a password for Telnet access using one of the following methods.

Set the password “letmein” for Telnet access to the CLI using the following command at the global CONFIG level.

```
FastIron(config)# enable telnet password letmein
```

**Syntax:** `[no] enable telnet password <string>`

**Suppressing Telnet connection rejection messages**

By default, if a Brocade device denies Telnet management access to the device, the software sends a message to the denied Telnet client. You can optionally suppress the rejection message. When you enable the option, a denied Telnet client does not receive a message from the Brocade device. Instead, the denied client simply does not gain access.

To suppress the connection rejection message, use the following CLI method.

To suppress the connection rejection message sent by the device to a denied Telnet client, enter the following command at the global CONFIG level of the CLI.

```
FastIron(config)# telnet server suppress-reject-message
```

**Syntax:** `[no] telnet server suppress-reject-message`

### Setting passwords for management privilege levels

You can set one password for each of the following management privilege levels:

- **Super User level** – Allows complete read-and-write access to the system. This is generally for system administrators and is the only management privilege level that allows you to configure passwords.

- **Port Configuration level** – Allows read-and-write access for specific ports but not for global (system-wide) parameters.

- **Read Only level** – Allows access to the Privileged EXEC mode and CONFIG mode of the CLI but only with read access.

You can assign a password to each management privilege level. You also can configure up to 16 user accounts consisting of a user name and password, and assign each user account to one of the three privilege levels. Refer to “Setting up local user accounts” on page 1430.
NOTE
You must use the CLI to assign a password for management privilege levels. You cannot assign a password using the Web Management Interface.

If you configure user accounts in addition to privilege level passwords, the device will validate a user access attempt using one or both methods (local user account or privilege level password), depending on the order you specify in the authentication-method lists. Refer to “Configuring authentication-method lists” on page 1477.

Follow the steps given below to set passwords for management privilege levels.

1. At the opening CLI prompt, enter the following command to change to the Privileged level of the EXEC mode.
   
   FastIron> enable
   FastIron#

2. Access the CONFIG level of the CLI by entering the following command.
   
   FastIron# configure terminal
   FastIron(config)#

3. Enter the following command to set the Super User level password.
   
   FastIron(config)# enable super-user-password <text>

   NOTE
   You must set the Super User level password before you can set other types of passwords. The Super User level password can be an alphanumeric string, but cannot begin with a number.

4. Enter the following commands to set the Port Configuration level and Read Only level passwords.
   
   FastIron(config)# enable port-config-password <text>
   FastIron(config)# enable read-only-password <text>

   Syntax: enable super-user-password <text>
   Syntax: enable port-config-password <text>
   Syntax: enable read-only-password <text>

   NOTE
   If you forget your Super User level password, refer to “Recovering from a lost password” on page 1429.

Augmenting management privilege levels

Each management privilege level provides access to specific areas of the CLI by default:

- Super User level provides access to all commands and displays.
- Port Configuration level gives access to:
  - The User EXEC and Privileged EXEC levels
  - The port-specific parts of the CONFIG level
  - All interface configuration levels
- Read Only level gives access to:
  - The User EXEC and Privileged EXEC levels
You can grant additional access to a privilege level on an individual command basis. To grant the additional access, you specify the privilege level you are enhancing, the CLI level that contains the command, and the individual command.

**NOTE**
This feature applies only to management privilege levels on the CLI. You cannot augment management access levels for the Web Management Interface.

Enhance the Port Configuration privilege level so users also can enter IP commands at the global CONFIG level.

`FastIron(config)# privilege configure level 4 ip`

In this command, `configure` specifies that the enhanced access is for a command at the global CONFIG level of the CLI. The `level 4` parameter indicates that the enhanced access is for management privilege level 4 (Port Configuration). All users with Port Configuration privileges will have the enhanced access. The `ip` parameter indicates that the enhanced access is for the IP commands. Users who log in with valid Port Configuration level user names and passwords can enter commands that begin with “ip” at the global CONFIG level.

**Syntax:** `[no] privilege <cli-level> level <privilege-level> <command-string>`

The `<cli-level>` parameter specifies the CLI level and can be one of the following values:

- `exec` – EXEC level; for example, FastIron> or FastIron#
- `configure` – CONFIG level; for example, FastIron(config)#
- `interface` – Interface level; for example, FastIron(config-if-6)#
- `loopback-interface` – loopback interface level
- `virtual-interface` – Virtual-interface level; for example, FastIron(config-vif-6)#
- `dot1x` – 802.1X configuration level
- `ipv6-access-list` – IPv6 access list configuration level
- `rip-router` – RIP router level; for example, FastIron(config-rip-router)#
- `ospf-router` – OSPF router level; for example, FastIron(config-ospf-router)#
- `dvmrp-router` – DVMRP router level; for example, FastIron(config-dvmrp-router)#
- `pim-router` – PIM router level; for example, FastIron(config-pim-router)#
- `bgp-router` – BGP4 router level; for example, FastIron(config-bgp-router)#
- `vrrp-router` – VRRP configuration level
- `gvrp` – GVRP configuration level
- `trunk` – trunk configuration level
- `port-vlan` – Port-based VLAN level; for example, FastIron(config-vlan)#
- `protocol-vlan` – Protocol-based VLAN level

The `<privilege-level>` indicates the number of the management privilege level you are augmenting. You can specify one of the following:

- `0` – Super User level (full read-write access)
- `4` – Port Configuration level
- `5` – Read Only level
The `<command-string>` parameter specifies the command you are allowing users with the specified privilege level to enter. To display a list of the commands at a CLI level, enter “?” at that level's command prompt.

**Recovering from a lost password**

Recovery from a lost password requires direct access to the serial port and a system reset.

**NOTE**  
You can perform this procedure only from the CLI.

Follow the steps given below to recover from a lost password.

1. Start a CLI session over the serial interface to the device.
2. Reboot the device.
3. At the initial boot prompt at system startup, enter `b` to enter the boot monitor mode.
4. Enter `no password` at the prompt. (You cannot abbreviate this command.) This command will cause the device to bypass the system password check.
5. Enter `boot system flash primary` at the prompt.
6. After the console prompt reappears, assign a new password.

**Displaying the SNMP community string**

If you want to display the SNMP community string, enter the following commands.

```
FastIron(config)# enable password-display
FastIron# show snmp server
```

The `enable password-display` command enables display of the community string, but only in the output of the `show snmp server` command. Display of the string is still encrypted in the startup-config file and running-config. Enter the command at the global CONFIG level of the CLI.

**Disabling password encryption**

When you configure a password, then save the configuration to the flash memory on the Brocade device, the password is also saved to flash as part of the configuration file. By default, the passwords are encrypted so that the passwords cannot be observed by another user who displays the configuration file. Even if someone observes the file while it is being transmitted over TFTP, the password is encrypted.

**NOTE**  
You cannot disable password encryption using the Web Management Interface.

If you want to remove the password encryption, you can disable encryption by entering the following command.

```
FastIron(config)# no service password-encryption
```

**Syntax:** `[no] service password-encryption`
Specifying a minimum password length

By default, the Brocade device imposes no minimum length on the Line (Telnet), Enable, or Local passwords. You can configure the device to require that Line, Enable, and Local passwords be at least a specified length.

For example, to specify that the Line, Enable, and Local passwords be at least 8 characters, enter the following command.

```
FastIron(config)# enable password-min-length 8
```

**Syntax:** `enable password-min-length <number-of-characters>`

The `<number-of-characters>` can be from 1 – 48.

**NOTE**

On TurboIron X Series devices, you can set local password on devices running software release 04.2.00 and later.

Setting up local user accounts

You can define up to 16 local user accounts on a Brocade device. User accounts regulate who can access the management functions in the CLI using the following methods:

- Telnet access
- Web management access
- SNMP access

Local user accounts provide greater flexibility for controlling management access to Brocade devices than do management privilege level passwords and SNMP community strings of SNMP versions 1 and 2. You can continue to use the privilege level passwords and the SNMP community strings as additional means of access authentication. Alternatively, you can choose not to use local user accounts and instead continue to use only the privilege level passwords and SNMP community strings. Local user accounts are backward-compatible with configuration files that contain privilege level passwords. Refer to “Setting passwords for management privilege levels” on page 1426.

If you configure local user accounts, you also need to configure an authentication-method list for Telnet access, Web management access, and SNMP access. Refer to “Configuring authentication-method lists” on page 1477.

For each local user account, you specify a user name. You also can specify the following parameters:

- A password
- A management privilege level, which can be one of the following:
  - **Super User level (default)** – Allows complete read-and-write access to the system. This is generally for system administrators and is the only privilege level that allows you to configure passwords.
  - **Port Configuration level** – Allows read-and-write access for specific ports but not for global parameters.
  - **Read Only level** – Allows access to the Privileged EXEC mode and CONFIG mode with read access only.
• Starting in release 03.0.00 for the FastIron X Series devices, you can set additional username and password rules. Refer to “Enhancements to username and password”.

Enhancements to username and password

Platform Support:
• FastIron X Series devices running software release 03.0.00 or later
• FGS and FLS devices running software release 03.2.00 and later
• FWS devices running software release 04.3.00 or later
• Turbolon X Series devices running software release 04.1.00 and later
• FCX-S devices running software release 06.0.00 and later

This section describes the enhancements to the username and password features introduced in the releases listed above.

The following rules are enabled by default:
• Users are required to accept the message of the day.
• Users are locked out (disabled) if they fail to login after three attempts. This feature is automatically enabled in release 03.0.00 for FastIron X Series devices, and release 03.2.00 for FastIron GS devices. Use the `disable-on-login-failure` command to change the number of login attempts (up to 10) before users are locked out.

The following rules are disabled by default:
• Enhanced user password combination requirements
• User password masking
• Quarterly updates of user passwords
• You can configure the system to store up to 15 previously configured passwords for each user.
• You can use the `disable-on-login-failure` command to change the number of login attempts (up to 10) before users are locked out.
• A password can now be set to expire.

Enabling enhanced user password combination requirements

Platform Support:
• FastIron X Series devices running software release 03.0.00 and later
• FGS and FLS devices running software release 03.2.00 and later
• FWS devices running software release 04.3.00 or later
• Turbolon X Series devices running software release 04.1.00 and later

When strict password enforcement is enabled on the Brocade device, you must enter a minimum of eight characters containing the following combinations when you create an enable and a user password:
• At least two upper case characters
• At least two lower case characters
• At least two numeric characters
• At least two special characters
NOTE
Password minimum and combination requirements are strictly enforced.

Use the `enable strict-password-enforcement` command to enable the password security feature.

```
FastIron(config)# enable strict-password-enforcement
```

**Syntax:** `[no] enable strict-password-enforcement`

This feature is disabled by default.

NOTE
When you upgrade to release FSX 03.0.00 or later or to FGS 03.2.00 or later, the old passwords are still valid; however, users must change their passwords to follow the new format to take advantage of this password enhancement.

The following security upgrades apply to the `enable strict-password-enforcement` command:

- Passwords must not share four or more concurrent characters with any other password configured on the router. If the user tries to create a password with four or more concurrent characters, the following error message will be returned.

  Error - The substring `<str>` within the password has been used earlier, please choose a different password.

For example, the previous password was `Ma!i4aYa&`, the user cannot use any of the following as his or her new password:

- `Ma!imai$D` because “Mail” were used consecutively in the previous password
- `&3B9aYa&` because “aYa&” were used consecutively in the previous password
- `i4aYEv#8` because “i4aY” were used consecutively in the previous password
- If the user tries to configure a password that was previously used, the Local User Account configuration will not be allowed and the following message will be displayed.

  This password was used earlier for same or different user, please choose a different password.

**Enabling user password masking**

By default, when you use the CLI to create a user password, the password displays on the console as you type it. For enhanced security, you can configure the Brocade device to mask the password characters entered at the CLI. When password masking is enabled, the CLI displays asterisks (*) on the console instead of the actual password characters entered.

The following shows the default CLI behavior when configuring a username and password.

```
FastIron(config)# username kelly password summertime
```

The following shows the CLI behavior when configuring a username and password when `password-masking` is enabled.

```
FastIron(config)# username kelly password
Enter Password: ********
```

**NOTE**
When password masking is enabled, press the [Enter] key before entering the password.

**Syntax:** `username <name> password [Enter]`
For [Enter], press the Enter key. Enter the password when prompted.

If **strict-password-enforcement** is enabled, enter a password which contains the required character combination. Refer to "Enabling enhanced user password combination requirements" on page 1431.

To enable password masking, enter the following command.

```
FastIron(config)# enable user password-masking
```

**Syntax:** [no] enable user password-masking

### Enabling user password aging

For enhanced security, password aging enforces quarterly updates of all user passwords. After 180 days, the CLI will automatically prompt users to change their passwords when they attempt to sign on.

When password aging is enabled, the software records the system time that each user password was configured or last changed. The time displays in the output of the `show running configuration` command, indicated by set-time `<time>`.

**Example**

```
FastIron# show run
Current configuration:
...
username waldo password
username raveen set-time 2086038248
...
```

The password aging feature uses the SNTP server clock to record the set-time. If the network does not have an SNTP server, then set-time will appear as `set-time 0` in the output of the `show running configuration` command.

A username set-time configuration is removed when:

- The username and password is deleted from the configuration
- The username password expires

When a username set-time configuration is removed, it no longer appears in the `show running configuration` output.

Note that if a username does not have an assigned password, the username will not have a set-time configuration.

Password aging is disabled by default. To enable it, enter the following command at the global CONFIG level of the CLI.

```
FastIron(config)# enable user password-aging
```

**Syntax:** [no] enable user password-aging

### Configuring password history

**Platform Support:**

- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 03.2.00 and later

FastIron# show run
Current configuration:
....
username waldo password ....
username raveen set-time 2086038248
....

The password aging feature uses the SNTP server clock to record the set-time. If the network does not have an SNTP server, then set-time will appear as `set-time 0` in the output of the `show running configuration` command.

A username set-time configuration is removed when:

- The username and password is deleted from the configuration
- The username password expires

When a username set-time configuration is removed, it no longer appears in the `show running configuration` output.

Note that if a username does not have an assigned password, the username will not have a set-time configuration.

Password aging is disabled by default. To enable it, enter the following command at the global CONFIG level of the CLI.

```
FastIron(config)# enable user password-aging
```

**Syntax:** [no] enable user password-aging

### Configuring password history

**Platform Support:**

- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 03.2.00 and later
• FWS devices running software release 04.3.00 or later

NOTE
This feature is not supported on TurboIron X Series devices, which store the last five user passwords for each user. When changing a user password, the five previously configured passwords cannot be used.

By default, the Brocade device stores the last five user passwords for each user. When changing a user password, the user cannot use any of the five previously configured passwords.

For security purposes, you can configure the Brocade device to store up to 15 passwords for each user, so that users do not use the same password multiple times. If a user attempts to use a password that is stored, the system will prompt the user to choose a different password.

To configure enhanced password history, enter a command such as the following at the global CONFIG level of the CLI.

FastIron(config)# enable user password-history 15

Syntax: [no] enable user password-history <1 – 15>

Password history in pre-release 03.0.00 software
The Brocade device stores not only the current password configured for a local user, but the previous two passwords configured for the user as well. The local user’s password cannot be changed to one of the stored passwords.

Consequently, if you change the password for a local user, you must select a password that is different from the current password, as well as different from the previous two passwords that had been configured for that user.

For example, say local user waldo originally had a password of "whereis", and the password was subsequently changed to "whois", then later changed to "whyis". If you change waldo's password again, you cannot change it to "whereis", "whois", or "whyis".

The current and previous passwords are stored in the device running-config file in encrypted form.

Example
FastIron# show run
...
username waldo password 8 $1$Ro2..Ox0$udBu7pQT5XyuaxMUiUHy9. history $1$eq...T62$IfpIXcXnDXX7CSVQK'1odu. $1$QD3..2Q0$DYxgCI642OSsYmA28/
...

In the running-config file, the user previous two passwords are displayed in encrypted form following the history parameter.

Enhanced login lockout

Platform Support:
• FastIron X Series devices running software release 03.0.00 and later
• FGS and FLS devices running software release 03.2.00 and later
• FWS devices running software release 04.3.00 or later
• TurboIron X Series devices running software release 04.1.00 and later
The CLI provides up to three login attempts. If a user fails to login after three attempts, that user is locked out (disabled). If desired, you can increase or decrease the number of login attempts before the user is disabled. To do so, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)# enable user disable-on-login-failure 7
```

**Syntax:** `enable user disable-on-login-failure <1 – 10>`

To re-enable a user that has been locked out, do one of the following:

- Reboot the Brocade device to re-enable all disabled users.
- Enable the user by entering the following command.
  ```
 FastIron(config)# username sandy enable
  ```

**Example**

```
FastIron(config)# user sandy enable
FastIron# show user
Username Password Encrypt Priv Status Expire Time
--

sandy 1Gz...uX/$wQ44fVGtsqbKWkQknzAZ6. enabled 0 enabled 90 days
```

**Syntax:** `username <name> enable`

### Setting passwords to expire

You can set a user password to expire. Once a password expires, the administrator must assign a new password to the user. To configure a user password to expire, enter the following.

```
FastIron(config)# username sandy expires 20
```

**Syntax:** `username <name> expires <days>`

Enter 1 – 365 for number of days. The default is 90 days.

**Example**

```
FastIron(config)# username sandy expires 20
FastIron# show user
Username Password Encrypt Priv Status Expire
Time
--

sandy 1Gz...uX/$wQ44fVGtsqbKWkQknzAZ6. enabled 0 enabled 20 days
```

### Requirement to accept the message of the day

**Platform Support:**

- FastIron X Series devices running software release 03.1.01a and later
- FGS/FLS devices running software release 03.2.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later
If a message of the day (MOTD) is configured, a user will be required to press the Enter key before he or she can login. MOTD is configured using the `banner motd` command.

There are no new CLI commands for this feature.

**NOTE**
Beginning with release 03.0.01a, this requirement is disabled by default, unless configured. Users are not required to press Enter after the MOTD banner is displayed. Refer to “Requiring users to press the Enter key after the message of the day banner” on page 54.

## Configuring a local user account

You can create accounts for local users with or without passwords. Accounts with passwords can have encrypted or unencrypted passwords.

You can assign privilege levels to local user accounts, but on a new device, you must create a local user account that has a Super User privilege before you can create accounts with other privilege levels.

**NOTE**
You must grant Super User level privilege to at least one account before you add accounts with other privilege levels. You need the Super User account to make further administrative changes.

### Local user accounts with no passwords

To create a user account without a password, enter the following command at the global CONFIG level of the CLI.

```
FastIron(config)# username wonka nopassword
```

**Syntax:** 
\[
\text{[no]} \ username \ <\text{user-string}> \ privilege \ <\text{privilege-level}> \ nopassword
\]

### Local user accounts with unencrypted passwords

If you want to use unencrypted passwords for local user accounts, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)# username wonka password willy
```

If password masking is enabled, press the [Enter] key before entering the password.

```
FastIron(config)# username wonka
Enter Password: willy
```

The above commands add a local user account with the user name “wonka” and the password “willy”. This account has the Super User privilege level; this user has full access to all configuration and display features.

```
FastIron(config)# username waldo privilege 5 password whereis
```

This command adds a user account for user name “waldo”, password “whereis”, with the Read Only privilege level. Waldo can look for information but cannot make configuration changes.

**Syntax:** 
\[
\text{[no]} \ username \ <\text{user-string}> \ privilege \ <\text{privilege-level}> \ password \ | \ nopassword
\]

You can enter up to 255 characters for `<user-string>`.
The **privilege** `<privilege-level>` parameter specifies the privilege level for the account. You can specify one of the following:

- **0** – Super User level (full read-write access)
- **4** – Port Configuration level
- **5** – Read Only level

The default privilege level is **0**. If you want to assign Super User level access to the account, you can enter the command without **privilege 0**, as shown in the command example above.

The **password | nopassword** parameter indicates whether the user must enter a password. If you specify **password**, enter the string for the user's password. You can enter up to 255 characters for `<password-string>`. If **strict password enforcement** is enabled on the device, you must enter a minimum of eight characters containing the following combinations:

- At least two upper case characters
- At least two lower case characters
- At least two numeric characters
- At least two special characters

**NOTE**
You must be logged on with Super User access (privilege level 0) to add user accounts or configure other access parameters.

To display user account information, enter the following command.

```
FastIron# show users
```

**Syntax:** show users

### Local accounts with encrypted passwords

You can create local user accounts with MD5 encrypted passwords using one of the following methods:

- Issuing the **service password-encryption** command after creating the local user account with a `username <user-string> [privilege <privilege-level>] password 0` command
- Using the `username <user-string> create-password` command (on FastIron X Series devices running software release 03.1.00 and later)

**NOTE**
To create an encrypted all-numeric password, use the `username <user-string> create-password` command.

If you create a local user account using the commands discussed in “Local user accounts with unencrypted passwords” on page 1436, you can issue the **service password-encryption** command to encrypt all passwords that have been previously entered.

**Example**

```
FastIron(config)# username wonka privilege 5 password willy
FastIron(config)# service password-encryption
```

If password masking is enabled, enter the commands this way.
Setting up local user accounts

FastIron(config)# username wonka privilege 5 password
Enter Password: willy
FastIron(config)# service password-encryption

Syntax: [no] service password-encryption

Create password option

Platform Support:
- FastIron X Series devices running software release 03.1.00 and later
- TurboIron X Series devices running software release 04.1.00 and later

As an alternative to the commands above, the create-password option allows you to create an encrypted password in one line of command. Also, this new option allows you to create an all-numeric, encrypted password.

You can enter.

FastIron(config)# username wonka privilege 5 create-password willy

Syntax: [no] username <user-string> [privilege <privilege-level>] create-password <password-string>

You can enter up to 255 characters for <user-string>. This string can be alphanumeric or all-numeric.

The privilege parameter specifies the privilege level for the account. You can specify one of the following:
- 0 – Super User level (full read-write access)
- 4 – Port Configuration level
- 5 – Read Only level

Enter up to 255 alphanumeric characters for <password-string>.

Changing a local user password

To change a local user password for an existing local user account, enter a command such as the following at the global CONFIG level of the CLI.

NOTE
You must be logged on with Super User access (privilege level 0) to change user passwords.

FastIron(config)# username wonka password willy

If password masking is enabled, enter the username, press the [Enter] key, then enter the password.

FastIron(config)# username wonka password
Enter Password:  willy

The above commands change wonka's user name password to “willy”.

Syntax: [no] username <user-string> password <password-string>

Enter up to 255 characters for <user-string>. 
The `<password-string>` parameter is the user password. The password can be up to 255 characters and must differ from the current password and two previously configured passwords.

When a password is changed, a message such as the following is sent to the Syslog.

SYSLOG: <14>Jan 1 00:00:00 10.44.9.11 Security: Password has been changed for user tester from console session.

The message includes the name of the user whose password was changed and during which session type, such as Console, Telnet, SSH, Web, SNMP, or others, the password was changed.

### Configuring SSL security for the Web Management Interface

The Brocade device supports Secure Sockets Layer / Transport Level Security (SSL 3.0 / TLS 1.0) for configuring the device using the Web Management Interface.

When enabled, the SSL protocol uses digital certificates and public-private key pairs to establish a secure connection to the Brocade device. Digital certificates serve to prove the identity of a connecting client, and public-private key pairs provide a means to encrypt data sent between the device and the client.

Configuring SSL for the Web Management Interface consists of the following tasks:

- Optionally enabling the SSL server on the Brocade device
- Importing an RSA certificate and private key file from a client (optional)
- Generating a certificate

#### Enabling the SSL server on the Brocade device

To enable the SSL server on the Brocade device, enter the following command.

FastIron(config)# web-management https

**Syntax:**

```plaintext
[no] web-management http | https
```

You can enable either the HTTP or HTTPS servers with this command. You can disable both the HTTP and HTTPS servers by entering the following command.

FastIron(config)# no web-management

**Syntax:**

```plaintext
no web-management
```

#### Specifying a port for SSL communication

By default, SSL protocol exchanges occur on TCP port 443. You can optionally change the port number used for SSL communication.

For example, the following command causes the device to use TCP port 334 for SSL communication.

FastIron(config)# ip ssl port 334

**Syntax:**

```plaintext
[no] ip ssl port <port-number>
```
The default port for SSL communication is 443.

**Changing the SSL server certificate key size**

The default key size for Brocade-issued and imported digital certificates is 1024 bits. If desired, you can change the default key size to a value between 512 and 4096 bits. To do so, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)# ip ssl cert-key-size 3000
```

**Syntax:** `ip ssl cert-key-size <512 – 4096>

**NOTE**
The SSL server certificate key size applies to digital certificates issued by Brocade, as well as imported certificates.

**Support for SSL digital certificates larger than 2048 bits**

**Platform Support:**
- FastIron X Series devices running software release 04.0.00 and later

Devices running software release 04.0.00 and later have the ability to store and retrieve SSL digital certificates that are up to 4000 bits in size. Earlier releases support SSL certificates not larger than 2048 bits.

To accommodate support for the larger SSL certificate file size, the SSL certificate is stored in flash memory, instead of in the configuration file. For backward compatibility, the Brocade device provides support as follows:

- If the SSL certificate size is less than 2048 bits, the certificate will be written to the configuration file and to the flash file. This way, releases prior to FSX 04.0.00 can still store and retrieve the certificate.
- If the SSL certificate is larger than 2048 bits, it will be written to the flash file only. Consequently, software versions prior to FSX 04.0.00 will not be able to store or retrieve an SSL certificate that is larger than 2048 bits. In releases prior to FSX 04.0.00, if the certificate is larger than 2048 bits, the following warning message will display on the console:

```
Certificate is too big to store in the configuration file, this certificate works only with the released version later than 3.2.
```

Support for SSL certificates larger than 2048 bits is automatically enabled in software release FSX 04.0.00 and later. You do not need to perform any configuration procedures to enable it.

**Importing digital certificates and RSA private key files**

To allow a client to communicate with other Brocade device using an SSL connection, you configure a set of digital certificates and RSA public-private key pairs on the device. A digital certificate is used for identifying the connecting client to the server. It contains information about the issuing Certificate Authority, as well as a public key. You can either import digital certificates and private keys from a server, or you can allow the Brocade device to create them.

If you want to allow the Brocade device to create the digital certificates, refer to the next section, “Generating an SSL certificate”. If you choose to import an RSA certificate and private key file from a client, you can use TFTP to transfer the files.
For example, to import a digital certificate using TFTP, enter a command such as the following.

```
FastIron(config)# ip ssl certificate-data-file tftp 192.168.9.210 certfile
```

**Syntax:**

```
[no] ip ssl certificate-data-file tftp <ip-addr> <certificate-filename>
```

**NOTE**

If you are running a software version prior to 04.0.00 and you are importing a digital certificate from a client, it must be no larger than 2048 bits. If you are running software release 04.0.00 or later, the digital certificate can be up to 4096 bits. Refer to “Support for SSL digital certificates larger than 2048 bits” on page 1440.

To import an RSA private key from a client using TFTP, enter a command such as the following.

```
FastIron(config)# ip ssl private-key-file tftp 192.168.9.210 keyfile
```

**Syntax:**

```
[no] ip ssl private-key-file tftp <ip-addr> <key-filename>
```

The `<ip-addr>` is the IP address of a TFTP server that contains the digital certificate or private key.

### Generating an SSL certificate

After you have imported the digital certificate, it should automatically generate.

If the certificate does not automatically generate, enter the following command to generate it.

```
FastIron(config)# crypto-ssl certificate generate
```

**Syntax:**

```
[no] crypto-ssl certificate generate
```

If you did not already import a digital certificate from a client, the device can create a default certificate. To do this, enter the following command.

```
FastIron(config)# crypto-ssl certificate generate default_cert
```

**Syntax:**

```
[no] crypto-ssl certificate generate default_cert
```

### Deleting the SSL certificate

To delete the SSL certificate, enter the following command.

```
FastIron(config)# crypto-ssl certificate zeroize
```

**Syntax:**

```
[no] crypto-ssl certificate zeroize
```

### Configuring TACACS/TACACS+ security

You can use the security protocol Terminal Access Controller Access Control System (TACACS) or TACACS+ to authenticate the following kinds of access to the Brocade device:

- Telnet access
- SSH access
- Console access
- Web management access
- Access to the Privileged EXEC level and CONFIG levels of the CLI
The TACACS and TACACS+ protocols define how authentication, authorization, and accounting information is sent between a Brocade device and an authentication database on a TACACS/TACACS+ server. TACACS/TACACS+ services are maintained in a database, typically on a UNIX workstation or PC with a TACACS/TACACS+ server running.

**NOTE**
On TurboIron X Series devices, the TACACS+ security feature is supported on devices running software release 04.2.00 and later.

### How TACACS+ differs from TACACS

TACACS is a simple UDP-based access control protocol originally developed by BBN for MILNET. TACACS+ is an enhancement to TACACS and uses TCP to ensure reliable delivery.

TACACS+ is an enhancement to the TACACS security protocol. TACACS+ improves on TACACS by separating the functions of authentication, authorization, and accounting (AAA) and by encrypting all traffic between the Brocade device and the TACACS+ server. TACACS+ allows for arbitrary length and content authentication exchanges, which allow any authentication mechanism to be utilized with the Brocade device. TACACS+ is extensible to provide for site customization and future development features. The protocol allows the Brocade device to request very precise access control and allows the TACACS+ server to respond to each component of that request.

**NOTE**
TACACS+ provides for authentication, authorization, and accounting, but an implementation or configuration is not required to employ all three.

### TACACS/TACACS+ authentication, authorization, and accounting

When you configure a Brocade device to use a TACACS/TACACS+ server for **authentication**, the device prompts users who are trying to access the CLI for a user name and password, then verifies the password with the TACACS/TACACS+ server.

If you are using TACACS+, Brocade recommends that you also configure **authorization**, in which the Brocade device consults a TACACS+ server to determine which management privilege level (and which associated set of commands) an authenticated user is allowed to use. You can also optionally configure **accounting**, which causes the Brocade device to log information on the TACACS+ server when specified events occur on the device.

**NOTE**
By default, a user logging into the device from Telnet or SSH would first enter the User EXEC level. The user can enter the `enable` command to get to the Privileged EXEC level.

A user that is successfully authenticated can be automatically placed at the Privileged EXEC level after login. Refer to “Entering privileged EXEC mode after a Telnet or SSH login” on page 1453.

### Configuring TACACS/TACACS+ for devices in a Brocade IronStack

Because devices operating in a Brocade IronStack topology present multiple console ports, you must take additional steps to secure these ports when configuring TACACS/TACACS+. 
The following is a sample AAA console configuration using TACACS+.

```
aaa authentication login default tacacs+ enable
aaa authentication login privilege-mode
aaa authorization commands 0 default tacacs+
aaa authorization exec default tacacs+
aaa accounting commands 0 default start-stop tacacs+
aaa accounting exec default start-stop tacacs+
aaa accounting system default start-stop tacacs+
enable aaa console
hostname Fred
ip address 144.10.6.56/255
tacacs-server host 255.253.255
tacacs-server key 1 $Gsig8U$
```

**kill console**

**Syntax:** `kill console [all | unit]`

- **all** - logs out all console port on stack units that are not the Active Controller
- **unit** - logs out the console port on a specified unit

Once AAA console is enabled, you should log out any open console ports on your IronStack using the `kill console` command:

```
FGS624 Switch(config)# kill console all
```

In case a user forgets to log out or a console is left unattended, you can also configure the console timeout (in minutes) on all stack units (including the Active Controller).

```
FGS624 Switch(config)# stack unit 3
FGS624 Switch(config-unit-3)# console timeout 5
FGS624 Switch(config-unit-3)# exit
FGS624 Switch(config)# stack unit 4
FGS624 Switch(config-unit-4)# console timeout 5
```

Use the `show who` and the `show telnet` commands to confirm the status of console sessions.

```
stack9# show who
Console connections (by unit number):
 1 established
 you are connecting to this session
 4 seconds in idle
 2 established
 1 hours 3 minutes 12 seconds in idle
 3 established
 1 hours 3 minutes 9 seconds in idle
 4 established
 1 hours 3 minutes 3 seconds in idle
Telnet connections (inbound):
 1 closed
 2 closed
 3 closed
 4 closed
 5 closed
Telnet connection (outbound):
 6 closed
SSH connections:
 1 closed
 2 closed
 3 closed
 4 closed
```
TACACS authentication

NOTE
Also, multiple challenges are supported for TACACS+ login authentication.

When TACACS authentication takes place, the following events occur.

1. A user attempts to gain access to the Brocade device by doing one of the following:
   - Logging into the device using Telnet, SSH, or the Web Management Interface
   - Entering the Privileged EXEC level or CONFIG level of the CLI

2. The user is prompted for a username and password.

3. The user enters a username and password.

4. The Brocade device sends a request containing the username and password to the TACACS server.

5. The username and password are validated in the TACACS server database.

6. If the password is valid, the user is authenticated.

TACACS+ authentication

When TACACS+ authentication takes place, the following events occur.
1. A user attempts to gain access to the Brocade device by doing one of the following:
   • Logging into the device using Telnet, SSH, or the Web Management Interface
   • Entering the Privileged EXEC level or CONFIG level of the CLI
2. The user is prompted for a username.
3. The user enters a username.
4. The Brocade device obtains a password prompt from a TACACS+ server.
5. The user is prompted for a password.
6. The user enters a password.
7. The Brocade device sends the password to the TACACS+ server.
8. The password is validated in the TACACS+ server database.
9. If the password is valid, the user is authenticated.

**TACACS+ authorization**

Brocade devices support two kinds of TACACS+ authorization:

- Exec authorization determines a user privilege level when they are authenticated
- Command authorization consults a TACACS+ server to get authorization for commands entered by the user

When TACACS+ exec authorization takes place, the following events occur.
1. A user logs into the Brocade device using Telnet, SSH, or the Web Management Interface
2. The user is authenticated.
3. The Brocade device consults the TACACS+ server to determine the privilege level of the user.
4. The TACACS+ server sends back a response containing an A-V (Attribute-Value) pair with the privilege level of the user.
5. The user is granted the specified privilege level.

When TACACS+ command authorization takes place, the following events occur.
1. A Telnet, SSH, or Web Management Interface user previously authenticated by a TACACS+ server enters a command on the Brocade device.
2. The Brocade device looks at its configuration to see if the command is at a privilege level that requires TACACS+ command authorization.
3. If the command belongs to a privilege level that requires authorization, the Brocade device consults the TACACS+ server to see if the user is authorized to use the command.
4. If the user is authorized to use the command, the command is executed.

**TACACS+ accounting**

TACACS+ accounting works as follows.
1. One of the following events occur on the Brocade device:
   • A user logs into the management interface using Telnet or SSH
   • A user enters a command for which accounting has been configured
• A system event occurs, such as a reboot or reloading of the configuration file

2. The Brocade device checks the configuration to see if the event is one for which TACACS+ accounting is required.

3. If the event requires TACACS+ accounting, the Brocade device sends a TACACS+ Accounting Start packet to the TACACS+ accounting server, containing information about the event.

4. The TACACS+ accounting server acknowledges the Accounting Start packet.

5. The TACACS+ accounting server records information about the event.

6. When the event is concluded, the Brocade device sends an Accounting Stop packet to the TACACS+ accounting server.

7. The TACACS+ accounting server acknowledges the Accounting Stop packet.

**AAA operations for TACACS/TACACS+**

The following table lists the sequence of authentication, authorization, and accounting operations that take place when a user gains access to a Brocade device that has TACACS/TACACS+ security configured.

<table>
<thead>
<tr>
<th>User action</th>
<th>Applicable AAA operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>User attempts to gain access to the Privileged EXEC and CONFIG levels of the CLI</td>
<td>Enable authentication:</td>
</tr>
<tr>
<td></td>
<td>aaa authentication enable default &lt;method-list&gt;</td>
</tr>
<tr>
<td></td>
<td>Exec authorization (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa authorization exec default tacacs+</td>
</tr>
<tr>
<td></td>
<td>System accounting start (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa accounting system default start-stop &lt;method-list&gt;</td>
</tr>
<tr>
<td>User logs in using Telnet/SSH</td>
<td>Login authentication:</td>
</tr>
<tr>
<td></td>
<td>aaa authentication login default &lt;method-list&gt;</td>
</tr>
<tr>
<td></td>
<td>Exec authorization (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa authorization exec default tacacs+</td>
</tr>
<tr>
<td></td>
<td>Exec accounting start (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa accounting exec default &lt;method-list&gt;</td>
</tr>
<tr>
<td></td>
<td>System accounting start (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa accounting system default start-stop &lt;method-list&gt;</td>
</tr>
<tr>
<td>User logs into the Web Management Interface</td>
<td>Web authentication:</td>
</tr>
<tr>
<td></td>
<td>aaa authentication web-server default &lt;method-list&gt;</td>
</tr>
<tr>
<td></td>
<td>Exec authorization (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa authorization exec default tacacs+</td>
</tr>
<tr>
<td>User logs out of Telnet/SSH session</td>
<td>Command accounting (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa accounting commands &lt;privilege-level&gt; default start-stop &lt;method-list&gt;</td>
</tr>
<tr>
<td></td>
<td>EXEC accounting stop (TACACS+):</td>
</tr>
<tr>
<td></td>
<td>aaa accounting exec default start-stop &lt;method-list&gt;</td>
</tr>
</tbody>
</table>
Configuring TACACS/TACACS+ security

If AAA security is enabled on the device, commands pasted into the running-config are subject to the same AAA operations as if they were entered manually.

When you paste commands into the running-config, and AAA command authorization or accounting, or both, are configured on the device, AAA operations are performed on the pasted commands. The AAA operations are performed before the commands are actually added to the running-config. The server performing the AAA operations should be reachable when you paste the commands into the running-config file. If the device determines that a pasted command is invalid, AAA operations are halted on the remaining commands. The remaining commands may not be executed if command authorization is configured.

**AAA security for commands pasted into the running-config**

**TACACS/TACACS+ configuration considerations**

- You must deploy at least one TACACS/TACACS+ server in your network.
- Brocade devices support authentication using up to eight TACACS/TACACS+ servers. The device tries to use the servers in the order you add them to the device configuration.
- You can select only one primary authentication method for each type of access to a device (CLI through Telnet, CLI Privileged EXEC and CONFIG levels). For example, you can select TACACS+ as the primary authentication method for Telnet CLI access, but you cannot also select RADIUS authentication as a primary method for the same type of access. However, you can configure backup authentication methods for each access type.
- You can configure the Brocade device to authenticate using a TACACS or TACACS+ server, not both.
TACACS configuration procedure

Follow the procedure given below for TACACS configurations.

1. Identify TACACS servers. Refer to “Identifying the TACACS/TACACS+ servers” on page 1448.
2. Set optional parameters. Refer to “Setting optional TACACS/TACACS+ parameters” on page 1450.

TACACS+ configuration procedure

Follow the procedure given below for TACACS+ configurations.

1. Identify TACACS+ servers. Refer to “Identifying the TACACS/TACACS+ servers” on page 1448.
2. Set optional parameters. Refer to “Setting optional TACACS/TACACS+ parameters” on page 1450.
4. Optionally configure TACACS+ authorization. Refer to “Configuring TACACS+ authorization” on page 1453.
5. Optionally configure TACACS+ accounting. Refer to “Configuring TACACS+ accounting” on page 1456.

Enabling TACACS

TACACS is disabled by default. To configure TACACS/TACACS+ authentication parameters, you must enable TACACS by entering the following command.

FastIron(config)# enable snmp config-tacacs

Syntax: [no] enable snmp <config-radius | config-tacacs>

The <config-radius> parameter specifies the RADIUS configuration mode. RADIUS is disabled by default.

The <config-tacacs> parameter specifies the TACACS configuration mode. TACACS is disabled by default.

Identifying the TACACS/TACACS+ servers

To use TACACS/TACACS+ servers to authenticate access to a Brocade device, you must identify the servers to the Brocade device.

For example, to identify three TACACS/TACACS+ servers, enter commands such as the following.

FastIron(config)# tacacs-server host 207.94.6.161
FastIron(config)# tacacs-server host 207.94.6.191
FastIron(config)# tacacs-server host 207.94.6.122

Syntax: tacacs-server host <ip-addr> | <ipv6-addr> | <hostname> [auth-port <number>]
The <ip-addr> | <ipv6-addr> | <hostname> parameter specifies the IP address or host name of the server. You can enter up to eight tacacs-server host commands to specify up to eight different servers.

**NOTE**
To specify the server's host name instead of its IP address, you must first identify a DNS server using the ip dns server-address <ip-addr> command at the global CONFIG level.

If you add multiple TACACS/TACACS+ authentication servers to the Brocade device, the device tries to reach them in the order you add them. For example, if you add three servers in the following order, the software tries the servers in the same order.

1. 207.94.6.161
2. 207.94.6.191
3. 207.94.6.122

You can remove a TACACS/TACACS+ server by entering no followed by the tacacs-server command. For example, to remove 207.94.6.161, enter the following command.

FastIron(config)# no tacacs-server host 207.94.6.161

**NOTE**
If you erase a tacacs-server command (by entering "no" followed by the command), make sure you also erase the aaa commands that specify TACACS/TACACS+ as an authentication method. (Refer to “Configuring authentication-method lists for TACACS/TACACS+” on page 1451.) Otherwise, when you exit from the CONFIG mode or from a Telnet session, the system continues to believe it is TACACS/TACACS+ enabled and you will not be able to access the system.

The auth-port parameter specifies the UDP (for TACACS) or TCP (for TACACS+) port number of the authentication port on the server. The default port number is 49.

### Specifying different servers for individual AAA functions

In a TACACS+ configuration, you can designate a server to handle a specific AAA task. For example, you can designate one TACACS+ server to handle authorization and another TACACS+ server to handle accounting. You can set the TACACS+ key for each server.

To specify different TACACS+ servers for authentication, authorization, and accounting, enter the command such as following.

FastIron(config)# tacacs-server host 1.2.3.4 auth-port 49 authentication-only key abc
FastIron(config)# tacacs-server host 1.2.3.5 auth-port 49 authorization-only key def
FastIron(config)# tacacs-server host 1.2.3.6 auth-port 49 accounting-only key ghi

**Syntax:**
```
tacacs-server host <ip-addr> | <ipv6-addr> | <server-name> [auth-port <num>]
authentication-only | authorization-only | accounting-only | default] [key 0 | 1 <string>]
```

The default parameter causes the server to be used for all AAA functions.

After authentication takes place, the server that performed the authentication is used for authorization and accounting. If the authenticating server cannot perform the requested function, then the next server in the configured list of servers is tried; this process repeats until a server that can perform the requested function is found, or every server in the configured list has been tried.
Setting optional TACACS/TACACS+ parameters

You can set the following optional parameters in a TACACS/TACACS+ configuration:

- **TACACS+ key** – This parameter specifies the value that the Brocade device sends to the TACACS+ server when trying to authenticate user access.
- **Retransmit interval** – This parameter specifies how many times the Brocade device will resend an authentication request when the TACACS/TACACS+ server does not respond. The retransmit value can be from 1 – 5 times. The default is 3 times.
- **Dead time** – This parameter specifies how long the Brocade device waits for the primary authentication server to reply before deciding the server is dead and trying to authenticate using the next server. The dead-time value can be from 1 – 5 seconds. The default is 3 seconds.
- **Timeout** – This parameter specifies how many seconds the Brocade device waits for a response from a TACACS/TACACS+ server before either retrying the authentication request, or determining that the TACACS/TACACS+ servers are unavailable and moving on to the next authentication method in the authentication-method list. The timeout can be from 1 – 15 seconds. The default is 3 seconds.
- **TACACS/TACACS+ over IPv6** – This parameter enables the Brocade device to send TACACS/TACACS+ packets over IPv6.

**Setting the TACACS+ key**

The `key` parameter in the `tacacs-server` command is used to encrypt TACACS+ packets before they are sent over the network. The value for the `key` parameter on the Brocade device should match the one configured on the TACACS+ server. The key can be from 1 – 32 characters in length and cannot include any space characters.

**NOTE**

The `tacacs-server key` command applies only to TACACS+ servers, not to TACACS servers. If you are configuring TACACS, do not configure a key on the TACACS server and do not enter a key on the Brocade device.

To specify a TACACS+ server key, enter a command such as following.

```
FastIron(config)# tacacs-server key rkwong
```

**Syntax: tacacs-server key [0 | 1] <string>**

When you display the configuration of the Brocade device, the TACACS+ keys are encrypted. For example.

```
FastIron(config)# tacacs-server key 1 abc
FastIron(config)# write terminal
...
```
```
tacacs-server host 1.2.3.5 auth-port 49
 tacacs key 1 $!2d
```

**NOTE**

Encryption of the TACACS+ keys is done by default. The 0 parameter disables encryption. The 1 parameter is not required; it is provided for backwards compatibility.
Setting the retransmission limit

The retransmit parameter specifies how many times the Brocade device will resend an authentication request when the TACACS/TACACS+ server does not respond. The retransmit limit can be from 1 – 5 times. The default is 3 times.

To set the TACACS/TACACS+ retransmit limit, enter a command such as the following.

FastIron(config)# tacacs-server retransmit 5

Syntax: tacacs-server retransmit <number>

Setting the timeout parameter

The timeout parameter specifies how many seconds the Brocade device waits for a response from the TACACS/TACACS+ server before either retrying the authentication request, or determining that the TACACS/TACACS+ server is unavailable and moving on to the next authentication method in the authentication-method list. The timeout can be from 1 – 15 seconds. The default is 3 seconds.

FastIron(config)# tacacs-server timeout 5

Syntax: tacacs-server timeout <number>

TACACS/TACACS+ over IPv6

Platform Support:
- FESX and FSX devices running software release 02.5.00 and later

To enable this feature, enter a command such as the following at the Global CONFIG level of the CLI.

FastIron(config)# tacacs-server host ipv6 3000::200

Syntax: tacacs-server host ipv6 <ipv6-host address>

The <ipv6-host address> is the IPv6 address of the TACACS server. When you enter the IPv6 host address, you do not need to specify the prefix length. A prefix length of 128 is implied.

Configuring authentication-method lists for TACACS/TACACS+

You can use TACACS/TACACS+ to authenticate Telnet/SSH access and access to Privileged EXEC level and CONFIG levels of the CLI. When configuring TACACS/TACACS+ authentication, you create authentication-method lists specifically for these access methods, specifying TACACS/TACACS+ as the primary authentication method.

Within the authentication-method list, TACACS/TACACS+ is specified as the primary authentication method and up to six backup authentication methods are specified as alternates. If TACACS/TACACS+ authentication fails due to an error, the device tries the backup authentication methods in the order they appear in the list.

When you configure authentication-method lists for TACACS/TACACS+ authentication, you must create a separate authentication-method list for Telnet/SSH CLI access, and for access to the Privileged EXEC level and CONFIG levels of the CLI.

To create an authentication method list that specifies TACACS/TACACS+ as the primary authentication method for securing Telnet/SSH access to the CLI.
Configuring TACACS/TACACS+ security

FastIron(config)# enable telnet authentication
FastIron(config)# aaa authentication login default tacacs local

The commands above cause TACACS/TACACS+ to be the primary authentication method for securing Telnet/SSH access to the CLI. If TACACS/TACACS+ authentication fails due to an error with the server, authentication is performed using local user accounts instead.

To create an authentication-method list that specifies TACACS/TACACS+ as the primary authentication method for securing access to Privileged EXEC level and CONFIG levels of the CLI.

FastIron(config)# aaa authentication enable default tacacs local none

The command above causes TACACS/TACACS+ to be the primary authentication method for securing access to Privileged EXEC level and CONFIG levels of the CLI. If TACACS/TACACS+ authentication fails due to an error with the server, local authentication is used instead. If local authentication fails, no authentication is used; the device automatically permits access.

Syntax: [no] aaa authentication enable | login default <method1> [<method2>] [<method3>] [<method4>] [<method5>] [<method6>] [<method7>]

The web-server | enable | login parameter specifies the type of access this authentication-method list controls. You can configure one authentication-method list for each type of access.

NOTE
If you configure authentication for Web management access, authentication is performed each time a page is requested from the server. When frames are enabled on the Web Management Interface, the browser sends an HTTP request for each frame. The Brocade device authenticates each HTTP request from the browser. To limit authentications to one per page, disable frames on the Web Management Interface.

The <method1> parameter specifies the primary authentication method. The remaining optional <method> parameters specify additional methods to try if an error occurs with the primary method. A method can be one of the values listed in the Method Parameter column in the following table.

### TABLE 234 Authentication method values

<table>
<thead>
<tr>
<th>Method parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>Authenticate using the password you configured for Telnet access. The Telnet password is configured using the <code>enable telnet password</code> command. Refer to “Setting a Telnet password” on page 1426.</td>
</tr>
<tr>
<td>enable</td>
<td>Authenticate using the password you configured for the Super User privilege level. This password is configured using the <code>enable super-user-password</code> command. Refer to “Setting passwords for management privilege levels” on page 1426.</td>
</tr>
<tr>
<td>local</td>
<td>Authenticate using a local user name and password you configured on the device. Local user names and passwords are configured using the <code>username</code> command. Refer to “Configuring a local user account” on page 1436.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Authenticate using the database on a TACACS server. You also must identify the server to the device using the <code>tacacs-server</code> command.</td>
</tr>
<tr>
<td>tacacs+</td>
<td>Authenticate using the database on a TACACS+ server. You also must identify the server to the device using the <code>tacacs-server</code> command.</td>
</tr>
<tr>
<td>radius</td>
<td>Authenticate using the database on a RADIUS server. You also must identify the server to the device using the <code>radius-server</code> command.</td>
</tr>
<tr>
<td>none</td>
<td>Do not use any authentication method. The device automatically permits access.</td>
</tr>
</tbody>
</table>
Configuring TACACS/TACACS+ security

NOTE
For examples of how to define authentication-method lists for types of authentication other than TACACS/TACACS+, refer to “Configuring authentication-method lists” on page 1477.

Entering privileged EXEC mode after a Telnet or SSH login

By default, a user enters User EXEC mode after a successful login through Telnet or SSH. Optionally, you can configure the device so that a user enters Privileged EXEC mode after a Telnet or SSH login. To do this, use the following command.

\[ \text{FastIron(config)}\# \text{aaa authentication login privilege-mode} \]

Syntax: \text{aaa authentication login privilege-mode}

The user privilege level is based on the privilege level granted during login.

Configuring enable authentication to prompt for password only

If Enable authentication is configured on the device, when a user attempts to gain Super User access to the Privileged EXEC and CONFIG levels of the CLI, by default he or she is prompted for a username and password. You can configure the Brocade device to prompt only for a password. The device uses the username entered at login, if one is available. If no username was entered at login, the device prompts for both username and password.

To configure the Brocade device to prompt only for a password when a user attempts to gain Super User access to the Privileged EXEC and CONFIG levels of the CLI.

\[ \text{FastIron(config)}\# \text{aaa authentication enable implicit-user} \]

Syntax: [no] \text{aaa authentication enable implicit-user}

Telnet/SSH prompts when the TACACS+ Server is unavailable

When TACACS+ is the first method in the authentication method list, the device displays the login prompt received from the TACACS+ server. If a user attempts to login through Telnet or SSH, but none of the configured TACACS+ servers are available, the following takes place:

- If the next method in the authentication method list is "enable", the login prompt is skipped, and the user is prompted for the Enable password (that is, the password configured with the enable super-user-password command).
- If the next method in the authentication method list is "line", the login prompt is skipped, and the user is prompted for the Line password (that is, the password configured with the enable telnet password command).

Configuring TACACS+ authorization

Brocade devices support TACACS+ authorization for controlling access to management functions in the CLI. Two kinds of TACACS+ authorization are supported:

- Exec authorization determines a user privilege level when they are authenticated
- Command authorization consults a TACACS+ server to get authorization for commands entered by the user
Configuring exec authorization

When TACACS+ exec authorization is performed, the Brocade device consults a TACACS+ server to determine the privilege level of the authenticated user. To configure TACACS+ exec authorization on the Brocade device, enter the following command.

FastIron(config)# aaa authorization exec default tacacs+

Syntax: aaa authorization exec default tacacs+ | none

If you specify none, or omit the aaa authorization exec command from the device configuration, no exec authorization is performed.

A user privilege level is obtained from the TACACS+ server in the “foundry-privlvl” A-V pair. If the aaa authorization exec default tacacs+ command exists in the configuration, the device assigns the user the privilege level specified by this A-V pair. If the command does not exist in the configuration, then the value in the “foundry-privlvl” A-V pair is ignored, and the user is granted Super User access.

NOTE
If the aaa authorization exec default tacacs+ command exists in the configuration, following successful authentication the device assigns the user the privilege level specified by the “foundry-privlvl” A-V pair received from the TACACS+ server. If the aaa authorization exec default tacacs+ command does not exist in the configuration, then the value in the “foundry-privlvl” A-V pair is ignored, and the user is granted Super User access.

Also note that in order for the aaa authorization exec default tacacs+ command to work, either the aaa authentication enable default tacacs+ command, or the aaa authentication login privilege-mode command must also exist in the configuration.

Configuring an Attribute-Value pair on the TACACS+ server

During TACACS+ exec authorization, the Brocade device expects the TACACS+ server to send a response containing an A-V (Attribute-Value) pair that specifies the privilege level of the user. When the Brocade device receives the response, it extracts an A-V pair configured for the Exec service and uses it to determine the user privilege level.

To set a user privilege level, you can configure the “foundry-privlvl” A-V pair for the Exec service on the TACACS+ server.

Example

    user=bob {
      default service = permit
      member admin
      #Global password
      global = cleartext "cat"
      service = exec {
        foundry-privlvl = 0
      }
    }

In this example, the A-V pair foundry-privlvl = 0 grants the user full read-write access. The value in the foundry-privlvl A-V pair is an integer that indicates the privilege level of the user. Possible values are 0 for super-user level, 4 for port-config level, or 5 for read-only level. If a value other than 0, 4, or 5 is specified in the foundry-privlvl A-V pair, the default privilege level of 5 (read-only) is used. The foundry-privlvl A-V pair can also be embedded in the group configuration for the user. See your TACACS+ documentation for the configuration syntax relevant to your server.
If the foundry-privlvl A-V pair is not present, the Brocade device extracts the last A-V pair configured for the Exec service that has a numeric value. The Brocade device uses this A-V pair to determine the user privilege level.

Example

```plaintext
user=bob {
 default service = permit
 member admin
 #Global password
 global = cleartext "cat"
 service = exec {
 priv-lvl = 15
 }
}
```

The attribute name in the A-V pair is not significant; the Brocade device uses the last one that has a numeric value. However, the Brocade device interprets the value for a non-“foundry-privlvl” A-V pair differently than it does for a “foundry-privlvl” A-V pair. The following table lists how the Brocade device associates a value from a non-“foundry-privlvl” A-V pair with a Brocade privilege level.

<table>
<thead>
<tr>
<th>Value for non-“foundry-privlvl” A-V pair</th>
<th>Brocade privilege level</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0 (super-user)</td>
</tr>
<tr>
<td>From 14 – 1</td>
<td>4 (port-config)</td>
</tr>
<tr>
<td>Any other number or 0</td>
<td>5 (read-only)</td>
</tr>
</tbody>
</table>

In the example above, the A-V pair configured for the Exec service is `priv-lvl = 15`. The Brocade device uses the value in this A-V pair to set the user privilege level to 0 (super-user), granting the user full read-write access.

In a configuration that has both a “foundry-privlvl” A-V pair and a non-“foundry-privlvl” A-V pair for the Exec service, the non-“foundry-privlvl” A-V pair is ignored.

Example

```plaintext
user=bob {
 default service = permit
 member admin
 #Global password
 global = cleartext "cat"
 service = exec {
 foundry-privlvl = 4
 priv-lvl = 15
 }
}
```

In this example, the user would be granted a privilege level of 4 (port-config level). The `priv-lvl = 15` A-V pair is ignored by the Brocade device.

If the TACACS+ server has no A-V pair configured for the Exec service, the default privilege level of 5 (read-only) is used.

**Configuring command authorization**

When TACACS+ command authorization is enabled, the Brocade device consults a TACACS+ server to get authorization for commands entered by the user.
You enable TACACS+ command authorization by specifying a privilege level whose commands require authorization. For example, to configure the Brocade device to perform authorization for the commands available at the Super User privilege level (that is, all commands on the device), enter the following command.

```
FastIron(config)# aaa authorization commands 0 default tacacs+
```

**Syntax:** `aaa authorization commands <privilege-level> default tacacs+ | radius | none`

The `<privilege-level>` parameter can be one of the following:

- **0** – Authorization is performed for commands available at the Super User level (all commands)
- **4** – Authorization is performed for commands available at the Port Configuration level (port-config and read-only commands)
- **5** – Authorization is performed for commands available at the Read Only level (read-only commands)

**NOTE**

TACACS+ command authorization can be performed only for commands entered from Telnet or SSH sessions, or from the console. No authorization is performed for commands entered at the Web Management Interface or IronView Network Manager.

TACACS+ command authorization is not performed for the following commands:

- At all levels: `exit`, `logout`, `end`, and `quit`.
- At the Privileged EXEC level: `enable` or `enable <text>`, where `<text>` is the password configured for the Super User privilege level.

If configured, command accounting is performed for these commands.

**AAA support for console commands**

AAA support for commands entered at the console includes the following:

- Login prompt that uses AAA authentication, using authentication-method Lists
- Exec Authorization
- Exec Accounting
- Command authorization
- Command accounting
- System Accounting

To enable AAA support for commands entered at the console, enter the following command.

```
FastIron(config)# enable aaa console
```

**Syntax:** `[no] enable aaa console`

**Configuring TACACS+ accounting**

Brocade devices support TACACS+ accounting for recording information about user activity and system events. When you configure TACACS+ accounting on a Brocade device, information is sent to a TACACS+ accounting server when specified events occur, such as when a user logs into the device or the system is rebooted.
Configuring TACACS+ accounting for Telnet/SSH (Shell) access

To send an Accounting Start packet to the TACACS+ accounting server when an authenticated user establishes a Telnet or SSH session on the Brocade device, and an Accounting Stop packet when the user logs out.

```bash
FastIron(config)# aaa accounting exec default start-stop tacacs+
```

Syntax: `aaa accounting exec default start-stop radius | tacacs+ | none`

Configuring TACACS+ accounting for CLI commands

You can configure TACACS+ accounting for CLI commands by specifying a privilege level whose commands require accounting. For example, to configure the Brocade device to perform TACACS+ accounting for the commands available at the Super User privilege level (that is; all commands on the device), enter the following command.

```bash
FastIron(config)# aaa accounting commands 0 default start-stop tacacs+
```

An Accounting Start packet is sent to the TACACS+ accounting server when a user enters a command, and an Accounting Stop packet is sent when the service provided by the command is completed.

**NOTE**

If authorization is enabled, and the command requires authorization, then authorization is performed before accounting takes place. If authorization fails for the command, no accounting takes place.

Syntax: `aaa accounting commands <privilege-level> default start-stop radius | tacacs+ | none`

The `<privilege-level>` parameter can be one of the following:

- **0** – Records commands available at the Super User level (all commands)
- **4** – Records commands available at the Port Configuration level (port-config and read-only commands)
- **5** – Records commands available at the Read Only level (read-only commands)

Configuring TACACS+ accounting for system events

You can configure TACACS+ accounting to record when system events occur on the Brocade device. System events include rebooting and when changes to the active configuration are made.

The following command causes an Accounting Start packet to be sent to the TACACS+ accounting server when a system event occurs, and a Accounting Stop packet to be sent when the system event is completed.

```bash
FastIron(config)# aaa accounting system default start-stop tacacs+
```

Syntax: `aaa accounting system default start-stop radius | tacacs+ | none`
Configuring an interface as the source for all TACACS/TACACS+ packets

You can designate the lowest-numbered IP address configured an Ethernet port, loopback interface, or virtual interface as the source IP address for all TACACS/TACACS+ packets from the Layer 3 Switch. Identifying a single source IP address for TACACS/TACACS+ packets provides the following benefits:

- If your TACACS/TACACS+ server is configured to accept packets only from specific links or IP addresses, you can use this feature to simplify configuration of the TACACS/TACACS+ server by configuring the Brocade device to always send the TACACS/TACACS+ packets from the same link or source address.

- If you specify a loopback interface as the single source for TACACS/TACACS+ packets, TACACS/TACACS+ servers can receive the packets regardless of the states of individual links. Thus, if a link to the TACACS/TACACS+ server becomes unavailable but the client or server can be reached through another link, the client or server still receives the packets, and the packets still have the source IP address of the loopback interface.

The software contains separate CLI commands for specifying the source interface for Telnet, TACACS/TACACS+, and RADIUS packets. You can configure a source interface for one or more of these types of packets.

To specify an Ethernet, loopback, or virtual interface as the source for all TACACS/TACACS+ packets from the device, use the following CLI method. The software uses the lowest-numbered IP address configured on the port or interface as the source IP address for TACACS/TACACS+ packets originated by the device.

To specify the lowest-numbered IP address configured on a virtual interface as the device source for all TACACS/TACACS+ packets, enter commands such as the following.

```
FastIron(config)# int ve 1
FastIron(config-vif-1)# ip address 10.0.0.3/24
FastIron(config-vif-1)# exit
FastIron(config)# ip tacacs source-interface ve 1
```

The commands in this example configure virtual interface 1, assign IP address 10.0.0.3/24 to the interface, then designate the interface as the source for all TACACS/TACACS+ packets from the Layer 3 Switch.

**Syntax:** `ip tacacs source-interface ethernet [<slotnum>/]<portnum> | loopback <num> | ve <num>`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The `<num>` parameter is a loopback interface or virtual interface number.
Displaying TACACS/TACACS+ statistics and configuration information

The **show aaa** command displays information about all TACACS+ and RADIUS servers identified on the device.

```
FastIron# show aaa
Tacacs+ key: foundry
Tacacs+ retries: 1
Tacacs+ timeout: 15 seconds
Tacacs+ dead-time: 3 minutes
Tacacs+ Server: 207.95.6.90 Port:49:
 opens=6 closes=3 timeouts=3 errors=0
 packets in=4 packets out=4
no connection
Radius key: networks
Radius retries: 3
Radius timeout: 3 seconds
Radius dead-time: 3 minutes
Radius Server: 207.95.6.90 Auth Port=1645 Acct Port=1646:
 opens=2 closes=1 timeouts=1 errors=0
 packets in=1 packets out=4
no connection

The following table describes the TACACS/TACACS+ information displayed by the **show aaa** command.

TABLE 236 Output of the show aaa command for TACACS/TACACS+

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacacs+ key</td>
<td>The setting configured with the <code>tacacs-server key</code> command. At the Super User privilege level, the actual text of the key is displayed. At the other privilege levels, a string of periods (....) is displayed instead of the text.</td>
</tr>
<tr>
<td>Tacacs+ retries</td>
<td>The setting configured with the <code>tacacs-server retransmit</code> command.</td>
</tr>
<tr>
<td>Tacacs+ timeout</td>
<td>The setting configured with the <code>tacacs-server timeout</code> command.</td>
</tr>
<tr>
<td>Tacacs+ dead-time</td>
<td>The setting configured with the <code>tacacs-server dead-time</code> command.</td>
</tr>
<tr>
<td>Tacacs+ Server</td>
<td>For each TACACS/TACACS+ server, the IP address, port, and the following statistics are displayed:</td>
</tr>
<tr>
<td></td>
<td>• opens - Number of times the port was opened for communication with the server</td>
</tr>
<tr>
<td></td>
<td>• closes - Number of times the port was closed normally</td>
</tr>
<tr>
<td></td>
<td>• timeouts - Number of times port was closed due to a timeout</td>
</tr>
<tr>
<td></td>
<td>• errors - Number of times an error occurred while opening the port</td>
</tr>
<tr>
<td></td>
<td>• packets in - Number of packets received from the server</td>
</tr>
<tr>
<td></td>
<td>• packets out - Number of packets sent to the server</td>
</tr>
<tr>
<td>connection</td>
<td>The current connection status. This can be "no connection" or "connection active".</td>
</tr>
</tbody>
</table>

The **show web** command displays the privilege level of Web Management Interface users.
Configuring RADIUS security

You can use a Remote Authentication Dial In User Service (RADIUS) server to secure the following types of access to the Brocade Layer 2 Switch or Layer 3 Switch:

- Telnet access
- SSH access
- Web management access
- Access to the Privileged EXEC level and CONFIG levels of the CLI

NOTE
Brocade devices do not support RADIUS security for SNMP (IronView Network Manager) access.

RADIUS authentication, authorization, and accounting

When RADIUS authentication is implemented, the Brocade device consults a RADIUS server to verify user names and passwords. You can optionally configure RADIUS authorization, in which the Brocade device consults a list of commands supplied by the RADIUS server to determine whether a user can execute a command he or she has entered, as well as accounting, which causes the Brocade device to log information on a RADIUS accounting server when specified events occur on the device.

RADIUS authentication

When RADIUS authentication takes place, the following events occur.

1. A user attempts to gain access to the Brocade device by doing one of the following:
 - Logging into the device using Telnet, SSH, or the Web Management Interface
 - Entering the Privileged EXEC level or CONFIG level of the CLI
2. The user is prompted for a username and password.
3. The user enters a username and password.
4. The Brocade device sends a RADIUS Access-Request packet containing the username and password to the RADIUS server.
5. The RADIUS server validates the Brocade device using a shared secret (the RADIUS key).
6. The RADIUS server looks up the username in its database.
7. If the username is found in the database, the RADIUS server validates the password.

Example

```bash
FastIron# show web
User                             Privilege       IP address
set                                     0        192.168.1.234
```

Syntax: show web
8. If the password is valid, the RADIUS server sends an Access-Accept packet to the Brocade device, authenticating the user. Within the Access-Accept packet are three Brocade vendor-specific attributes that indicate:
 • The privilege level of the user
 • A list of commands
 • Whether the user is allowed or denied usage of the commands in the list
 The last two attributes are used with RADIUS authorization, if configured.

9. The user is authenticated, and the information supplied in the Access-Accept packet for the user is stored on the Brocade device. The user is granted the specified privilege level. If you configure RADIUS authorization, the user is allowed or denied usage of the commands in the list.

RADIUS authorization

When RADIUS authorization takes place, the following events occur.

1. A user previously authenticated by a RADIUS server enters a command on the Brocade device.
2. The Brocade device looks at its configuration to see if the command is at a privilege level that requires RADIUS command authorization.
3. If the command belongs to a privilege level that requires authorization, the Brocade device looks at the list of commands delivered to it in the RADIUS Access-Accept packet when the user was authenticated. (Along with the command list, an attribute was sent that specifies whether the user is permitted or denied usage of the commands in the list.)

NOTE

After RADIUS authentication takes place, the command list resides on the Brocade device. The RADIUS server is not consulted again once the user has been authenticated. This means that any changes made to the user command list on the RADIUS server are not reflected until the next time the user is authenticated by the RADIUS server, and the new command list is sent to the Brocade device.

4. If the command list indicates that the user is authorized to use the command, the command is executed.

RADIUS accounting

RADIUS accounting works as follows.

1. One of the following events occur on the Brocade device:
 • A user logs into the management interface using Telnet or SSH
 • A user enters a command for which accounting has been configured
 • A system event occurs, such as a reboot or reloading of the configuration file
2. The Brocade device checks its configuration to see if the event is one for which RADIUS accounting is required.
3. If the event requires RADIUS accounting, the Brocade device sends a RADIUS Accounting Start packet to the RADIUS accounting server, containing information about the event.
4. The RADIUS accounting server acknowledges the Accounting Start packet.
5. The RADIUS accounting server records information about the event.
6. When the event is concluded, the Brocade device sends an Accounting Stop packet to the RADIUS accounting server.
7. The RADIUS accounting server acknowledges the Accounting Stop packet.

AAA operations for RADIUS

The following table lists the sequence of authentication, authorization, and accounting operations that take place when a user gains access to a Brocade device that has RADIUS security configured.

<table>
<thead>
<tr>
<th>User action</th>
<th>Applicable AAA operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>User attempts to gain access to the Privileged EXEC and CONFIG levels of the CLI</td>
<td>Enable authentication: aaa authentication enable default <method-list> System accounting start: aaa accounting system default start-stop <method-list></td>
</tr>
<tr>
<td>User logs into the Web Management Interface</td>
<td>Web authentication: aaa authentication web-server default <method-list></td>
</tr>
<tr>
<td>User enters system commands (for example, <code>reload</code>, <code>boot system</code>)</td>
<td>Command authorization: aaa authorization commands <privilege-level> default <method-list> Command accounting: aaa accounting commands <privilege-level> default start-stop <method-list> System accounting stop: aaa accounting system default start-stop <method-list></td>
</tr>
<tr>
<td>User enters other commands</td>
<td>Command authorization: aaa authorization commands <privilege-level> default <method-list> Command accounting: aaa accounting commands <privilege-level> default start-stop <method-list></td>
</tr>
</tbody>
</table>
AAA security for commands pasted into the running-config

If AAA security is enabled on the device, commands pasted into the running-config are subject to the same AAA operations as if they were entered manually.

When you paste commands into the running-config, and AAA command authorization or accounting, or both, are configured on the device, AAA operations are performed on the pasted commands. The AAA operations are performed before the commands are actually added to the running-config. The server performing the AAA operations should be reachable when you paste the commands into the running-config file. If the device determines that a pasted command is invalid, AAA operations are halted on the remaining commands. The remaining commands may not be executed if command authorization is configured.

NOTE
Since RADIUS command authorization relies on a list of commands received from the RADIUS server when authentication is performed, it is important that you use RADIUS authentication when you also use RADIUS command authorization.

RADIUS configuration considerations

- You must deploy at least one RADIUS server in your network.
- Brocade devices support authentication using up to eight RADIUS servers, including those used for 802.1X authentication and for management. The device tries to use the servers in the order you add them to the device configuration. If one RADIUS server times out (does not respond), the Brocade device tries the next one in the list. Servers are tried in the same sequence each time there is a request.
- Starting in software release FSX 04.0.00, you can optionally configure a RADIUS server as a port server, indicating that the server will be used only to authenticate users on ports to which it is mapped, as opposed to globally authenticating users on all ports of the device. In earlier releases, all configured RADIUS servers are “global” servers and apply to users on all ports of the device. Refer to “Configuring a RADIUS server per port” on page 1466.
- Starting in software release FSX 04.0.00, you can map up to eight RADIUS servers to each port on the Brocade device. The port will authenticate users using only the RADIUS servers to which it is mapped. If there are no RADIUS servers mapped to a port, it will use the “global” servers for authentication. In earlier releases, all RADIUS servers are “global” servers and cannot be bound to individual ports. Refer to “Mapping a RADIUS server to individual ports” on page 1467.
- You can select only one primary authentication method for each type of access to a device (CLI through Telnet, CLI Privileged EXEC and CONFIG levels). For example, you can select RADIUS as the primary authentication method for Telnet CLI access, but you cannot also select TACACS+ authentication as the primary method for the same type of access. However, you can configure backup authentication methods for each access type.

RADIUS configuration procedure

Follow the procedure given below to configure a Brocade device for RADIUS.

2. Identify the RADIUS server to the Brocade device. Refer to “Identifying the RADIUS server to the Brocade device” on page 1466.

3. Optionally specify different servers for individual AAA functions. Refer to “Specifying different servers for individual AAA functions” on page 1466.

4. Optionally configure the RADIUS server as a “port only” server. Refer to “Configuring a RADIUS server per port” on page 1466.

5. Optionally bind the RADIUS servers to ports on the Brocade device. Refer to “Mapping a RADIUS server to individual ports” on page 1467.

8. Optionally configure RADIUS authorization. Refer to “Configuring RADIUS authorization” on page 1472.

Configuring Brocade-specific attributes on the RADIUS server

NOTE
For all Brocade devices, RADIUS Challenge is supported for 802.1x authentication but not for login authentication.

During the RADIUS authentication process, if a user supplies a valid username and password, the RADIUS server sends an Access-Accept packet to the Brocade device, authenticating the user. Within the Access-Accept packet are three Brocade vendor-specific attributes that indicate:

- The privilege level of the user
- A list of commands
- Whether the user is allowed or denied usage of the commands in the list

You must add these three Brocade vendor-specific attributes to your RADIUS server configuration, and configure the attributes in the individual or group profiles of the users that will access the Brocade device.

Brocade Vendor-ID is 1991, with Vendor-Type 1. The following table describes the Brocade vendor-specific attributes.
Enabling SNMP to configure RADIUS

To enable SNMP access to RADIUS MIB objects on the device, enter a command such as the following.

```
FastIron(config)# enable snmp config-radius
```

Syntax: `[no] enable snmp <config-radius | config-tacacs>

The `<config-radius>` parameter specifies the RADIUS configuration mode. RADIUS is disabled by default.

The `<config-tacacs>` parameter specifies the TACACS configuration mode. TACACS is disabled by default.

TABLE 237 Brocade vendor-specific attributes for RADIUS

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute ID</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>foundry-privilege-level</td>
<td>1</td>
<td>integer</td>
<td>Specifies the privilege level for the user. This attribute can be set to one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 - Super User level – Allows complete read-and-write access to the system. This is generally for system administrators and is the only management privilege level that allows you to configure passwords.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 - Port Configuration level – Allows read-and-write access for specific ports but not for global (system-wide) parameters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 5 - Read Only level – Allows access to the Privileged EXEC mode and CONFIG mode of the CLI but only with read access.</td>
</tr>
</tbody>
</table>

| foundry-command-string | 2 | string | Specifies a list of CLI commands that are permitted or denied to the user when RADIUS authorization is configured. The commands are delimited by semi-colons (;). You can specify an asterisk (*) as a wildcard at the end of a command string. For example, the following command list specifies all show and debug ip commands, as well as the write terminal command: show *; debug ip *; write term* |

foundry-command-exception-flag	3	integer	Specifies whether the commands indicated by the foundry-command-string attribute are permitted or denied to the user. This attribute can be set to one of the following:
			• 0 - Permit execution of the commands indicated by foundry-command-string, deny all other commands.
			• 1 - Deny execution of the commands indicated by foundry-command-string, permit all other commands.
Identifying the RADIUS server to the Brocade device

To use a RADIUS server to authenticate access to a Brocade device, you must identify the server to the Brocade device.

Example

FastIron(config)# radius-server host 209.157.22.99

Syntax: `radius-server host <ip-addr> | <ipv6-addr> | <server-name> [auth-port <number>] [acct-port <number>]`

The `<ip-addr> | <ipv6-addr> | <server-name>` parameter is either an IP address or an ASCII text string.

The `<auth-port>` parameter is the Authentication port number. The default is 1645.

The `<acct-port>` parameter is the Accounting port number. The default is 1646.

Specifying different servers for individual AAA functions

In a RADIUS configuration, you can designate a server to handle a specific AAA task. For example, you can designate one RADIUS server to handle authorization and another RADIUS server to handle accounting. You can specify individual servers for authentication and accounting, but not for authorization. You can set the RADIUS key for each server.

To specify different RADIUS servers for authentication, authorization, and accounting, enter commands such as the following.

FastIron(config)# radius-server host 1.2.3.4 authentication-only key abc
FastIron(config)# radius-server host 1.2.3.5 authorization-only key def
FastIron(config)# radius-server host 1.2.3.6 accounting-only key ghi

Syntax: `radius-server host <ip-addr> | <ipv6-addr> | <server-name> [auth-port <number>] [acct-port <number>] [authentication-only | accounting-only | default] [key 0 | 1 <string>]`

The `default` parameter causes the server to be used for all AAA functions.

After authentication takes place, the server that performed the authentication is used for authorization and accounting. If the authenticating server cannot perform the requested function, then the next server in the configured list of servers is tried; this process repeats until a server that can perform the requested function is found, or every server in the configured list has been tried.

Configuring a RADIUS server per port

Platform Support:

- FastIron X Series devices running software release 04.0.00 and later – L2, BL3, L3
- TurboIron X Series devices running software release 04.1.00 and later

You can optionally configure a RADIUS server per port, indicating that it will be used only to authenticate users on ports to which it is mapped. A RADIUS server that is not explicitly configured as a RADIUS server per port is a **global server**, and can be used to authenticate users on ports to which no RADIUS servers are mapped.
Configuration notes

- This feature works with 802.1X and multi-device port authentication only.
- As in previous releases, you can define up to eight RADIUS servers per Brocade device.

Configuration example and command syntax

The following shows an example configuration.

```
FastIron(config)# radius-server host 10.10.10.103 auth-port 1812 acct-port 1813
default key mykeyword dot1x port-only
FastIron(config)# radius-server host 10.10.10.104 auth-port 1812 acct-port 1813
default key mykeyword dot1x port-only
FastIron(config)# radius-server host 10.10.10.105 auth-port 1812 acct-port 1813
default key mykeyword dot1x
FastIron(config)# radius-server host 10.10.10.106 auth-port 1812 acct-port 1813
default key mykeyword dot1x
```

The above configuration has the following affect:

- RADIUS servers 10.10.10.103 and 10.10.10.104 will be used only to authenticate users on ports to which the servers are mapped. To map a RADIUS server to a port, refer to “Mapping a RADIUS server to individual ports” on page 1467.
- RADIUS servers 10.10.10.105 and 10.10.10.106 will be used to authenticate users on ports to which no RADIUS servers are mapped. For example, port e 9, to which no RADIUS servers are mapped, will send a RADIUS request to the first configured RADIUS server, 10.10.10.105. If the request fails, it will go to the second configured RADIUS server, 10.10.10.106. It will not send requests to 10.10.10.103 or 10.10.10.104, since these servers are configured as port servers.

Syntax: `radius-server host <ip-addr> | <server-name> [auth-port <number>] [acct-port <number>] [default key <string> dot1x] [port-only]`

The `host <ip-addr>` is the IPv4 address.

The `auth-port <number>` parameter is the Authentication port number; it is an optional parameter. The default is 1645.

The `acct-port <number>` parameter is the Accounting port number; it is an optional parameter. The default is 1646.

The `default key <string> dot1x` parameter indicates that this RADIUS server supports the 802.1X standard. A RADIUS server that supports the 802.1X standard can also be used to authenticate non-802.1X authentication requests.

The `port-only` parameter is optional and specifies that the server will be used only to authenticate users on ports to which it is mapped.

Mapping a RADIUS server to individual ports

Platform Support:

- FastIron X Series devices running software release 04.0.00 and later – L2, BL3, L3
- Turbolron X Series devices running software release 04.1.00 and later
You can map up to eight RADIUS servers to each port on the Brocade device. The port will authenticate users using only the RADIUS servers to which the port is mapped. If there are no RADIUS servers mapped to a port, it will use the “global” servers for authentication.

As in previous releases, a port goes through the list of servers in the order in which it was mapped or configured, until a server that can perform the requested function is found, or until every server in the list has been tried.

Configuration notes

- This feature works with 802.1X and multi-device port authentication only.
- You can map a RADIUS server to a physical port only. You cannot map a RADIUS server to a VE.

Configuration example and command syntax

To map a RADIUS server to a port, enter commands such as the following.

```plaintext
FastIron(config)# int e 3
FastIron(config-if-e1000-3)# dot1x port-control auto
FastIron(config-if-e1000-3)# use-radius-server 10.10.10.103
FastIron(config-if-e1000-3)# use-radius-server 10.10.10.110
```

With the above configuration, port e 3 would send a RADIUS request to 10.10.10.103 first, since it is the first server mapped to the port. If it fails, it will go to 10.10.10.110.

Syntax: `use-radius-server <ip-addr>`

The `host <ip-addr>` is an IPv4 address.

Setting RADIUS parameters

You can set the following parameters in a RADIUS configuration:

- **RADIUS key** – This parameter specifies the value that the Brocade device sends to the RADIUS server when trying to authenticate user access.
- **Retransmit interval** – This parameter specifies how many times the Brocade device will resend an authentication request when the RADIUS server does not respond. The retransmit value can be from 1 – 5 times. The default is 3 times.
- **Timeout** – This parameter specifies how many seconds the Brocade device waits for a response from a RADIUS server before either retrying the authentication request, or determining that the RADIUS servers are unavailable and moving on to the next authentication method in the authentication-method list. The timeout can be from 1 – 15 seconds. The default is 3 seconds.

Setting the RADIUS key

The `key` parameter in the `radius-server` command is used to encrypt RADIUS packets before they are sent over the network. The value for the `key` parameter on the Brocade device should match the one configured on the RADIUS server. The key can be from 1 – 32 characters in length and cannot include any space characters.

To specify a RADIUS server key, enter a command such as the following.

```plaintext
FastIron(config)# radius-server key mirabeau
```
Syntax: `radius-server key [0 | 1] <string>`

When you display the configuration of the Brocade device, the RADIUS key is encrypted.

Example

```
FastIron(config)# radius-server key 1 abc
FastIron(config)# write terminal
...
radius-server host 1.2.3.5
radius key 1 $!2d
```

NOTE

Encryption of the RADIUS keys is done by default. The 0 parameter disables encryption. The 1 parameter is not required; it is provided for backwards compatibility.

Setting the retransmission limit

The `retransmit` parameter specifies the maximum number of retransmission attempts. When an authentication request times out, the Brocade software will retransmit the request up to the maximum number of retransmissions configured. The default retransmit value is 3 retries. The range of retransmit values is from 1 – 5.

To set the RADIUS retransmit limit, enter a command such as the following.

```
FastIron(config)# radius-server retransmit 5
```

Syntax: `radius-server retransmit <number>`

Setting the timeout parameter

The `timeout` parameter specifies how many seconds the Brocade device waits for a response from the RADIUS server before either retrying the authentication request, or determining that the RADIUS server is unavailable and moving on to the next authentication method in the authentication-method list. The timeout can be from 1 – 15 seconds. The default is 3 seconds.

```
FastIron(config)# radius-server timeout 5
```

Syntax: `radius-server timeout <number>`

RADIUS over IPv6

Platform Support:

- FastIron X Series devices running software release 02.5.00 and later

Brocade devices support the ability to send RADIUS packets over an IPv6 network.

To enable the Brocade device to send RADIUS packets over IPv6, enter a command such as the following at the Global CONFIG level of the CLI.

```
FastIron(config)# radius-server host ipv6 3000::300
```

Syntax: `radius-server host ipv6 <ipv6-host address>`

The `<ipv6-host address>` is the IPv6 address of the RADIUS server. When you enter the IPv6 host address, you do not need to specify the prefix length. A prefix length of 128 is implied.
Configuring authentication-method lists for RADIUS

You can use RADIUS to authenticate Telnet/SSH access and access to Privileged EXEC level and CONFIG levels of the CLI. When configuring RADIUS authentication, you create authentication-method lists specifically for these access methods, specifying RADIUS as the primary authentication method.

Within the authentication-method list, RADIUS is specified as the primary authentication method and up to six backup authentication methods are specified as alternates. If RADIUS authentication fails due to an error, the device tries the backup authentication methods in the order they appear in the list.

When you configure authentication-method lists for RADIUS, you must create a separate authentication-method list for Telnet or SSH CLI access and for CLI access to the Privileged EXEC level and CONFIG levels of the CLI.

To create an authentication-method list that specifies RADIUS as the primary authentication method for securing Telnet access to the CLI.

```
FastIron(config)# enable telnet authentication
FastIron(config)# aaa authentication login default radius local
```

The commands above cause RADIUS to be the primary authentication method for securing Telnet access to the CLI. If RADIUS authentication fails due to an error with the server, local authentication is used instead.

To create an authentication-method list that specifies RADIUS as the primary authentication method for securing access to Privileged EXEC level and CONFIG levels of the CLI.

```
FastIron(config)# aaa authentication enable default radius local none
```

The command above causes RADIUS to be the primary authentication method for securing access to Privileged EXEC level and CONFIG levels of the CLI. If RADIUS authentication fails due to an error with the server, local authentication is used instead. If local authentication fails, no authentication is used; the device automatically permits access.

Syntax:

```
[no] aaa authentication enable | login default <method1> [<method2>] [<method3>]
[<method4>] [<method5>] [<method6>] [<method7>]
```

The `web-server | enable | login` parameter specifies the type of access this authentication-method list controls. You can configure one authentication-method list for each type of access.

NOTE

If you configure authentication for Web management access, authentication is performed each time a page is requested from the server. When frames are enabled on the Web Management Interface, the browser sends an HTTP request for each frame. The Brocade device authenticates each HTTP request from the browser. To limit authentications to one per page, disable frames on the Web Management Interface.

The `<method1>` parameter specifies the primary authentication method. The remaining optional `<method>` parameters specify additional methods to try if an error occurs with the primary method. A method can be one of the values listed in the Method Parameter column in the following table.
Configuring RADIUS security

Entering privileged EXEC mode after a Telnet or SSH login

By default, a user enters User EXEC mode after a successful login through Telnet or SSH. Optionally, you can configure the device so that a user enters Privileged EXEC mode after a Telnet or SSH login. To do this, use the following command.

```
FastIron(config)# aaa authentication login privilege-mode
```

Syntax: `aaa authentication login privilege-mode`

The user privilege level is based on the privilege level granted during login.

Configuring enable authentication to prompt for password only

If Enable authentication is configured on the device, when a user attempts to gain Super User access to the Privileged EXEC and CONFIG levels of the CLI, by default he or she is prompted for a username and password. In this release, you can configure the Brocade device to prompt only for a password. The device uses the username entered at login, if one is available. If no username was entered at login, the device prompts for both username and password.

To configure the Brocade device to prompt only for a password when a user attempts to gain Super User access to the Privileged EXEC and CONFIG levels of the CLI.

```
FastIron(config)# aaa authentication enable implicit-user
```

Syntax: `[no] aaa authentication enable implicit-user`

TABLE 238 Authentication method values

<table>
<thead>
<tr>
<th>Method parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>Authenticate using the password you configured for Telnet access. The Telnet password is configured using the <code>enable telnet password...</code> command. Refer to “Setting a Telnet password” on page 1426.</td>
</tr>
<tr>
<td>enable</td>
<td>Authenticate using the password you configured for the Super User privilege level. This password is configured using the <code>enable super-user-password...</code> command. Refer to “Setting passwords for management privilege levels” on page 1426.</td>
</tr>
<tr>
<td>local</td>
<td>Authenticate using a local user name and password you configured on the device. Local user names and passwords are configured using the <code>username...</code> command. Refer to “Configuring a local user account” on page 1436.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Authenticate using the database on a TACACS server. You also must identify the server to the device using the <code>tacacs-server</code> command.</td>
</tr>
<tr>
<td>tacacs+</td>
<td>Authenticate using the database on a TACACS+ server. You also must identify the server to the device using the <code>tacacs-server</code> command.</td>
</tr>
<tr>
<td>radius</td>
<td>Authenticate using the database on a RADIUS server. You also must identify the server to the device using the <code>radius-server</code> command.</td>
</tr>
<tr>
<td>none</td>
<td>Do not use any authentication method. The device automatically permits access.</td>
</tr>
</tbody>
</table>

NOTE

For examples of how to define authentication-method lists for types of authentication other than RADIUS, refer to “Configuring authentication-method lists” on page 1477.
Configuring RADIUS authorization

Brocade devices support RADIUS authorization for controlling access to management functions in the CLI. Two kinds of RADIUS authorization are supported:

- Exec authorization determines a user privilege level when they are authenticated
- Command authorization consults a RADIUS server to get authorization for commands entered by the user

Configuring exec authorization

When RADIUS exec authorization is performed, the Brocade device consults a RADIUS server to determine the privilege level of the authenticated user. To configure RADIUS exec authorization on the Brocade device, enter the following command.

```
FastIron(config)# aaa authorization exec default radius
```

Syntax: `aaa authorization exec default radius` | `none`

If you specify `none`, or omit the `aaa authorization exec` command from the device configuration, no exec authorization is performed.

NOTE

If the `aaa authorization exec default radius` command exists in the configuration, following successful authentication the device assigns the user the privilege level specified by the foundry-privilege-level attribute received from the RADIUS server. If the `aaa authorization exec default radius` command does not exist in the configuration, then the value in the foundry-privilege-level attribute is ignored, and the user is granted Super User access.

Also note that in order for the `aaa authorization exec default radius` command to work, either the `aaa authentication enable default radius` command, or the `aaa authentication login privilege-mode` command must also exist in the configuration.

Configuring command authorization

When RADIUS command authorization is enabled, the Brocade device consults the list of commands supplied by the RADIUS server during authentication to determine whether a user can execute a command he or she has entered.

You enable RADIUS command authorization by specifying a privilege level whose commands require authorization. For example, to configure the Brocade device to perform authorization for the commands available at the Super User privilege level (that is; all commands on the device), enter the following command.

```
FastIron(config)# aaa authorization commands 0 default radius
```

Syntax: `aaa authorization commands <privilege-level> default radius` | `tacacs+` | `none`

The `<privilege-level>` parameter can be one of the following:

- **0** – Authorization is performed (that is, the Brocade device looks at the command list) for commands available at the Super User level (all commands)
- **4** – Authorization is performed for commands available at the Port Configuration level (port-config and read-only commands)
Configuring RADIUS security

- Authorization is performed for commands available at the Read Only level (read-only commands)

NOTE
RADIUS command authorization can be performed only for commands entered from Telnet or SSH sessions, or from the console. No authorization is performed for commands entered at the Web Management Interface or IronView Network Manager.

NOTE
Since RADIUS command authorization relies on the command list supplied by the RADIUS server during authentication, you cannot perform RADIUS authorization without RADIUS authentication.

Command authorization and accounting for console commands

The Brocade device supports command authorization and command accounting for CLI commands entered at the console. To configure the device to perform command authorization and command accounting for console commands, enter the following.

FastIron(config)# enable aaa console

Syntax: enable aaa console

CAUTION
If you have previously configured the device to perform command authorization using a RADIUS server, entering the enable aaa console command may prevent the execution of any subsequent commands entered on the console.

This happens because RADIUS command authorization requires a list of allowable commands from the RADIUS server. This list is obtained during RADIUS authentication. For console sessions, RADIUS authentication is performed only if you have configured Enable authentication and specified RADIUS as the authentication method (for example, with the aaa authentication enable default radius command). If RADIUS authentication is never performed, the list of allowable commands is never obtained from the RADIUS server. Consequently, there would be no allowable commands on the console.

Configuring RADIUS accounting

Brocade devices support RADIUS accounting for recording information about user activity and system events. When you configure RADIUS accounting on a Brocade device, information is sent to a RADIUS accounting server when specified events occur, such as when a user logs into the device or the system is rebooted.

Configuring RADIUS accounting for Telnet/SSH (Shell) access

To send an Accounting Start packet to the RADIUS accounting server when an authenticated user establishes a Telnet or SSH session on the Brocade device, and an Accounting Stop packet when the user logs out.

FastIron(config)# aaa accounting exec default start-stop radius

Syntax: aaa accounting exec default start-stop radius | tacacs+ | none
Configuring RADIUS accounting for CLI commands

You can configure RADIUS accounting for CLI commands by specifying a privilege level whose commands require accounting. For example, to configure the Brocade device to perform RADIUS accounting for the commands available at the Super User privilege level (that is; all commands on the device), enter the following command.

```
FastIron(config)# aaa accounting commands 0 default start-stop radius
```

An Accounting Start packet is sent to the RADIUS accounting server when a user enters a command, and an Accounting Stop packet is sent when the service provided by the command is completed.

NOTE
If authorization is enabled, and the command requires authorization, then authorization is performed before accounting takes place. If authorization fails for the command, no accounting takes place.

Syntax: `aaa accounting commands <privilege-level> default start-stop radius | tacacs | none`

The `<privilege-level>` parameter can be one of the following:

- **0** – Records commands available at the Super User level (all commands)
- **4** – Records commands available at the Port Configuration level (port-config and read-only commands)
- **5** – Records commands available at the Read Only level (read-only commands)

Configuring RADIUS accounting for system events

You can configure RADIUS accounting to record when system events occur on the Brocade device. System events include rebooting and when changes to the active configuration are made.

The following command causes an Accounting Start packet to be sent to the RADIUS accounting server when a system event occurs, and a Accounting Stop packet to be sent when the system event is completed.

```
FastIron(config)# aaa accounting system default start-stop radius
```

Syntax: `aaa accounting system default start-stop radius | tacacs+ | none`

Configuring an interface as the source for all RADIUS packets

You can designate the lowest-numbered IP address configured an Ethernet port, loopback interface, or virtual interface as the source IP address for all RADIUS packets from the Layer 3 Switch. Identifying a single source IP address for RADIUS packets provides the following benefits:

- If your RADIUS server is configured to accept packets only from specific links or IP addresses, you can use this feature to simplify configuration of the RADIUS server by configuring the Brocade device to always send the RADIUS packets from the same link or source address.
• If you specify a loopback interface as the single source for RADIUS packets, RADIUS servers can receive the packets regardless of the states of individual links. Thus, if a link to the RADIUS server becomes unavailable but the client or server can be reached through another link, the client or server still receives the packets, and the packets still have the source IP address of the loopback interface.

The software contains separate CLI commands for specifying the source interface for Telnet, TACACS/TACACS+, and RADIUS packets. You can configure a source interface for one or more of these types of packets.

To specify an Ethernet, loopback or virtual interface as the source for all RADIUS packets from the device, use the following CLI method. The software uses the lowest-numbered IP address configured on the port or interface as the source IP address for RADIUS packets originated by the device.

To specify the lowest-numbered IP address configured on a virtual interface as the device source for all RADIUS packets, enter commands such as the following.

```
FastIron(config)# int ve 1
FastIron(config-vif-1)# ip address 10.0.0.3/24
FastIron(config-vif-1)# exit
FastIron(config)# ip radius source-interface ve 1
```

The commands in this example configure virtual interface 1, assign IP address 10.0.0.3/24 to the interface, then designate the interface as the source for all RADIUS packets from the Layer 3 Switch.

Syntax:
```
ip radius source-interface ethernet [<slotnum>]<portnum> | loopback <num> | ve <num>
```

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The `<num>` parameter is a loopback interface or virtual interface number. If you specify an Ethernet port, the `<portnum>` is the port number (including the slot number, if you are configuring a device).

Displaying RADIUS configuration information

The `show aaa` command displays information about all TACACS/TACACS+ and RADIUS servers identified on the device.
Configuring RADIUS security

Example

FastIron# show aaa
Tacacs+ key: foundry
Tacacs+ retries: 1
Tacacs+ timeout: 15 seconds
Tacacs+ dead-time: 3 minutes
Tacacs+ Server: 207.95.6.90 Port:49:
 opens=6 closes=3 timeouts=3 errors=0
 packets in=4 packets out=4
no connection
Radius key: networks
Radius retries: 3
Radius timeout: 3 seconds
Radius dead-time: 3 minutes
Radius Server: 207.95.6.90 Auth Port=1645 Acct Port=1646:
 opens=2 closes=1 timeouts=1 errors=0
 packets in=1 packets out=4
no connection

The following table describes the RADIUS information displayed by the show aaa command.

TABLE 239 Output of the show aaa command for RADIUS

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius key</td>
<td>The setting configured with the <code>radius-server key</code> command. At the Super User privilege level, the actual text of the key is displayed. At the other privilege levels, a string of periods (....) is displayed instead of the text.</td>
</tr>
<tr>
<td>Radius retries</td>
<td>The setting configured with the <code>radius-server retransmit</code> command.</td>
</tr>
<tr>
<td>Radius timeout</td>
<td>The setting configured with the <code>radius-server timeout</code> command.</td>
</tr>
<tr>
<td>Radius dead-time</td>
<td>The setting configured with the <code>radius-server dead-time</code> command.</td>
</tr>
<tr>
<td>Radius Server</td>
<td>For each RADIUS server, the IP address, and the following statistics are displayed: Auth Port RADIUS authentication port number (default 1645) Acct Port RADIUS accounting port number (default 1646)</td>
</tr>
<tr>
<td></td>
<td>• opens - Number of times the port was opened for communication with the server</td>
</tr>
<tr>
<td></td>
<td>• closes - Number of times the port was closed normally</td>
</tr>
<tr>
<td></td>
<td>• timeouts - Number of times port was closed due to a timeout</td>
</tr>
<tr>
<td></td>
<td>• errors - Number of times an error occurred while opening the port</td>
</tr>
<tr>
<td></td>
<td>• packets in - Number of packets received from the server</td>
</tr>
<tr>
<td></td>
<td>• packets out - Number of packets sent to the server</td>
</tr>
<tr>
<td>connection</td>
<td>The current connection status. This can be “no connection” or “connection active”.</td>
</tr>
</tbody>
</table>

The `show web` command displays the privilege level of Web Management Interface users.

Example

FastIron# show web
User set Privilege 0 IP address 192.168.1.234

Syntax: show web
Configuring authentication-method lists

To implement one or more authentication methods for securing access to the device, you configure authentication-method lists that set the order in which the authentication methods are consulted.

In an authentication-method list, you specify the access method (Telnet, Web, SNMP, and so on) and the order in which the device tries one or more of the following authentication methods:

- Local Telnet login password
- Local password for the Super User privilege level
- Local user accounts configured on the device
- Database on a TACACS or TACACS+ server
- Database on a RADIUS server
- No authentication

NOTE
The TACACS/TACACS+, RADIUS, and Telnet login password authentication methods are not supported for SNMP access.

NOTE
To authenticate Telnet access to the CLI, you also must enable the authentication by entering the `enable telnet authentication` command at the global CONFIG level of the CLI. You cannot enable Telnet authentication using the Web Management Interface.

NOTE
You do not need an authentication-method list to secure access based on ACLs or a list of IP addresses. Refer to “Using ACLs to restrict remote access” on page 1414 or “Restricting remote access to the device to specific IP addresses” on page 1417.

In an authentication-method list for a particular access method, you can specify up to seven authentication methods. If the first authentication method is successful, the software grants access and stops the authentication process. If the access is rejected by the first authentication method, the software denies access and stops checking.

However, if an error occurs with an authentication method, the software tries the next method on the list, and so on. For example, if the first authentication method is the RADIUS server, but the link to the server is down, the software will try the next authentication method in the list.

NOTE
If an authentication method is working properly and the password (and user name, if applicable) is not known to that method, this is not an error. The authentication attempt stops, and the user is denied access.

The software will continue this process until either the authentication method is passed or the software reaches the end of the method list. If the Super User level password is not rejected after all the access methods in the list have been tried, access is granted.
Configuration considerations for authentication-method lists

- For CLI access, you must configure authentication-method lists if you want the device to authenticate access using local user accounts or a RADIUS server. Otherwise, the device will authenticate using only the locally based password for the Super User privilege level.

- When no authentication-method list is configured specifically for Web management access, the device performs authentication using the SNMP community strings:
 - For read-only access, you can use the user name “get” and the password “public”. The default read-only community string is “public”.
 - There is no default read-write community string. Thus, by default, you cannot open a read-write management session using the Web Management Interface. You first must configure a read-write community string using the CLI. Then you can log on using “set” as the user name and the read-write community string you configure as the password. Refer to “Configuring TACACS/TACACS+ security” on page 1441.

- If you configure an authentication-method list for Web management access and specify “local” as the primary authentication method, users who attempt to access the device using the Web Management Interface must supply a user name and password configured in one of the local user accounts on the device. The user cannot access the device by entering “set” or “get” and the corresponding SNMP community string.

- For devices that can be managed using IronView Network Manager, the default authentication method (if no authentication-method list is configured for SNMP) is the CLI Super User level password. If no Super User level password is configured, then access through IronView Network Manager is not authenticated.

Examples of authentication-method lists

The following examples show how to configure authentication-method lists. In these examples, the primary authentication method for each is “local”. The device will authenticate access attempts using the locally configured usernames and passwords.

The command syntax for each of the following examples is provided in “Command Syntax” on page 1479.

Example 1

To configure an authentication-method list for the Web Management Interface, enter a command such as the following.

```
FastIron(config)# aaa authentication web-server default local
```

This command configures the device to use the local user accounts to authenticate access to the device through the Web Management Interface. If the device does not have a user account that matches the user name and password entered by the user, the user is not granted access.

Example 2

To configure an authentication-method list for SNMP, enter a command such as the following.

```
FastIron(config)# aaa authentication snmp-server default local
```
This command allows certain incoming SNMP SET operations to be authenticated using the locally configured usernames and passwords. When this command is enabled, community string validation is not performed for incoming SNMP V1 and V2c packets. This command takes effect as long as the first varbind for SNMP packets is set to one of the following:

- `snAgGblPassword"<username> <password>"` (for AAA method local)
- `snAgGblPassword"<password>"` (for AAA method line, enable)

NOTE
Certain SNMP objects need additional validation. These objects include but are not limited to: `snAgReload`, `snAgWriteNVRAM`, `snAgConfigFromNVRAM`, `snAgImgLoad`, `snAgCfgLoad` and `snAgGblTelnetPassword`. For more information, see `snAgGblPassword` in the IronWare MIB Reference.

If AAA is set up to check both the username and password, the string contains the username, followed by a space then the password. If AAA is set up to authenticate with the current Enable or Line password, the string contains the password only.

Note that the above configuration can be overridden by the command `no snmp-server pw-check`, which disables password checking for SNMP SET requests.

Example 3
To configure an authentication-method list for the Privileged EXEC and CONFIG levels of the CLI, enter the following command.

```
FastIron(config)# aaa authentication enable default local
```

This command configures the device to use the local user accounts to authenticate attempts to access the Privileged EXEC and CONFIG levels of the CLI.

Example 4
To configure the device to consult a RADIUS server first to authenticate attempts to access the Privileged EXEC and CONFIG levels of the CLI, then consult the local user accounts if the RADIUS server is unavailable, enter the following command.

```
FastIron(config)# aaa authentication enable default radius local
```

Command Syntax
The following is the command syntax for the preceding examples.

```
Syntax: [no] aaa authentication snmp-server | web-server | enable | login default <method1> [<method2>] [<method3>] [<method4>] [<method5>] [<method6>] [<method7>]
```

The `snmp-server` | `web-server` | `enable` | `login` parameter specifies the type of access this authentication-method list controls. You can configure one authentication-method list for each type of access.

NOTE
TACACS/TACACS+ and RADIUS are supported only with the `enable` and `login` parameters.

The `<method1>` parameter specifies the primary authentication method. The remaining optional `<method>` parameters specify additional methods to try if an error occurs with the primary method. A method can be one of the values listed in the Method Parameter column in the following table.
TCP Flags - edge port security

FastIron GS and FastIron LS devices support edge port security. This feature works in combination with IP ACL rules, and supports all 6 TCP flags present in the offset 13 of the TCP header:

- +|- urg = Urgent
- +|- ack = Acknowledge
- +|- psh = Push
- +|- rst = Reset
- +|- syn = Synchronize
- +|- fin = Finish

TCP flags can be combined with other ACL functions (such as dscp-marking and traffic policies), giving you greater flexibility when designing ACLs.

The TCP flags feature offers two options, match-all and match-any:

- **Match-any** - Indicates that incoming TCP traffic must be matched against any of the TCP flags configured as part of the match-any ACL rule. In CAM hardware, the number of ACL rules will match the number of configured flags.

- **Match-all** - Indicates that incoming TCP traffic must be matched against all of the TCP flags configured as part of the match-all ACL rule. In CAM hardware, there will be only one ACL rule for all configured flags.

Example

```
FastIron(config-ext-nACL)# permit tcp 1.1.1.1 0.0.0.255 eq 100 2.2.2.2 0.0.0.255 eq 300 match-all +urg +ack +syn -rst
```
This command configures a single rule in CAM hardware. This rule will contain all of the configured TCP flags (urg, ack, syn, and rst).

Using TCP Flags in combination with other ACL features

The TCP Flags feature has the added capability of being combined with other ACL features.

Example

FastIron(config-ext-nACL)# permit tcp any any match-all +urg +ack +syn -rst
traffic-policy test

This command configures the ACL to match incoming traffic with the TCP Flags urg, ack, and syn and also to apply the traffic policy (rate, limit, etc.) to the matched traffic.

FastIron(config-ext-nACL)# permit tcp any any match-all +urg +ack +syn -rst tos normal

This command configures the ACL to match incoming traffic with the flags urg, ack, and syn, and also sets the tos bit to normal when the traffic exits the device.

NOTE

TCP Flags combines the functionality of older features such as TCP Syn Attack and TCP Establish. Avoid configuring these older features on a port where you have configured TCP Flags. TCP Flags can perform all of the functions of TCP Syn Attack and TCP Establish, and more. However, if TCP Syn Attack is configured on a port along with TCP Flags, TCP Syn Attack will take precedence.

NOTE

If an ACL clause with match-any exists, and the system runs out of CAM, if the total number of TCP rules to TCP Flags will not fit within 1021 entries (the maximum rules allowed per device), then none of the TCP Flag rules will be programmed into the CAM hardware.

NOTE

If a range option and match-any TCP-flags are combined in the same ACL, the total number of rules will be calculated as: Total number of rules in CAM hardware = (number of rules for range) * (number of rules for match-any TCP-flags).
Chapter 40

Configuring SSH1 and SCP

NOTE
Secure Shell (SSH) version 1 is supported in pre-release 03.0.00 software for the FastIron X Series devices and in pre-release 02.4.00 for the FastIron GS and FastIron LS

In succeeding releases, SSH1 is no longer supported and SSH2 is supported. TurboIron X Series devices support SSH2 only. For SSH2 configuration procedures, refer to Chapter 41, “Configuring SSH2 and SCP”.

Configuring SSH1

Secure Shell (SSH) is a mechanism for allowing secure remote access to management functions on a Brocade device. SSH provides a function similar to Telnet. Users can log into and configure the device using a publicly or commercially available SSH client program, just as they can with Telnet. However, unlike Telnet which provides no security, SSH provides a secure, encrypted connection to the device.

SSH supports Arcfour, IDEA, Blowfish, DES (56-bit) and Triple DES (168-bit) data encryption methods. Nine levels of data compression are available. You can configure your SSH client to use any one of these data compression levels when connecting to a Brocade device.

Brocade devices also support Secure Copy (SCP) for securely transferring files between a Brocade device and SCP-enabled remote hosts. Refer to “Using secure copy with SSH1” on page 1494 for more information.

The Brocade implementation of SSH supports two kinds of user authentication:

- **RSA challenge-response authentication**, where a collection of public keys are stored on the device. Only clients with a private key that corresponds to one of the stored public keys can gain access to the device using SSH.

- **Password authentication**, where users attempting to gain access to the device using an SSH client are authenticated with passwords stored on the device or on a TACACS/TACACS+ or RADIUS server.

Both kinds of user authentication are enabled by default. You can configure the device to use one or both of them.

Follow the steps given below to configure Secure Shell on a Brocade device.

1. Set the host name and domain name on the Brocade device.
2. Generate a host RSA public and private key pair for the device.
4. Set optional parameters.

You can also view information about active SSH connections on the device as well as terminate them.
Setting the host name and domain name

If you have not already done so, establish a host name and domain name for the Brocade device.

Example

FastIron(config)#hostname BrcdRouter
FastIron(config)#ip dns domain-name home.com

Syntax: hostname <name>
Syntax: ip dns domain-name <name>

Generating a host I key pair

When SSH is configured, a public and private host RSA key pair is generated for the Brocade device. The SSH server on the Brocade device uses this host RSA key pair, along with a dynamically generated server RSA key pair, to negotiate a session key and encryption method with the client trying to connect to it.

The host RSA key pair is stored in the system-config file in the Brocade device. Only the public key is readable. The public key should be added to a “known hosts” file (for example, $HOME/.ssh/known_hosts on UNIX systems) on the clients who want to access the device. Some SSH client programs add the public key to the known hosts file automatically; in other cases, you must manually create a known hosts file and place the public key (for the Brocade device) in it. Refer to “Providing the public key to clients” on page 1485 for an example of what to place in the known hosts file.

To generate a public and private RSA host key pair for the most Brocade devices, enter the following commands.

FastIron(config)#crypto key generate rsa
FastIron(config)#write memory

The crypto key generate [rsa] command places an RSA host key pair in the running-config file and enables SSH on the device.

To disable SSH, you must delete the RSA host key pair. To do this in SSH1, enter the following commands.

FastIron(config)#crypto key zeroize rsa
FastIron(config)#write memory

The crypto key zeroize [rsa] command deletes the RSA host key pair in the running-config file and disables SSH on the device.

Syntax: crypto key generate | zeroize rsa

You can optionally configure the Brocade device to hide the RSA host key pair in the running-config file. To do this, enter the following command.

FastIron#ssh no-show-host-keys

Syntax: ssh no-show-host-keys

After entering the ssh no-show-host-keys command, you can display the RSA host key pair in the running-config file with the following command.

FastIron#ssh show-host-keys

Syntax: ssh show-host-keys
Configuration notes

- If the Brocade device does not have internal memory, the RSA host key pair is stored in the startup-config file. In this case, the `ssh show-host-keys` command allows the RSA host key pair to be viewed, and the `ssh no-show-host-keys` command prevents the RSA host key pair from being viewed.
- If an RSA host key pair is stored in internal memory on the Brocade device, it is used even if the startup-config file contains a different RSA host key pair.
- If no RSA host key pair is stored in internal memory, but the startup-config file contains an RSA host key pair, the key pair in the startup-config file is used. If you later generate an RSA host key pair with the `crypto key generate` command, the new key pair takes effect only after you store it in internal memory with the `write memory` command and reboot the Brocade device.
- If no RSA host key pair is stored in internal memory, and the startup-config file contains an RSA host key pair, the first time you enter the `write memory` command, it will save the RSA host key pair in the startup-config file to internal memory and remove it from the startup-config file.
- If no RSA host key pair is stored in internal memory, the startup-config file contains an RSA host key pair, and you generate an RSA host key pair with the `crypto key generate` command, the new pair is stored in internal memory the first time you enter the `write memory` command.
- The `crypto key zeroize` command disables the currently active RSA host key pair. If you subsequently enter the `write memory` command without generating another RSA host key pair, the RSA host key pair stored in internal memory is removed.
- If you enter the `ssh no-show-host-keys` command to hide the RSA host key pair in the running-config file, then reload the software, the RSA host key pair is once again visible in the running-config file. The setting to hide the RSA host key pair is not carried across software reloads.
- In a configuration using redundant management modules, if the active module has an RSA host key pair, but the standby module does not, the RSA host key pair is not carried over when switchover occurs. You must create an RSA host key pair on the standby module manually.
- The SSH key generation process causes UDLD-enabled interfaces to go down instantaneously. This in turn requires the re-convergence of the route tables on the routers across the network. Non-UDLD-enabled interfaces do not experience this issue.

Providing the public key to clients

If you are using SSH to connect to a Brocade device from a UNIX system, you may need to add the public key on the Brocade device to a “known hosts” file; for example, `$HOME/.ssh/known_hosts`. The following is an example of an entry in a known hosts file:

```
10.10.20.10 1024 37 118771881862677030464851288737258046856031640635887679230111
84247022636117580489663384620574930068397650231698985431857279323745963240790218
03229084221453472515782437007702806627934784079949643404159653290224014833380339
09542147367974638560060162945329037563502804231039654388220432832662804242569361
58342816331
```

In this example, 10.10.20.10 is the IP address of an SSH-enabled Brocade Layer 2 Switch or Layer 3 Switch. The second number, 1024, is the size of the host key, and the third number, 37, is the encoded public exponent. The remaining text is the encoded modulus.
Configuring RSA challenge-response authentication

With RSA challenge-response authentication, a collection of clients’ public keys are stored on the Brocade device. Clients are authenticated using these stored public keys. Only clients that have a private key that corresponds to one of the stored public keys can gain access to the device using SSH.

When RSA challenge-response authentication is enabled, the following events occur when a client attempts to gain access to the device using SSH.

1. The client sends its public key to the Brocade device.
2. The Brocade device compares the client public key to those stored in memory.
3. If there is a match, the Brocade device uses the public key to encrypt a random sequence of bytes.
4. The Brocade device sends these encrypted bytes to the client.
5. The client uses its private key to decrypt the bytes.
6. The client sends the decrypted bytes back to the Brocade device.
7. The Brocade device compares the decrypted bytes to the original bytes it sent to the client. If the two sets of bytes match, it means that the client private key corresponds to an authorized public key, and the client is authenticated.

Setting up RSA challenge-response authentication consists of the following steps.

1. Importing authorized public keys into the Brocade device.
2. Enabling RSA challenge response authentication

Importing authorized public keys into the Brocade device

SSH clients that support RSA authentication normally provide a utility to generate an RSA key pair. The private key is usually stored in a password-protected file on the local host; the public key is stored in another file and is not protected. You should collect one public key from each client to be granted access to the Brocade device and place all of these keys into one file. This public key file is imported into the Brocade device.

The following is an example of a public key file containing two public keys

```
1024 65537 16256605067838000614946055028651406123030679778280561661106866485485749495733923225996315737968192484763461453274217865276723199574694144160471468268000644536790333042029124905690771828865418396565665679025432881477252978135992782167540629478392662275128774861815448523997023618173312328476660721888873946758201user@csp_client
1024 35 1526761998898567696935561556145872915538263123280953004284214941643609247620745545234679268443237622953129794188335259756957577051018052125410080748772658611985742270289700411216885214507408796984064240845174271445585923616937059087483787559940550347960302428713132793895007927438074972787423695977635251943root@unix_machine
```

You can import the authorized public keys into the active configuration by loading them from a file on a TFTP server. Once the authorized public keys are loaded, you can optionally save them to the startup-config file. If you import a public key file from a TFTP server or PCMCIA flash card, the file is automatically loaded into the active configuration the next time the device is booted.
Brocade devices support Secure Copy (SCP) for securely transferring files between hosts on a network. Note that when you copy files using SCP, you enter the commands on the SCP-enabled client, rather than the console on the Brocade device.

For example, to copy a public key file called pkeys.txt from an SCP-enabled client, enter a command such as the following on the SCP-enabled client.

```
C:\> scp c:\pkeys.txt user@FastIron:a:/pkeys.txt
```

If password authentication is enabled for SSH, the user will be prompted for a password in order to copy the file. Refer to “Using secure copy with SSH1” on page 1494 for more information on SCP.

After the file is loaded onto the TFTP server or PCMCIA flash card, it can be imported into the active configuration each time the device is booted.

To cause a public key file called pkeys.txt to be loaded from a TFTP server each time the Brocade device is booted, enter a command such as the following.

```
FastIron(config)#ip ssh pub-key-file tftp 192.168.1.234 pkeys.txt
```

Syntax: `ip ssh pub-key-file tftp <tftp-server-ip-addr> <filename>`

The `<tftp-server-ip-addr>` variable is the IP address of the tftp server that contains the public key file that you want to import into the Brocade device.

The `<filename>` variable is the name of the dsa public key file that you want to import into the Brocade device.

To display the currently loaded public keys, enter the following command.

```
FastIron#show ip client-pub-key
1024 65537 162560506783800614946050286514061230306797782065166110686648548574
94957339232259963157379681924847634614532742178652767231995746941441604714682680
006445367903330420291249056907718288654183965656690254328814772529278135927821
67540629478392662275128774861815448523997023618173312328476660721888873946758201
user@csp_client
1024 35 152676199889856769693556155614587291553826312328095300428421494164360924
762074755452344679268443233762295312979418833525975695775705101805212541008074877
26586119857422702897004112168852145074087969840642408451742714558592361693705908
74837875595905053479603024287131312793895007927438074972787423695977635251943 root@unix_machine
```

There are 2 authorized client public keys configured

Syntax: `show ip client-pub-key`

To clear the public keys from the active configuration, enter the following command.

```
FastIron#clear public-key
```

Syntax: `clear public-key`

To reload the public keys from the file on the TFTP server or PCMCIA flash card, enter the following command.

```
FastIron(config)#ip ssh pub-key-file reload
```

Syntax: `ip ssh pub-key-file reload`
Once the public keys are part of the active configuration, you can make them part of the startup-config file. The startup-config file can contain a maximum of 10 public keys. If you want to store more than 10 public keys, keep them in a file on a TFTP server or PCMCIA flash card, where they will be loaded into the active configuration when the device is booted.

To make the public keys in the active configuration part of the startup-config file, enter the following commands.

```
FastIron(config)#ip ssh pub-key-file flash-memory
FastIron(config)#write memory
```

Syntax: `ip ssh pub-key-file flash-memory`

To clear the public keys from the startup-config file (if they are located there), enter the following commands.

```
FastIron#clear public-key
FastIron#write memory
```

Enabling RSA challenge-response authentication

RSA challenge-response authentication is enabled by default. You can disable or re-enable it manually.

To enable RSA challenge-response authentication, enter the following command.

```
FastIron(config)#ip ssh rsa-authentication yes
```

To disable RSA challenge-response authentication, enter the following command.

```
FastIron(config)#ip ssh rsa-authentication no
```

Syntax: `ip ssh rsa-authentication yes | no`

Setting optional parameters

You can adjust the following SSH settings on the Brocade device:

- The number of SSH authentication retries
- The server RSA key size
- The user authentication method the Brocade device uses for SSH connections
- Whether the Brocade device allows users to log in without supplying a password
- The port number for SSH connections
- The SSH login timeout value
- A specific interface to be used as the source for all SSH traffic from the device
- The maximum idle time for SSH sessions

Setting the number of SSH authentication retries

By default, the Brocade device attempts to negotiate a connection with the connecting host three times. The number of authentication retries can be changed to between 1 –– 5.

For example, the following command changes the number of authentication retries to 5.

```
FastIron(config)#ip ssh authentication-retries 5
```

Syntax: `ip ssh authentication-retries <number>`
Setting the server RSA key size

The default size of the dynamically generated server RSA key is 768 bits. The size of the server RSA key can be between 512 –– 896 bits.

For example, the following command changes the server RSA key size to 896 bits.

```
FastIron(config)#ip ssh key-size 896
```

Syntax: `ip ssh key-size <number>`

NOTE
The `ip ssh key-size` command is not applicable to SSH2 implementation.

NOTE
The size of the host RSA key that resides in the system-config file is always 1024 bits and cannot be changed.

Deactivating user authentication

After the SSH server on the Brocade device negotiates a session key and encryption method with the connecting client, user authentication takes place. The Brocade implementation of SSH supports RSA challenge-response authentication and password authentication.

With RSA challenge-response authentication, a collection of clients’ public keys are stored on the Brocade device. Clients are authenticated using these stored public keys. Only clients that have a private key that corresponds to one of the stored public keys can gain access to the device using SSH.

With password authentication, users are prompted for a password when they attempt to log into the device (provided empty password logins are not allowed; refer to “Enabling empty password logins” on page 1489). If there is no user account that matches the user name and password supplied by the user, the user is not granted access.

You can deactivate one or both user authentication methods for SSH. Note that deactivating both authentication methods essentially disables the SSH server entirely.

To disable RSA challenge-response authentication, enter the following command.

```
FastIron(config)#ip ssh rsa-authentication no
```

Syntax: `ip ssh rsa-authentication no | yes`

To deactivate password authentication, enter the following command.

```
FastIron(config)#ip ssh password-authentication no
```

Syntax: `ip ssh password-authentication no | yes`

Enabling empty password logins

By default, empty password logins are not allowed. This means that users with an SSH client are always prompted for a password when they log into the device. To gain access to the device, each user must have a user name and password. Without a user name and password, a user is not granted access. Refer to “Setting up local user accounts” on page 1430 for information on setting up user names and passwords on Brocade devices.
If you enable empty password logins, users are not prompted for a password when they log in. Any user with an SSH client can log in without being prompted for a password.

To enable empty password logins, enter the following command.

```
FastIron(config)#ip ssh permit-empty-passwd yes
```

Syntax: `ip ssh permit-empty-passwd no | yes`

Setting the SSH port number

By default, SSH traffic occurs on TCP port 22. You can change this port number. For example, the following command changes the SSH port number to 2200.

```
FastIron(config)#ip ssh port 2200
```

Note that if you change the default SSH port number, you must configure SSH clients to connect to the new port. Also, you should be careful not to assign SSH to a port that is used by another service. If you change the SSH port number, Brocade recommends that you change it to a port number greater than 1024.

Syntax: `ip ssh port <number>`

Setting the SSH login timeout value

When the SSH server attempts to negotiate a session key and encryption method with a connecting client, it waits a maximum of 120 seconds for a response from the client. If there is no response from the client after 120 seconds, the SSH server disconnects. You can change this timeout value to between 1 – 120 seconds. For example, to change the timeout value to 60 seconds.

```
FastIron(config)#ip ssh timeout 60
```

Syntax: `ip ssh timeout <seconds>`

Designating an interface as the source for all SSH packets

You can designate a loopback interface, virtual interface, or Ethernet port as the source for all SSH packets from the device. The software uses the IP address with the numerically lowest value configured on the port or interface as the source IP address for SSH packets originated by the device.

NOTE

When you specify a single SSH source, you can use only that source address to establish SSH management sessions with the Brocade device.

To specify the numerically lowest IP address configured on a loopback interface as the device source for all SSH packets, enter commands such as the following.

```
FastIron(config)#int loopback 2
FastIron(config-lbif-2)#ip address 10.0.0.2/24
FastIron(config-lbif-2)#exit
FastIron(config)#ip ssh source-interface loopback 2
```

The commands in this example configure loopback interface 2, assign IP address 10.0.0.2/24 to the interface, then designate the interface as the source for all SSH packets from the Layer 3 Switch.

Syntax: `ip ssh source-interface ethernet [<slotnum>] | portnum> | loopback <num> | ve <num>`
The `<slotnum>` parameter is required on chassis devices.
The `<portnum>` parameter is a valid port number.
The `<num>` parameter is a loopback interface or virtual interface number. If you specify an Ethernet port, the `<portnum>` is the port number (including the slot number, if you are configuring a Chassis device).

Example

```
FastIron(config)#interface ethernet 1/4
FastIron(config-if-1/4)#ip address 209.157.22.110/24
FastIron(config-if-1/4)#exit
FastIron(config)#ip ssh source-interface ethernet 1/4
```

Configuring maximum idle time for SSH sessions

By default, SSH sessions do not time out. Optionally, you can set the amount of time an SSH session can be inactive before the Brocade device closes it. For example, to set the maximum idle time for SSH sessions to 30 minutes, enter the following command.

```
FastIron(config)#ip ssh idle-time 30
```

Syntax: `ip ssh idle-time <minutes>`

If an established SSH session has no activity for the specified number of minutes, the Brocade device closes it. An idle time of 0 minutes (the default value) means that SSH sessions never timeout. The maximum idle time for SSH sessions is 240 minutes.

Terminating an SSH session

To terminate an active SSH connection, enter the following command.

```
FastIron#kill ssh 1
```

Syntax: `kill ssh <connection-id>`

Displaying SSH connection information

Up to five SSH connections can be active on the Brocade device. To display information about SSH connections, enter the following command.

```
FastIron#show ip ssh
```

<table>
<thead>
<tr>
<th>Connection</th>
<th>Version</th>
<th>Encryption</th>
<th>State</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>ARCFOUR</td>
<td>0x82</td>
<td>neville</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>IDEA</td>
<td>0x82</td>
<td>lynval</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>3DES</td>
<td>0x82</td>
<td>terry</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>AES</td>
<td>0x00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>none</td>
<td>0x00</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: `show ip ssh`

This display shows the following information about the active SSH connections.
TABLE 241 SSH connection information

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>The SSH connection ID. This can be from 1 – 5.</td>
</tr>
<tr>
<td>Version</td>
<td>The SSH version number. This should always be 1.5.</td>
</tr>
<tr>
<td>Encryption</td>
<td>The encryption method used for the connection. This can be IDEA, ARCFOUR, DES, 3DES, AES, or BLOWFISH.</td>
</tr>
</tbody>
</table>
| State | The connection state. This can be one of the following:
| | • 0x00 - Server started to send version number to client.
| | • 0x01 - Server sent version number to client.
| | • 0x02 - Server received version number from client.
| | • 0x20 - Server sent public key to client.
| | • 0x21 - Server is waiting for client session key.
| | • 0x22 - Server received session key from client.
| | • 0x23 - Server is verifying client session key.
| | • 0x24 - Client session key is verified.
| | • 0x25 - Server received client name.
| | • 0x40 - Server is authenticating client.
| | • 0x41 - Server is continuing to authenticate client after one or more failed attempts.
| | • 0x80 - Server main loop started after successful authentication.
| | • 0x81 - Server main loop sent a message to client.
| | • 0x82 - Server main loop received a message from client. |
| Username | The user name for the connection. |

The `show who` command also displays information about SSH connections.

Example

```
FastIron#show who
Console connections:  
established, active
Telnet connections:  
  1 closed
  2 closed
  3 closed
  4 closed
  5 closed
SSH connections:  
  1 established, client ip address 209.157.22.8  
  16 seconds in idle
  2 established, client ip address 209.157.22.21  
  42 seconds in idle
  3 established, client ip address 209.157.22.68  
  49 seconds in idle
  4 closed
  5 closed
```

Syntax: show who

Sample SSH configuration

The following is a sample SSH configuration for a Brocade device.
hostname FastIron
ip dns domain-name home.com
!
aaa authentication login default local
username neville password
username lynval password
username terry password
!
ip ssh permit-empty-passwd no
!
ip ssh pub-key-file tftp 192.168.1.234 pkeys.txt
!
crypto key generate rsa public_key "1024 35 144460146631716543532035011163035196 41193195125205894452637462409522275505020845087302985209960346239172995676329357 2477753018866626789819564825318155162468139452068167261082818831043962242301296 2688393717676977618498409310098401707536938707100663796650877224677979486802651 458324218055083313313948534902409 FastIron@home.com"
!
crypto key generate rsa private_key "**************************
!
ip ssh authentication-retries 5

This **aaa authentication login default local** command configures the device to use the local user accounts to authenticate users attempting to log in.

Three user accounts are configured on the device. The **ip ssh permit-empty-passwd no** command causes users always to be prompted for a password when they attempt to establish an SSH connection. Since the device uses local user accounts for authentication, only these three users are allowed to connect to the device using SSH.

The **ip ssh pub-key-file tftp** command causes a public key file called pkeys.txt to be loaded from a TFTP server at 192.168.1.234. To gain access to the Brocade device using SSH, a user must have a private key that corresponds to one of the public keys in this file.

The **crypto key generate rsa public_key** and **crypto key generate rsa private_key** statements are both generated by the **crypto key generate rsa** command. By default, the RSA host key pair appears in the running-config file, but not in the startup-config file. You can optionally configure the Brocade device to hide the RSA host key pair in the running-config file with the **ssh no-show-host-keys** command. The actual private key is never visible in either the running-config file or the startup-config file.

You may need to copy the public key to a “known hosts” file (for example, $HOME/.ssh/known_hosts on UNIX systems) on the clients who want to access the device. Refer to “Providing the public key to clients” on page 1485 for an example of what to place in the known hosts file.

The **ip ssh authentication-retries 5** command sets the number of times the Brocade device attempts to negotiate a connection with the connecting host to 5.
Using secure copy with SSH1

Secure Copy (SCP) uses security built into SSH to transfer image and configuration files to and from the device. SCP automatically uses the authentication methods, encryption algorithm, and data compression level configured for SSH. For example, if password authentication is enabled for SSH, the user is prompted for a user name and password before SCP allows a file to be transferred. No additional configuration is required for SCP on top of SSH.

You can use SCP to copy files on the FastIron device, including the startup configuration and running configuration files, to or from an SCP-enabled remote host.

NOTE
in an IronStack topology, Secure Copy will only copy files to the Active Controller. It will not copy files to other stack members.

SCP is enabled by default and can be disabled. To disable SCP, enter the following command.

```
FastIron(config)# ip ssh scp disable
```

Syntax: `ip ssh scp disable | enable`

NOTE
If you disable SSH, SCP is also disabled.

The following are examples of using SCP to transfer files from and to a Brocade device.

NOTE
When using SCP, you enter the `scp` commands on the SCP-enabled client, rather than the console on the Brocade device.

NOTE
Certain SCP client options, including `-p` and `-r`, are ignored by the SCP server on the Brocade device. If an option is ignored, the client is notified.

To copy a configuration file `c:\cfg\cfg` to the running configuration file on a Brocade device at 192.168.1.50 and log in as user terry, enter the following command on the SCP-enabled client.

```
C:\> scp c:\cfg\cfg terry@192.168.1.50:runConfig
```

If password authentication is enabled for SSH, the user is prompted for user terry’s password before the file transfer takes place.

To copy the configuration file to the startup configuration file.

```
C:\> scp c:\cfg\cfg terry@192.168.1.50:startConfig
```

To copy the running configuration file on a Brocade device to a file called `c:\cfg\run.cfg` on the SCP-enabled client.

```
C:\> scp terry@192.168.1.50:runConfig c:\cfg\brcdrun.cfg
```

To copy the startup configuration file on a Brocade device to a file called `c:\cfg\brcdstart.cfg` on the SCP-enabled client.

```
C:\> scp terry@192.168.1.50:startConfig c:\cfg\brcdstart.cfg
```
Chapter 41

Configuring SSH2 and SCP

SSH version 2 support

Secure Shell (SSH) is a mechanism for allowing secure remote access to management functions on a Brocade device. SSH provides a function similar to Telnet. Users can log into and configure the device using a publicly or commercially available SSH client program, just as they can with Telnet. However, unlike Telnet, which provides no security, SSH provides a secure, encrypted connection to the device.

The Brocade SSH2 implementation is compatible with all versions of the SSH2 protocol (2.1, 2.2, and so on). At the beginning of an SSH session, the Brocade device negotiates the version of SSH2 to be used. The highest version of SSH2 supported by both the Brocade device and the client is the version that is used for the session. Once the SSH2 version is negotiated, the encryption algorithm with the highest security ranking is selected to be used for the session.

Brocade devices also support Secure Copy (SCP) for securely transferring files between a Brocade device and SCP-enabled remote hosts.

NOTE
With the introduction of SSH2, SSH1 is no longer supported. For example, if you are running a FastIron X Series release prior to 03.0.00 and are using SSH1, your keys will no longer be valid when you upgrade to FastIron X Series 03.0.00 or later. You must obtain new keys for SSH2.

NOTE
The SSH feature includes software that is copyright Allegro Software Development Corporation.

SSH2 is supported in the Layer 2 and Layer 3 codes, and SSH version 1 (SSH1) is no longer supported. Refer to Chapter 40, “Configuring SSH1 and SCP”.

SSH2 is a substantial revision of Secure Shell, comprising the following hybrid protocols and definitions:

- SSH Transport Layer Protocol
- SSH Authentication Protocol
- SSH Connection Protocol
- SECSH Public Key File Format
- SSH Fingerprint Format
- SSH Protocol Assigned Numbers
- SSH Transport Layer Encryption Modes
- SCP/SFTP/SSH URI Format

Tested SSH2 clients

The following SSH clients have been tested with SSH2:
• SSH Secure Shell 3.2.3
• Van Dyke SecureCRT 4.0 and 4.1
• F-Secure SSH Client 5.3 and 6.0
• PuTTY 0.54 and 0.56
• OpenSSH 3.5_p1 and 3.6.1p2
• Solaris Sun-SSH-1.0

NOTE
The FastIron GS and FastIron LS devices support client public key sizes of 2048 bits or less. This also applies to TurboIron X Series devices, and to FastIron X Series devices running software release 03.0.00 or later.

Supported features
SSH2 (Secure Shell version 2 protocol) provides an SSH server. The SSH server allows secure remote access management functions on a Brocade device. SSH provides a function that is similar to Telnet, but unlike Telnet, SSH provides a secure, encrypted connection.

Brocade SSH2 support includes the following:
• Key exchange methods are diffie-hellman-group1-sha1
• The public key algorithm is ssh-dss.
• Encryption is provided with 3des-cbc, aes128-cbc, aes192-cbc or aes256-cbc. AES encryption has been adopted by the U.S. Government as an encryption standard. Refer to “AES encryption for SSH2” on page 1496.
• Data integrity is ensured with hmac-sha1.
• Supported authentication methods are Password and publickey.

Unsupported features
The following are not supported with SSH2
• Compression
• TCP/IP port forwarding, X11 forwarding, and secure file transfer
• SSH version 1

AES encryption for SSH2

NOTE
On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

Encryption is provided with 3des-cbc, aes128-cbc, aes192-cbc or aes256-cbc. AES encryption has been adopted by the U.S. Government as an encryption standard.

A total of five SSH connections can be active on a Brocade device. To display information about SSH connections, enter the following command.
Configuring SSH2

The Brocade implementation of SSH2 supports two kinds of user authentication:

- **DSA challenge-response authentication**, where a collection of public keys are stored on the device. Only clients with a private key that corresponds to one of the stored public keys can gain access to the device using SSH.

 NOTE
 SSH2 supports and validates DSA keys only. It does not support or validate SSH1 RSA keys.

- **Password authentication**, where users attempting to gain access to the device using an SSH client are authenticated with passwords stored on the device or on a TACACS/TACACS+ or RADIUS server.

Both kinds of user authentication are enabled by default. You can configure the device to use one or both of them.

Follow the steps given below to configure Secure Shell on a Brocade device.

1. If necessary, recreate the SSH keys
2. Generate a host DSA public and private key pair for the device
3. Configure DSA challenge-response authentication
4. Set optional parameters

You can also view information about active SSH connections on the device as well as terminate them.

Recreating SSH keys

You must recreate SSH keys after any one of the following events:

- After upgrading from a software release that supports SSH1, to a software release that supports SSH2.
- After downgrading a software release that supports SSH2, to a software release that supports SSH1

To recreate SSH keys, enter the following command.

```
FastIron(config)# crypto key generate
```

Generating a host key pair

When SSH is configured, a public and private **host DSA key pair** is generated for the Brocade device. The SSH server on the Brocade device uses this host DSA key pair, along with a dynamically generated **server DSA key pair**, to negotiate a session key and encryption method with the client trying to connect to it.

The host DSA key pair is stored in the system-config file of the Brocade device. Only the public key is readable. The public key should be added to a “known hosts” file (for example, `$HOME/.ssh/known_hosts` on UNIX systems) on the clients who want to access the device. Some SSH client programs add the public key to the known hosts file automatically; in other cases, you must manually create a known hosts file and place the public key of the Brocade device in it.

While the SSH listener exists at all times, sessions cannot be started from clients until a key is generated. Once a key is generated, clients can start sessions. The keys are also not displayed in the configuration file by default. To display the keys, use the **ssh show-host-keys** command in Privileged EXEC mode.

To generate a public and private DSA host key pair on a Brocade device, enter the following command.

```
FastIron(config)# crypto key generate
```

When a host key pair is generated, it is saved to the flash memory of all management modules.

To disable SSH2 on a Brocade device, enter the following command.

```
FastIron(config)# crypto key zeroize
```

When SSH is disabled, it is deleted from the flash memory of all management modules.

Syntax: crypto key generate | zeroize

The **generate** keyword places a DSA host key pair in the flash memory and enables SSH on the device.

The **zeroize** keyword deletes the DSA host key pair from the flash memory and disables SSH on the device.
By default, public keys are hidden in the running configuration. You can optionally configure the Brocade device to display the DSA host key pair in the running configuration file, by entering the following command.

FastIron# ssh show-host-keys

Syntax: ssh show-host-keys

To hide the public keys in the running configuration file, enter the following command.

FastIron# ssh no-show-host-keys

Syntax: ssh no-show-host-keys

Providing the public key to clients

If you are using SSH to connect to a Brocade device from a UNIX system, you may need to add the public key on the Brocade device to a "known hosts" file; for example, $HOME/.ssh/known_hosts. The following is an example of an entry in a known hosts file.

```
AAAAB3NzaC1kc3MAAACBAPY8ZOHY2yFSJA6XYC9HRwNHxahvVx5wOJ0zzDzoSOXxbET676Cv8dIUJ/
+z2ho9Fiko5UXyb2nDIA3HDhtb1Q+Yp7Stxy1tHnXFl1YLFK1G4T6ItYrdhYl14Om
le9e4NnCRIeaqo2PF3UGf21a6bXrGTQfo3gJQo2e7YisV/gF1vAAAAPQDQbD5cv
wHTZDPfXOD2r9Rd7NBvQAAAAIEAI992+Bb7D4KLWyk3IwRbXblwXdkPqGAg4pfdtW9v
GFJ0/Rhd+NJ1B4eo1D+0dix6tXwYGN7P8S5R/FPXNWxHjapcj9uLJ1Jn2AWQ2dsknf+i/FA
vioUFkmD0zWoSOExShVdVX3wdVcGm9qctzztOKW0ocJm8J7qadx9TRHtUAAACBN7CY+KKvlgHpRzFwQM7H9bblLAo2KwAXnaFgeptNBQeS3G1v0+JsvphVMBJc9HS
n24VYtYsMu74qXviYjziVucWKj11juqCFOGIDB3VmxHLmxnAz643W42Z7dLM5
sY29uezv4XZ2PuMch5VGPP+CDrqC41zwGv
```

Configuring DSA challenge-response authentication

With DSA challenge-response authentication, a collection of clients’ public keys are stored on the Brocade device. Clients are authenticated using these stored public keys. Only clients that have a private key that corresponds to one of the stored public keys can gain access to the device using SSH.

When DSA challenge-response authentication is enabled, the following events occur when a client attempts to gain access to the device using SSH.

1. The client sends its public key to the Brocade device.
2. The Brocade device compares the client public key to those stored in memory.
3. If there is a match, the Brocade device uses the public key to encrypt a random sequence of bytes.
4. The Brocade device sends these encrypted bytes to the client.
5. The client uses its private key to decrypt the bytes.
6. The client sends the decrypted bytes back to the Brocade device.
7. The Brocade device compares the decrypted bytes to the original bytes it sent to the client. If the two sets of bytes match, it means that the client private key corresponds to an authorized public key, and the client is authenticated.

Setting up DSA challenge-response authentication consists of the following steps.
1. Importing authorized public keys into the Brocade device.
2. Enabling DSA challenge response authentication

Importing authorized public keys into the Brocade device

SSH clients that support DSA authentication normally provide a utility to generate an DSA key pair. The private key is usually stored in a password-protected file on the local host; the public key is stored in another file and is not protected. You should collect one public key from each client to be granted access to the Brocade device and place all of these keys into one file. This public key file is imported into the Brocade device.

The following is an example of a public key file containing one public key.

```
----- BEGIN SSH2 PUBLIC KEY ----- 
Comment: DSA Public Key
AAAAB3NzaC1kc3MAAAAIAABPAQY8ZOHYy6yFSJA6XYC9HRwNHxaehvx5woJ0rz2dzoSOXxbET 
W6TcHv8D1UJ/ 
z+zHo9Fiko5XYbZnDIaBDHtb1Q+Yp7StxyltHnXFlYLfKDI4G4T6YrdH YI14Om 
leg9eNnCRleaqo2PF3UGf2ia6bxrGTQf3gJq2e7yisk/gF+1VAAAFQDh8D5cv 
wHTZDPfX0D29rd7NBvQAAAIEAI1N92+BB7d4KLYK31wRbxBiwxkPggA4pFtW9v 
GFJ0/RHd+NJb4eo1D+0dx6txWbYG7NPK59R/FXPNxXH papc9j9uL1Jn2AQ2dsknf+i/FAA 
vioUPkmdMczUWoSOESnNhVD6T3wvDvCgCcBq9cetzrTOKH0ocjMj80qadTJRhtUAAACB 
ANG7CY+KRVlqHPzRwwQM7HH9b11Ao2KkaWxoXmadFgeptNBQeExG1v0+JSvphVMBjC9HS 
n24VytSmu74qXv1yjz1VucWKjKKeBf1ljuqnmFQGD1B3Vmx60xmA6k3Wk427dLM5 
sY29ouezv4Xz2PuMch5VGPP+CDqzCM4loWgV 
----- END SSH2 PUBLIC KEY ----- 
```

You can import the authorized public keys into the active configuration by loading them from a file on a TFTP server. If you import a public key file from a TFTP server, the file is automatically loaded into the active configuration the next time the device is booted.

To cause a public key file called pkeys.txt to be loaded from a TFTP server each time the Brocade device is booted, enter a command such as the following.

```
FastIron(config)# ip ssh pub-key-file tftp 192.168.1.234 pkeys.txt 
```

Syntax: `ip ssh pub-key-file tftp | <tftp-server-ip-addr> <filename> [remove]`

The `<tftp-server-ip-addr>` variable is the IP address of the tftp server that contains the public key file that you want to import into the Brocade device.

The `<filename>` variable is the name of the dsa public key file that you want to import into the Brocade device.

The `remove` parameter deletes the key from the system.

To display the currently loaded public keys, enter the following command.

```
FastIron(config)# show ip ssh pub-key-file 
```
Setting optional parameters

You can adjust the following SSH settings on the Brocade device:

- The number of SSH authentication retries
- The user authentication method the Brocade device uses for SSH connections
- Whether the Brocade device allows users to log in without supplying a password
- The port number for SSH connections
- The SSH login timeout value
- A specific interface to be used as the source for all SSH traffic from the device
- The maximum idle time for SSH sessions

Syntax: **ip ssh key-authentication yes** | **no**

Enabling DSA challenge-response authentication

DSA challenge-response authentication is enabled by default. You can disable or re-enable it manually.

To enable DSA challenge-response authentication.

FastIron(config)# ip ssh key-authentication yes

To disable DSA challenge-authentication.

FastIron(config)# ip ssh key-authentication no

Syntax: **ip ssh key-authentication yes** | **no**
Setting the number of SSH authentication retries

By default, the Brocade device attempts to negotiate a connection with the connecting host three times. The number of authentication retries can be changed to between 1 – 5.

For example, the following command changes the number of authentication retries to 5.

```
FastIron(config)# ip ssh authentication-retries 5
```

Syntax: `ip ssh authentication-retries <number>`

Deactivating user authentication

After the SSH server on the Brocade device negotiates a session key and encryption method with the connecting client, user authentication takes place. The Brocade implementation of SSH supports DSA challenge-response authentication and password authentication.

With DSA challenge-response authentication, a collection of clients’ public keys are stored on the Brocade device. Clients are authenticated using these stored public keys. Only clients that have a private key that corresponds to one of the stored public keys can gain access to the device using SSH.

With password authentication, users are prompted for a password when they attempt to log into the device (provided empty password logins are not allowed). If there is no user account that matches the user name and password supplied by the user, the user is not granted access.

You can deactivate one or both user authentication methods for SSH. Note that deactivating both authentication methods essentially disables the SSH server entirely.

To disable DSA challenge-response authentication, enter the following command.

```
FastIron(config)# ip ssh key-authentication no
```

Syntax: `ip ssh key-authentication yes | no`

The default is `yes`.

To deactivate password authentication, enter the following command.

```
FastIron(config)# ip ssh password-authentication no
```

Syntax: `ip ssh password-authentication no | yes`

The default is `yes`.

Enabling empty password logins

By default, empty password logins are not allowed. This means that users with an SSH client are always prompted for a password when they log into the device. To gain access to the device, each user must have a user name and password. Without a user name and password, a user is not granted access.

If you enable empty password logins, users are not prompted for a password when they log in. Any user with an SSH client can log in without being prompted for a password.

To enable empty password logins, enter the following command.

```
FastIron(config)# ip ssh permit-empty-passwd yes
```

Syntax: `ip ssh permit-empty-passwd no | yes`
Setting the SSH port number

By default, SSH traffic occurs on TCP port 22. You can change this port number. For example, the following command changes the SSH port number to 2200.

```
FastIron(config)# ip ssh port 2200
```

Note that if you change the default SSH port number, you must configure SSH clients to connect to the new port. Also, you should be careful not to assign SSH to a port that is used by another service. If you change the SSH port number, Brocade recommends that you change it to a port number greater than 1024.

Syntax: `ip ssh port <number>`

Setting the SSH login timeout value

When the SSH server attempts to negotiate a session key and encryption method with a connecting client, it waits a maximum of 120 seconds for a response from the client. If there is no response from the client after 120 seconds, the SSH server disconnects. You can change this timeout value to between 1 – 120 seconds. For example, to change the timeout value to 60 seconds, enter the following command.

```
FastIron(config)# ip ssh timeout 60
```

Syntax: `ip ssh timeout <seconds>`

Designating an interface as the source for all SSH packets (Layer 3 code only)

You can designate a loopback interface, virtual interface, or Ethernet port as the source for all SSH packets from the device. The software uses the IP address with the numerically lowest value configured on the port or interface as the source IP address for SSH packets originated by the device.

NOTE

When you specify a single SSH source, you can use only that source address to establish SSH management sessions with the Brocade device.

To specify the numerically lowest IP address configured on a loopback interface as the device source for all SSH packets, enter commands such as the following.

```
FastIron(config)# int loopback 2
FastIron(config-lbif-2)# ip address 10.0.0.2/24
FastIron(config-lbif-2)# exit
FastIron(config)# ip ssh source-interface loopback 2
```

The commands in this example configure loopback interface 2, assign IP address 10.0.0.2/24 to the interface, then designate the interface as the source for all SSH packets from the Brocade device.

Syntax: `ip ssh source-interface ethernet <slot/port> | loopback <num> | ve <num>`

The `<num>` parameter is a loopback interface or virtual interface number. The `<slot/port>` parameter specifies an ethernet port number.
Example

FastIron(config)# interface ethernet 1/4
FastIron(config-if-e10000-1/4)# ip address 209.157.22.110/24
FastIron(config-if-e10000-1/4)# exit
FastIron(config)# ip ssh source-interface ethernet 1/4

Configuring the maximum idle time for SSH sessions

By default, SSH sessions do not time out. Optionally, you can set the amount of time an SSH session can be inactive before the Brocade device closes it. For example, to set the maximum idle time for SSH sessions to 30 minutes, enter the following command.

FastIron(config)# ip ssh idle-time 30

Syntax: ip ssh idle-time <minutes>

If an established SSH session has no activity for the specified number of minutes, the Brocade device closes it. An idle time of 0 minutes (the default value) means that SSH sessions never time out. The maximum idle time for SSH sessions is 240 minutes.

Filtering SSH access using ACLs

You can permit or deny SSH access to the Brocade device using ACLs. To use ACLs, first create the ACLs you want to use. You can specify a numbered standard IPv4 ACL, a named standard IPv4 ACL, or a standard numbered ACL.

Enter commands such as the following.

FastIron(config)# access-list 10 permit host 192.168.144.241
FastIron(config)# access-list 10 deny host 192.168.144.242 log
FastIron(config)# access-list 10 permit host 192.168.144.243
FastIron(config)# access-list 10 deny any
FastIron(config)# ssh access-group 10

Syntax: ssh access-group <standard-named-acl> | <standard-numbered-acl>

Terminating an active SSH connection

To terminate one of the active SSH connections, enter the following command.

FastIron# kill ssh 1

Syntax: kill ssh <connection-id>
Displaying SSH connection information

Up to five SSH connections can be active on the Brocade device. To display information about SSH connections, enter the following command.

Syntax: show ip ssh [begin <expression> | exclude <expression> | include <expression>]

This display shows the following information about the active SSH connections.

<table>
<thead>
<tr>
<th>Connection</th>
<th>Version</th>
<th>Encryption</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SSH-2</td>
<td>3des-cbc</td>
<td>Hanuma</td>
</tr>
<tr>
<td>2</td>
<td>SSH-2</td>
<td>3des-cbc</td>
<td>Mikaila</td>
</tr>
<tr>
<td>3</td>
<td>SSH-2</td>
<td>3des-cbc</td>
<td>Jenny</td>
</tr>
<tr>
<td>4</td>
<td>SSH-2</td>
<td>3des-cbc</td>
<td>Mariah</td>
</tr>
<tr>
<td>5</td>
<td>SSH-2</td>
<td>3des-cbc</td>
<td>Logan</td>
</tr>
</tbody>
</table>

The show who command also displays information about SSH connections.

Example

FastIron# show who
Console connections:
established, monitor enabled, in config mode
2 minutes 17 seconds in idle
Telnet connections (inbound):
1 closed
2 closed
3 closed
4 closed
5 closed
Telnet connection (outbound):
6 closed
SSH connections:
1 established, client ip address 192.168.144.241, user is hanuma
1 minutes 16 seconds in idle
2 established, client ip address 192.168.144.241, user is Mikaila
you are connecting to this session
18 seconds in idle
3 established, client ip address 192.168.144.241, user is Jenny
1 minutes 39 seconds in idle
4 established, client ip address 192.168.144.242, user is Mariah
41 seconds in idle
5 established, client ip address 192.168.144.241, user is Logan
23 seconds in idle

Syntax: show who [begin <expression> | exclude <expression> | include <expression>]

DRAFT: BROCADE CONFIDENTIAL
Using Secure copy with SSH2

Secure Copy (SCP) uses security built into SSH to transfer image and configuration files to and from the device. SCP automatically uses the authentication methods, encryption algorithm, and data compression level configured for SSH. For example, if password authentication is enabled for SSH, the user is prompted for a user name and password before SCP allows a file to be transferred. No additional configuration is required for SCP on top of SSH.

You can use SCP to copy files on the Brocade device, including the startup configuration and running configuration files, to or from an SCP-enabled remote host.

NOTE
On Turbolron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

Enabling and disabling SCP

SCP is enabled by default and can be disabled. To disable SCP, enter the following command.

```
FastIron(config)# ip ssh scp disable
```

Syntax: `ip ssh scp disable | enable`

NOTE
If you disable SSH, SCP is also disabled.

NOTE
When using SCP, enter the `scp` commands on the SCP-enabled client, rather than the console on the Brocade device.

NOTE
Certain SCP client options, including `-p` and `-r`, are ignored by the SCP server on the Brocade device. If an option is ignored, the client is notified.

Example file transfers using SCP

The following are examples of using SCP to transfer files to and from a Brocade device.

Copying a file to the running config

To copy a configuration file (c:\cfg\brocade.cfg) to the running configuration file on a Brocade device at 192.168.1.50 and log in as user terry, enter the following command on the SCP-enabled client.

```
C:\> scp c:\cfg\brocade.cfg terry@192.168.1.50:runConfig
```

If password authentication is enabled for SSH, the user is prompted for user terry password before the file transfer takes place.

Copying a file to the startup config

To copy the configuration file to the startup configuration file, enter the following command.
C:\> scp c:\cfg\brocade.cfg terry@192.168.1.50:startConfig

Copying the running config file to an SCP-enabled client

To copy the running configuration file on the Brocade device to a file called c:\cfg\fdryrun.cfg on the SCP-enabled client, enter the following command.

C:\> scp terry@192.168.1.50:runConfig c:\cfg\fdryrun.cfg

Copying the startup config file to an SCP-enabled client

To copy the startup configuration file on the Brocade device to a file called c:\cfg\fdrystart.cfg on the SCP-enabled client, enter the following command.

C:\> scp terry@192.168.1.50:startConfig c:\cfg\fdry

To overwrite the running configuration file

C:\> scp c:\cfg\brocade.cfg terry@192.168.1.50:runConfig-overwrite

Copying a software image file to flash memory

To copy a software image file from an SCP-enabled client to the primary flash on a FastIron LS device, FastIron GS device, or FastIron SuperX device, enter the following command.

C:\> scp SXL03200.bin terry@192.168.1.50:flash:primary.bin

or

C:\> scp SXL03200.bin terry@192.168.1.50:flash:primary.bin

To copy a software image file from an SCP-enabled client to the primary flash on a FastIron CX device or Turbolron device use the following command.

C:\> scp TIR04200.bin terry@192.168.1.50:flash:primary

To copy a software image file from an SCP-enabled client to the secondary flash on a FastIron LS device, FastIron GS device, or FastIron SuperX device, enter the following command.

C:\> scp SXL03200.bin terry@192.168.1.50:flash:secondary.bin

or

C:\> scp SXL03200.bin terry@192.168.1.50:flash:secondary.bin

To copy a software image file from an SCP-enabled client to the secondary flash on a FastIron CX device or Turbolron device, enter the following command.

C:\> scp TIR04200.bin terry@192.168.1.50:flash:secondary

NOTE

The Brocade device supports only one SCP copy session at a time.
Copying a Software Image file from flash memory

To copy a software image from the primary flash on the FastIron LS device, FastIron GS device, or FastIron SuperX device to an SCP-enabled client, enter a command such as the following.

C:\ scp terry@192.168.1.50:flash:primary.bin SXL03200.bin

To copy a software image from the primary flash on the FastIron CX device or TurboIron device to an SCP-enabled client, enter a command such as the following.

C:\ scp terry@192.168.1.50:flash:primary TIR04200.bin

To copy a software image from the secondary flash on the FastIron LS device, FastIron GS device, or FastIron SuperX device to an SCP-enabled client, enter a command such as the following.

C:\ scp terry@192.168.1.50:flash:secondary.bin SXL03200.bin

To copy a software image from the secondary flash on the FastIron CX device or TurboIron device to an SCP-enabled client, enter a command such as the following.

C:\ scp terry@192.168.1.50:flash:secondary TIR04200.bin

NOTE
The Brocade device supports only one SCP copy session at a time.
Configuring 802.1X Port Security

NOTE
On TurboIron X Series devices, the 802.1X port security feature is supported on devices running software release 04.2.00 and later.

IETF RFC support

Brocade FastIron devices support the IEEE 802.1X standard for authenticating devices attached to LAN ports. Using 802.1X port security, you can configure a FastIron device to grant access to a port based on information supplied by a client to an authentication server.

When a user logs on to a network that uses 802.1X port security, the Brocade device grants (or does not grant) access to network services after the user is authenticated by an authentication server. The user-based authentication in 802.1X port security provides an alternative to granting network access based on a user IP address, MAC address, or subnetwork.

The Brocade implementation of 802.1X port security supports the following RFCs:

- RFC 2284 PPP Extensible Authentication Protocol (EAP)
- RFC 2865 Remote Authentication Dial In User Service (RADIUS)
- RFC 2869 RADIUS Extensions

How 802.1X port security works

This section explains the basic concepts behind 802.1X port security, including device roles, how the devices communicate, and the procedure used for authenticating clients.

NOTE
802.1X Port Security cannot be configured on MAC Port Security-enabled ports.

Device roles in an 802.1X configuration

The 802.1X standard defines the roles of Client/Supplicant, Authenticator, and Authentication Server in a network.

The Client (known as a Supplicant in the 802.1X standard) provides username/password information to the Authenticator. The Authenticator sends this information to the Authentication Server. Based on the Client's information, the Authentication Server determines whether the Client can use services provided by the Authenticator. The Authentication Server passes this information to the Authenticator, which then provides services to the Client, based on the authentication result.
How 802.1X port security works

Figure 160 illustrates these roles.

FIGURE 160 Authenticator, client/supplicant, and authentication server in an 802.1X configuration

Authenticator – The device that controls access to the network. In an 802.1X configuration, the Brocade device serves as the Authenticator. The Authenticator passes messages between the Client and the Authentication Server. Based on the identity information supplied by the Client, and the authentication information supplied by the Authentication Server, the Authenticator either grants or does not grant network access to the Client.

Client/Supplicant – The device that seeks to gain access to the network. Clients must be running software that supports the 802.1X standard (for example, the Windows XP operating system). Clients can either be directly connected to a port on the Authenticator, or can be connected by way of a hub.

Authentication server – The device that validates the Client and specifies whether or not the Client may access services on the device. Brocade supports Authentication Servers running RADIUS.

Communication between the devices

For communication between the devices, 802.1X port security uses the *Extensible Authentication Protocol* (EAP), defined in RFC 2284. The 802.1X standard specifies a method for encapsulating EAP messages so that they can be carried over a LAN. This encapsulated form of EAP is known as EAP over LAN (EAPOL). The standard also specifies a means of transferring the EAPOL information between the Client/Supplicant, Authenticator, and Authentication Server.
EAPOL messages are passed between the Port Access Entity (PAE) on the Supplicant and the Authenticator. Figure 161 shows the relationship between the Authenticator PAE and the Supplicant PAE.

FIGURE 161 Authenticator PAE and supplicant PAE

Authenticator PAE – The Authenticator PAE communicates with the Supplicant PAE, receiving identifying information from the Supplicant. Acting as a RADIUS client, the Authenticator PAE passes the Supplicant information to the Authentication Server, which decides whether the Supplicant can gain access to the port. If the Supplicant passes authentication, the Authenticator PAE grants it access to the port.

Supplicant PAE – The Supplicant PAE supplies information about the Client to the Authenticator PAE and responds to requests from the Authenticator PAE. The Supplicant PAE can also initiate the authentication procedure with the Authenticator PAE, as well as send log off messages.

Controlled and uncontrolled ports

A physical port on the device used with 802.1X port security has two virtual access points a **controlled** port and an **uncontrolled** port. The controlled port provides full access to the network. The uncontrolled port provides access only for EAPOL traffic between the Client and the Authentication Server. When a Client is successfully authenticated, the controlled port is opened to the Client. Figure 162 illustrates this concept.
Before a Client is authenticated, only the uncontrolled port on the Authenticator is open. The uncontrolled port allows only EAPOL frames to be exchanged between the Client and the Authentication Server. The controlled port is in the unauthorized state and allows no traffic to pass through.

During authentication, EAPOL messages are exchanged between the Supplicant PAE and the Authenticator PAE, and RADIUS messages are exchanged between the Authenticator PAE and the Authentication Server. Refer to “Message exchange during authentication” on page 1512 for an example of this process. If the Client is successfully authenticated, the controlled port becomes authorized, and traffic from the Client can flow through the port normally.

By default, all controlled ports on the Brocade device are placed in the authorized state, allowing all traffic. When authentication is activated on an 802.1X-enabled interface, the interface controlled port is placed initially in the unauthorized state. When a Client connected to the port is successfully authenticated, the controlled port is then placed in the authorized state until the Client logs off. Refer to “Enabling 802.1X port security” on page 1530 for more information.

Message exchange during authentication

Figure 163 illustrates a sample exchange of messages between an 802.1X-enabled Client, a FastIron switch acting as Authenticator, and a RADIUS server acting as an Authentication Server.
How 802.1X port security works

In this example, the Authenticator (the FastIron switch) initiates communication with an 802.1X-enabled Client. When the Client responds, it is prompted for a username (255 characters maximum) and password. The Authenticator passes this information to the Authentication Server, which determines whether the Client can access services provided by the Authenticator. When the Client is successfully authenticated by the RADIUS server, the port is authorized. When the Client logs off, the port becomes unauthorized again.

The Brocade 802.1X implementation supports dynamic VLAN assignment. If one of the attributes in the Access-Accept message sent by the RADIUS server specifies a VLAN identifier, and this VLAN is available on the Brocade device, the client port is moved from its default VLAN to the specified VLAN. When the client disconnects from the network, the port is placed back in its default VLAN. Refer to “Configuring dynamic VLAN assignment for 802.1X ports” on page 1523 for more information.

If a Client does not support 802.1X, authentication cannot take place. The Brocade device sends EAP-Request/Identity frames to the Client, but the Client does not respond to them.

When a Client that supports 802.1X attempts to gain access through a non-802.1X-enabled port, it sends an EAP start frame to the Brocade device. When the device does not respond, the Client considers the port to be authorized, and starts sending normal traffic.

Brocade devices support Identity and MD5-challenge requests in EAP Request/Response messages. However, FESX release 02.1.01 and FSX release 02.3.01 support the following 802.1X authentication challenge types:

NOTE
Refer to also “EAP pass-through support” on page 1514.
How 802.1X port security works

- **EAP-TLS (RFC 2716)** – EAP Transport Level Security (TLS) provides strong security by requiring both client and authentication server to be identified and validated through the use of public key infrastructure (PKI) digital certificates. EAP-TLS establishes a tunnel between the client and the authentication server to protect messages from unauthorized users’ eavesdropping activities. Since EAP-TLS requires PKI digital certificates on both the clients and the authentication servers, the roll out, maintenance, and scalability of this authentication method is much more complex than other methods. EAP-TLS is best for installations with existing PKI certificate infrastructures.

- **EAP-TTLS (Internet-Draft)** – The EAP Tunneled Transport Level Security (TTLS) is an extension of EAP-TLS Like TLS, EAP-TTLS provides strong authentication; however it requires only the authentication server to be validated by the client through a certificate exchange between the server and the client. Clients are authenticated by the authentication server using user names and passwords.

 A TLS tunnel can be used to protect EAP messages and existing user credential services such as Active Directory, RADIUS, and LDAP. Backward compatibility for other authentication protocols such as PAP, CHAP, MS-CHAP, and MS-CHAP-V2 are also provided by EAP-TTLS. EAP-TTLS is not considered foolproof and can be fooled into sending identity credentials if TLS tunnels are not used. EAP-TTLS is suited for installations that require strong authentication without the use of mutual PKI digital certificates.

- **PEAP (Internet-Draft)** – Protected EAP Protocol (PEAP) is an Internet-Draft that is similar to EAP-TTLS. PEAP client authenticates directly with the backend authentication server. The authenticator acts as a pass-through device, which does not need to understand the specific EAP authentication protocols.

 Unlike EAP-TTLS, PEAP does not natively support user name and password to authenticate clients against an existing user database such as LDAP. PEAP secures the transmission between the client and authentication server with a TLS encrypted tunnel. PEAP also allows other EAP authentication protocols to be used. It relies on the mature TLS keying method for its key creation and exchange. PEAP is best suited for installations that require strong authentication without the use of mutual certificates.

NOTE

If the 802.1X Client will be sending a packet that is larger than 1500 bytes, you must enable jumbo at the Global config level of the CLI.

Configuration for these challenge types is the same as for the EAP-MD5 challenge type.

EAP pass-through support

EAP pass-through support is fully compliant with RFC 3748, in which, by default, compliant pass-through authenticator implementations forward EAP challenge request packets of any type. Previous software releases were limited to MD5, EAP-TTLS, EAP-PEAP, and EAP-TLS challenge request types for 802.1X authentication.

Configuration notes

- If the 802.1X supplicant or authentication server will be sending packets that are greater than 1500 MTU, you should configure the device to accommodate a bigger buffer size.

- EAP pass-through is supported on the Turbolron X Series devices running software release 04.2.00 and later.
Support for RADIUS user-name attribute in access-accept messages

Platform Support:

- FastIron X Series devices running software release 04.0.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later
- FCX-S devices running software release 06.0.00 and later

Brocade 802.1X-enabled ports support the RADIUS User-name (type 1) attribute in the Access-Accept message returned during 802.1X authentication.

This feature is useful when the client/supplicant does not provide its user-name in the EAP-response/identity frame, and the username is key to providing useful information. For example, when the User-name attribute is sent in the Access-Accept message, it is then available for display in sFlow sample messages sent to a collector, and in the output of some show dot1x CLI commands, such as show dot1x mac-sessions.

To enable this feature, add the following attribute on the RADIUS server.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-name</td>
<td>1</td>
<td><name> (string)</td>
</tr>
</tbody>
</table>

Authenticating multiple hosts connected to the same port

Brocade devices support 802.1X authentication for ports with more than one host connected to them. Figure 164 illustrates a sample configuration where multiple hosts are connected to a single 802.1X port.
How 802.1X port security works

The way the Brocade device authenticates clients in a multiple-host configuration depends on the software release running on the device.

Starting in release 02.2.00 for the FESX and FWSX and release 02.3.01 for the FSX, if there are multiple hosts connected to a single 802.1X-enabled port, the Brocade device authenticates each of them individually. Each host authentication status is independent of the others, so that if one authenticated host disconnects from the network, it has no effect on the authentication status of any of the other authenticated hosts.

By default, traffic from hosts that cannot be authenticated by the RADIUS server is dropped in hardware. You can optionally configure the Brocade device to assign the port to a “restricted” VLAN if authentication of the Client is unsuccessful.

How 802.1X Multiple-host authentication works

When multiple hosts are connected to a single 802.1X-enabled port on a Brocade device (as in Figure 164), 802.1X authentication is performed in the following way.

1. One of the 802.1X-enabled Clients attempts to log into a network in which a Brocade device serves as an Authenticator.

2. The Brocade device creates an internal session (called a dot1x-mac-session) for the Client. A dot1x-mac-session serves to associate a Client MAC address and username with its authentication status.

3. The Brocade device performs 802.1X authentication for the Client. Messages are exchanged between the Brocade device and the Client, and between the device and the Authentication Server (RADIUS server). The result of this process is that the Client is either successfully authenticated or not authenticated, based on the username and password supplied by the client.
4. If the Client is successfully authenticated, the Client dot1x-mac-session is set to “access-is-allowed”. This means that traffic from the Client can be forwarded normally.

5. If authentication for the Client is unsuccessful the first time, multiple attempts to authenticate the client will be made as determined by the attempts variable in the auth-fail-max-attempts command.
 - Refer to “Specifying the number of authentication attempts the device makes before dropping packets” on page 1536 for information on how to do this.

6. If authentication for the Client is unsuccessful more than the number of times specified by the attempts variable in the auth-fail-max-attempts command, an authentication-failure action is taken. The authentication-failure action can be either to drop traffic from the Client, or to place the port in a “restricted” VLAN:
 - If the authentication-failure action is to drop traffic from the Client, then the Client dot1x-mac-session is set to “access-denied”, causing traffic from the Client to be dropped in hardware.
 - If the authentication-failure action is to place the port in a “restricted” VLAN, if the Client dot1x-mac-session is set to “access-restricted” then the port is moved to the specified restricted VLAN, and traffic from the Client is forwarded normally.

7. When the Client disconnects from the network, the Brocade device deletes the Client dot1x-mac-session. This does not affect the dot1x-mac-session or authentication status (if any) of the other hosts connected on the port.

Configuration notes

- The Client dot1x-mac-session establishes a relationship between the username and MAC address used for authentication. If a user attempts to gain access from different Clients (with different MAC addresses), he or she would need to be authenticated from each Client.

- If a Client has been denied access to the network (that is, the Client dot1x-mac-session is set to “access-denied”), then you can cause the Client to be re-authenticated by manually disconnecting the Client from the network, or by using the clear dot1x mac-session command. Refer to “Clearing a dot1x-mac-session for a MAC address” on page 1537 for information on this command.

- When a Client has been denied access to the network, its dot1x-mac-session is aged out if no traffic is received from the Client MAC address over a fixed hardware aging period (70 seconds), plus a configurable software aging period. You can optionally change the software aging period for dot1x-mac-sessions or disable aging altogether. After the denied Client dot1x-mac-session is aged out, traffic from that Client is no longer blocked, and the Client can be re-authenticated.

 In addition, you can configure disable aging for the dot1x-mac-session of Clients that have been granted either full access to the network, or have been placed in a restricted VLAN. After a Client dot1x-mac-session ages out, the Client must be re-authenticated. Refer to “Disabling aging for dot1x-mac-sessions” on page 1536 for more information.

- Dynamic IP ACL and MAC address filter assignment is supported in an 802.1X multiple-host configuration. Refer to “Dynamically applying IP ACLs and MAC filters to 802.1X ports” on page 1527.

- 802.1X multiple-host authentication has the following additions:
 - Configurable hardware aging period for denied client dot1x-mac-sessions. Refer to “Configurable hardware aging period for denied client dot1x-mac-sessions” on page 1518.
How 802.1X port security works

- Dynamic ACL and MAC address filter assignment in 802.1X multiple-host configurations. Refer to “Dynamically applying IP ACLs and MAC filters to 802.1X ports” on page 1527.
- Dynamic multiple VLAN assignment for 802.1X ports. Refer “Dynamic multiple VLAN assignment for 802.1X ports” on page 1524.
- Configure a restriction to forward authenticated and unauthenticated tagged and untagged clients to a restricted VLAN.
- Configure an override to send failed dot1x and non-dot1x clients to a restricted VLAN.
- Configure VLAN assignments for clients attempting to gain access through dual-mode ports.
- Enhancements to some show commands.
- Differences in command syntax for saving dynamic VLAN assignments to the startup-config file.

Configurable hardware aging period for denied client dot1x-mac-sessions

When one of the 802.1X-enabled Clients in a multiple-host configuration attempts to log into a network in which a Brocade device serves as an Authenticator, the device creates a dot1x-mac-session for the Client.

When a Client has been denied access to the network, its dot1x-mac-session is aged out if no traffic is received from the Client MAC address over a period of time. After a denied Client dot1x-mac-session ages out, the Client can be re-authenticated. Aging of a denied Client's dot1x-mac-session occurs in two phases, known as hardware aging and software aging.

The hardware aging period for a denied Client's dot1x-mac-session is not fixed at 70 seconds. The hardware aging period for a denied Client's dot1x-mac-session is equal to the length of time specified with the dot1x timeout quiet-period command. By default, the hardware aging time is 60 seconds. Once the hardware aging period ends, the software aging period begins. When the software aging period ends, the denied Client's dot1x-mac-session ages out, and the Client can be authenticated again.

802.1X port security and sFlow

sFlow is a standards-based protocol that allows network traffic to be sampled at a user-defined rate for the purpose of monitoring traffic flow patterns and identifying packet transfer rates on user-specified interfaces.

When you enable sFlow forwarding on an 802.1X-enabled interface, the samples taken from the interface include the user name string at the inbound or outbound port, or both, if that information is available.

For more information on sFlow, refer to Appendix A, “Network Monitoring”.

802.1X accounting

When 802.1X port security is enabled on the Brocade device, you can enable 802.1X accounting. This feature enables the Brocade device to log information on the RADIUS server about authenticated 802.1X clients. The information logged on the RADIUS server includes the 802.1X client session ID, MAC address, and authenticating physical port number.
NOTE
On TurboIron devices running software release 04.2.00, the 802.1X accounting feature is not supported.

802.1X accounting works as follows.

1. A RADIUS server successfully authenticates an 802.1X client.
2. If 802.1X accounting is enabled, the Brocade device sends an 802.1X Accounting Start packet to the RADIUS server, indicating the start of a new session.
3. The RADIUS server acknowledges the Accounting Start packet.
4. The RADIUS server records information about the client.
5. When the session is concluded, the Brocade device sends an Accounting Stop packet to the RADIUS server, indicating the end of the session.
6. The RADIUS server acknowledges the Accounting Stop packet.

To enable 802.1X accounting, refer to “Configuring 802.1X accounting” on page 1539.

Configuring 802.1X port security

Configuring 802.1X port security on a Brocade device consists of the following tasks.

1. Configure the device interaction with the Authentication Server:
 - “Configuring an authentication method list for 802.1X” on page 1520
 - “Setting RADIUS parameters” on page 1520
 - “Configuring dynamic VLAN assignment for 802.1X ports” on page 1523 (optional)
 - “Dynamically applying IP ACLs and MAC filters to 802.1X ports” on page 1527

2. Configure the device role as the Authenticator:
 - “Enabling 802.1X port security” on page 1530
 - “Initializing 802.1X on a port” on page 1535 (optional)

3. Configure the device interaction with Clients:
 - “Configuring periodic re-authentication” on page 1532 (optional)
 - “Re-authenticating a port manually” on page 1532 (optional)
 - “Setting the quiet period” on page 1533 (optional)
 - “Setting the wait interval for EAP frame retransmissions” on page 1533 (optional)
 - “Setting the maximum number of EAP frame retransmissions” on page 1534 (optional)
 - “Specifying a timeout for retransmission of messages to the authentication server” on page 1535 (optional)
 - “Allowing access to multiple hosts” on page 1535 (optional)
 - “Defining MAC filters for EAP frames” on page 1537 (optional)
Configuring an authentication method list for 802.1X

To use 802.1X port security, you must specify an authentication method to be used to authenticate Clients. Brocade supports RADIUS authentication with 802.1X port security. To use RADIUS authentication with 802.1X port security, you create an authentication method list for 802.1X and specify RADIUS as an authentication method, then configure communication between the Brocade device and RADIUS server.

Example

FastIron(config)# aaa authentication dot1x default radius

Syntax: [no] aaa authentication dot1x default <method-list>

For the <method-list>, enter at least one of the following authentication methods

radius – Use the list of all RADIUS servers that support 802.1X for authentication.

none – Use no authentication. The Client is automatically authenticated without the device using information supplied by the Client.

NOTE
If you specify both radius and none, make sure radius comes before none in the method list.

Setting RADIUS parameters

To use a RADIUS server to authenticate access to a Brocade device, you must identify the server to the Brocade device.

Example

FastIron(config)# radius-server host 209.157.22.99 auth-port 1812 acct-port 1813 default key mirabeau dot1x

Syntax: radius-server host <ip-addr> | <ipv6-addr> | <server-name> [auth-port <num> | acct-port <num> | default] [key 0 | 1 <string>] [dot1x]

The host <ip-addr> | <ipv6-addr> | <server-name> parameter is either an IP address or an ASCII text string.

The dot1x parameter indicates that this RADIUS server supports the 802.1X standard. A RADIUS server that supports the 802.1X standard can also be used to authenticate non-802.1X authentication requests.

NOTE
To implement 802.1X port security, at least one of the RADIUS servers identified to the Brocade device must support the 802.1X standard.

Supported RADIUS attributes

Many IEEE 802.1X Authenticators will function as RADIUS clients. Some of the RADIUS attributes may be received as part of IEEE 802.1X authentication. Brocade devices support the following RADIUS attributes for IEEE 802.1X authentication:

• Username (1) – RFC 2865
• NAS-IP-Address (4) – RFC 2865
• NAS-Port (5) – RFC 2865
• Service-Type (6) – RFC 2865
• FilterId (11) – RFC 2865
• Framed-MTU (12) – RFC 2865
• State (24) – RFC 2865
• Vendor-Specific (26) – RFC 2865
• Session-Timeout (27) – RFC 2865
• Termination-Action (29) – RFC 2865
• Calling-Station-ID (31) – RFC 2865
• NAS-Port-Type (61) – RFC 2865
• Tunnel-Type (64) – RFC 2868
• Tunnel-Medium-Type (65) – RFC 2868
• EAP Message (79) – RFC 2579
• Message-Authenticator (80) RFC 3579
• Tunnel-Private-Group-Id (81) – RFC 2868
• NAS-Port-id (87) – RFC 2869

Specifying the RADIUS timeout action

A RADIUS timeout occurs when the Brocade device does not receive a response from a RADIUS server within a specified time limit and after a certain number of retries. The time limit and number of retries can be manually configured using the CLI commands `radius-server timeout` and `radius-server retransmit`, respectively. If the parameters are not manually configured, the Brocade device applies the default value of three seconds time limit with a maximum of three retries.

In releases prior to FSX software release 03.2.00 and FGS and FLS software release 04.1.00, when a RADIUS timeout occurs, the Brocade device will automatically reset the authentication process then retry to authenticate the user.

In FSX software release 03.2.00, and FGS software release 04.1.00, you can better control port behavior when a RADIUS timeout occurs. That is, you can configure a port on the Brocade device to automatically pass or fail users being authenticated. A **pass** essentially bypasses the authentication process and permits user access to the network. A **fail** bypasses the authentication process and blocks user access to the network, unless restrict-vlan is configured, in which case, the user is placed into a VLAN with restricted or limited access. By default, the Brocade device will reset the authentication process and retry to authenticate the user.

Specify the RADIUS timeout action at the Interface level of the CLI.

Permit user access to the network after a RADIUS timeout

To set the RADIUS timeout behavior to bypass 802.1X authentication and **permit** user access to the network, enter commands such as the following:

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# dot1x auth-timeout-action success
```

Syntax: `[no] dot1x auth-timeout-action success`

Once the success timeout action is enabled, use the **no** form of the command to reset the RADIUS timeout behavior to **retry**.
Re-authenticate a user
To configure RADIUS timeout behavior to bypass multi-device port authentication and permit user access to the network, enter commands similar to the following:

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# dot1x re-auth-timeout-success 60
```

Syntax: `[no] dot1x re-auth-timeout-success <seconds>`

The `<seconds>` parameter specifies the number of seconds the device will wait to re-authenticate a user after a timeout. The minimum value is 10 seconds. The maximum value is $2^{16} - 1$ (maximum unsigned 16-bit value).

Deny user access to the network after a RADIUS timeout
To set the RADIUS timeout behavior to bypass 802.1X authentication and block user access to the network, enter commands such as the following:

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# dot1x auth-timeout-action failure
```

Syntax: `[no] dot1x auth-timeout-action failure`

Once the failure timeout action is enabled, use the `no` form of the command to reset the RADIUS timeout behavior to retry.

NOTE
If `restrict-vlan` is configured along with `auth-timeout-action failure`, the user will be placed into a VLAN with restricted or limited access. Refer to “Allow user access to a restricted VLAN after a RADIUS timeout” on page 1522.

Allow user access to a restricted VLAN after a RADIUS timeout
To set the RADIUS timeout behavior to bypass 802.1X authentication and place the user in a VLAN with restricted or limited access, enter commands such as the following:

```
FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# dot1x auth-fail-action restrict-vlan 100
FastIron(config-if-e100-3/1)# dot1x auth-timeout-action failure
```

Syntax: `[no] dot1x auth-fail-action restrict-vlan [<vlan-id>]`

Syntax: `[no] dot1x auth-timeout-action failure`

Send a failed Dot1X client to a restricted VLAN
In Figure 165, a VoIP phone sends both tagged and untagged traffic to dual-mode port e 1/3. Assuming the VoIP phone is authenticated to a voice VLAN as tagged, a MAC session for the VoIP phone is learned on the voice VLAN. In addition, since the phone sends untagged traffic, a MAC session is also learned on the native untagged VLAN (based on the VLAN dual-mode configuration).

In previous releases, if a dot1x client tries to obtain access through the VoIP phone, and authentication fails for the client, the client is blocked in the native untagged VLAN because a MAC session for the VoIP phone is in place.

Use the `auth-fail-force-restrict` command to override the VoIP MAC session on the native VLAN, and move the PVID for the port to the restricted VLAN. Future untagged traffic from both phone and client establishes MAC sessions on the restricted VLAN, for restricted access.
NOTE
FCX devices do not support the auth-fail-force-restrict command.

This command is configured under the global dot1x-enable command as follows:

```
FastIron(config)# dot1x-enable
FastIron(config-dot1x)# auth-fail-force-restrict
```

Syntax: auth-fail-force-restrict

FIGURE 165 Redirecting clients to a restricted VLAN

![Diagram](image)

User 1 (IP Phone) Profile:
Authentication: RADIUS assigned to tagged VLAN A
MAC sessions exist on untagged native VLAN, and VLAN A

User 2 (PC) Profile:
Authentication: failed
PVID moved to restricted VLAN

After authentication fails for User 2, and the PVID moves to the restricted VLAN, there will be a total of 3 MAC sessions on port e1/3:
- one tagged MAC session on VLAN A for the phone
- one untagged MAC session on the restricted VLAN for the phone
- one untagged MAC session on the restricted VLAN for the client

Configuring dynamic VLAN assignment for 802.1X ports

When a client successfully completes the EAP authentication process, the Authentication Server (the RADIUS server) sends the Authenticator (the Brocade device) a RADIUS Access-Accept message that grants the client access to the network. The RADIUS Access-Accept message contains attributes set for the user in the user’s access profile on the RADIUS server.

If one of the attributes in the Access-Accept message specifies a VLAN identifier, and if this VLAN is available on the Brocade device, the client port is moved from its default VLAN to this specified VLAN.

NOTE
This feature is supported on port-based VLANs only. This feature cannot be used to place an 802.1X-enabled port into a Layer 3 protocol VLAN.
Automatic removal of dynamic VLAN assignments for 802.1X ports

For increased security, this feature removes any association between a port and a dynamically-assigned VLAN when all 802.1x sessions for that VLAN have expired on the port.

NOTE
When a show run command is issued during a session, the dynamically-assigned VLAN is not displayed.

Enable 802.1X VLAN ID support by adding the following attributes to a user profile on the RADIUS server.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Type</td>
<td>064</td>
<td>13 (decimal) – VLAN</td>
</tr>
<tr>
<td>Tunnel-Medium-Type</td>
<td>065</td>
<td>6 (decimal) – 802</td>
</tr>
<tr>
<td>Tunnel-Private-Group-ID</td>
<td>081</td>
<td><vlan-name> (string) – either the name or the number of a VLAN configured on the Brocade device.</td>
</tr>
</tbody>
</table>

The device reads the attributes as follows:

- If the Tunnel-Type or the Tunnel-Medium-Type attributes in the Access-Accept message do not have the values specified above, the Brocade device ignores the three Attribute-Value pairs. The client becomes authorized, but the client port is not dynamically placed in a VLAN.
- If the Tunnel-Type or the Tunnel-Medium-Type attributes in the Access-Accept message do have the values specified above, but there is no value specified for the Tunnel-Private-Group-ID attribute, the client will not become authorized.
- When the Brocade device receives the value specified for the Tunnel-Private-Group-ID attribute, it checks whether the <vlan-name> string matches the name of a VLAN configured on the device. If there is a VLAN on the device whose name matches the <vlan-name> string, then the client port is placed in the VLAN whose ID corresponds to the VLAN name.
- If the <vlan-name> string does not match the name of a VLAN, the Brocade device checks whether the string, when converted to a number, matches the ID of a VLAN configured on the device. If it does, then the client port is placed in the VLAN with that ID.
- If the <vlan-name> string does not match either the name or the ID of a VLAN configured on the device, then the client will not become authorized.

The show interface command displays the VLAN to which an 802.1X-enabled port has been dynamically assigned, as well as the port from which it was moved (that is, the port default VLAN). Refer to “Displaying dynamically assigned VLAN information” on page 1544 for sample output indicating the port dynamically assigned VLAN.

Dynamic multiple VLAN assignment for 802.1X ports

When you add attributes to a user profile on the RADIUS server, the <vlan-name> value for the Tunnel-Private-Group-ID attribute can specify the name or number of one or more VLANs configured on the Brocade device.

For example, to specify one VLAN, configure the following for the <vlan-name> value in the Tunnel-Private-Group-ID attribute on the RADIUS server.

"10" or "marketing"
In this example, the port on which the Client is authenticated is assigned to VLAN 10 or the VLAN named "marketing". The VLAN to which the port is assigned must have previously been configured on the Brocade device.

To specify an untagged VLAN, use the following.

"U:10" or "U:marketing"

When the RADIUS server specifies an untagged VLAN ID, the port default VLAN ID (or PVID) is changed from the system DEFAULT-VLAN (VLAN 1) to the specified VLAN ID. The port transmits only untagged traffic on its PVID. In this example, the port PVID is changed from VLAN 1 (the DEFAULT-VLAN) to VLAN 10 or the VLAN named "marketing".

The PVID for a port can be changed only once through RADIUS authentication. For example, if RADIUS authentication for a Client causes a port PVID to be changed from 1 to 10, and then RADIUS authentication for another Client on the same port specifies that the port PVID be moved to 20, then the second PVID assignment from the RADIUS server is ignored.

If the link goes down, or the dot1x-mac-session for the Client that caused the initial PVID assignment ages out, then the port reverts back to its original (non-RADIUS-specified) PVID, and subsequent RADIUS authentication can change the PVID assignment for the port.

If a port PVID is assigned through the multi-device port authentication feature, and 802.1X authentication subsequently specifies a different PVID, then the PVID specified through 802.1X authentication overrides the PVID specified through multi-device port authentication.

To specify tagged VLANs, use the following.

"T:12;T:20" or "T:12;T:marketing"

In this example, the port is added to VLANs 12 and 20 or VLANs 12 and the VLAN named "marketing". When a tagged packet is authenticated, and a list of VLANs is specified on the RADIUS server for the MAC address, then the packet tag must match one of the VLANs in the list in order for the Client to be successfully authenticated. If authentication is successful, then the port is added to all of the VLANs specified in the list.

Unlike with a RADIUS-specified untagged VLAN, if the dot1x-mac-session for the Client ages out, the port membership in RADIUS-specified tagged VLANs is not changed. In addition, if multi-device port authentication specifies a different list of tagged VLANs, then the port is added to the specified list of VLANs. Membership in the VLANs specified through 802.1X authentication is not changed.

To specify an untagged VLAN and multiple tagged VLANs, use the following.

"U:10;T:12;T:marketing"

When the RADIUS server returns a value specifying both untagged and tagged VLAN IDs, the port becomes a dual-mode port, accepting and transmitting both tagged traffic and untagged traffic at the same time. A dual-mode port transmits only untagged traffic on its default VLAN (PVID) and only tagged traffic on all other VLANs.

In this example, the port VLAN configuration is changed so that it transmits untagged traffic on VLAN 10, and transmits tagged traffic on VLAN 12 and the VLAN named "marketing".

For a configuration example, refer to "802.1X Authentication with dynamic VLAN assignment" on page 1554.
Saving dynamic VLAN assignments to the running-config file

You can configure the Brocade device to save the RADIUS-specified VLAN assignments to the device's running-config file. Enter commands such as the following.

```
FastIron(config)# dot1x-enable
FastIron(config-dot1x)# save-dynamicvlan-to-config
```

Syntax: `save-dynamicvlan-to-config`

By default, the dynamic VLAN assignments are not saved to the running-config file. Entering the `show running-config` command does not display dynamic VLAN assignments, although they can be displayed with the `show vlan` and `show authenticated-mac-address detail` commands.

NOTE

When this feature is enabled, issuing the command `write mem` will save any dynamic VLAN assignments to the startup configuration file.

Considerations for dynamic VLAN assignment in an 802.1X multiple-host configuration

The following considerations apply when a Client in a 802.1X multiple-host configuration is successfully authenticated, and the RADIUS Access-Accept message specifies a VLAN for the port:

- If the port is not already a member of a RADIUS-specified VLAN, and the RADIUS Access-Accept message specifies the name or ID of a valid VLAN on the Brocade device, then the port is placed in that VLAN.
- If the port is already a member of a RADIUS-specified VLAN, and the RADIUS Access-Accept message specifies the name or ID of a different VLAN, then it is considered an authentication failure. The port VLAN membership is not changed.
- If the port is already a member of a RADIUS-specified VLAN, and the RADIUS Access-Accept message specifies the name or ID of that same VLAN, then traffic from the Client is forwarded normally.
- If the RADIUS Access-Accept message specifies the name or ID of a VLAN that does not exist on the Brocade device, then it is considered an authentication failure.
- If the port is a tagged or dual-mode port, and the RADIUS Access-Accept message specifies the name or ID of a valid VLAN on the Brocade device, then the port is placed in that VLAN. If the port is already a member of the RADIUS-specified VLAN, no further action is taken. Note that the Client dot1x-mac-session is set to “access-is-allowed” for the RADIUS-specified VLAN only. If traffic from the Client MAC address is received on any other VLAN, it is dropped.
- If the RADIUS Access-Accept message does not contain any VLAN information, the Client dot1x-mac-session is set to “access-is-allowed”. If the port is already in a RADIUS-specified VLAN, it remains in that VLAN.

Using dynamic VLAN assignment with the MAC port security feature

MAC port security allows the Brocade device to learn a limited number of “secure” MAC addresses on an interface. The interface forwards only packets with source MAC addresses that match these secure addresses. If the interface receives a packet with a source MAC address that is different from any of the secure addresses, it is considered a security violation, and subsequent packets from the violating MAC address can be dropped, or the port can be disabled entirely.
If a port is disabled due to a MAC port security violation, 802.1X clients attempting to connect over the port cannot be authorized. In addition, 802.1X clients connecting from non-secure MAC addresses cannot be authorized.

To use 802.1X dynamic VLAN assignment with the MAC port security feature on an interface, you must set the number of secure MAC addresses to two or more.

Example

```bash
FastIron(config)# int e 3/2
FastIron(config-if-e1000-3/2)# port security
FastIron(config-port-security-e1000-3/2)# maximum 2
FastIron(config-port-security-e1000-3/2)# exit
```

NOTE

FGS-STK, FLS-STK and TurboIron devices do not support:
- dot1x with port security configured on the same port
- dot1x with lock-address configured on the same port.

Refer to Chapter 43, “Using the MAC Port Security Feature” for more information.

Dynamically applying IP ACLs and MAC filters to 802.1X ports

The Brocade 802.1X implementation supports dynamically applying an IP ACL or MAC address filter to a port, based on information received from an Authentication Server.

When a client/supplicant successfully completes the EAP authentication process, the Authentication Server (the RADIUS server) sends the Authenticator (the Brocade device) a RADIUS Access-Accept message that grants the client access to the network. The RADIUS Access-Accept message contains attributes set for the user in the user's access profile on the RADIUS server.

If the Access-Accept message contains Filter-ID (type 11) or Vendor-Specific (type 26), or both attributes, the Brocade device can use information in these attributes to apply an IP ACL or MAC address filter to the authenticated port. This IP ACL or MAC address filter applies to the port for as long as the client is connected to the network. When the client disconnects from the network, the IP ACL or MAC address filter is no longer applied to the port. If an IP ACL or MAC address filter had been applied to the port prior to 802.1X authentication, it is then re-applied to the port.

The Brocade device uses information in the Filter ID and Vendor-Specific attributes as follows:

- The Filter-ID attribute can specify the number of an existing IP ACL or MAC address filter configured on the Brocade device. In this case, the IP ACL or MAC address filter with the specified number is applied to the port.
- The Vendor-Specific attribute can specify actual syntax for a Brocade IP ACL or MAC address filter, which is then applied to the authenticated port. Configuring a Vendor-Specific attribute in this way allows you to create IP ACLs and MAC filters that apply to individual users; that is, per-user IP ACLs or MAC address filters.

Configuration considerations

The following restrictions apply to dynamic IP ACLs or MAC address filters:

- Inbound dynamic IP ACLs are supported. Outbound dynamic ACLs are not supported.
Inbound Vendor-Specific attributes are supported. Outbound Vendor-Specific attributes are not supported.

A maximum of one IP ACL can be configured in the inbound direction on an interface.

MAC address filters cannot be configured in the outbound direction on an interface.

Concurrent operation of MAC address filters and IP ACLs is not supported.

Disabling and enabling strict security mode for dynamic filter assignment

By default, 802.1X dynamic filter assignment operates in strict security mode. When strict security mode is enabled, 802.1X authentication for a port fails if the Filter-ID attribute contains invalid information, or if insufficient system resources are available to implement the per-user IP ACLs or MAC address filters specified in the Vendor-Specific attribute.

When strict security mode is enabled:

- If the Filter-ID attribute in the Access-Accept message contains a value that does not refer to an existing filter (that is, a MAC address filter or IP ACL configured on the device), then the port will not be authenticated, regardless of any other information in the message (for example, if the Tunnel-Private-Group-ID attribute specifies a VLAN on which to assign the port).

- If the Vendor-Specific attribute specifies the syntax for a filter, but there are insufficient system resources to implement the filter, then the port will not be authenticated.

- If the device does not have the system resources available to dynamically apply a filter to a port, then the port will not be authenticated.

NOTE
If the Access-Accept message contains values for both the Filter-ID and Vendor-Specific attributes, then the value in the Vendor-Specific attribute (the per-user filter) takes precedence.

Also, if authentication for a port fails because the Filter-ID attribute referred to a non-existent filter, or there were insufficient system resources to implement the filter, then a Syslog message is generated.

When strict security mode is disabled:

- If the Filter-ID attribute in the Access-Accept message contains a value that does not refer to an existing filter (that is, a MAC address filter or IP ACL configured on the device), then the port is still authenticated, but no filter is dynamically applied to it.

- If the Vendor-Specific attribute specifies the syntax for a filter, but there are insufficient system resources to implement the filter, then the port is still authenticated, but the filter specified in the Vendor-Specific attribute is not applied to the port.

By default, strict security mode is enabled for all 802.1X-enabled interfaces, but you can manually disable or enable it, either globally or for specific interfaces.

To disable strict security mode globally, enter the following commands.

```
FastIron(config)# dot1x-enable
FastIron(config-dot1x)# no global-filter-strict-security
```

After you globally disable strict security mode, you can re-enable it by entering the following command.

```
FastIron(config-dot1x)# global-filter-strict-security
```

Syntax: [no] global-filter-strict-security
To disable strict security mode for a specific interface, enter commands such as the following.

```
FastIron(config)# interface e 1
FastIron(config-if-e1000-1)# dot1x disable-filter-strict-security
```

To re-enable strict security mode for an interface, enter the following command.

```
FastIron(config-if-e1000-1)# no dot1x disable-filter-strict-security
```

Syntax: `[no] dot1x disable-filter-strict-security`

The output of the `show dot1x` and `show dot1x config` commands has been enhanced to indicate whether strict security mode is enabled or disabled globally and on an interface. Refer to “Displaying the status of strict security mode” on page 1547.

Dynamically applying existing ACLs or MAC address filters

When a port is authenticated using 802.1X security, an IP ACL or MAC address filter that exists in the running-config on the Brocade device can be dynamically applied to the port. To do this, you configure the Filter-ID (type 11) attribute on the RADIUS server. The Filter-ID attribute specifies the name or number of the Brocade IP ACL or MAC address filter.

The following is the syntax for configuring the Filter-ID attribute to refer to a Brocade IP ACL or MAC address filter.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip.<number>.in</code></td>
<td>Applies the specified numbered ACL to the 802.1X authenticated port in the inbound direction.</td>
</tr>
<tr>
<td><code>ip.<name>.in</code></td>
<td>Applies the specified named ACL to the 802.1X authenticated port in the inbound direction.</td>
</tr>
<tr>
<td><code>mac.<number>.in</code></td>
<td>Applies the specified numbered MAC address filter to the 802.1X authenticated port in the inbound direction.</td>
</tr>
</tbody>
</table>

The following table lists examples of values you can assign to the Filter-ID attribute on the RADIUS server to refer to IP ACLs and MAC address filters configured on a Brocade device.

<table>
<thead>
<tr>
<th>Possible values for the filter ID attribute on the RADIUS server</th>
<th>ACL or MAC address filter configured on the Brocade device</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip.2.in</code></td>
<td>access-list 2 permit host 36.48.0.3</td>
</tr>
<tr>
<td></td>
<td>access-list 2 permit 36.0.0.0 0.255.255.255</td>
</tr>
<tr>
<td><code>ip.102.in</code></td>
<td>access-list 102 permit ip 36.0.0.0 0.255.255.255 any</td>
</tr>
<tr>
<td><code>ip.fdry_filter.in</code></td>
<td>ip access-list standard fdry_filter</td>
</tr>
<tr>
<td></td>
<td>permit host 36.48.0.3</td>
</tr>
<tr>
<td><code>mac.2.in</code></td>
<td>mac filter 2 permit 3333.3333.3333 ffff.ffff.ffff any etype eq 0800</td>
</tr>
<tr>
<td><code>mac.3.in</code></td>
<td>mac filter 2 permit 3333.3333.3333 ffff.ffff.ffff any etype eq 0800</td>
</tr>
<tr>
<td><code>mac.3.in</code></td>
<td>mac filter 3 permit 2222.2222.2222 ffff.ffff.ffff any etype eq 0800</td>
</tr>
</tbody>
</table>

Notes

- The `<name>` in the Filter ID attribute is case-sensitive.
- You can specify only numbered MAC address filters in the Filter ID attribute. Named MAC address filters are not supported.
• Dynamic ACL filters are supported only for the inbound direction. Dynamic outbound ACL filters are not supported.
• MAC address filters are supported only for the inbound direction. Outbound MAC address filters are not supported.
• Dynamically assigned IP ACLs and MAC address filters are subject to the same configuration restrictions as non-dynamically assigned IP ACLs and MAC address filters.

Configuring per-user IP ACLs or MAC address filters

Per-user IP ACLs and MAC address filters make use of the Vendor-Specific (type 26) attribute to dynamically apply filters to ports. Defined in the Vendor-Specific attribute are Brocade ACL or MAC address filter statements. When the RADIUS server returns the Access-Accept message granting a client access to the network, the Brocade device reads the statements in the Vendor-Specific attribute and applies these IP ACLs or MAC address filters to the client port. When the client disconnects from the network, the dynamically applied filters are no longer applied to the port. If any filters had been applied to the port previous to the client connecting, then those filters are reapplied to the port.

NOTE
Dynamic IP ACL filters and MAC address filters are not supported on the same port at the same time.

The following table shows the syntax for configuring the Brocade Vendor-Specific attributes with ACL or MAC address filter statements.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipACL.e.in=<extended-ACL-entries></td>
<td>Applies the specified extended ACL entries to the 802.1X authenticated port in the inbound direction.</td>
</tr>
<tr>
<td>macfilter.in=<mac-filter-entries></td>
<td>Applies the specified MAC address filter entries to the 802.1X authenticated port in the inbound direction.</td>
</tr>
</tbody>
</table>

The following table shows examples of IP ACLs and MAC address filters configured in the Brocade Vendor-Specific attribute on a RADIUS server. These IP ACLs and MAC address filters follow the same syntax as other Brocade ACLs and MAC address filters. Refer to the related chapters in this book for information on syntax.

<table>
<thead>
<tr>
<th>ACL or MAC address filter</th>
<th>Vendor-specific attribute on RADIUS server</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC address filter with one entry</td>
<td>macfilter.in= deny any any</td>
</tr>
<tr>
<td>MAC address filter with two entries</td>
<td>macfilter.in= permit 0000.0000.3333 ffff.ffff.0000 any, macfilter.in= permit 0000.0000.4444 ffff.ffff.0000 any</td>
</tr>
</tbody>
</table>

The RADIUS server allows one instance of the Vendor-Specific attribute to be sent in an Access-Accept message.

Enabling 802.1X port security

By default, 802.1X port security is disabled on Brocade devices. To enable the feature on the device and enter the dot1x configuration level, enter the following command.

```
FastIron(config)# dot1x-enable
FastIron(config-dot1x)#
```
Syntax: [no] dot1x-enable
At the dot1x configuration level, you can enable 802.1X port security on all interfaces at once, on individual interfaces, or on a range of interfaces.

For example, to enable 802.1X port security on all interfaces on the device, enter the following command.

FastIron(config-dot1x)# enable all

Syntax: [no] enable all
To enable 802.1X port security on interface 3/11, enter the following command.

FastIron(config-dot1x)# enable ethernet 3/11

Syntax: [no] enable ethernet [<slotnum>]/<portnum>
The <slotnum> parameter is required on chassis devices.
The <portnum> parameter is a valid port number.

To enable 802.1X port security on interfaces 3/11 through 3/16, enter the following command.

FastIron(config-dot1x)# enable ethernet 3/11 to 3/16

Syntax: [no] enable ethernet [<slotnum>]/<portnum> to <portnum>
The <slotnum> parameter is required on chassis devices.
The <portnum> parameter is a valid port number.

Setting the port control
To activate authentication on an 802.1X-enabled interface, you specify the kind of port control to be used on the interface. An interface used with 802.1X port security has two virtual access points: a controlled port and an uncontrolled port:

• The controlled port can be either the authorized or unauthorized state. In the authorized state, it allows normal traffic to pass between the Client and the Authenticator. In the unauthorized state, no traffic is allowed to pass.
• The uncontrolled port allows only EAPOL traffic between the Client and the Authentication Server.

Refer to Figure 162 for an illustration of this concept.

By default, all controlled ports on the device are in the authorized state, allowing all traffic. When you activate authentication on an 802.1X-enabled interface, its controlled port is placed in the unauthorized state. When a Client connected to the interface is successfully authenticated, the controlled port is then placed in the authorized state. The controlled port remains in the authorized state until the Client logs off.

To activate authentication on an 802.1X-enabled interface, you configure the interface to place its controlled port in the authorized state when a Client is authenticated by an Authentication Server. To do this, enter commands such as the following.

FastIron(config)# interface e 3/1
FastIron(config-if-3/1)# dot1x port-control auto

Syntax: [no] dot1x port-control [force-authorized | force-unauthorized | auto]
When an interface control type is set to **auto**, the controlled port is initially set to unauthorized, but is changed to authorized when the connecting Client is successfully authenticated by an Authentication Server.

The port control type can be one of the following:

- **force-authorized** – The controlled port is placed unconditionally in the authorized state, allowing all traffic. This is the default state for ports on the Brocade device.
- **force-unauthorized** – The controlled port is placed unconditionally in the unauthorized state.
- **auto** – The controlled port is unauthorized until authentication takes place between the Client and Authentication Server. Once the Client passes authentication, the port becomes authorized. This activates authentication on an 802.1X-enabled interface.

NOTE

You cannot enable 802.1X port security on ports that have any of the following features enabled:

- Link aggregation
- Metro Ring Protocol (MRP)
- Mirror port
- Trunk port

Configuring periodic re-authentication

You can configure the device to periodically re-authenticate Clients connected to 802.1X-enabled interfaces. When you enable periodic re-authentication, the device re-authenticates Clients every 3,600 seconds by default. You can optionally specify a different re-authentication interval of between 1 – 4294967295 seconds.

To configure periodic re-authentication using the default interval of 3,600 seconds, enter the following command.

```
FastIron(config-dot1x)# re-authentication
```

Syntax: `[no] re-authentication`

To configure periodic re-authentication with an interval of 2,000 seconds, enter the following commands.

```
FastIron(config-dot1x)# re-authentication
FastIron(config-dot1x)# timeout re-authperiod 2000
```

Syntax: `[no] timeout re-authperiod <seconds>`

The re-authentication interval is a global setting, applicable to all 802.1X-enabled interfaces. To re-authenticate Clients connected to a specific port manually, use the **dot1x re-authenticate** command. Refer to “Re-authenticating a port manually”, below.

Re-authenticating a port manually

When periodic re-authentication is enabled, by default the Brocade device re-authenticates Clients connected to an 802.1X-enabled interface every 3,600 seconds (or the time specified by the **dot1x timeout re-authperiod** command). You can also manually re-authenticate Clients connected to a specific port.
For example, to re-authenticate Clients connected to interface 3/1, enter the following command.

```
FastIron# dot1x re-authenticate e 3/1
```

Syntax: `dot1x re-authenticate ethernet [slotnum]/portnum`

The `<slotnum>` parameter is required on chassis devices.
The `<portnum>` parameter is a valid port number.

Setting the quiet period

If the Brocade device is unable to authenticate the Client, the Brocade device waits a specified amount of time before trying again. The amount of time the Brocade device waits is specified with the `quiet-period` parameter. The `quiet-period` parameter can be from 1 – 4294967295 seconds. The default is 60 seconds.

For example, to set the quiet period to 30 seconds, enter the following command.

```
FastIron(config-dot1x)# timeout quiet-period 30
```

Syntax: `[no] timeout quiet-period <seconds>`

Specifying the wait interval and number of EAP-request/identity frame retransmissions from the Brocade device

When the Brocade device sends an EAP-request/identity frame to a Client, it expects to receive an EAP-response/identity frame from the Client. By default, if the Brocade device does not receive an EAP-response/identity frame from a Client, the device waits 30 seconds, then retransmits the EAP-request/identity frame. Also by default, the Brocade device retransmits the EAP-request/identity frame a maximum of two times. You can optionally configure the amount of time the device will wait before retransmitting an EAP-request/identity frame, and the number of times the EAP-request/identity frame will be transmitted. This section provides the command syntax for these features.

Setting the wait interval for EAP frame retransmissions

By default, if the Brocade device does not receive an EAP-response/identity frame from a Client, the device waits 30 seconds, then retransmits the EAP-request/identity frame. You can optionally change the amount of time the Brocade device waits before retransmitting the EAP-request/identity frame to the Client.

For example, to cause the Brocade device to wait 60 seconds before retransmitting an EAP-request/identity frame to a Client, enter the following command.

```
FastIron(config-dot1x)# timeout tx-period 60
```

If the Client does not send back an EAP-response/identity frame within 60 seconds, the device will transmit another EAP-request/identity frame.

Syntax: `[no] timeout tx-period <seconds>`

where `<seconds>` is a value from 1 – 4294967295. The default is 30 seconds.
Configuring 802.1X port security

Setting the maximum number of EAP frame retransmissions

The Brocade device retransmits the EAP-request/identity frame a maximum of two times. If no EAP-response/identity frame is received from the Client after two EAP-request/identity frame retransmissions (or the amount of time specified with the auth-max command), the device restarts the authentication process with the Client.

You can optionally change the number of times the Brocade device should retransmit the EAP-request/identity frame. You can specify between 1 – 10 frame retransmissions. For example, to configure the device to retransmit an EAP-request/identity frame to a Client a maximum of three times, enter the following command:

```
FastIron(config-dot1x)# auth-max 3
```

Syntax: `auth-max <value>`

<value> is a number from 1 – 10. The default is 2.

Specifying the wait interval and number of EAP-request/identity frame retransmissions from the RADIUS server

Acting as an intermediary between the RADIUS Authentication Server and the Client, the Brocade device receives RADIUS messages from the RADIUS server, encapsulates them as EAPOL frames, and sends them to the Client. By default, when the Brocade device relays an EAP-Request frame from the RADIUS server to the Client, it expects to receive a response from the Client within 30 seconds. If the Client does not respond within the allotted time, the device retransmits the EAP-Request frame to the Client. Also by default, the Brocade device retransmits the EAP-request frame twice. If no EAP-response frame is received from the Client after two EAP-request frame retransmissions, the device restarts the authentication process with the Client.

You can optionally configure the amount of time the device will wait before retransmitting an EAP-request/identity frame, and the number of times the EAP-request/identity frame will be transmitted. This section provides the command syntax for these features.

Setting the wait interval for EAP frame retransmissions

By default, when the Brocade device relays an EAP-Request frame from the RADIUS server to the Client, it expects to receive a response from the Client within 30 seconds. You can optionally specify the wait interval using the supptimeout command.

For example, to configure the device to retransmit an EAP-Request frame if the Client does not respond within 45 seconds, enter the following command.

```
FastIron(config-dot1x)# supptimeout 45
```

Syntax: `supptimeout <seconds>`

<seconds> is a number from 1 – 4294967295 seconds. The default is 30 seconds.

Setting the maximum number of EAP frame retransmissions

You can optionally specify the number of times the Brocade device will retransmit the EAP-request frame. You can specify between 1 – 10 frame retransmissions. For example, to configure the device to retransmit an EAP-request frame to a Client a maximum of three times, enter the following command.
FastIron(config-dot1x)# max-req 3

Syntax: max-req <value>

<value> is a number from 1 – 10. The default is 2.

Specifying a timeout for retransmission of messages to the authentication server

When performing authentication, the Brocade device receives EAPOL frames from the Client and passes the messages on to the RADIUS server. The device expects a response from the RADIUS server within 30 seconds. If the RADIUS server does not send a response within 30 seconds, the Brocade device retransmits the message to the RADIUS server. The time constraint for retransmission of messages to the Authentication Server can be between 0 – 4294967295 seconds.

For example, to configure the device to retransmit a message if the Authentication Server does not respond within 45 seconds, enter the following command.

FastIron(config-dot1x)# server-timeout 45

Syntax: server-timeout <seconds>

Initializing 802.1X on a port

To initialize 802.1X port security on a port, enter a command such as the following.

FastIron# dot1x initialize e 3/1

Syntax: dot1x initialize ethernet [<slotnum>/]<portnum>

The <slotnum> parameter is required on chassis devices.
The <portnum> parameter is a valid port number.

Allowing access to multiple hosts

Brocade devices support 802.1X authentication for ports with more than one host connected to them. If there are multiple hosts connected to a single 802.1X-enabled port, the Brocade device authenticates each of them individually. Refer to “Configuring 802.1X multiple-host authentication” on page 1535.

Configuring 802.1X multiple-host authentication

When multiple hosts are connected to the same 802.1X-enabled port, the functionality described in “How 802.1X Multiple-host authentication works” on page 1516 is enabled by default. You can optionally do the following:

- Specify the authentication-failure action
- Specify the number of authentication attempts the device makes before dropping packets
- Disabling aging for dot1x-mac-sessions
- Configure aging time for blocked Clients
- Clear the dot1x-mac-session for a MAC address
Specifying the authentication-failure action

In an 802.1X multiple-host configuration, if RADIUS authentication for a Client is unsuccessful, traffic from that Client is either dropped in hardware (the default), or the Client port is placed in a “restricted” VLAN. You can specify which of these two authentication-failure actions is to be used. If the authentication-failure action is to place the port in a restricted VLAN, you can specify the ID of the restricted VLAN.

To specify that the authentication-failure action is to place the Client port in a restricted VLAN, enter the following command.

```
FastIron(config)# dot1x-enable
FastIron(config-dot1x)# auth-fail-action restricted-vlan
```

Syntax: `[no] auth-fail-action restricted-vlan`

To specify the ID of the restricted VLAN as VLAN 300, enter the following command.

```
FastIron(config-dot1x)# auth-fail-vlanid 300
```

Syntax: `[no] auth-fail-vlanid <vlan-id>`

Specifying the number of authentication attempts the device makes before dropping packets

When the authentication-failure action is to drop traffic from the Client, and the initial authentication attempt made by the device to authenticate the Client is unsuccessful, the Brocade device immediately retries to authenticate the Client. After three unsuccessful authentication attempts, the Client dot1x-mac-session is set to “access-denied”, causing traffic from the Client to be dropped in hardware.

You can optionally configure the number of authentication attempts the device makes before dropping traffic from the Client. To do so, enter a command such as the following.

```
FastIron(config-dot1x)# auth-fail-max-attempts 2
```

Syntax: `[no] auth-fail-max-attempts <attempts>`

By default, the device makes 3 attempts to authenticate a Client before dropping packets from the Client. You can specify between 1 – 10 authentication attempts.

Disabling aging for dot1x-mac-sessions

The dot1x-mac-sessions for Clients authenticated or denied by a RADIUS server are aged out if no traffic is received from the Client MAC address for a certain period of time. After a Client dot1x-mac-session is aged out, the Client must be re-authenticated:

- **Permitted** dot1x-mac-sessions, which are the dot1x-mac-sessions for authenticated Clients, as well as for non-authenticated Clients whose ports have been placed in the restricted VLAN, are aged out if no traffic is received from the Client MAC address over the normal MAC aging interval on the Brocade device.

- **Denied** dot1x-mac-sessions, which are the dot1x-mac-sessions for non-authenticated Clients that are blocked by the Brocade device are aged out over a configurable software aging period. (Refer to the next section for more information on configuring the software aging period).

You can optionally disable aging of the permitted or denied dot1x-mac-sessions, or both, on the Brocade device.

To disable aging of the permitted dot1x-mac-sessions, enter the following command.

```
FastIron(config-dot1x)# mac-session-aging no-aging permitted-mac-only
```

Syntax: `[no] mac-session-aging no-aging permitted-mac-only`
To disable aging of the denied dot1x-mac-sessions, enter the following command.

```
FastIron(config-dot1x)# mac-session-aging no-aging denied-mac-only
```

Syntax: `[no] mac-session-aging no-aging denied-mac-only`

NOTE
This command enables aging of permitted sessions.

As a shortcut, use the command `[no] mac-session-aging` to enable or disable aging for permitted and denied sessions.

Specifying the aging time for blocked clients

When the Brocade device is configured to drop traffic from non-authenticated Clients, traffic from the blocked Clients is dropped in hardware, without being sent to the CPU. A Layer 2 CAM entry is created that drops traffic from the blocked Client MAC address in hardware. If no traffic is received from the blocked Client MAC address for a certain amount of time, this Layer 2 CAM entry is aged out. If traffic is subsequently received from the Client MAC address, then an attempt can be made to authenticate the Client again.

Aging of the Layer 2 CAM entry for a blocked Client MAC address occurs in two phases, known as `hardware aging` and `software aging`. The hardware aging period is fixed at 70 seconds and is non-configurable. The software aging time is configurable through the CLI.

Once the Brocade device stops receiving traffic from a blocked Client MAC address, the hardware aging begins and lasts for a fixed period of time. After the hardware aging period ends, the software aging period begins. The software aging period lasts for a configurable amount of time (by default 120 seconds). After the software aging period ends, the blocked Client MAC address ages out, and can be authenticated again if the Brocade device receives traffic from the Client MAC address.

Change the length of the software aging period for a blocked Client MAC address by entering a command such as the following.

```
FastIron(config)# mac-session-aging max-age 180
```

Syntax: `[no] mac-session-aging max-age <seconds>`

You can specify from 1 – 65535 seconds. The default is 120 seconds.

Clearing a dot1x-mac-session for a MAC address

You can clear the dot1x-mac-session for a specified MAC address, so that the Client with that MAC address can be re-authenticated by the RADIUS server.

```
FastIron# clear dot1x mac-session 00e0.1234.abd4
```

Syntax: `clear dot1x mac-session <mac-address>`

Defining MAC filters for EAP frames

You can create MAC address filters to permit or deny EAP frames. To do this, you specify the Brocade device 802.1X group MAC address as the destination address in a MAC filter, then apply the filter to an interface.
MAC filters for EAPS on most devices

For example, the following command creates a MAC filter that denies frames with the destination MAC address of 0180.c200.0003, which is the 802.1X group MAC address on the Brocade device.

FastIron(config)# mac filter 1 deny any 0180.c200.0003 ffff.ffff.ffff

The following commands apply this filter to interface e 3/1.

FastIron(config)# interface e 3/1
FastIron(config-if-3/1)# mac filter-group 1

Refer to “Defining MAC address filters” on page 1578 for more information.

NOTE
This feature is not supported on Turbolron devices.

Configuring VLAN access for non-EAP-capable clients

You can configure the Brocade device to grant "guest" or restricted VLAN access to clients that do not support Extensible EAP. The restricted VLAN limits access to the network or applications, instead of blocking access to these services altogether.

When the Brocade device receives the first packet (non-EAP packet) from a client, the device waits for 10 seconds or the amount of time specified with the timeout restrict-fwd-period command. If the Brocade device does not receive subsequent packets after the timeout period, the device places the client on the restricted VLAN.

This feature is disabled by default. To enable this feature and change the timeout period, enter commands such as the following.

FastIron(config)# dot1x-enable
FastIron(config-dot1x)# restrict-forward-non-dot1x
FastIron(config-dot1x)# timeout restrict-fwd-period 15

Once the success timeout action is enabled, use the no form of the command to reset the RADIUS timeout behavior to retry.

Syntax: timeout restrict-fwd-period <num>

The <num> parameter is a value from 0 to 32767. The default value is 10.

Configuring a timeout action to cancel 802.1X authentication for Non-802.1X clients

Normally, the Brocade-specific attribute obtained from the RADIUS server identifies a client as not 802.1X-capable and tells the switch not to perform 802.1X authentication for this client.

However, if you configure an auth-timeout-action at the global level, the Brocade-specific attribute from the RADIUS server is no longer required to cancel 802.1X authentication for a non-802.1X user. To configure the timeout action, enter commands similar to the following at the global level.

FastIron(config)# dot1x-enable
FastIron(config-dot1x)# restrict-forward-non-dot1x auth-timeout-action

NOTE
FCX devices do not support the auth-timeout-action portion of the previous command.
Syntax: restrict-forward-non-dot1x [auth-timeout-action]

To set the RADIUS timeout behavior to bypass dot.1X authentication and permit client access to the network, enter commands similar to the following (at the interface level).

FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# dot1x auth-timeout-action success

To set the RADIUS timeout behavior to bypass 802.1X authentication and return a failure, which limits access to the network and moves the client to the restricted VLAN, enter commands similar to the following (at the interface level).

FastIron(config)# interface ethernet 3/1
FastIron(config-if-e100-3/1)# dot1x auth-timeout-action failure

Syntax: [no] dot1x auth-timeout-action success
Syntax: [no] dot1x auth-timeout-action failure

NOTE
The success or failure of multi-device port authentication can change the effect of these commands.

Configuring 802.1X accounting

Platform Support:
- FastIron X Series devices running software release 04.3.00 and later – L2, BL3, L3

802.1X accounting enables the recording of information about 802.1X clients who were successfully authenticated and allowed access to the network. When 802.1X accounting is enabled on the Brocade device, it sends the following information to a RADIUS server whenever an authenticated 802.1X client (user) logs into or out of the Brocade device:
 - The session ID
 - The user MAC address
 - The authenticating physical port number

An Accounting Start packet is sent to the RADIUS server when a user is successfully authenticated. The Start packet indicates the start of a new session and contains the user MAC address and physical port number. The 802.1X session state will change to Authenticated and Permit after receiving a response from the accounting server for the accounting Start packet. If the Accounting service is not available, the 802.1X session status will change to Authenticated and Permit after a RADIUS timeout. The device will retry authentication requests three times (the default), or the number of times configured on the device.

An Accounting Stop packet is sent to the RADIUS server when one of the following events occur:
 - The user logs off
 - The port goes down
 - The port is disabled
 - The user fails to re-authenticate after a RADIUS timeout
 - The 802.1X port control-auto configuration changes
 - The MAC session clears (through use of the clear dot1x mac-session CLI command)

The Accounting Stop packet indicates the end of the session and the time the user logged out.
802.1X Accounting attributes for RADIUS

Brocade devices support the following RADIUS attributes for 802.1X accounting.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute ID</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acct-Session-ID</td>
<td>44</td>
<td>Integer</td>
<td>The account session ID, which is a number from 1 to 4294967295.</td>
</tr>
<tr>
<td>Acct-Status-Type</td>
<td>40</td>
<td>integer</td>
<td>Indicates whether the accounting request marks the beginning (start) or end (stop) of the user service. 1 – Start 2 – Stop</td>
</tr>
<tr>
<td>Calling-Station-Id</td>
<td>31</td>
<td>string</td>
<td>The supplicant MAC address in ASCII format (upper case only), with octet values separated by a dash (-). For example 00-10-A4-23-19-C0</td>
</tr>
<tr>
<td>NAS-Port</td>
<td>5</td>
<td>integer</td>
<td>The physical port number.</td>
</tr>
<tr>
<td>NAS-Port-Type</td>
<td>61</td>
<td>integer</td>
<td>The physical port type.</td>
</tr>
</tbody>
</table>

Enabling 802.1X accounting

To enable 802.1X accounting, enter the following command.

```
FastIron(config)# aaa accounting dot1x default start-stop radius none
```

Syntax: `aaa accounting dot1x default start-stop radius | none`

`radius` – Use the list of all RADIUS servers that support 802.1X for authentication.

`none` – Use no authentication. The client is automatically authenticated without the device using information supplied by the client.

NOTE

If you specify both `radius` and `none`, make sure `radius` comes before `none`.

Displaying 802.1X information

You can display the following 802.1X-related information:

- The 802.1X configuration on the device and on individual ports
- Statistics about the EAPOL frames passing through the device
- 802.1X-enabled ports dynamically assigned to a VLAN
- User-defined and dynamically applied MAC filters and IP ACLs currently active on the device
- The 802.1X multiple-host configuration

Displaying 802.1X configuration information

To display information about the 802.1X configuration on the Brocade device, enter the following command.
Displaying 802.1X information

Syntax: show dot1x

The following table describes the information displayed by the show dot1x command.

<table>
<thead>
<tr>
<th>TABLE 244 Output from the show dot1x command</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>PAE Capability</td>
</tr>
<tr>
<td>system-auth-control</td>
</tr>
<tr>
<td>re-authentication</td>
</tr>
<tr>
<td>global-filter-strict-security</td>
</tr>
<tr>
<td>quiet-period</td>
</tr>
<tr>
<td>tx-period</td>
</tr>
<tr>
<td>supp-timeout</td>
</tr>
<tr>
<td>server-timeout</td>
</tr>
<tr>
<td>max-req</td>
</tr>
</tbody>
</table>

FastIron# show dot1x
PAE Capability: Authenticator Only
system-auth-control: Enable
re-authentication: Disable
global-filter-strict-security: Enable
quiet-period: 60 Seconds
tx-period: 30 Seconds
supp-timeout: 30 Seconds
server-timeout: 30 Seconds
max-req: 2
re-authperiod: 3600 Seconds
Protocol Version: 1
To display information about the 802.1X configuration on an individual port, enter a command such as the following.

```
FastIron# show dot1x configuration ethernet 1/3
```

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>re-authperiod</td>
<td>How often the device automatically re-authenticates Clients when periodic re-authentication is enabled (default 3,600 seconds). Refer to “Configuring periodic re-authentication” on page 1532 for information on how to change this setting.</td>
</tr>
<tr>
<td>Protocol Version</td>
<td>The version of the 802.1X protocol in use on the device.</td>
</tr>
</tbody>
</table>

The following additional information is displayed in the `show dot1x config` command for an interface.

```
<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticator PAE state</td>
<td>The current status of the Authenticator PAE state machine. This can be INITIALIZE, DISCONNECTED, CONNECTING, AUTHENTICATING, AUTHENTICATED, ABORTING, HELD, FORCE_AUTH, or FORCE_UNAUTH.</td>
</tr>
<tr>
<td>Backend Authentication state</td>
<td>The current status of the Backend Authentication state machine. This can be REQUEST, RESPONSE, SUCCESS, FAIL, TIMEOUT, IDLE, or INITIALIZE.</td>
</tr>
</tbody>
</table>
```

Syntax: `show dot1x config ethernet [<slotnum>/]<portnum>`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The following additional information is displayed in the `show dot1x config` command for an interface.
Displaying 802.1X information

To display 802.1X statistics for an individual port, enter a command such as the following:

```
FastIron# show dot1x statistics e 3/3
```

Port 3/3 Statistics:
RX EAPOL Start: 0
RX EAPOL Logoff: 0
RX EAPOL Invalid: 0
RX EAPOL Total: 0
RX EAP Resp/Id: 0
RX EAP Resp other than Resp/Id: 0
RX EAP Length Error: 0
Last EAPOL Version: 0
Last EAPOL Source: 0007.9550.0B83
TX EAPOL Total: 217
TX EAP Req/Id: 163
TX EAP Req other than Req/Id: 0

Syntax: `show dot1x statistics ethernet [<slotnum>]/<portnum>`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The following table describes the information displayed by the `show dot1x statistics` command for an interface.

TABLE 245 Output from the `show dot1x config` command for an interface (Continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdminControlledDirections</td>
<td>Indicates whether an unauthorized controlled port exerts control over communication in both directions (disabling both reception of incoming frames and transmission of outgoing frames), or just in the incoming direction (disabling only reception of incoming frames). On Brocade devices, this parameter is set to BOTH.</td>
</tr>
<tr>
<td>OperControlledDirections</td>
<td>The setting for the OperControlledDirections parameter, as defined in the 802.1X standard. According to the 802.1X standard, if the AdminControlledDirections parameter is set to BOTH, the OperControlledDirections parameter is unconditionally set to BOTH. Since the AdminControlledDirections parameter on Brocade devices is always set to BOTH, the OperControlledDirections parameter is also set to BOTH.</td>
</tr>
<tr>
<td>AuthControlledPortControl</td>
<td>The port control type configured for the interface. If set to auto, authentication is activated on the 802.1X-enabled interface.</td>
</tr>
<tr>
<td>AuthControlledPortStatus</td>
<td>The current status of the interface controlled port either authorized or unauthorized.</td>
</tr>
<tr>
<td>multiple-hosts</td>
<td>Whether the port is configured to allow multiple Supplicants accessing the interface on the Brocade device through a hub. Refer to “Allowing access to multiple hosts” on page 1535 for information on how to change this setting.</td>
</tr>
</tbody>
</table>
Clearing 802.1X statistics

You can clear the 802.1X statistics counters on all interfaces at once, on individual interfaces, or on a range of interfaces.

For example, to clear the 802.1X statistics counters on all interfaces on the device, enter the following command.

```
FastIron# clear dot1x statistics all
```

Syntax: clear dot1x statistics all

To clear the 802.1X statistics counters on interface e 3/11, enter the following command.

```
FastIron# clear dot1x statistics e 3/11
```

Syntax: clear dot1x statistics ethernet [<slotnum>/]<portnum>

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

Displaying dynamically assigned VLAN information

The `show interface` command displays the VLAN to which an 802.1X-enabled port has been dynamically assigned, as well as the port from which it was moved (that is, the port default VLAN).

The following example of the `show interface` command indicates the port dynamically assigned VLAN. Information about the dynamically assigned VLAN is shown in bold type.
FastIron# show interface e 12/2
FastEthernet12/2 is up, line protocol is up
 Hardware is FastEthernet, address is 0204.80a0.4681 (bia 0204.80a0.4681)
 Configured speed auto, actual 100Mbit, configured duplex fdx, actual fdx
 Member of L2 VLAN ID 2 (dotix-RADIUS assigned), original L2 VLAN ID is 1,
 port is untagged, port state is FORWARDING
 STP configured to ON, priority is level0, flow control enabled
 mirror disabled, monitor disabled
 Not member of any active trunks
 Not member of any configured trunks
 No port name
 MTU 1518 bytes
 300 second input rate: 0 bits/sec, 0 packets/sec, 0.00% utilization
 300 second output rate: 256 bits/sec, 0 packets/sec, 0.00% utilization
 3 packets input, 192 bytes, 0 no buffer
 Received 0 broadcasts, 0 multicasts, 3 unicasts
 0 input errors, 0 CRC, 0 frame, 0 ignored
 0 runts, 0 giants, DMA received 3 packets
 919 packets output, 58816 bytes, 0 underruns
 Transmitted 1 broadcasts, 916 multicasts, 2 unicasts
 0 output errors, 0 collisions, DMA transmitted 919 packets

In this example, the 802.1X-enabled port has been moved from VLAN 1 to VLAN 2. When the client disconnects, the port will be moved back to VLAN 1.

The **show run** command also indicates the VLAN to which the port has been dynamically assigned. The output can differ depending on whether GARP VLAN Registration Protocol (GVRP) is enabled on the device:

- **Without GVRP** – When you enter the **show run** command, the output indicates that the port is a member of the VLAN to which it was dynamically assigned through 802.1X. If you then enter the **write memory** command, the VLAN to which the port is currently assigned becomes the port default VLAN in the device configuration.

- **With GVRP** – When you enter the **show run** command, if the VLAN name supplied by the RADIUS server corresponds to a VLAN learned through GVRP, then the output indicates that the port is a member of the VLAN to which it was originally assigned (not the VLAN to which it was dynamically assigned).

 If the VLAN name supplied by the RADIUS server corresponds to a statically configured VLAN, the output indicates that the port is a member of the VLAN to which it was dynamically assigned through 802.1X. If you then enter the **write memory** command, the VLAN to which the port is currently assigned becomes the port default VLAN in the device configuration.

Displaying information about dynamically applied MAC filters and IP ACLs

You can display information about currently active user-defined and dynamically applied MAC filters and IP ACLs.

Displaying user-defined MAC filters and IP ACLs

To display the user-defined MAC filters active on the device, enter the following command.
Displaying 802.1X information

FastIron# show dot1x mac-address filter

Port 1/3 (User defined MAC Address Filter):
 mac filter 1 permit any any

Syntax: show dot1x mac-address-filter

To display the user-defined IP ACLs active on the device, enter the following command.

FastIron# show dot1x ip-ACL

Port 1/3 (User defined IP ACLs):

Extended IP access list Port_1/3_E_IN
 permit udp any any

Extended IP access list Port_1/3_E_OUT
 permit udp any any

Syntax: show dot1x ip-ACL

Displaying dynamically applied MAC filters and IP ACLs

To display the dynamically applied MAC address filters active on an interface, enter a command such as the following.

FastIron# show dot1x mac-address-filter e 1/3

Port 1/3 MAC Address Filter information:
 802.1X Dynamic MAC Address Filter:
 mac filter-group 2
 Port default MAC Address Filter:
 No mac address filter is set

Syntax: show dot1x mac-address-filter all | ethernet [slotnum]/<portnum>

The all keyword displays all dynamically applied MAC address filters active on the device.
The <slotnum> parameter is required on chassis devices.
The <portnum> parameter is a valid port number.
To display the dynamically applied IP ACLs active on an interface, enter a command such as the following.

FastIron# show dot1x ip-ACL e 1/3

Port 1/3 IP ACL information:
 802.1X dynamic IP ACL (user defined) in:
 ip access-list extended Port_1/3_E_IN in
 Port default IP ACL in:
 No inbound ip access-list is set
 802.1X dynamic IP ACL (user defined) out:
 ip access-list extended Port_1/3_E_OUT out
 Port default IP ACL out:
 No outbound ip access-list is set

Syntax: show dot1x ip-ACL all | ethernet [slotnum]/<portnum>
The **all** keyword displays all dynamically applied IP ACLs active on the device.
The **<slotnum>** parameter is required on chassis devices.
The **<portnum>** parameter is a valid port number.

Displaying the status of strict security mode

Platform Support:
- FastIron X Series devices running software release 02.2.00 and later

The output of the `show dot1x` and `show dot1x config` commands indicate whether strict security mode is enabled or disabled globally and on an interface.

Displaying the status of strict security mode globally on the device

To display the status of strict security mode globally on the device, enter the following command.

```
FastIron# show dot1x
```

```
PAE Capability: Authenticator Only
system-auth-control: Enable
re-authentication: Disable
global-filter-strict-security: Enable
quiet-period:  60 Seconds
tx-period:  30 Seconds
supptimeout:  30 Seconds
servertimeout:  30 Seconds
maxreq:  2
re-authperiod:  3600 Seconds
security-hold-time:  60 Seconds
Protocol Version:  1
```

Syntax: `show dot1x`

Displaying the status of strict security mode on an interface

To display the status of strict security mode on an interface, enter a command such as the following:

```
FastIron# show dot1x config e 1/3
```

```
Port 1/3 Configuration:
Authenticator PAE state: AUTHENTICATED
Backend Authentication state: IDLE
AdminControlledDirections: BOTH
OperControlledDirections: BOTH
AuthControlledPortControl: Auto
AuthControlledPortStatus: authorized
quiet-period:  60 Seconds
tx-period:  30 Seconds
supptimeout:  30 Seconds
servertimeout:  30 Seconds
maxreq:  2
re-authperiod:  3600 Seconds
security-hold-time:  60 Seconds
re-authentication: Disable
multiple-hosts: Disable
global-filter-strict-security: Enable
Protocol Version:  1
```
Syntax: `show dot1x config ethernet [<slotnum>/]<portnum>`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

Displaying 802.1X multiple-host authentication information

You can display the following information about 802.1X multiple-host authentication:

- Information about the 802.1X multiple-host configuration
- The dot1x-mac-sessions on each port
- The number of users connected on each port in a 802.1X multiple-host configuration

Displaying 802.1X multiple-host configuration information

The output of the `show dot1x` and `show dot1x config` commands displays information related to 802.1X multiple-host authentication.

The following is an example of the output of the `show dot1x` command. The information related to multiple-host authentication is highlighted in bold.

FastIron# show dot1x

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Ports enabled</td>
<td>2</td>
</tr>
<tr>
<td>Re-Authentication</td>
<td>Enabled</td>
</tr>
<tr>
<td>Authentication-fail-action</td>
<td>Restricted VLAN</td>
</tr>
<tr>
<td>Authentication Failure VLAN</td>
<td>111</td>
</tr>
<tr>
<td>Mac Session Aging</td>
<td>Disabled for permitted MAC sessions</td>
</tr>
<tr>
<td>Mac Session max-age</td>
<td>60 seconds</td>
</tr>
<tr>
<td>Protocol Version</td>
<td>1</td>
</tr>
<tr>
<td>quiet-period</td>
<td>5 Seconds</td>
</tr>
<tr>
<td>tx-period</td>
<td>30 Seconds</td>
</tr>
<tr>
<td>supptimeout</td>
<td>30 Seconds</td>
</tr>
<tr>
<td>servertimeout</td>
<td>30 Seconds</td>
</tr>
<tr>
<td>maxreq</td>
<td>2</td>
</tr>
<tr>
<td>re-authperiod</td>
<td>3600 Seconds</td>
</tr>
<tr>
<td>security-hold-time</td>
<td>60 Seconds</td>
</tr>
<tr>
<td>re-authentication</td>
<td>Enable</td>
</tr>
<tr>
<td>Flow based multi-user policy</td>
<td>Disable</td>
</tr>
</tbody>
</table>

Syntax: `show dot1x`

Table 247 describes the bold fields in the display.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication-fail-action</td>
<td>The configured authentication-failure action. This can be Restricted VLAN or Block Traffic.</td>
</tr>
<tr>
<td>Authentication Failure VLAN</td>
<td>If the authentication-failure action is Restricted VLAN, the ID of the VLAN to which unsuccessfully authenticated Client ports are assigned.</td>
</tr>
<tr>
<td>Mac Session Aging</td>
<td>Whether aging for dot1x-mac-sessions has been enabled or disabled for permitted or denied dot1x-mac-sessions.</td>
</tr>
</tbody>
</table>
Displaying 802.1X information

The output of the `show dot1x config` command for an interface displays the configured port control for the interface. Starting in release 02.2.00, this command also displays information related to 802.1X multiple host-authentication.

The following is an example of the output of the `show dot1x config` command for an interface.

```
FastIron# show dot1x config e 3/1

Port-Control                   : control-auto
filter strict security         : Enable
PVID State                     : Restricted (10)
Original PVID                  : 10
PVID mac total                 : 1
PVID mac authorized            : 0
num mac sessions               : 1
num mac authorized             : 0
```

Syntax: show dot1x config ethernet [<slotnum>/]<portnum>

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The following table lists the fields in the display.

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-Control</td>
<td>The configured port control type for the interface. This can be one of the following: force-authorized – The controlled port is placed unconditionally in the authorized state, allowing all traffic. This is the default state for ports on the Brocade device. force-unauthorized – The controlled port is placed unconditionally in the unauthorized state. No authentication takes place for any connected 802.1X Clients. auto – The authentication status for each 802.1X Client depends on the authentication status returned from the RADIUS server.</td>
</tr>
<tr>
<td>filter strict security</td>
<td>Whether strict security mode is enabled or disabled on the interface.</td>
</tr>
<tr>
<td>PVID State</td>
<td>The port default VLAN ID (PVID) and the state of the port PVID. The PVID state can be one of the following: Normal – The port PVID is not set by a RADIUS server, nor is it the restricted VLAN. RADIUS - The port PVID was dynamically assigned by a RADIUS server. RESTRICTED – The port PVID is the restricted VLAN.</td>
</tr>
<tr>
<td>Original PVID</td>
<td>The originally configured (not dynamically assigned) PVID for the port.</td>
</tr>
<tr>
<td>PVID mac total</td>
<td>The number of devices transmitting untagged traffic on the port PVID.</td>
</tr>
<tr>
<td>PVID mac authorized</td>
<td>The number of devices transmitting untagged traffic on the port PVID as a result of dynamic VLAN assignment.</td>
</tr>
</tbody>
</table>
Displaying information about the dot1x MAC sessions on each port

The `show dot1x mac-session` command displays information about the dot1x-mac-sessions on each port on the device. Starting in software release 02.2.00, the output also shows the authenticator PAE state.

Example

```
FastIron# show dot1x mac-session
```

```
Port    MAC/(username)                  Vlan Auth ACL Age PAE State
-------- ------------------------------- ------- ---- ---- ---------------
1        0010.a498.24f7 :User          10      permit none 520 AUTHENTICATED
```

Syntax: `show dot1x mac-session`

Table 249 lists the new fields in the display.

TABLE 249 Output from the `show dot1x mac-session` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port on which the dot1x-mac-session exists.</td>
</tr>
<tr>
<td>MAC/ (username)</td>
<td>The MAC address of the Client and the username used for RADIUS authentication.</td>
</tr>
<tr>
<td>Vlan</td>
<td>The VLAN to which the port is currently assigned.</td>
</tr>
<tr>
<td>Auth-State</td>
<td>The authentication state of the dot1x-mac-session. This can be one of the following: permit – The Client has been successfully authenticated, and traffic from the Client is being forwarded normally; blocked – Authentication failed for the Client, and traffic from the Client is being dropped in hardware; restricted – Authentication failed for the Client, but traffic from the Client is allowed in the restricted VLAN only; init - The Client is in is in the process of 802.1X authentication, or has not started the authentication process.</td>
</tr>
<tr>
<td>Age</td>
<td>The software age of the dot1x-mac-session.</td>
</tr>
<tr>
<td>PAE State</td>
<td>The current status of the Authenticator PAE state machine. This can be INITIALIZE, DISCONNECTED, CONNECTING, AUTHENTICATING, AUTHENTICATED, ABORTING, HELD, FORCE_AUTH, or FORCE_UNAUTH.</td>
</tr>
</tbody>
</table>

NOTE: When the Authenticator PAE state machine is in the AUTHENTICATING state, if the reAuthenticate, eapStart, eapLogoff, or authTimeout parameters are set to TRUE, it may place the Authenticator PAE state machine indefinitely in the ABORTING state. If this should happen, use the dot1x initialize command to initialize 802.1X port security on the port, or unplug the Client or hub connected to the port, then reconnect it.
Displaying information about the ports in an 802.1X multiple-host configuration

To display information about the ports in an 802.1X multiple-host configuration, enter the following command.

```
FastIron(config-dot1x)# sh dot1x mac-s br
```

Table

<table>
<thead>
<tr>
<th>Port</th>
<th>Number of users</th>
<th>Number of Authorized users</th>
<th>Dynamic VLAN</th>
<th>Dynamic ACL</th>
<th>Dynamic MAC-Filt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/2</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/3</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/4</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/5</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/6</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/7</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/8</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/9</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/10</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/11</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/12</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/13</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/14</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/15</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1/1/16</td>
<td>0</td>
<td>0</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Syntax: `show dot1x mac-session brief`

The following table describes the information displayed by the `show dot1x mac-session brief` command.

TABLE 250 Output from the `show dot1x mac-session brief` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Information about the users connected to each port.</td>
</tr>
<tr>
<td>Number of users</td>
<td>The number of users connected to the port.</td>
</tr>
<tr>
<td>Number of Authorized users</td>
<td>The number of users connected to the port that have been successfully authenticated.</td>
</tr>
<tr>
<td>Dynamic VLAN</td>
<td>Whether the port is a member of a RADIUS-specified VLAN.</td>
</tr>
<tr>
<td>Dynamic Filters</td>
<td>Whether RADIUS-specified IP ACLs or MAC address filters have been applied to the port.</td>
</tr>
</tbody>
</table>

Sample 802.1X configurations

This section illustrates a sample point-to-point configuration and a sample hub configuration that use 802.1X port security.
Point-to-point configuration

Figure 166 illustrates a sample 802.1X configuration with Clients connected to three ports on the Brocade device. In a point-to-point configuration, only one 802.1X Client can be connected to each port.

FIGURE 166 Sample point-to-point 802.1X configuration

The following commands configure the Brocade device in Figure 166:

```
FastIron(config)# aaa authentication dot1x default radius
FastIron(config)# radius-server host 192.168.9.22 auth-port 1812 acct-port 1813
default key mirabeau dot1x
FastIron(config)# dot1x-enable e 1 to 3
FastIron(config-dot1x)# re-authentication
FastIron(config-dot1x)# timeout re-authperiod 2000
FastIron(config-dot1x)# timeout quiet-period 30
FastIron(config-dot1x)# timeout tx-period 60
FastIron(config-dot1x)# max-req 6
FastIron(config-dot1x)# exit
FastIron(config)# interface e 1
FastIron(config-if-e1000-1)# dot1x port-control auto
FastIron(config-if-e1000-1)# exit
FastIron(config)# interface e 2
FastIron(config-if-e1000-2)# dot1x port-control auto
FastIron(config-if-e1000-2)# exit
FastIron(config)# interface e 3
FastIron(config-if-e1000-3)# dot1x port-control auto
FastIron(config-if-e1000-3)# exit
```
Hub configuration

Figure 167 illustrates a configuration where three 802.1X-enabled Clients are connected to a hub, which is connected to a port on the Brocade device. The configuration is similar to that in Figure 166, except that 802.1X port security is enabled on only one port, and the `multiple-hosts` command is used to allow multiple Clients on the port.

FIGURE 167 Sample 802.1X configuration using a hub

The following commands configure the Brocade device in Figure 167:

```
FastIron(config)# aaa authentication dot1x default radius
FastIron(config)# radius-server host 192.168.9.22 auth-port 1812 acct-port 1813
default key mirabeau dot1x
FastIron(config)# dot1x-enable e 1
FastIron(config-dot1x)# re-authentication
FastIron(config-dot1x)# timeout re-authperiod 2000
FastIron(config-dot1x)# timeout quiet-period 30
FastIron(config-dot1x)# timeout tx-period 60
FastIron(config-dot1x)# max-req 6
FastIron(config-dot1x)# exit
FastIron(config)# interface e 1
FastIron(config-if-e1000-1)# dot1x port-control auto
FastIron(config-if-e1000-1)# dot1x multiple-hosts
FastIron(config-if-e1000-1)# exit
```
802.1X Authentication with dynamic VLAN assignment

Figure 168 illustrates 802.1X authentication with dynamic VLAN assignment. In this configuration, two user PCs are connected to a hub, which is connected to port e2. Port e2 is configured as a dual-mode port. Both PCs transmit untagged traffic. The profile for User 1 on the RADIUS server specifies that User 1 PC should be dynamically assigned to VLAN 3. The RADIUS profile for User 2 on the RADIUS server specifies that User 2 PC should be dynamically assigned to VLAN 20.

FIGURE 168 Sample configuration using 802.1X authentication with dynamic VLAN assignment

In this example, the PVID for port e2 would be changed based on the first host to be successfully authenticated. If User 1 is authenticated first, then the PVID for port e2 is changed to VLAN 3. If User 2 is authenticated first, then the PVID for port e2 is changed to VLAN 20. Since a PVID cannot be changed by RADIUS authentication after it has been dynamically assigned, if User 2 is authenticated after the port PVID was changed to VLAN 3, then User 2 would not be able to gain access to the network.

If there were only one device connected to the port, and authentication failed for that device, it could be placed into the restricted VLAN, where it could gain access to the network.

The part of the running-config related to 802.1X authentication would be as follows.

```
dot1x-enable
re-authentication
server-timeout 10
timeout re-auth-period 10
auth-fail-action restricted-vlan
auth-fail-vlanid 1023
mac-session-aging no-aging permitted-mac-only
enable ethe 2 to 4
```

```
Using multi-device port authentication and 802.1X security on the same port

You can configure the Brocade device to use multi-device port authentication and 802.1X security on the same port:

- The multi-device port authentication feature allows you to configure a Brocade device to forward or block traffic from a MAC address based on information received from a RADIUS server. Incoming traffic originating from a given MAC address is switched or forwarded by the device only if the source MAC address is successfully authenticated by a RADIUS server. The MAC address itself is used as the username and password for RADIUS authentication. A connecting user does not need to provide a specific username and password to gain access to the network.

- The IEEE 802.1X standard is a means for authenticating devices attached to LAN ports. Using 802.1X port security, you can configure a Brocade device to grant access to a port based on information supplied by a client to an authentication server.

For information on configuring the multi-device port authentication feature and 802.1X security on Brocade devices, Refer to the related chapters in this book.

When both of these features are enabled on the same port, multi-device port authentication is performed prior to 802.1X authentication. If multi-device port authentication is successful, 802.1X authentication may be performed, based on the configuration of a vendor-specific attribute (VSA) in the profile for the MAC address on the RADIUS server.

When both features are configured on a port, a device connected to the port is authenticated as follows.

1. Multi-device port authentication is performed on the device to authenticate the device MAC address.

2. If multi-device port authentication is successful for the device, then the Brocade device checks whether the RADIUS server included the Foundry-802_1x-enable VSA (described in Table 251) in the Access-Accept message that authenticated the device.

3. If the Foundry-802_1x-enable VSA is not present in the Access-Accept message, or is present and set to 1, then 802.1X authentication is performed for the device.

4. If the Foundry-802_1x-enable VSA is present in the Access-Accept message, and is set to 0, then 802.1X authentication is skipped. The device is authenticated, and any dynamic VLANs specified in the Access-Accept message returned during multi-device port authentication are applied to the port.

```bash
! interface ethernet 2
dot1x port-control auto
dual-mode

If User 1 is successfully authenticated before User 2, the PVID for port e2 would be changed from the default VLAN to VLAN 3.

Had User 2 been the first to be successfully authenticated, the PVID would be changed to 20, and User 1 would not be able to gain access to the network. If there were only one device connected to the port that was sending untagged traffic, and 802.1X authentication failed for that device, it would be placed in the restricted VLAN 1023, and would be able to gain access to the network.
```
5. If 802.1X authentication is performed on the device, and is successful, then dynamic VLANs or ACLs specified in the Access-Accept message returned during 802.1X authentication are applied to the port.

If multi-device port authentication fails for a device, then by default traffic from the device is either blocked in hardware, or the device is placed in a restricted VLAN. You can optionally configure the Brocade device to perform 802.1X authentication on a device when it fails multi-device port authentication. Refer to “Example 2” on page 1559 for a sample configuration where this is used.

**Configuring Brocade-specific attributes on the RADIUS server**

If the RADIUS authentication process is successful, the RADIUS server sends an Access-Accept message to the Brocade device, authenticating the device. The Access-Accept message can include Vendor-Specific Attributes (VSAs) that specify additional information about the device. If you are configuring multi-device port authentication and 802.1X authentication on the same port, then you can configure the Brocade VSAs listed in Table 251 on the RADIUS server.

Add these Brocade vendor-specific attributes to your RADIUS server configuration, and configure the attributes in the individual or group profiles of the devices that will be authenticated. The Brocade Vendor-ID is 1991, with Vendor-Type 1.

**TABLE 251** Brocade vendor-specific attributes for RADIUS

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Attribute ID</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundry-802_1x-enable</td>
<td>6</td>
<td>integer</td>
<td>Specifies whether 802.1X authentication is performed when multi-device port authentication is successful for a device. This attribute can be set to one of the following: 0 Do not perform 802.1X authentication on a device that passes multi-device port authentication. Set the attribute to zero for devices that do not support 802.1X authentication. 1 Perform 802.1X authentication when a device passes multi-device port authentication. Set the attribute to one for devices that support 802.1X authentication.</td>
</tr>
<tr>
<td>Foundry-802_1x-valid</td>
<td>7</td>
<td>integer</td>
<td>Specifies whether the RADIUS record is valid only for multi-device port authentication, or for both multi-device port authentication and 802.1X authentication. This attribute can be set to one of the following: 0 The RADIUS record is valid only for multi-device port authentication. Set this attribute to zero to prevent a user from using their MAC address as username and password for 802.1X authentication 1 The RADIUS record is valid for both multi-device port authentication and 802.1X authentication.</td>
</tr>
</tbody>
</table>
If neither of these VSAs exist in a device profile on the RADIUS server, then by default the device is subject to multi-device port authentication (if configured), then 802.1X authentication (if configured). The RADIUS record can be used for both multi-device port authentication and 802.1X authentication.

**Example configurations**

The following examples show configurations that use multi-device port authentication and 802.1X authentication on the same port.

**Example 1**

Figure 169 illustrates an example configuration that uses multi-device port authentication and 802.1X authentication on the same port. In this configuration, a PC and an IP phone are connected to port e 1/3 on a Brocade device. Port e 1/3 is configured as a dual-mode port.

The profile for the PC MAC address on the RADIUS server specifies that the PC should be dynamically assigned to VLAN "Login-VLAN", and the RADIUS profile for the IP phone specifies that it should be dynamically assigned to the VLAN named "IP-Phone-VLAN". When User 1 is successfully authenticated using 802.1X authentication, the PC is then placed in the VLAN named "User-VLAN".

**NOTE**

This example assumes that the IP phone initially transmits untagged packets (for example, CDP or DHCP packets), which trigger the authentication process on the Brocade device and client lookup on the RADIUS server. If the phone sends only tagged packets and the port (e 1/3) is not a member of that VLAN, authentication would not occur. In this case, port e 1/3 must be added to that VLAN prior to authentication.
When the devices attempt to connect to the network, they are first subject to multi-device port authentication.

When the MAC address of the IP phone is authenticated, the Access-Accept message from the RADIUS server specifies that the IP phone port be placed into the VLAN named “IP-Phone-VLAN”, which is VLAN 7. The Foundry-802_1x-enable attribute is set to 0, meaning that 802.1X authentication is skipped for this MAC address. Port 1/3 is placed in VLAN 7 as a tagged port. No further authentication is performed.

When the PC MAC address is authenticated, the Access-Accept message from the RADIUS server specifies that the PVID for the PC port be changed to the VLAN named “Login-VLAN”, which is VLAN 1024. The Foundry-802_1x-enable attribute is set to 1, meaning that 802.1X authentication is required for this MAC address. The PVID of the port 1/3 is temporarily changed to VLAN 1024, pending 802.1X authentication.

When User 1 attempts to connect to the network from the PC, he is subject to 802.1X authentication. If User 1 is successfully authenticated, the Access-Accept message from the RADIUS server specifies that the PVID for User 1 port be changed to the VLAN named “User-VLAN”, which is VLAN 3. If 802.1X authentication for User 1 is unsuccessful, the PVID for port 1/3 is changed to that of the restricted VLAN, which is VLAN 1023, or untagged traffic from port e 1/3 can be blocked in hardware.

The part of the running-config related to port e 1/3 would be as follows.

```plaintext
interface ethernet 1/3
 dot1x port-control auto
 mac-authentication enable
dual-mode
```
When the PC is authenticated using multi-device port authentication, the port PVID is changed to “Login-VLAN”, which is VLAN 1024 in this example.

When User 1 is authenticated using 802.1X authentication, the port PVID is changed to “User-VLAN”, which is VLAN 3 in this example.

**Example 2**

The configuration in Figure 169 requires that you create a profile on the RADIUS server for each MAC address to which a device or user can connect to the network. In a large network, this can be difficult to implement and maintain.

As an alternative, you can create MAC address profiles only for those devices that do not support 802.1X authentication, such as IP phones and printers, and configure the Brocade device to perform 802.1X authentication for the other devices that do not have MAC address profiles, such as user PCs. To do this, you configure the Brocade device to perform 802.1X authentication when a device fails multi-device port authentication.

Figure 170 shows a configuration where multi-device port authentication is performed for an IP phone, and 802.1X authentication is performed for a user PC. There is a profile on the RADIUS server for the IP phone MAC address, but not for the PC MAC address.

**FIGURE 170 802.1X Authentication is performed when a device fails multi-device port authentication**

Multi-device port authentication is initially performed for both devices. The IP phone MAC address has a profile on the RADIUS server. This profile indicates that 802.1X authentication should be skipped for this device, and that the device port be placed into the VLAN named “IP-Phone-VLAN”.

![Diagram of network configuration](image-url)
Since there is no profile for the PC MAC address on the RADIUS server, multi-device port authentication for this MAC address fails. Ordinarily, this would mean that the PVID for the port would be changed to that of the restricted VLAN, or traffic from this MAC would be blocked in hardware. However, the FastIron switch is configured to perform 802.1X authentication when a device fails multi-device port authentication, so when User 1 attempts to connect to the network from the PC, he is subject to 802.1X authentication. If User 1 is successfully authenticated, the PVID for port e 1/4 is changed to the VLAN named “User-VLAN”.

**NOTE**
This example assumes that the IP phone initially transmits untagged packets (for example, CDP or DHCP packets), which trigger the authentication process on the Brocade device and client lookup on the RADIUS server. If the phone sends only tagged packets and the port (e 1/4) is not a member of that VLAN, authentication would not occur. In this case, port e 1/4 must be added to that VLAN prior to authentication.

To configure the Brocade device to perform 802.1X authentication when a device fails multi-device port authentication, enter the following command.

```
FastIron(config)# mac-authentication auth-fail-dot1x-override
```

**Syntax:** `[no] mac-authentication auth-fail-dot1x-override`
Using the MAC Port Security Feature

This chapter describes how to configure Brocade devices to learn “secure” MAC addresses on an interface so that the interface will forward only packets that match the secure addresses.

NOTE
On TurboIron X Series devices, this feature is supported on devices running software release 04.2.00 and later.

Overview

You can configure the Brocade device to learn “secure” MAC addresses on an interface. The interface will forward only packets with source MAC addresses that match these learned secure addresses. The secure MAC addresses can be specified manually, or the Brocade device can learn them automatically. After the device reaches the limit for the number of secure MAC addresses it can learn on the interface, if the interface then receives a packet with a source MAC address that does not match the learned addresses, it is considered a security violation.

When a security violation occurs, a Syslog entry and an SNMP trap are generated. In addition, the device takes one of two actions; it either drops packets from the violating address (and allows packets from the secure addresses), or disables the port for a specified amount of time. You specify which of these actions takes place.

The secure MAC addresses are not flushed when an interface is disabled and re-enabled. The secure addresses can be kept secure permanently (the default), or can be configured to age out, at which time they are no longer secure. You can configure the device to automatically save the secure MAC address list to the startup-config file at specified intervals, allowing addresses to be kept secure across system restarts.

Local and global resources

The port security feature uses a concept of local and global “resources” to determine how many MAC addresses can be secured on each interface. In this context, a “resource” is the ability to store one secure MAC address entry. Each interface is allocated 64 local resources. Additional global resources are shared among all interfaces on the device.

When the port security feature is enabled on an interface, the interface can store one secure MAC address. You can increase the number of MAC addresses that can be secured using local resources to a maximum of 64.

Besides the maximum of 64 local resources available to an interface, there are additional global resources. Depending on flash memory size, a device can have 1024, 2048, or 4096 global resources available. When an interface has secured enough MAC addresses to reach its limit for local resources, it can secure additional MAC addresses by using global resources. Global resources are shared among all the interfaces on a first-come, first-served basis.
The maximum number of MAC addresses any single interface can secure is 64 (the maximum number of local resources available to the interface), plus the number of global resources not allocated to other interfaces.

**Configuration notes and feature limitations**

The following limitations apply to this feature:

- **MAC port security applies only to Ethernet interfaces.**
- **MAC port security is not supported on static trunk group members or ports that are configured for link aggregation.**
- **MAC port security is not supported on 802.1X port security-enabled ports.**
- **Brocade devices do not support the `reserved-vlan-id <num>` command, which changes the default VLAN ID for the MAC port security feature.**
- **The SNMP trap generated for restricted MAC addresses indicates the VLAN ID associated with the MAC address, as well as the port number and MAC address.**
- **MAC port security is not supported on ports that have multi-device port authentication enabled.**

**Configuring the MAC port security feature**

To configure the MAC port security feature, perform the following tasks:

- Enable the MAC port security feature
- Set the maximum number of secure MAC addresses for an interface
- Set the port security age timer
- Specify secure MAC addresses
- Configure the device to automatically save secure MAC addresses to the startup-config file
- Specify the action taken when a security violation occurs
- Deny specific MAC addresses

**Enabling the MAC port security feature**

By default, the MAC port security feature is disabled on all interfaces. You can enable or disable the feature globally on all interfaces at once, or on individual interfaces.

To enable the feature on all interfaces at once, enter the following commands.

```
FastIron(config)# port security
FastIron(config-port-security)# enable
```

To disable the feature on all interfaces at once, enter the following commands.

```
FastIron(config)# port security
FastIron(config-port-security)# no enable
```

To enable the feature on a specific interface, enter the following commands.

```
FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# enable
```
Syntax: port security
Syntax: [no] enable

Setting the maximum number of secure MAC addresses for an interface

When port security is enabled, an interface can store one secure MAC address. You can increase the number of MAC addresses that can be stored to a maximum of 64, plus the total number of global resources available.

For example, to configure interface 7/11 to have a maximum of 10 secure MAC addresses, enter the following commands.

```
FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# maximum 10
```
Syntax: maximum <number-of-addresses>

The <number-of-addresses> parameter can be set to a number from 0 – (64 + the total number of global resources available). The total number of global resources is 2048 or 4096, depending on flash memory size. Setting the parameter to 0 prevents any addresses from being learned. The default is 1.

Setting the port security age timer

By default, learned MAC addresses stay secure indefinitely. You can optionally configure the device to age out secure MAC addresses after a specified amount of time.

To set the port security age timer to 10 minutes on all interfaces, enter the following commands.

```
FastIron(config)# port security
FastIron(config-port-security)# age 10
```
To set the port security age timer to 10 minutes on a specific interface, enter the following commands.

```
FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# age 10
```
Syntax: [no] age <minutes>

The default is 0 (never age out secure MAC addresses).

Specifying secure MAC addresses

This section describes how to configure secure MAC addresses on tagged and untagged interfaces.

On an untagged interface

To specify a secure MAC address on an untagged interface, enter commands such as the following.
Configuring the MAC port security feature

FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# secure-mac-address 0050.DA18.747C

Syntax: [no] secure-mac-address <mac-address>

On a tagged interface

When specifying a secure MAC address on a tagged interface, you must also specify the VLAN ID. To do so, enter commands such as the following.

FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# secure-mac-address 0050.DA18.747C 2

Syntax: [no] secure-mac-address <mac-address> <vlan-ID>

NOTE
If MAC port security is enabled on a port and you change the VLAN membership of the port, make sure that you also change the VLAN ID specified in the secure-mac-address configuration statement for the port.

When a secure MAC address is applied to a tagged port, the vlan-id is generated for both tagged and untagged ports. When you display the configuration, you will see an entry for the secure MAC addresses secure-mac-address <address> <vlan>. For example, you may see the following line.

secure-mac-address 0000.1111.2222 10

This line means that MAC address 0000.1111.2222 on VLAN 10 is a secure MAC address.

Autosaving secure MAC addresses to the startup-config file

Learned MAC addresses can automatically be saved to the startup-config file at specified intervals. For example, to automatically save learned secure MAC addresses every twenty minutes, enter the following commands.

FastIron(config)# port security
FastIron(config-port-security)# autosave 20

Syntax: [no] autosave <minutes>

You can specify from 15 – 1440 minutes. By default, secure MAC addresses are not autosaved to the startup-config file.

Specifying the action taken when a security violation occurs

A security violation can occur when a user tries to connect to a port where a MAC address is already locked, or the maximum number of secure MAC addresses has been exceeded. When a security violation occurs, an SNMP trap and Syslog message are generated.
You can configure the device to take one of two actions when a security violation occurs; either drop packets from the violating address (and allow packets from secure addresses), or disable the port for a specified time.

**Dropping packets from a violating address**

To configure the device to drop packets from a violating address and allow packets from secure addresses, enter the following commands.

```bash
FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# violation restrict
```

**Syntax: violation restrict**

**NOTE**

When the `restrict` option is used, the maximum number of MAC addresses that can be restricted is 128. If the number of violating MAC addresses exceeds this number, the port is shut down. An SNMP trap and the following Syslog message are generated "Port Security violation restrict limit 128 exceeded on interface ethernet `<port_id>`". This is followed by a port shutdown Syslog message and trap.

**Specifying the period of time to drop packets from a violating address**

To specify the number of minutes that the device drops packets from a violating address, use commands similar to the following.

```bash
FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# violation restrict 5
```

**Syntax: violation restrict <age>**

`<age>` can be from 0 – 1440 minutes. The default is 5 minutes. Specifying 0 drops packets from the violating address permanently.

Aging for restricted MAC addresses is done in software. There can be a worst case inaccuracy of one minute from the specified time.

The restricted MAC addresses are denied in hardware.

**Disabling the port for a specified amount of time**

You can configure the device to disable the port for a specified amount of time when a security violation occurs.

To shut down the port for 5 minutes when a security violation occurs, enter the following commands.

```bash
FastIron(config)# int e 7/11
FastIron(config-if-e1000-7/11)# port security
FastIron(config-port-security-e1000-7/11)# violation shutdown 5
```

**Syntax: violation shutdown <minutes>**

You can specify from 0 – 1440 minutes. Specifying 0 shuts down the port permanently when a security violation occurs.
Clearing port security statistics

You can clear restricted MAC addresses and violation statistics from ports globally (on all ports) or on individual ports.

Clearing restricted MAC addresses

To clear all restricted MAC addresses globally, enter the following command.

```
FastIron#clear port security restricted-macs all
```

To clear restricted MAC addresses on a specific port, enter a command such as the following.

```
FastIron#clear port security restricted-macs e 5
```

**Syntax:** `clear port security restricted-macs all | ethernet [<slot-num>]/<port-num>`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

Clearing violation statistics

To clear violation statistics globally, enter the following command.

```
FastIron#clear port security statistics all
```

To clear violation statistics on a specific port, enter a command such as the following.

```
FastIron#clear port security statistics e 1/5
```

**Syntax:** `clear port security statistics all | ethernet [<slot-num>]/<port-num>`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

Displaying port security information

You can display the following information about the port security feature:

- The port security settings for an individual port or for all the ports on a specified module
- The secure MAC addresses configured on the device
- Port security statistics for an interface or for a module

Displaying port security settings

You can display the port security settings for an individual port or for all the ports on a specified module. For example, to display the port security settings for port 7/11, enter the following command.

```
```
Displaying port security information

Syntax: show port security ethernet [<slotnum>]/<portnum>

The <slotnum> parameter is required on chassis devices.

The <portnum> parameter is a valid port number.

<table>
<thead>
<tr>
<th>TABLE 252</th>
<th>Output from the <code>show port security</code> command</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>This field...</strong></td>
<td><strong>Displays...</strong></td>
</tr>
<tr>
<td>Port</td>
<td>The slot and port number of the interface.</td>
</tr>
<tr>
<td>Security</td>
<td>Whether the port security feature has been enabled on the interface.</td>
</tr>
<tr>
<td>Violation</td>
<td>The action to be undertaken when a security violation occurs, either “shutdown” or “restrict”.</td>
</tr>
<tr>
<td>Shutdown-Time</td>
<td>The number of seconds a port is shut down following a security violation, if the port is set to “shutdown” when a violation occurs.</td>
</tr>
<tr>
<td>Age-Time</td>
<td>The amount of time, in minutes, MAC addresses learned on the port will remain secure.</td>
</tr>
<tr>
<td>Max-MAC</td>
<td>The maximum number of secure MAC addresses that can be learned on the interface.</td>
</tr>
</tbody>
</table>

Displaying the secure MAC addresses

To list the secure MAC addresses configured on the device, enter the following command.

FastIron# show port security mac

<table>
<thead>
<tr>
<th>TABLE 253</th>
<th>Output from the <code>show port security mac</code> command</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>This field...</strong></td>
<td><strong>Displays...</strong></td>
</tr>
<tr>
<td>Port</td>
<td>The slot and port number of the interface.</td>
</tr>
<tr>
<td>Num-Addr</td>
<td>The number of MAC addresses secured on this interface.</td>
</tr>
<tr>
<td>Secure-Src-Addr</td>
<td>The secure MAC address.</td>
</tr>
<tr>
<td>Resource</td>
<td>Whether the address was secured using a local or global resource. Refer to “Local and global resources” on page 1561 for more information.</td>
</tr>
<tr>
<td>Age-Left</td>
<td>The number of minutes the MAC address will remain secure.</td>
</tr>
<tr>
<td>Shutdown/Time-Left</td>
<td>Whether the interface has been shut down due to a security violation and the number of seconds before it is enabled again.</td>
</tr>
</tbody>
</table>
Displaying port security statistics

You can display port security statistics for an interface or for a module.

For example, to display port security statistics for interface 7/11, enter the following command.

```
FastIron# show port security statistics e 7/11
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Total-Addrs</th>
<th>Maximum-Addrs</th>
<th>Violation</th>
<th>Shutdown/Time-Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>no</td>
</tr>
</tbody>
</table>

**Syntax:** `show port security statistics [<slotnum>/]<portnum>`

The `<slotnum>` parameter is required on chassis devices. The `<portnum>` parameter is a valid port number.

**TABLE 254** Output from the `show port security statistics <portnum>` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The slot and port number of the interface.</td>
</tr>
<tr>
<td>Total-Addrs</td>
<td>The total number of secure MAC addresses on the interface.</td>
</tr>
<tr>
<td>Maximum-Addrs</td>
<td>The maximum number of secure MAC addresses on the interface.</td>
</tr>
<tr>
<td>Violation</td>
<td>The number of security violations on the port.</td>
</tr>
<tr>
<td>Shutdown/Time-Left</td>
<td>Whether the port has been shut down due to a security violation and the number of seconds before it is enabled again.</td>
</tr>
</tbody>
</table>

To display port security statistics for an interface module, enter the following command.

```
FastIron# show port security statistics e 7
```

Module 7:
- Total ports: 0
- Total MAC address(es): 0
- Total violations: 0
- Total shutdown ports 0

**Syntax:** `show port security statistics <module>`

**TABLE 255** Output from the `show port security statistics <module>` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ports</td>
<td>The number of ports on the module.</td>
</tr>
<tr>
<td>Total MAC address(es)</td>
<td>The total number of secure MAC addresses on the module.</td>
</tr>
<tr>
<td>Total violations</td>
<td>The number of security violations encountered on the module.</td>
</tr>
<tr>
<td>Total shutdown ports</td>
<td>The number of ports on the module shut down as a result of security violations.</td>
</tr>
</tbody>
</table>

Displaying restricted MAC addresses on a port

To display a list of restricted MAC addresses on a port, enter a command such as the following.

```
FastIron# show port security ethernet e 1/5 restricted-macs
```

**Syntax:** `show port security ethernet [<slotnum>/]<portnum> restricted-macs`

The `<slotnum>` parameter is required on chassis devices.
The `<portnum>` parameter is a valid port number.
Displaying port security information
Configuring Multi-Device Port Authentication

Multi-device port authentication is a way to configure a Brocade device to forward or block traffic from a MAC address based on information received from a RADIUS server.

NOTE
On TurboIron X Series devices, multi-device port authentication is supported on devices running software release 04.2.00 and later.

How multi-device port authentication works

Multi-device port authentication is a way to configure a Brocade device to forward or block traffic from a MAC address based on information received from a RADIUS server.

The multi-device port authentication feature is a mechanism by which incoming traffic originating from a specific MAC address is switched or forwarded by the device only if the source MAC address is successfully authenticated by a RADIUS server. The MAC address itself is used as the username and password for RADIUS authentication; the user does not need to provide a specific username and password to gain access to the network. If RADIUS authentication for the MAC address is successful, traffic from the MAC address is forwarded in hardware.

If the RADIUS server cannot validate the user's MAC address, then it is considered an authentication failure, and a specified authentication-failure action can be taken. The default authentication-failure action is to drop traffic from the non-authenticated MAC address in hardware. You can also configure the device to move the port on which the non-authenticated MAC address was learned into a restricted or “guest” VLAN, which may have limited access to the network.

NOTE
FGS-STK, FLS-STK, and FCX devices do not support:
- multi-device authentication on dynamic (LACP) and static trunk ports
- multi-device authentication and port security configured on the same port
- multi-device authentication and lock-address configured on the same port

NOTE
TurboIron devices do not support:
- multi-device authentication and port security configured on the same port
- multi-device authentication and lock-address configured on the same port

NOTE
FCX devices do not support multi-device authentication denial of service (DoS) attack protection.
RADIUS authentication

The multi-device port authentication feature communicates with the RADIUS server to authenticate a newly found MAC address. The Brocade device supports multiple RADIUS servers; if communication with one of the RADIUS servers times out, the others are tried in sequential order. If a response from a RADIUS server is not received within a specified time (by default, 3 seconds) the RADIUS session times out, and the device retries the request up to three times. If no response is received, the next RADIUS server is chosen, and the request is sent for authentication.

The RADIUS server is configured with the usernames and passwords of authenticated users. For multi-device port authentication, the username and password is the MAC address itself; that is, the device uses the MAC address for both the username and the password in the request sent to the RADIUS server. For example, given a MAC address of 0007e90feaa1, the users file on the RADIUS server would be configured with a username and password both set to 0007e90feaa1. When traffic from this MAC address is encountered on a MAC-authentication-enabled interface, the device sends the RADIUS server an Access-Request message with 0007e90feaa1 as both the username and password. The format of the MAC address sent to the RADIUS server is configurable through the CLI.

The request for authentication from the RADIUS server is successful only if the username and password provided in the request matches an entry in the users database on the RADIUS server. When this happens, the RADIUS server returns an Access-Accept message back to the Brocade device. When the RADIUS server returns an Access-Accept message for a MAC address, that MAC address is considered authenticated, and traffic from the MAC address is forwarded normally by the Brocade device.

Authentication-failure actions

If the MAC address does not match the username and password of an entry in the users database on the RADIUS server, then the RADIUS server returns an Access-Reject message. When this happens, it is considered an authentication failure for the MAC address. When an authentication failure occurs, the Brocade device can either drop traffic from the MAC address in hardware (the default), or move the port on which the traffic was received to a restricted VLAN.

Supported RADIUS attributes

Brocade devices support the following RADIUS attributes for multi-device port authentication:

- Username (1) – RFC 2865
- NAS-IP-Address (4) – RFC 2865
- NAS-Port (5) – RFC 2865
- Service-Type (6) – RFC 2865
- FilterId (11) – RFC 2865
- Framed-MTU (12) – RFC 2865
- State (24) – RFC 2865
- Vendor-Specific (26) – RFC 2865
- Session-Timeout (27) – RFC 2865
- Termination-Action (29) – RFC 2865
- Calling-Station-ID (31) – RFC 2865
How multi-device port authentication works

- NAS-Port-Type (61) – RFC 2865
- Tunnel-Type (64) – RFC 2868
- Tunnel-Medium-Type (65) – RFC 2868
- EAP Message (79) – RFC 2579
- Message-Authenticator (80) RFC 3579
- Tunnel-Private-Group-Id (81) – RFC 2868
- NAS-Port-id (87) – RFC2869

Support for dynamic VLAN assignment

The Brocade multi-device port authentication feature supports dynamic VLAN assignment, where a port can be placed in one or more VLANs based on the MAC address learned on that interface. For details about this feature, refer to “Configuring the RADIUS server to support dynamic VLAN assignment” on page 1580.

Support for dynamic ACLs

The Brocade multi-device port authentication implementation supports the assignment of a MAC address to a specific ACL, based on the MAC address learned on the interface. For details about this feature, refer to “Dynamically applying IP ACLs to authenticated MAC addresses” on page 1582.

Support for authenticating multiple MAC addresses on an interface

The multi-device port authentication feature allows multiple MAC addresses to be authenticated or denied authentication on each interface. The maximum number of MAC addresses that can be authenticated on each interface is limited only by the amount of system resources available on the Brocade device.

Support for dynamic ARP inspection with dynamic ACLs

Starting in software release FSX 04.2.00, multi-device port authentication and Dynamic ARP Inspection (DAI) are supported in conjunction with dynamic ACLs. Support is available in the Layer 3 software codes only, and not in the Layer 2 software code. Releases prior to FSX 04.2.00 do not support DAI and multi-device port authentication when dynamic ACLs are in effect.

DAI is supported together with multi-device port authentication as long as ACL-per-port-per-vlan is enabled. Otherwise, you do not need to perform any extra configuration steps to enable support with dynamic ACLs. When these features are enabled on the same port/VLAN, support is automatically enabled.
Support for DHCP snooping with dynamic ACLs

Starting in software release FSX 04.2.00, multi-device port authentication and DHCP snooping are supported in conjunction with dynamic ACLs. Support is available in the Layer 3 software codes only, and not in the Layer 2 software code. Releases prior to FSX 04.2.00 do not support DHCP Snooping and multi-device port authentication when dynamic ACLs are in effect.

DHCP Snooping is supported together with multi-device port authentication as long as \texttt{ACL-per-port-per-vlan} is enabled. Otherwise, you do not need to perform any extra configuration steps to enable support with dynamic ACLs. When these features are enabled on the same port/VLAN, support is automatically enabled.

Support for source guard protection

The Brocade proprietary \textit{Source Guard Protection} feature, a form of IP Source Guard, can be used in conjunction with multi-device port authentication. For details, refer to “Enabling source guard protection” on page 1586.

Using multi-device port authentication and 802.1X security on the same port

On some Brocade devices, multi-device port authentication and 802.1X security can be configured on the same port. When both of these features are enabled on the same port, multi-device port authentication is performed prior to 802.1X authentication. If multi-device port authentication is successful, 802.1X authentication may be performed, based on the configuration of a vendor-specific attribute (VSA) in the profile for the MAC address on the RADIUS server.

\begin{itemize}
\item \textbf{NOTE}
\end{itemize}

When multi-device port authentication and 802.1X security are configured together on the same port, Brocade recommends that dynamic VLANs and dynamic ACLs are done at the multi-device port authentication level, and not at the 802.1X level.

When both features are configured on a port, a device connected to the port is authenticated as follows.

1. Multi-device port authentication is performed on the device to authenticate the device MAC address.
2. If multi-device port authentication is successful for the device, then the device checks whether the RADIUS server included the Foundry-802_1x-enable VSA (described in Table 256) in the Access-Accept message that authenticated the device.
3. If the Foundry-802_1x-enable VSA is not present in the Access-Accept message, or is present and set to 1, then 802.1X authentication is performed for the device.
4. If the Foundry-802_1x-enable VSA is present in the Access-Accept message, and is set to 0, then 802.1X authentication is skipped. The device is authenticated, and any dynamic VLANs specified in the Access-Accept message returned during multi-device port authentication are applied to the port.
5. If 802.1X authentication is performed on the device, and is successful, then dynamic VLANs or ACLs specified in the Access-Accept message returned during 802.1X authentication are applied to the port.

If multi-device port authentication fails for a device, then by default traffic from the device is either blocked in hardware, or the device is placed in a restricted VLAN. You can optionally configure the Brocade device to perform 802.1X authentication on a device when it fails multi-device port authentication. Refer to “Example 2” on page 1604 for a sample configuration where this is used.

### Configuring Brocade-specific attributes on the RADIUS server

If the RADIUS authentication process is successful, the RADIUS server sends an Access-Accept message to the Brocade device, authenticating the device. The Access-Accept message can include Vendor-Specific Attributes (VSAs) that specify additional information about the device. If you are configuring multi-device port authentication and 802.1X authentication on the same port, then you can configure the Brocade VSAs listed in Table 256 on the RADIUS server.

You add these Brocade vendor-specific attributes to your RADIUS server configuration, and configure the attributes in the individual or group profiles of the devices that will be authenticated. The Brocade Vendor-ID is 1991, with Vendor-Type 1.

### TABLE 256  Brocade vendor-specific attributes for RADIUS

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute ID</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
</table>
| Foundry-802_1x-enable| 6            | integer   | Specifies whether 802.1X authentication is performed when multi-device port authentication is successful for a device. This attribute can be set to one of the following:
|                      |              |           | 0 - Do not perform 802.1X authentication on a device that passes multi-device port authentication. Set the attribute to zero for devices that do not support 802.1X authentication.
|                      |              |           | 1 - Perform 802.1X authentication when a device passes multi-device port authentication. Set the attribute to one for devices that support 802.1X authentication. |
| Foundry-802_1x-valid | 7            | integer   | Specifies whether the RADIUS record is valid only for multi-device port authentication, or for both multi-device port authentication and 802.1X authentication. This attribute can be set to one of the following:
|                      |              |           | 0 - The RADIUS record is valid only for multi-device port authentication. Set this attribute to zero to prevent a user from using their MAC address as username and password for 802.1X authentication
|                      |              |           | 1 - The RADIUS record is valid for both multi-device port authentication and 802.1X authentication. |
Configuring multi-device port authentication

If neither of these VSAs exist in a device profile on the RADIUS server, then by default the device is subject to multi-device port authentication (if configured), then 802.1X authentication (if configured). The RADIUS record can be used for both multi-device port authentication and 802.1X authentication.

An example configuration is shown in “Examples of multi-device port authentication and 802.1X authentication configuration on the same port” on page 1602.

Configuring multi-device port authentication

Configuring multi-device port authentication on the Brocade device consists of the following tasks:

- Enabling multi-device port authentication globally and on individual interfaces
- Specifying the format of the MAC addresses sent to the RADIUS server (optional)
- Specifying the authentication-failure action (optional)
- Enabling and disabling SNMP traps for multi-device port authentication
- Defining MAC address filters (optional)
- Configuring dynamic VLAN assignment (optional)
- Dynamically Applying IP ACLs to authenticated MAC addresses
- Enabling denial of service attack protection (optional)
- Clearing authenticated MAC addresses (optional)
- Disabling aging for authenticated MAC addresses (optional)
- Configuring the hardware aging period for blocked MAC addresses
- Specifying the aging time for blocked MAC addresses (optional)

**NOTE**
On TurboIron X Series devices, the 802.1X port security feature is supported on devices running software release 04.2.00 and later.

**Enabling multi-device port authentication**

To enable multi-device port authentication, you first enable the feature globally on the device. On some Brocade devices, you can then enable the feature on individual interfaces.

**Globally enabling multi-device port authentication**

To globally enable multi-device port authentication on the device, enter the following command.

```
FastIron(config)# mac-authentication enable
```

**Syntax:** `[no] mac-authentication enable`

**Enabling multi-device port authentication on an interface**

To enable multi-device port authentication on an individual interface, enter a command such as the following.

```
FastIron(config)# mac-authentication enable ethernet 3/1
```
Configuring multi-device port authentication

Syntax:  [no] mac-authentication enable [slotnum]/portnum | all

The <slotnum> parameter is required on chassis devices.
The <portnum> parameter is a valid port number.
The all option enables the feature on all interfaces at once.
You can enable the feature on an interface at the interface CONFIG level.

Example
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication enable

Syntax:  [no] mac-authentication enable

You can also configure multi-device port authentication commands on a range of interfaces.

Example
FastIron(config)# int e 3/1 to 3/12
FastIron(config-mif-3/1-3/12)# mac-authentication enable

Specifying the format of the MAC addresses sent to the RADIUS server

When multi-device port authentication is configured, the Brocade device authenticates MAC addresses by sending username and password information to a RADIUS server. The username and password is the MAC address itself; that is, the device uses the MAC address for both the username and the password in the request sent to the RADIUS server.

By default, the MAC address is sent to the RADIUS server in the format xxxxxxxxxxxx. You can optionally configure the device to send the MAC address to the RADIUS server in the format xx-xx-xx-xx-xx, or the format xxxx.xxxxxx.xxxx. To do this, enter a command such as the following.

FastIron(config)# mac-authentication auth-passwd-format xxxx.xxxxxx.xxxx

Syntax:  [no] mac-authentication auth-passwd-format xxxx.xxxxxx | xx-xx-xx-xx-xx | xxxxxxxxxxxx

Specifying the authentication-failure action

When RADIUS authentication for a MAC address fails, you can configure the device to perform one of two actions:

- Drop traffic from the MAC address in hardware (the default)
- Move the port on which the traffic was received to a restricted VLAN

To configure the device to move the port to a restricted VLAN when multi-device port authentication fails, enter commands such as the following.

FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication auth-fail-action restrict-vlan 100

Syntax:  [no] mac-authentication auth-fail-action restrict-vlan [vlan-id]

If the ID for the restricted VLAN is not specified at the interface level, the global restricted VLAN ID applies for the interface.
To specify the VLAN ID of the restricted VLAN globally, enter the following command.

```
FastIron(config)# mac-authentication auth-fail-vlan-id 200
```

**Syntax:**

```
[no] mac-authentication auth-fail-vlan-id <vlan-id>
```

The command above applies globally to all MAC-authentication-enabled interfaces.

Note that the restricted VLAN must already exist on the device. You cannot configure the restricted VLAN to be a non-existent VLAN. If the port is a tagged or dual-mode port, you cannot use a restricted VLAN as the authentication-failure action.

To configure the device to drop traffic from non-authenticated MAC addresses in hardware, enter commands such as the following.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication auth-fail-action block-traffic
```

**Syntax:**

```
[no] mac-authentication auth-fail-action block-traffic
```

Dropping traffic from non-authenticated MAC addresses is the default behavior when multi-device port authentication is enabled.

### Generating traps for multi-device port authentication

You can enable and disable SNMP traps for multi-device port authentication. SNMP traps are enabled by default.

To enable SNMP traps for multi-device port authentication after they have been disabled, enter the following command.

```
FastIron(config)# snmp-server enable traps mac-authentication
```

**Syntax:**

```
[no] snmp-server enable traps mac-authentication
```

Use the **no** form of the command to disable SNMP traps for multi-device port authentication.

### Defining MAC address filters

You can specify MAC addresses that do not have to go through multi-device port authentication. These MAC addresses are considered pre-authenticated, and are not subject to RADIUS authentication. To do this, you can define MAC address filters that specify the MAC addresses to exclude from multi-device port authentication.

You should use a MAC address filter when the RADIUS server itself is connected to an interface where multi-device port authentication is enabled. If a MAC address filter is not defined for the MAC address of the RADIUS server and applied on the interface, the RADIUS authentication process would fail since the device would drop all packets from the RADIUS server itself.

For example, the following command defines a MAC address filter for address 0010.dc58.aca4.

```
FastIron(config)# mac-authentication mac-filter 1 0010.dc58.aca4
```

**Syntax:**

```
[no] mac-authentication mac-filter <filter>
```

The following commands apply the MAC address filter on an interface so that address 0010.dc58.aca4 is excluded from multi-device port authentication.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication apply-mac-auth-filter 1
```
Configuring multi-device port authentication

Syntax: [no] mac-authentication apply-mac-auth-filter <filter-id>

Configuring dynamic VLAN assignment

An interface can be dynamically assigned to one or more VLANs based on the MAC address learned on that interface. When a MAC address is successfully authenticated, the RADIUS server sends the Brocade device a RADIUS Access-Accept message that allows the Brocade device to forward traffic from that MAC address. The RADIUS Access-Accept message can also contain attributes set for the MAC address in its access profile on the RADIUS server.

If one of the attributes in the Access-Accept message specifies one or more VLAN identifiers, and the VLAN is available on the Brocade device, the port is moved from its default VLAN to the specified VLAN.

To enable dynamic VLAN assignment for authenticated MAC addresses, you must add attributes to the profile for the MAC address on the RADIUS server, then enable dynamic VLAN assignment on multi-device port authentication-enabled interfaces. Refer to “Configuring the RADIUS server to support dynamic VLAN assignment” on page 1580 for a list of the attributes that must be set on the RADIUS server.

To enable dynamic VLAN assignment on a multi-device port authentication-enabled interface, enter commands such as the following.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication enable-dynamic-vlan
```

Syntax: [no] mac-authentication enable-dynamic-vlan

Configuring a port to remain in the restricted VLAN after a successful authentication attempt

If a previous authentication attempt for a MAC address failed, and as a result the port was placed in the restricted VLAN, but a subsequent authentication attempt was successful, the RADIUS Access-Accept message may specify a VLAN for the port. By default, the Brocade device moves the port out of the restricted VLAN and into the RADIUS-specified VLAN. You can optionally configure the device to leave the port in the restricted VLAN. To do this, enter the following command.

```
FastIron(config-if-e1000-3/1)# mac-authentication no-override-restrict-vlan
```

When the above command is applied, if the RADIUS-specified VLAN configuration is tagged (e.g., T:1024) and the VLAN is valid, then the port is placed in the RADIUS-specified VLAN as a tagged port and left in the restricted VLAN. If the RADIUS-specified VLAN configuration is untagged (e.g., U:1024), the configuration from the RADIUS server is ignored, and the port is left in the restricted VLAN.

Syntax: [no] mac-authentication no-override-restrict-vlan

Configuration notes

- If you configure dynamic VLAN assignment on a multi-device port authentication enabled interface, and the Access-Accept message returned by the RADIUS server contains a Tunnel-Type and Tunnel-Medium-Type, but does not contain a Tunnel-Private-Group-ID attribute, then it is considered an authentication failure, and the configured authentication failure action is performed for the MAC address.
• If the `<vlan-name>` string does not match either the name or the ID of a VLAN configured on the device, then it is considered an authentication failure, and the configured authentication failure action is performed for the MAC address.

• For tagged or dual-mode ports, if the VLAN ID provided by the RADIUS server does not match the VLAN ID in the tagged packet that contains the authenticated MAC address as its source address, then it is considered an authentication failure, and the configured authentication failure action is performed for the MAC address.

• If an untagged port had previously been assigned to a VLAN through dynamic VLAN assignment, and then another MAC address is authenticated on the same port, but the RADIUS Access-Accept message for the second MAC address specifies a different VLAN, then it is considered an authentication failure for the second MAC address. Note that this applies only if the first MAC address has not yet aged out. If the first MAC address has aged out, then dynamic VLAN assignment would work as expected for the second MAC address.

• For dual mode ports, if the RADIUS server returns T:<vlan-name>, the traffic will still be forwarded in the statically assigned PVID. If the RADIUS server returns U:<vlan-name>, the traffic will not be forwarded in the statically assigned PVID.

Configuring the RADIUS server to support dynamic VLAN assignment

To specify VLAN identifiers on the RADIUS server, add the following attributes to the profile for the MAC address on the RADIUS server, then enable dynamic VLAN assignment on multi-device port authentication-enabled interfaces.

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Type</td>
<td>064</td>
<td>13 (decimal) – VLAN</td>
</tr>
<tr>
<td>Tunnel-Medium-Type</td>
<td>065</td>
<td>6 (decimal) – 802</td>
</tr>
<tr>
<td>Tunnel-Private-Group-ID</td>
<td>081</td>
<td><code>&lt;vlan-name&gt;</code> (string)</td>
</tr>
</tbody>
</table>

The `<vlan-name>` value can specify either the name or the number of one or more VLANs configured on the Brocade device.

For information about the attributes, refer to “Dynamic multiple VLAN assignment for 802.1X ports” on page 1524.

Also, refer to the example configuration of “Multi-device port authentication with dynamic VLAN assignment” on page 1600.

Enabling dynamic VLAN support for tagged packets on non-member VLAN ports

Platform Support:

• FastIron X Series devices running software release FSX 04.2.00 and later – L2, BL3, L3

In releases prior to FSX 04.2.00, the Brocade device drops tagged packets that are received on non-member VLAN ports. This process is called ingress filtering. Since the MAC address of the packets are not learned, authentication does not take place.

Starting in software release FSX 04.2.00, the Brocade device can authenticate clients that send tagged packets on non-member VLAN ports. This enables the Brocade device to add the VLAN dynamically. To enable support, enter the following command at the Interface level of the CLI.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication disable-ingress-filtering
```
If the client MAC address is successfully authenticated and the correct VLAN attribute is sent by the RADIUS server, the MAC address will be successfully authenticated on the VLAN.

Syntax: `mac-authentication disable-ingress-filtering`

**Configuration notes and limitations:**

- This feature works in conjunction with multi-device port authentication with dynamic VLAN assignment only. If this feature is not enabled, authentication works as in pre-release FSX 04.2.00. Refer to the configuration examples in “Multi-device port authentication with dynamic VLAN assignment” on page 1600.

- The port on which ingress filtering is disabled must be tagged to a VLAN.

- If a host sends both tagged and untagged traffic, and ingress filtering is disabled on the port, the port must be configured as a dual-mode port.

**Specifying to which VLAN a port is moved after its RADIUS-specified VLAN assignment expires**

When a port is dynamically assigned to a VLAN through the authentication of a MAC address, and the MAC session for that address is deleted on the Brocade device, then by default the port is removed from its RADIUS-assigned VLAN and placed back in the VLAN where it was originally assigned.

A port can be removed from its RADIUS-assigned VLAN when any of the following occur:

- The link goes down for the port
- The MAC session is manually deleted with the `mac-authentication clear-mac-session` command
- The MAC address that caused the port to be dynamically assigned to a VLAN ages out

For example, say port 1/1 is currently in VLAN 100, to which it was assigned when MAC address 0007.eaa1.e90f was authenticated by a RADIUS server. The port was originally configured to be in VLAN 111. If the MAC session for address 0007.eaa1.e90f is deleted, then port 1/1 is moved from VLAN 100 back into VLAN 111.

You can optionally specify an alternate VLAN to which to move the port when the MAC session for the address is deleted. For example, to place the port in the restricted VLAN, enter commands such as the following.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-auth move-back-to-old-vlan port-restrict-vlan
```

Syntax: `[no] mac-authentication move-back-to-old-vlan disable | port-configured-vlan | system-default-vlan`

The `disable` keyword disables moving the port back to its original VLAN. The port would stay in its RADIUS-assigned VLAN.

The `port-configured-vlan` keyword removes the port from its RADIUS-assigned VLAN and places it back in the VLAN where it was originally assigned. This is the default.

The `port-restrict-vlan` keyword removes the port from its RADIUS-assigned VLAN and places it in the restricted VLAN.

The `system-default-vlan` keyword removes the port from its RADIUS-assigned VLAN and places it in the DEFAULT-VLAN.
NOTE
When a MAC session is deleted, if the port is moved back to a VLAN that is different than the running-config file, the system will update the running-config file to reflect the changes. This will occur even if `mac-authentication save-dynamicvlan-to-config` is not configured.

Automatic removal of dynamic VLAN assignments for MAC authenticated ports

Platform Support:

- FastIron X Series devices running software release 04.1.00 and later

By default, the Brocade device removes any association between a port and a dynamically-assigned VLAN when all authenticated MAC sessions for that tagged or untagged VLAN have expired on the port. Thus, RADIUS-specified VLAN assignments are not saved to the device running-config file. When the `show run` command is issued during a session, dynamically-assigned VLANs are not displayed, although they can be displayed with the `show vlan`, `show auth-mac-addresses detail`, and `show auth-mac-addresses authorized-mac` commands.

You can optionally configure the Brocade device to save the RADIUS-specified VLAN assignments to the device's running-config file. Refer to “Saving dynamic VLAN assignments to the running-config file”, next.

Saving dynamic VLAN assignments to the running-config file

By default, dynamic VLAN assignments are not saved to the running-config file of the Brocade device. However, you can configure the device to do so by entering the following command.

```
FastIron(config)# mac-authentication save-dynamicvlan-to-config
```

When the above command is applied, dynamic VLAN assignments are saved to the running-config file and are displayed when the `show run` command is issued. Dynamic VLAN assignments can also be displayed with the `show vlan`, `show auth-mac-addresses detail`, and `show auth-mac-addresses authorized-mac` commands.

Syntax: `[no] mac-authentication save-dynamicvlan-to-config`

Dynamically applying IP ACLs to authenticated MAC addresses

The Brocade multi-device port authentication implementation supports the assignment of a MAC address to a specific ACL, based on the MAC address learned on the interface.

When a MAC address is successfully authenticated, the RADIUS server sends the Brocade device a RADIUS Access-Accept message that allows the Brocade device to forward traffic from that MAC address. The RADIUS Access-Accept message can also contain, among other attributes, the Filter-ID (type 11) attribute for the MAC address. When the Access-Accept message containing the Filter-ID (type 11) attribute is received by the Brocade device, it will use the information in these attributes to apply an IP ACL on a per-MAC (per user) basis.

The dynamic IP ACL is active as long as the client is connected to the network. When the client disconnects from the network, the IP ACL is no longer applied to the port. If an IP ACL had been applied to the port prior to multi-device port authentication; it will be re-applied to the port.
The Brocade device uses information in the Filter ID to apply an IP ACL on a per-user basis. The Filter-ID attribute can specify the number of an existing IP ACL configured on the Brocade device. If the Filter-ID is an ACL number, the specified IP ACL is applied on a per-user basis.

**Enhancements to multi-device port authentication with dynamic IP ACLs**

**Platform Support:**
- FastIron X Series devices running software release 04.2.00 and later – BL3, L3

The following enhancements were introduced in software release FSX 04.2.00:
- Multi-device port authentication and dynamic ACLs are supported together with ACL-per-port-per-vlan (ACL filtering based on VLAN membership or VE port membership).
  - Releases prior to FSX 04.2.00 do not support multi-device port authentication together with dynamic ACLs when enable ACL-per-port-per-vlan is in effect.
- Multi-device port authentication and dynamic ACLs are supported on tagged, dual-mode, and untagged ports, with or without virtual Interfaces.

There are no new CLI commands associated with this feature. Support is automatically enabled when all of the required conditions are met.

The following describes the conditions and feature limitations:
- Dynamic IP ACLs are allowed on physical ports when ACL-per-port-per-vlan is enabled.
- Dynamic IP ACLs are allowed on tagged and dual-mode ports when ACL-per-port-per-vlan is enabled. If ACL-per-port-per-vlan is not enabled, dynamic IP ACLs are not allowed on tagged or dual-mode ports.
- Dynamic IP ACLs can be added to tagged/untagged ports in a VLAN with or without a VE, as long as the tagged/untagged ports do not have configured ACLs assigned to them. The following shows some example scenarios where dynamic IP ACLs would not apply:
  - A port is a tagged/untagged member of VLAN 20, VLAN 20 includes VE 20, and an ACL is bound to VE 20.
  - A port is a tagged/untagged member of VLAN 20, VLAN 20 includes VE 20, and a per-port-per-vlan ACL is bound to VE 20 and to a subset of ports in VE 20

In the above scenarios, dynamic IP ACL assignment would not apply in either instance, because a configured ACL is bound to VE 20 on the port. Consequently, the MAC session would fail.

**Configuration considerations and guidelines**
- Software release FSX 04.2.00 introduced enhancements to multi-device port authentication with dynamic ACLs and ACL-per-port-per-vlan. Refer to “Enhancements to multi-device port authentication with dynamic IP ACLs” on page 1583.
- Starting in software release FSX 04.2.00, Dynamic ARP inspection (DAI) and DHCP Snooping are supported together with dynamic ACLs. Releases prior to FSX 04.2.00 do not allow DAI or DHCP snooping in tandem with dynamic ACLs.
- Dynamic IP ACLs with multi-device port authentication are supported. Dynamic MAC filters with multi-device port authentication are not supported.
- In the Layer 2 switch code, dynamic IP ACLs are not supported when ACL-per-port-per-vlan is enabled on a global-basis.
• The RADIUS Filter ID (type 11) attribute is supported. The Vendor-Specific (type 26) attribute is not supported.
• The dynamic ACL must be an extended ACL. Standard ACLs are not supported.
• Multi-device port authentication and 802.1x can be used together on the same port. However, Brocade does not recommend the use of multi-device port authentication and 802.1x with dynamic ACLs together on the same port. If a single supplicant requires both 802.1x and multi-device port authentication, and if both 802.1x and multi-device port authentication try to install different dynamic ACLs for the same supplicant, the supplicant will fail authentication.
• Dynamically assigned IP ACLs are subject to the same configuration restrictions as non-dynamically assigned IP ACLs. One caveat is that ports with VE interfaces cannot have assigned user-defined ACLs. For example, a user-defined ACL bound to a VE or a port on a VE is not allowed. There are no restrictions on ports that do not have VE interfaces.
• Dynamic ACL filters are supported only for the inbound direction. Dynamic outbound ACL filters are not supported.
• Dynamic ACL assignment with multi-device port authentication is not supported in conjunction with any of the following features:
  • IP source guard
  • Rate limiting
  • Protection against ICMP or TCP Denial-of-Service (DoS) attacks
  • Policy-based routing
  • 802.1X dynamic filter
• On TurboIron X Series devices running software release 04.2.00 and later, the dynamic ACLs are not supported on ports that have 802.1x and MAC authentication enabled along with the auth-fail-dot1x-override option enabled.
• On TurboIron devices, MAC authentication and 802.1X authentication can be configured on the same port. When both of these features are enabled on the same port, MAC authentication is performed prior to 802.1X authentication. If MAC authentication is successful, 802.1X authentication may be performed. If 802.1X authentication is successful, dynamic VLAN and ACL filters for 802.1X are applied.
• TurboIron devices authenticate devices attached to VLAN ports. The MAC address is used as the username and password for port authentication. The 802.1X authentication uses the username and password for port authentication.

**Configuring the RADIUS server to support dynamic IP ACLs**

When a port is authenticated using multi-device port authentication, an IP ACL filter that exists in the running-config file on the Brocade device can be dynamically applied to the port. To do this, you configure the Filter-ID (type 11) attribute on the RADIUS server. The Filter-ID attribute specifies the name or number of the Brocade IP ACL.

The following is the syntax for configuring the Filter-ID attribute on the RADIUS server to refer to a Brocade IP ACL.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip.&lt;number&gt;.in&lt;1&gt;</td>
<td>Applies the specified numbered ACL to the authenticated port in the inbound direction.</td>
</tr>
<tr>
<td>ip.&lt;name&gt;.in&lt;1,2&gt;</td>
<td>Applies the specified named ACL to the authenticated port in the inbound direction.</td>
</tr>
</tbody>
</table>

1. The ACL must be an extended ACL. Standard ACLs are not supported.
2. The `<name>` in the Filter ID attribute is case-sensitive

The following table lists examples of values you can assign to the Filter-ID attribute on the RADIUS server to refer to IP ACLs configured on a Brocade device.

<table>
<thead>
<tr>
<th>Possible values for the filter ID attribute on the RADIUS server</th>
<th>ACLs configured on the Brocade device</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip.102.in</td>
<td>access-list 102 permit ip 36.0.0.0 0.255.255.255 any</td>
</tr>
</tbody>
</table>
| ip.fdry_filter.in                                            | ip access-list standard fdry_filter  
|                                                             | permit host 36.48.0.3 |

Enabling denial of service attack protection

**NOTE**

FCX devices do not support multi-device authentication denial of service (DoS) attack prevention.

The Brocade device does not start forwarding traffic from an authenticated MAC address in hardware until the RADIUS server authenticates the MAC address; traffic from the non-authenticated MAC addresses is sent to the CPU. A denial of service (DoS) attack could be launched against the device where a high volume of new source MAC addresses is sent to the device, causing the CPU to be overwhelmed with performing RADIUS authentication for these MAC addresses. In addition, the high CPU usage in such an attack could prevent the RADIUS response from reaching the CPU in time, causing the device to make additional authentication attempts.

To limit the susceptibility of the Brocade device to such attacks, you can configure the device to use multiple RADIUS servers, which can share the load when there are a large number of MAC addresses that need to be authenticated. The Brocade device can run a maximum of 10 RADIUS clients per server and will attempt to authenticate with a new RADIUS server if current one times out.

In addition, you can configure the Brocade device to limit the rate of authentication attempts sent to the RADIUS server. When the multi-device port authentication feature is enabled, it keeps track of the number of RADIUS authentication attempts made per second. When you also enable the DoS protection feature, if the number of RADIUS authentication attempts for MAC addresses learned on an interface per second exceeds a configurable rate (by default 512 authentication attempts per second), the device considers this a possible DoS attack and disables the port. You must then manually re-enable the port.

The DoS protection feature is disabled by default. To enable it on an interface, enter commands such as the following.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication dos-protection enable
```

To specify a maximum rate for RADIUS authentication attempts, enter commands such as the following.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication dos-protection mac-limit 256
```

**Syntax:** `[no] mac-authentication dos-protection mac-limit <number>`

You can specify a rate from 1 – 65535 authentication attempts per second. The default is a rate of 512 authentication attempts per second.
Enabling source guard protection

Platform Support:
- FastIron X Series devices running software release FSX 04.2.00 and later – BL3, L3
- FCX-S devices running software release 06.0.00 and later

Source Guard Protection is a form of IP Source Guard used in conjunction with multi-device port authentication. When Source Guard Protection is enabled, IP traffic is blocked until the system learns the IP address. Once the IP address is validated, traffic with that source address is permitted.

NOTE
Source Guard Protection is supported together with multi-device port authentication as long as ACL-per-port-per-vlan is enabled.

When a new MAC session begins on a port that has Source Guard Protection enabled, the session will either apply a dynamically created Source Guard ACL entry, or it will use the dynamic IP ACL assigned by the RADIUS server. If a dynamic IP ACL is not assigned, the session will use the Source Guard ACL entry. The Source Guard ACL entry is permit ip <secure-ip> any, where <secure-ip> is obtained from the ARP Inspection table or from the DHCP Secure table. The DHCP Secure table is comprised of DHCP Snooping and Static ARP Inspection entries.

The Source Guard ACL permit entry is added to the hardware table after all of the following events occur:
- The MAC address is authenticated
- The IP address is learned
- The MAC-to-IP mapping is checked against the Static ARP Inspection table or the DHCP Secure table.

The Source Guard ACL permit entry is not written to the running configuration file. However, you can view the configuration using the show auth-mac-addresses authorized-mac ip-addr. Refer to “Viewing the assigned ACL for ports on which source guard protection is enabled” in the following section.

NOTE
The secure MAC-to-IP mapping is assigned at the time of authentication and remains in effect as long as the MAC session is active. If the DHCP Secure table is updated after the session is authenticated and while the session is still active, it does not affect the existing MAC session.

The Source Guard ACL permit entry is removed when the MAC session expires or is cleared.

To enable Source Guard Protection on a port on which multi-device port authentication is enabled, enter the following command at the Interface level of the CLI.

```
FastIron(config)int e 1/4
FastIron(config-if-e1000-1/4)mac-authentication source-guard-protection enable
```

Syntax: [no] mac-authentication source-guard-protection enable

Enter the no form of the command to disable SG protection.

Viewing the assigned ACL for ports on which source guard protection is enabled

Use the following command to view whether a Source Guard ACL or dynamic ACL is applied to ports on which Source Guard Protection is enabled.
Configuring multi-device port authentication

In the above output, for port 6/12, Source Guard Protection is enabled and the Source Guard ACL is applied to the MAC session, as indicated by **SG** in the **ACL** column. For port 6/13, Source Guard Protection is also enabled, but in this instance, a dynamic ACL (103) is applied to the MAC session.

### Clearing authenticated MAC addresses

The Brocade device maintains an internal table of the authenticated MAC addresses (viewable with the `show authenticated-mac-address` command). You can clear the contents of the authenticated MAC address table either entirely, or just for the entries learned on a specified interface. In addition, you can clear the MAC session for an address learned on a specific interface.

To clear the entire contents of the authenticated MAC address table, enter the following command.

```
FastIron# clear auth-mac-table
```

**Syntax:** `clear auth-mac-table`

To clear the authenticated MAC address table of entries learned on a specified interface, enter a command such as the following.

```
FastIron# clear auth-mac-table e 3/1
```

**Syntax:** `clear auth-mac-table [(<slotnum>)/]<portnum>`

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

To clear the MAC session for an address learned on a specific interface, enter commands such as the following.

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication clear-mac-session 00e0.1234.abd4
```

**Syntax:** `mac-authentication clear-mac-session <mac-address>`

This command removes the Layer 2 CAM entry created for the specified MAC address. If the Brocade device receives traffic from the MAC address again, the MAC address is authenticated again.

### Disabling aging for authenticated MAC addresses

MAC addresses that have been authenticated or denied by a RADIUS server are aged out if no traffic is received from the MAC address for a certain period of time:

- Authenticated MAC addresses or non-authenticated MAC addresses that have been placed in the restricted VLAN are aged out if no traffic is received from the MAC address over the device normal MAC aging interval.
• Non-authenticated MAC addresses that are blocked by the device are aged out if no traffic is received from the address over a fixed hardware aging period (70 seconds), plus a configurable software aging period. (Refer to the next section for more information on configuring the software aging period).

You can optionally disable aging for MAC addresses subject to authentication, either for all MAC addresses or for those learned on a specified interface.

**Globally disabling aging of MAC addresses**

On most devices, you can disable aging for all MAC addresses on all interfaces where multi-device port authentication has been enabled by entering the following command.

```
FastIron(config)# mac-authentication disable-aging
```

**Syntax:** `mac-authentication disable-aging`

Enter the command at the global or interface configuration level.

The `denied-only` parameter prevents denied sessions from being aged out, but ages out permitted sessions.

The `permitted-only` parameter prevents permitted (authenticated and restricted) sessions from being aged out and ages denied sessions.

**Disabling the aging of MAC addresses on interfaces**

To disable aging for all MAC addresses subject to authentication on a specific interface where multi-device port authentication has been enabled, enter the command at the interface level.

**Example**

```
FastIron(config)# interface e 3/1
FastIron(config-if-e1000-3/1)# mac-authentication disable-aging
```

**Syntax:** `[no] mac-authentication disable-aging`

**Changing the hardware aging period for blocked MAC addresses**

The feature was added in release 02.2.00 for the FESX and FWSX, and release 02.3.01 for the FSX.

When the Brocade device is configured to drop traffic from non-authenticated MAC addresses, traffic from the blocked MAC addresses is dropped in hardware, without being sent to the CPU. A Layer 2 hardware entry is created that drops traffic from the MAC address in hardware. If no traffic is received from the MAC address for a certain amount of time, this Layer 2 hardware entry is aged out. If traffic is subsequently received from the MAC address, then an attempt can be made to authenticate the MAC address again.

Aging of the Layer 2 hardware entry for a blocked MAC address occurs in two phases, known as hardware aging and software aging.
On FastIron devices, the hardware aging period for blocked MAC addresses is fixed at 70 seconds and is non-configurable. (The hardware aging time for non-blocked MAC addresses is the length of time specified with the \texttt{mac-age} command.) The software aging period for blocked MAC addresses is configurable through the CLI, with the \texttt{mac-authentication max-age} command. Once the hardware aging period ends, the software aging period begins. When the software aging period ends, the blocked MAC address ages out, and can be authenticated again if the Brocade device receives traffic from the MAC address.

On FastIron X Series devices, the hardware aging period for blocked MAC addresses is not fixed at 70 seconds. The hardware aging period for blocked MAC addresses is equal to the length of time specified with the \texttt{mac-age} command. As on FastIron devices, once the hardware aging period ends, the software aging period begins. When the software aging period ends, the blocked MAC address ages out, and can be authenticated again if the device receives traffic from the MAC address.

To change the hardware aging period for blocked MAC addresses, enter a command such as the following.

\texttt{FastIron(config)# mac-authentication hw-deny-age 10}

\textbf{Syntax:} \texttt{[no] mac-authentication hw-deny-age <num>}

The \texttt{<num>} parameter is a value from 1 to 65535 seconds. The default is 70 seconds.

### Specifying the aging time for blocked MAC addresses

When the Brocade device is configured to drop traffic from non-authenticated MAC addresses, traffic from the blocked MAC addresses is dropped in hardware, without being sent to the CPU. A Layer 2 CAM entry is created that drops traffic from the blocked MAC address in hardware. If no traffic is received from the blocked MAC address for a certain amount of time, this Layer 2 CAM entry is aged out. If traffic is subsequently received from the MAC address, then an attempt can be made to authenticate the MAC address again.

Aging of the Layer 2 CAM entry for a blocked MAC address occurs in two phases, known as \textit{hardware aging} and \textit{software aging}. The hardware aging period is fixed at 70 seconds and is non-configurable. The software aging time is configurable through the CLI.

Once the Brocade device stops receiving traffic from a blocked MAC address, the hardware aging begins and lasts for a fixed period of time. After the hardware aging period ends, the software aging period begins. The software aging period lasts for a configurable amount of time (by default 120 seconds). After the software aging period ends, the blocked MAC address ages out, and can be authenticated again if the Brocade device receives traffic from the MAC address.

To change the length of the software aging period for blocked MAC addresses, enter a command such as the following.

\texttt{FastIron(config)# mac-authentication max-age 180}

\textbf{Syntax:} \texttt{[no] mac-authentication max-age <seconds>}

You can specify from 1 – 65535 seconds. The default is 120 seconds.
Specifying the RADIUS timeout action

A RADIUS timeout occurs when the Brocade device does not receive a response from a RADIUS server within a specified time limit and after a certain number of retries. The time limit and number of retries can be manually configured using the CLI commands `radius-server timeout` and `radius-server retransmit`, respectively. If the parameters are not manually configured, the Brocade device applies the default value of three seconds with a maximum of three retries.

In releases prior to FSX software release 03.2.00 and FGS software release 04.1.00, when a RADIUS timeout occurs, the Brocade device will automatically reset the authentication process then retry to authenticate the user.

With FSX software release 03.2.00, and FGS software release 04.1.00, and later, you can better control port behavior when a RADIUS timeout occurs by configuring a port on the Brocade device to automatically pass or fail user authentication. A `pass` essentially bypasses the authentication process and permits user access to the network. A `fail` bypasses the authentication process and blocks user access to the network, unless `restrict-vlan` is configured, in which case, the user is placed into a VLAN with restricted or limited access. By default, the Brocade device will reset the authentication process and retry to authenticate the user.

Specify the RADIUS timeout action at the Interface level of the CLI.

**Permit User access to the network after a RADIUS timeout**

To set the RADIUS timeout behavior to bypass multi-device port authentication and permit user access to the network, enter commands such as the following.

```
FastIron(config)# interface ethernet 1/3
FastIron(config-if-e100-1/3)# mac-authentication auth-timeout-action success
```

**Syntax:**

`[no] mac-authentication auth-timeout-action success`

Once the `success` timeout action is enabled, use the `no` form of the command to reset the RADIUS timeout behavior to `retry`.

**Deny User access to the network after a RADIUS timeout**

To set the RADIUS timeout behavior to bypass multi-device port authentication and block user access to the network, enter commands such as the following.

```
FastIron(config)# interface ethernet 1/3
FastIron(config-if-e100-1/3)# mac-authentication auth-timeout-action failure
```

**Syntax:**

`[no] mac-authentication auth-timeout-action failure`

Once the failure timeout action is enabled, use the `no` form of the command to reset the RADIUS timeout behavior to `retry`.

**NOTE**

If `restrict-vlan` is configured along with `auth-timeout-action failure`, the user will be placed into a VLAN with restricted or limited access. Refer to “Allow user access to a restricted VLAN after a RADIUS timeout” on page 1591.
**Allow user access to a restricted VLAN after a RADIUS timeout**

To set the RADIUS timeout behavior to bypass multi-device port authentication and place the user in a VLAN with restricted or limited access, enter commands such as the following.

```
FastIron(config)# interface ethernet 1/3
FastIron(config-if-e100-1/3)# mac-authentication auth-fail-action restrict-vlan 100
FastIron(config-if-e100-1/3)# mac-authentication auth-timeout-action failure
```

**Syntax:** `[no] mac-authentication auth-fail-action restrict-vlan [vlan-id]`

**Syntax:** `[no] mac-authentication auth-timeout-action failure`

**Multi-device port authentication password override**

The multi-device port authentication feature communicates with the RADIUS server to authenticate a newly found MAC address. The RADIUS server is configured with the usernames and passwords of authenticated users. For multi-device port authentication, the username and password is the MAC address itself; that is, the device uses the MAC address for both the username and the password in the request sent to the RADIUS server. For example, given a MAC address of 0007e90feaa1, the users file on the RADIUS server would be configured with a username and password both set to 0007e90feaa1. When traffic from this MAC address is encountered on a MAC-authentication-enabled interface, the device sends the RADIUS server an Access-Request message with 0007e90feaa1 as both the username and password.

In FSX software releases prior to 03.2.00, the MAC address is always used as the username and password for multi-device port authentication. The username and password cannot be changed.

Starting in release 03.2.00, the MAC address becomes the default password for multi-device port authentication, and you can optionally configure the device to use a different password. Note that the MAC address is still the username and cannot be changed.

To change the password for multi-device port authentication, enter a command such as the following at the GLOBAL Config Level of the CLI.

```
FastIron(config)# mac-authentication password-override
```

**Syntax:** `[no] mac-authentication password-override <password>`

where `<password>` can have up to 32 alphanumeric characters, but cannot include blank spaces.

**Limiting the number of authenticated MAC addresses**

You cannot enable MAC port security on the same port that has multi-device port authentication enabled. To simulate the function of MAC port security, you can enter a command such as the following.

```
FastIron(config-if-e1000-2)# mac-authentication max-accepted-session 5
```

**Syntax:** `[no] mac-authentication max-accepted-session <session-number>`

This command limits the number of successfully authenticated MAC addresses. Enter a value from 1 - 250 for `session-number`. 
Displaying multi-device port authentication information

You can display the following information about the multi-device port authentication configuration:

- Information about authenticated MAC addresses
- Information about the multi-device port authentication configuration
- Authentication Information for a specific MAC address or port
- Multi-device port authentication settings and authenticated MAC addresses for each port where the multi-device port authentication feature is enabled
- The MAC addresses that have been successfully authenticated
- The MAC addresses for which authentication was not successful

Displaying authenticated MAC address information

To display information about authenticated MAC addresses on the ports where the multi-device port authentication feature is enabled, enter the following command.

```
FastIron# show auth-mac-address
```

The following table describes the information displayed by the `show auth-mac-address` command.

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlan</th>
<th>Accepted MACs</th>
<th>Rejected MACs</th>
<th>Attempted-MACs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/18</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1/20</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/22</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4/5</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Syntax: show auth-mac-address

```
Syntax: show auth-mac-address
```

The following table describes the information displayed by the `show auth-mac-address` command.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number where the multi-device port authentication feature is enabled.</td>
</tr>
<tr>
<td>Vlan</td>
<td>The VLAN to which the port has been assigned.</td>
</tr>
<tr>
<td>Accepted MACs</td>
<td>The number of MAC addresses that have been successfully authenticated</td>
</tr>
<tr>
<td>Rejected MACs</td>
<td>The number of MAC addresses for which authentication has failed.</td>
</tr>
<tr>
<td>Attempted-MACs</td>
<td>The rate at which authentication attempts are made for MAC addresses.</td>
</tr>
</tbody>
</table>

Displaying multi-device port authentication configuration information

To display information about the multi-device port authentication configuration, enter the following command.
Displaying multi-device port authentication information

For a specific MAC address or port

To display authentication information for a specific MAC address or port, enter a command such as the following.

```
FastIron# show auth-mac-address 0007.e90f.eaa1
```

<table>
<thead>
<tr>
<th>MAC/IP Address</th>
<th>Port</th>
<th>Vlan</th>
<th>Authenticated Time</th>
<th>Age</th>
<th>CAM Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0007.e90f.eaa1</td>
<td>25.25.25.25</td>
<td>1/18</td>
<td>100</td>
<td>Yes</td>
<td>00d01h10m06s 0</td>
</tr>
</tbody>
</table>

**Syntax:** `show auth-mac-address <mac-address> | <ip-addr> | [<slotnum>/]<portnum>`

The `<ip-addr>` parameter lists the MAC address associated with the specified IP address.

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The following table describes the information displayed by the `show authenticated-mac-address` command for a specified MAC address or port.
Displaying multi-device port authentication information

### TABLE 259  Output from the `show authenticated-mac-address <address> command`

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC/IP Address</td>
<td>The MAC address for which information is displayed. If the packet for which multi-device port authentication was performed also contained an IP address, then the IP address is displayed as well.</td>
</tr>
<tr>
<td>Port</td>
<td>The port on which the MAC address was learned.</td>
</tr>
<tr>
<td>Vlan</td>
<td>The VLAN to which the MAC address was assigned.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>Whether the MAC address was authenticated.</td>
</tr>
<tr>
<td>Time</td>
<td>The time at which the MAC address was authenticated. If the clock is set on the Brocade device, then the actual date and time are displayed. If the clock has not been set, then the time is displayed relative to when the device was last restarted.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the MAC address entry in the authenticated MAC address list.</td>
</tr>
<tr>
<td>CAM Index</td>
<td>If the MAC address is blocked, this is the index entry for the Layer 2 CAM entry created for this MAC address. If the MAC address is not blocked, either through successful authentication or through being placed in the restricted VLAN, then &quot;N/A&quot; is displayed. If the hardware aging period has expired, then &quot;ffff&quot; is displayed for the MAC address during the software aging period.</td>
</tr>
</tbody>
</table>

### Displaying the authenticated MAC addresses

To display the MAC addresses that have been successfully authenticated, enter the `show auth-mac-addresses authorized-mac` command.

The following example output is from a FastIron X Series device running software release 04.1.00. The display output on your device may differ, depending on the software version running on the device.

```
FastIron# show auth-mac-addresses authorized-mac
 +-------------------+---------+--------+---------------+-----------+------------+-----------+
 | MAC Address | Port | Vlan | Authenticated | Time | Age | dot1x |
 +-------------------+---------+--------+---------------+-----------+------------+-----------+
 | 0030.4874.3181 | 15/23 | 101 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.0001 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.012d | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.0065 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.0191 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.01f5 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 +-------------------+---------+--------+---------------+-----------+------------+-----------+
```

Syntax: `show auth-mac-addresses authorized-mac`

### Displaying the non-authenticated MAC addresses

To display the MAC addresses for which authentication was not successful, enter the following command:

```
FastIron# show auth-mac-addresses non-authorized-mac
 +-------------------+---------+--------+---------------+-----------+------------+-----------+
 | MAC Address | Port | Vlan | Authenticated | Time | Age | dot1x |
 +-------------------+---------+--------+---------------+-----------+------------+-----------+
 | 0030.4874.3181 | 15/23 | 101 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.0001 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.012d | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.0065 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.0191 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 | 000f.ed00.01f5 | 18/1 | 87 | Yes | 00d01h03m17s | Ena | Ena |
 +-------------------+---------+--------+---------------+-----------+------------+-----------+
```

Syntax: `show auth-mac-addresses non-authorized-mac`
Displaying multi-device port authentication information for a port

To display a summary of Multi-Device Port Authentication for ports on a device, enter the following command:

```
FastIron# show auth-mac-addresses ethernet 18/1
```

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
<th>Vlan</th>
<th>Authenticated</th>
<th>Time</th>
<th>Age</th>
<th>dot1x</th>
</tr>
</thead>
<tbody>
<tr>
<td>000f.ed00.0001</td>
<td>18/1</td>
<td>87</td>
<td>Yes</td>
<td>00d01h03m17s</td>
<td>Ena</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.012d</td>
<td>18/1</td>
<td>87</td>
<td>Yes</td>
<td>00d01h03m17s</td>
<td>Ena</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.0321</td>
<td>18/1</td>
<td>87</td>
<td>No</td>
<td>00d01h03m17s</td>
<td>H52</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.0259</td>
<td>18/1</td>
<td>87</td>
<td>No</td>
<td>00d01h03m17s</td>
<td>H52</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.0065</td>
<td>18/1</td>
<td>87</td>
<td>Yes</td>
<td>00d01h03m17s</td>
<td>Ena</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.0385</td>
<td>18/1</td>
<td>87</td>
<td>No</td>
<td>00d01h03m17s</td>
<td>H52</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.0191</td>
<td>18/1</td>
<td>87</td>
<td>Yes</td>
<td>00d01h03m17s</td>
<td>Ena</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.02bd</td>
<td>18/1</td>
<td>87</td>
<td>No</td>
<td>00d01h03m17s</td>
<td>H52</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.00c9</td>
<td>18/1</td>
<td>87</td>
<td>No</td>
<td>00d01h03m17s</td>
<td>H52</td>
<td>Ena</td>
</tr>
<tr>
<td>000f.ed00.01f5</td>
<td>18/1</td>
<td>87</td>
<td>Yes</td>
<td>00d01h03m17s</td>
<td>Ena</td>
<td>Ena</td>
</tr>
</tbody>
</table>

Syntax: `show auth-mac-addresses ethernet <slotnum>/<portnum>`

Table 260 explains the information in the output.

**TABLE 260** Output of `show auth-mac-address`

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>The MAC addresses learned on the port. If the packet for which multi-device port authentication was performed also contained an IP address, the IP address is also displayed.</td>
</tr>
<tr>
<td>Port</td>
<td>ID of the port on which the MAC address was learned.</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN of which the port is a member.</td>
</tr>
<tr>
<td>Authenticated</td>
<td>Whether the MAC address has been authenticated by the RADIUS server.</td>
</tr>
<tr>
<td>Time</td>
<td>The time the MAC address was authenticated. If the clock is set on the Brocade device, then the actual date and time are displayed. If the clock has not been set, the time is displayed relative to when the device was last restarted.</td>
</tr>
<tr>
<td>Age</td>
<td>The age of the MAC address entry in the authenticated MAC address list.</td>
</tr>
<tr>
<td>Dot1x</td>
<td>Indicates if 802.1X authentication is enabled or disabled for the MAC address.</td>
</tr>
</tbody>
</table>
Displaying multi-device port authentication settings and authenticated MAC addresses

To display the multi-device port authentication settings and authenticated MAC addresses for a port where the feature is enabled, enter the following command.

**Syntax:** show auth-mac-address [detail] [ethernet [<slotnum>/]<portnum>]

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

Omitting the `<portnum>` parameter displays information for all interfaces where the multi-device port authentication feature is enabled.

FastIron# show auth-mac-addresses detailed ethernet 15/23
Port : 15/23
Dynamic-Vlan Assignment : Enabled
RADIUS failure action : Block Traffic
Failure restrict use dot1x : No
Override-restrict-vlan : Yes
Port Default VLAN : 101 ( RADIUS assigned: No) (101)
Port VLAN State : DEFAULT
802.1x override Dynamic PVID : YES
override return to PVID : 101
Original PVID : 101
DOS attack protection : Disabled
Accepted Mac Addresses : 1
Rejected Mac Addresses : 0
Authentication in progress : 0
Authentication attempts : 0
RADIUS timeouts : 0
RADIUS timeouts action : Success
MAC Address on PVID : 1
MAC Address authorized on PVID : 1
Aging of MAC-sessions : Enabled
Port move-back vlan : Port-configured-vlan
Max-Age of sw mac session : 120 seconds
hw age for denied mac : 70 seconds
MAC Filter applied : No
Dynamic ACL applied : No
num Dynamic Tagged Vlan : 2
Dynamic Tagged Vlan list : 1025 (1/1) 4060 (1/0)

------------------------------------------------------------------------------
MAC Address     RADIUS Server  Authenticated  Time          Age  Dot1x
------------------------------------------------------------------------------
0030.4874.3181  64.12.12.5     Yes            00d01h03m17s  Ena  Ena

The following table describes the information displayed by the `show auth-mac-addresses detailed` command.
### TABLE 261  Output from the `show auth-mac-addresses detailed` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port to which this information applies.</td>
</tr>
<tr>
<td>Dynamic-Vlan Assignment</td>
<td>Whether RADIUS dynamic VLAN assignment has been enabled for the port.</td>
</tr>
<tr>
<td>RADIUS failure action</td>
<td>What happens to traffic from a MAC address for which RADIUS authentication has failed either block the traffic or assign the MAC address to a restricted VLAN.</td>
</tr>
<tr>
<td>Failure restrict use dot1x</td>
<td>Indicates if 802.1x traffic that failed multi-device port authentication, but succeeded 802.1x authentication to gain access to the network.</td>
</tr>
<tr>
<td>Override-restrict-vlan</td>
<td>Whether a port can be dynamically assigned to a VLAN specified by a RADIUS server, if the port had been previously placed in the restricted VLAN because a previous attempt at authenticating a MAC address on that port failed.</td>
</tr>
<tr>
<td>Port Default Vlan</td>
<td>The VLAN to which the port is assigned, and whether the port had been dynamically assigned to the VLAN by a RADIUS server.</td>
</tr>
<tr>
<td>Port VLAN state</td>
<td>Indicates the state of the port VLAN. The State can be one of the following “Default”, “RADIUS Assigned” or “Restricted”.</td>
</tr>
<tr>
<td>802.1X override Dynamic PVID</td>
<td>Indicates if 802.1X can dynamically assign a Port VLAN ID (PVID).</td>
</tr>
<tr>
<td>override return to PVID</td>
<td>If a port PVID is assigned through the multi-device port authentication feature, and 802.1X authentication subsequently specifies a different PVID, then the PVID specified through 802.1X authentication overrides the PVID specified through multi-device port authentication. This line indicates the PVID the port will use if 802.1X dynamically assigns PVID.</td>
</tr>
<tr>
<td>Original PVID</td>
<td>The originally configured (not dynamically assigned) PVID for the port.</td>
</tr>
<tr>
<td>DOS attack protection</td>
<td>Whether denial of service attack protection has been enabled for multi-device port authentication, limiting the rate of authentication attempts sent to the RADIUS server.</td>
</tr>
<tr>
<td>Accepted Mac Addresses</td>
<td>The number of MAC addresses that have been successfully authenticated.</td>
</tr>
<tr>
<td>Rejected Mac Addresses</td>
<td>The number of MAC addresses for which authentication has failed.</td>
</tr>
<tr>
<td>Authentication in progress</td>
<td>The number of MAC addresses for which authentication is pending. This is the number of MAC addresses for which an Access-Request message has been sent to the RADIUS server, and for which the RADIUS server has not yet sent an Access-Accept message.</td>
</tr>
<tr>
<td>Authentication attempts</td>
<td>The total number of authentication attempts made for MAC addresses on an interface, including pending authentication attempts.</td>
</tr>
<tr>
<td>RADIUS timeouts</td>
<td>The number of times the session between the Brocade device and the RADIUS server timed out.</td>
</tr>
<tr>
<td>RADIUS timeout action</td>
<td>Action to be taken by the RADIUS server if it times out.</td>
</tr>
<tr>
<td>MAC address on the PVID</td>
<td>Number of MAC addresses on the PVID.</td>
</tr>
<tr>
<td>MAC address authorized on PVID</td>
<td>Number of authorized MAC addresses on the PVID.</td>
</tr>
<tr>
<td>Aging of MAC-sessions</td>
<td>Whether software aging of MAC addresses is enabled.</td>
</tr>
<tr>
<td>Port move-back VLAN</td>
<td>Indicates the destination VLAN when a RADIUS assigned VLAN is removed. By default, it would return the configured VLAN.</td>
</tr>
<tr>
<td>Max-Age of sw MAC-sessions</td>
<td>The configured software aging period for MAC addresses.</td>
</tr>
</tbody>
</table>
Displaying multi-device port authentication information

For FCX devices, there are three commands you can use to display MAC authentication information:

- `show table <mac address>`
- `show table allowed-mac`
- `show table denied-mac`

This section describes the output for these commands.

To display MAC authentication information for FCX devices, enter the `show table <mac address>` command as shown:

```
FCX648 Switch# show table 0000.0010.1002
Syntax: show table <mac address>
<mac address> - the specified mac address
```

Output from this command resembles the following:
Displaying multi-device port authentication information

FCX648S Switch# show table 0000.0010.1002

MAC Address Port Vlan Authenticated Time Age dot1x
0000.0010.1002 2/1/48 2 Yes 00d00h30m57s Ena Dis

FCX648S Switch#

To display the table of allowed (authenticated) mac addresses enter the show table allowed-mac command as shown.

Syntax: show table allowed-mac

Output from this command resembles the following:

```
FCX648S Switch# show table allowed-mac

MAC Address Port Vlan Authenticated Time Age dot1x
0000.0010.100a 1/1/1 2 Yes 00d00h30m57s Ena Dis
0000.0010.100b 1/1/1 2 Yes 00d00h31m00s Ena Dis
0000.0010.1002 2/1/48 2 Yes 00d00h30m57s Ena Dis
0000.0010.1003 2/1/48 2 Yes 00d00h30m57s Ena Dis
0000.0010.1004 2/1/48 2 Yes 00d00h30m57s Ena Dis

FCX648S Switch#
```

To display the table of allowed mac addresses enter the show table denied-mac command as shown.

Syntax: show table <mac address>

<mac address> - the specified mac adderss

Output from this command resembles the following:

```
FCX648S Switch# show table denied-mac

MAC Address Port Vlan Authenticated Time Age dot1x
0000.0010.1021 2/1/48 4092 No 00d00h32m48s H8 Dis
0000.0010.1022 2/1/48 4092 No 00d00h32m48s H8 Dis

FCX648S Switch#
```

To display MAC authentication for a specific port, enter the show table ethernet <stack-unit/slot/port> command as shown.

```
FCX648S Switch# show table eth 2/1/48

MAC Address Port Vlan Authenticated Time Age CAM MAC Dot1x Type Pri Index Index
0000.0010.1002/1/482Yes00d00h30m57s Ena0000070d4DisDyn0
0000.0010.1003/1/482Yes00d00h30m57sEna00023df0DisDyn0
0000.0010.1004/1/482Yes00d00h30m57sEna00011e74DisDyn0
0000.0010.1021/1/482No00d00h32m48sH8000037a2cDisDyn0
0000.0010.1022/1/482No00d00h32m48sH8000044d7cDisDyn0

FCX648S Switch#
```
Example configurations

This section includes configuration examples of multi-device port authentication with dynamic VLAN assignment, and multi-device port authentication and 802.1X authentication.

Multi-device port authentication with dynamic VLAN assignment

Depending on the software version running on the Brocade device, support for multi-device port authentication with dynamic VLAN assignment may have certain limitations. Refer to the appropriate section below, according to the software version running on your device.

Example 1 – Software releases FSX 04.2.00 and later

Figure 172 illustrates multi-device port authentication with dynamic VLAN assignment on a Brocade device running software release FSX 04.2.00. In this configuration, a PC and an IP phone are connected to a hub, which is connected to port e1 on a Brocade device. The profile for the PC MAC address on the RADIUS server specifies that the PC should be dynamically assigned to VLAN 102, and the RADIUS profile for the IP phone specifies that it should be dynamically assigned to VLAN 3.

In this example, multi-device port authentication is performed for both devices. If the PC is successfully authenticated, port e1 PVID is changed from VLAN 1 (the DEFAULT-VLAN) to VLAN 102. If authentication for the PC fails, then the PC can be placed in a specified “restricted” VLAN, or traffic from the PC can be blocked in hardware. In this example, if authentication for the PC fails, the PC would be placed in VLAN 1023, the restricted VLAN.
If authentication for the IP phone is successful, then port e1 is added to VLAN 3. If authentication for the IP phone fails, then traffic from the IP phone would be blocked in hardware. (Devices sending tagged traffic cannot be placed in the restricted VLAN.)

The part of the running-config related to multi-device port authentication would be as follows.

```plaintext
mac-authentication enable
mac-authentication auth-fail-vlan-id 1023

interface ethernet 1
dual-mode
mac-authentication enable
mac-authentication auth-fail-action restrict-vlan
mac-authentication enable-dynamic-vlan
mac-authentication disable-ingress-filtering
```

The `mac-authentication disable-ingress-filtering` configuration is new in software release FSX 04.2.00. This command enables tagged packets on the port, even if the port is not a member of the VLAN. If this feature is not enabled, authentication works as in pre-release FSX 04.2.00. Refer to the configuration example in "Example 2 – Software releases prior to FSX 04.2.00" on page 1601.

**Example 2 – Software releases prior to FSX 04.2.00**

**Figure 172** illustrates multi-device port authentication with dynamic VLAN assignment on a Brocade device running a release prior to FSX 04.2.00. In this configuration, a PC and an IP phone are connected to a hub, which is connected to port e1 on a Brocade device. Port e1 is configured as a dual-mode port. The profile for the PC MAC address on the RADIUS server specifies that the PC should be dynamically assigned to VLAN 102, and the RADIUS profile for the IP phone specifies that it should be dynamically assigned to VLAN 3.

**FIGURE 172** Using multi-device port authentication with dynamic VLAN assignment
In this example, multi-device port authentication is performed for both devices. If the PC is successfully authenticated, dual-mode port e1 PVID is changed from the VLAN 1 (the DEFAULT-VLAN) to VLAN 102. If authentication for the PC fails, then the PC can be placed in a specified “restricted” VLAN, or traffic from the PC can be blocked in hardware. In this example, if authentication for the PC fails, the PC would be placed in VLAN 1023, the restricted VLAN.

If authentication for the IP phone is successful, then dual-mode port e1 is added to VLAN 3. If authentication for the IP phone fails, then traffic from the IP phone would be blocked in hardware. (Devices sending tagged traffic cannot be placed in the restricted VLAN.)

NOTE
This example assumes that the IP phone initially transmits untagged packets (for example, CDP or DHCP packets), which trigger the authentication process on the Brocade device and client lookup on the RADIUS server. If the phone sends only tagged packets and the port (e1) is not a member of that VLAN, authentication would not occur. In this case, port e1 must be added to that VLAN prior to authentication.

The part of the running-config related to multi-device port authentication would be as follows.

```
mac-authentication enable
mac-authentication auth-fail-vlan-id 1023

interface ethernet 1
 mac-authentication enable
 mac-authentication auth-fail-action restrict-vlan
 mac-authentication enable-dynamic-vlan
dual-mode
```

Examples of multi-device port authentication and 802.1X authentication configuration on the same port

The following examples use multi-device port authentication and 802.1X authentication on the same port.

**Example 1**

Figure 173 illustrates an example configuration that uses multi-device port authentication and 802.1X authentication on the same port. In this configuration, a PC and an IP phone are connected to port e 1/3 on an FSX. Port e 1/3 is configured as a dual-mode port.

The profile for the PC MAC address on the RADIUS server specifies that the PC should be dynamically assigned to VLAN "Login-VLAN", and the profile for the IP phone specifies that it should be dynamically assigned to the VLAN named "IP-Phone-VLAN". When User 1 is successfully authenticated using 802.1X authentication, the PC is then placed in the VLAN named "User-VLAN".

NOTE
This example assumes that the IP phone initially transmits untagged packets (for example, CDP or DHCP packets), which trigger the authentication process on the Brocade device and client lookup on the RADIUS server. If the phone sends only tagged packets and the port (e 1/3) is not a member of that VLAN, authentication would not occur. In this case, port e 1/3 must be added to that VLAN prior to authentication.
When the devices attempt to connect to the network, they are first subject to multi-device port authentication.

When the IP phone MAC address is authenticated, the Access-Accept message from the RADIUS server specifies that the IP phone port be placed into the VLAN named “IP-Phone-VLAN”, which is VLAN 7. The Foundry-802_1x-enable attribute is set to 0, meaning that 802.1X authentication is skipped for this MAC address. Port e1/3 is placed in VLAN 7 as a tagged port. No further authentication is performed.

When the PC MAC address is authenticated, the Access-Accept message from the RADIUS server specifies that the PVID for the PC port be changed to the VLAN named “Login-VLAN”, which is VLAN 1024. The Foundry-802_1x-enable attribute is set to 1, meaning that 802.1X authentication is required for this MAC address. The PVID of the port e1/3 is temporarily changed to VLAN 1024, pending 802.1X authentication.

When User 1 attempts to connect to the network from the PC, he is subject to 802.1X authentication. If User 1 is successfully authenticated, the Access-Accept message from the RADIUS server specifies that the PVID for User 1 port be changed to the VLAN named “User-VLAN”, which is VLAN 3. If 802.1X authentication for User 1 is unsuccessful, the PVID for port e1/3 is changed to that of the restricted VLAN, which is VLAN 1023, or untagged traffic from port e1/3 can be blocked in hardware.

The part of the running-config related to port e1/3 would be as follows.

```
interface ethernet 1/3
 dot1x port-control auto
 mac-authentication enable
dual-mode
```
When the PC is authenticated using multi-device port authentication, the port PVID is changed to “Login-VLAN”, which is VLAN 1024 in this example.

When User 1 is authenticated using 802.1X authentication, the port PVID is changed to “User-VLAN”, which is VLAN 3 in this example.

**Example 2**

The configuration in Figure 174 requires that you create a profile on the RADIUS server for each MAC address to which a device or user can connect to the network. In a large network, this can be difficult to implement and maintain.

As an alternative, you can create MAC address profiles only for those devices that do not support 802.1X authentication, such as IP phones and printers, and configure the device to perform 802.1X authentication for the other devices that do not have MAC address profiles, such as user PCs. To do this, you configure the device to perform 802.1X authentication when a device fails multi-device port authentication.

Figure 174 shows a configuration where multi-device port authentication is performed for an IP phone, and 802.1X authentication is performed for a user PC. There is a profile on the RADIUS server for the IP phone MAC address, but not for the PC MAC address.

**FIGURE 174  802.1X Authentication is performed when a device fails multi-device port authentication**

Multi-device port authentication is initially performed for both devices. The IP phone MAC address has a profile on the RADIUS server. This profile indicates that 802.1X authentication should be skipped for this device, and that the device port be placed into the VLAN named “IP-Phone-VLAN”.
Since there is no profile for the PC MAC address on the RADIUS server, multi-device port authentication for this MAC address fails. Ordinarily, this would mean that the PVID for the port would be changed to that of the restricted VLAN, or traffic from this MAC would be blocked in hardware. However, the device is configured to perform 802.1X authentication when a device fails multi-device port authentication, so when User 1 attempts to connect to the network from the PC, he is subject to 802.1X authentication. If User 1 is successfully authenticated, the PVID for port e 1/4 is changed to the VLAN named “User-VLAN”.

**NOTE**

This example assumes that the IP phone initially transmits untagged packets (for example, CDP or DHCP packets), which trigger the authentication process on the Brocade device and client lookup on the RADIUS server. If the phone sends only tagged packets and the port (e 1/4) is not a member of that VLAN, authentication would not occur. In this case, port e 1/4 must be added to that VLAN prior to authentication.

To configure the device to perform 802.1X authentication when a device fails multi-device port authentication, enter the following command.

```
FastIron(config)# mac-authentication auth-fail-dot1x-override
```

**Syntax:** `[no] mac-authentication auth-fail-dot1x-override`
Chapter 45

Configuring Web Authentication

Overview

**Platform Support:** FastIron X Series devices running software release 05.0.00 and later – L2, BL3, L3

Authentication is important in enterprise networks because the network is considered a secure area: it contains sensitive data and a finite amount of resources. Unauthorized users must be prevented from accessing the network to protect the sensitive data and prevent the unnecessary consumption of resources.

The ideal authentication method blocks unauthorized users at the earliest possible opportunity. For internal enterprise networks, this can be controlled at the edge switch port. Two popular forms of port-based security authentication used at the edge switch are multi-device port authentication and 802.1x. Multi-device port authentication authenticates the MAC addresses of hosts or users that are attempting to access the network. This type of authentication requires no intervention from the host or user who is attempting to be authenticated. It is easy to use, but it can only authorize hosts; it cannot be used to authorize users. 802.1x authentication can authorize users or hosts. It is more flexible than the multi-device port authentication method; however, it requires more support, configuration, maintenance and user intervention than multi-device port authentication.

The Brocade Web authentication method provides an ideal port-based authentication alternative to multi-device port authentication without the complexities and cost of 802.1x authentication. Hosts gain access to the network by opening a Web browser and entering a valid URL address using HTTP or HTTPS services. Instead of being routed to the URL, the host browser is directed to an authentication Web page on the FastIron switch. The Web page prompts the host to enter a user ID and password or a passcode. The credentials a host enters are used by a trusted source to authenticate the host MAC address. (Multiple MAC addresses can be authenticated with the same user name and password.)

If the authentication is unsuccessful, the appropriate page is displayed on the host browser. The host is asked to try again or call for assistance, depending on what message is configured on the Web page. If the host MAC address is authenticated by the trusted source, a Web page is displayed with a hyperlink to the URL the host originally entered. If the user clicks on the link, a new window is opened and the the user is directed to the requested URL.

While a MAC address is in the authenticated state, the host can forward data through the FastIron switch. The MAC address remains authenticated until one of the following events occurs:

- The host MAC address is removed from a list of MAC addresses that are automatically authenticated. (Refer to “Specifying hosts that are permanently authenticated” on page 1621).
- The re-authentication timer expires and the host is required to re-authenticate (Refer to “Configuring the re-authentication period” on page 1622).
- The host has remained inactive for a period of time and the inactive period timer has expired. (Refer to “Forcing re-authentication after an inactive period” on page 1625.)
Configuration considerations

- All the ports on the VLAN on which Web Authentication has been configured are in a down state. All MAC addresses that are currently authenticated are de-authenticated (Refer to “Forcing re-authentication when ports are down” on page 1624.)
- The authenticated client is cleared from the Web Authentication table. (Refer to “Clearing authenticated hosts from the web authentication table” on page 1623).

The FastIron switch can be configured to automatically authenticate a host MAC address. The host will not be required to login or re-authenticate (depending on the re-authentication period) once the MAC address passes authentication.

A host that is logged in and authenticated remains logged in indefinitely, unless a re-authentication period is configured. When the re-authentication period ends, the host is logged out. A host can log out at any time by pressing the Logout button in the Web Authentication Success page.

NOTE
The host can log out as long as the Logout window (Success page) is visible. If the window is accidentally closed, the host cannot log out unless the re-authentication period ends or the host is manually cleared from the Web Authentication table.

Configuration considerations

Web Authentication is modeled after other RADIUS-based authentication methods currently available on Brocade edge switches. However, Web Authentication requires a Layer 3 protocol (TCP/IP) between the host and the authenticator. Therefore, to implement Web Authentication, you must consider the following configuration and topology configuration requirements:

- Web Authentication works only on the default HTTP or HTTPS port.
- The host must have an IP address prior to Web Authentication. This IP address can be configured statically on the host; however, DHCP addressing is also supported.
- If you are using DHCP addressing, a DHCP server must be in the same broadcast domain as the host. This DHCP server does not have to be physically connected to the switch. Also, DHCP assist from a router may be used.
- Web Authentication, 802.1X port security, and multi-device port authentication are not supported concurrently on the same port.

The following applies to Web Authentication in the Layer 2 switch image:

- If the management VLAN and Web Authentication VLAN are in different IP networks, make sure there is at least one routing element in the network topology that can route between these IP networks.

The following are required for Web Authentication in the base Layer 3 and full Layer 3 images:

- Each Web Authentication VLAN must have a virtual interface (VE).
- The VE must have at least one assigned IPv4 address.

Web Authentication is enabled on a VLAN. That VLAN becomes a Web Authentication VLAN that does the following:

- Forwards traffic from authenticated hosts, just like a regular VLAN.
- Blocks traffic from unauthenticated hosts except from ARP, DHCP, DNS, HTTP, and HTTPs that are required to perform Web Authentication.
**Figure 175** shows the basic components of a network topology where Web Authentication is used. You will need:

- A Brocade FastIron switch running a software release that supports Web Authentication
- DHCP server, if dynamic IP addressing is to be used
- Computer/host with a web browser

Your configuration may also require a RADIUS server with some Trusted Source such as LDAP or Active Directory.

**NOTE**
The Web server, RADIUS server, and DHCP server can all be the same server.

**FIGURE 175** Basic topology for web authentication

---

**Configuration tasks**

Follow the steps given below to configure Web Authentication on a device.


   - On a Layer 2 FastIron switch, make sure the FastIron switch has an IP address.
     
     FastIron# configure terminal
     FastIron(config)#ip address 10.1.1.10/24

   - On a Layer 3 FastIron switch, assign an IP address to a virtual interface (VE) for each VLAN on which Web Authentication will be enabled.
     
     FastIron#configure terminal
     FastIron(config)#vlan 10
     FastIron(config-vlan-10)#router-interface vel
     FastIron(config-vlan-10)#untagged e 1/1/1 to 1/1/10
     FastIron(config-vlan-10)#interface vel
     FastIron(config-vif-1)#ip address 1.1.2.1/24
2. By default, Web Authentication will use a RADIUS server to authenticate host usernames and passwords, unless it is configured to use a local user database. If Web Authentication will use a RADIUS server, you must configure the RADIUS server and other servers. For example, if your RADIUS server has an IP address of 192.168.1.253, then use the CLI to configure the following global CLI commands on the FastIron switch.

```
FastIron(config)# radius-server host 10.1.1.8
FastIron(config)# radius-server key $GSig@U\n```

NOTE
Remember the RADIUS key you entered. You will need this key when you configure your RADIUS server.

3. Web authentication can be configured to use secure (HTTPS) or non-secure (HTTP) login and logout pages. By default, HTTPS is used.

To enable the non-secure Web server on the FastIron switch, enter the following command.

```
FastIron(config)# web-management HTTP
FastIron(config)#vlan 10
FastIron(config-vlan-10)#webauth
FastIron(config-vlan-10-webauth)#no secure-login
```

To enable the secure Web server on the FastIron switch, enter the following command.

```
FastIron(config)# web-management HTTPS
FastIron(config)#vlan 10
FastIron(config-vlan-10)#webauth
FastIron(config-vlan-10-webauth)#secure-login
```

4. If the secure Web server is used, in order to access a secure Web page, the Web server needs to provide a key. This key is exchanged using a certificate. A certificate is a digital document that is issued by a trusted source that can validate the authenticity of the certificate and the Web server that is presenting it. Therefore the switch must have a certificate for web authentication to work. There are two choices for providing the switch with a certificate:

- Upload one using the following global CLI command.

  ```
  FastIron(config)# ip ssl private-key-file tftp <ip-addr> <key-filename>
  ```

- Generate one using the following global CLI command.

  ```
  FastIron(config)#crypto-ssl certificate generate default_cert
  ```

5. Create a Web Authentication VLAN and enable Web Authentication on that VLAN.

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)#webauth
FastIron(config-vlan-10-webauth)#enable
```

Once enabled, the CLI changes to the "webauth" configuration level. In the example above, VLAN 10 will require hosts to be authenticated using Web Authentication before they can forward traffic.

6. Configure the Web Authentication mode:

- **Username and password** – Blocks users from accessing the switch until they enter a valid username and password on a web login page.
- **Passcode** – Blocks users from accessing the switch until they enter a valid passcode on a web login page.
Enabling and disabling web authentication

Web Authentication is disabled by default. To enable it, enter the following commands.

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)webauth
FastIron(config(config-vlan-10-webauth)#enable
```

The first command changes the CLI level to the VLAN configuration level. The second command changes the configuration level to the Web Authentication VLAN level. The last command enables Web Authentication. In the example above, VLAN 10 will require hosts to be authenticated using Web Authentication before they can forward traffic.

Syntax: `webauth`

FastIron devices support a maximum of two Web Authentication VLANs.

Syntax: `[no] enable`

Enter the `no enable` command to disable Web Authentication.

Configuring the web authentication mode

You can configure the FastIron switch to use one of three Web Authentication modes:

- **Username and password** – Block users from accessing the switch until they enter a valid username and password on a web login page. Refer to “Using local user databases” on page 1611.
- **Passcode** – Blocks users from accessing the switch until they enter a valid passcode on a web login page. Refer to “Using passcodes” on page 1615.
- **None** – Blocks users from accessing the switch until they press the ‘Login’ button. A username and password or passcode is not required. Refer to “Using automatic authentication” on page 1619.

This following sections describe how to configure these Web Authentication modes.

Using local user databases

Web Authentication supports the use of local user databases consisting of usernames and passwords, to authenticate devices. Users are blocked from accessing the switch until they enter a valid username and password on a web login page.
Once a user successfully authenticates through username and password, the user is subjected to the same policies as for RADIUS-authenticated devices (for example, the re-authentication period, maximum number of users allowed, etc.). Similarly, once a user fails username and password authentication, the user is subjected to the same policies as for devices that fail RADIUS authentication.

You can create up to ten local user databases on the FastIron switch either by entering a series of CLI commands, or by uploading a list of usernames and passwords from a TFTP file to the FastIron switch. The user databases are stored locally, on the FastIron switch.

Configuration steps

Follow the steps given below to configure a local user database.

1. Create the local user database.
2. Add records to the local user database either by entering a series of CLI commands, or by importing a list of user records from an ASCII text file on the TFTP server to the FastIron switch.
3. Set the local user database authentication mode.
4. If desired, set the authentication method (RADIUS/local) failover sequence.
5. Assign a local user database to a Web Authentication VLAN.

Creating a local user database

The FastIron switch supports a maximum of ten local user databases, each containing up to 30 user records. Each user record consists of a username and password.

To create a local user database, enter a command such as the following:

```plaintext
FastIron#(config)#local-userdb userdb1
FastIron#(config-localuserdb-userdb1)#
```

This command creates a local user database named `userdb1`. To add user records to this database, refer to "Adding a User record to a local user database" on page 1612.

Syntax: `local-userdb <db-name>`

You can create up to ten local user databases for Web Authentication.

For `<db-name>`, enter up to 31 alphanumeric characters.

Adding a User record to a local user database

To add a user record, enter commands such as the following:

```plaintext
FastIron#(config)#local-userdb userdb1
FastIron#(config-localuserdb-userdb1)#username marcia password bunch4
```

The first command changes the configuration level to the local user database level for `userdb1`. If the database does not already exist, it is created. The second command adds the user record `marcia` to the `userdb1` database.

Syntax: `username <username> password <password>`

For `<username>`, enter up to 31 ASCII characters.

For `<password>`, enter up to 29 ASCII characters.
You can add up to 30 usernames and passwords to a local user database.

To view a list of users in a local user database, use the CLI command `vlan-mod-port-userdb`. Refer to “Displaying a list of local user databases” on page 1637.

Deleting a user record from a local user database

To delete a user record from the local user database, enter commands such as the following.

```
FastIron#(config)#local-userdb userdb1
FastIron#(config-localuserdb-userdb1)#no username marcia
```

The first command changes the configuration level to the local user database level for `userdb1`. The second command deletes the user record `marcia` from the `userdb1` database.

Deleting All user records from a local user database

To delete all user records from a local user database, enter the following command.

```
FastIron#(config-localuserdb-userdb1)#delete-all
```

Creating a text file of user records

If desired, you can use the TFTP protocol to import a list of usernames and passwords from a text file on a TFTP server to the FastIron switch. The text file to be imported must be in the following ASCII format.

```
[delete-all]
[no]  username <username1> password <password1> <cr>
[no]  username <username2> password <password2> <cr>
...
```

The `[delete-all]` keyword indicates that the user records in the text file will replace the user records in the specified local user database on the FastIron switch. If the `[delete-all]` keyword is not present, the new user records will be added to the specified local user database on the FastIron switch. The `[delete-all]` keyword is optional. If present, it must appear on the first line, before the first user record in the text file.

The optional `[no]` keyword indicates that the user entry will be deleted from the specified local user database on the FastIron switch.

User records that already exist in the local user database will be updated with the information in the text file when it is uploaded to the switch.

For `<username1>`, `<username2>`, etc., enter up to 31 ASCII characters.

For `<password1>`, `<password2>`, etc., enter up to 29 ASCII characters.

Be sure to insert a cursor return (`<cr>`) after each user record.

You can enter up to 30 user records per text file.
Importing a text file of user records from a TFTP server

NOTE
Before importing the file, make sure it adheres to the ASCII text format described in the previous section, “Creating a text file of user records” on page 1613.

To import a text file of user records from a TFTP server to the FastIron switch, enter a command such as the following.

```
FastIron#(config-localuserdb-userdb1)#import-users tftp 192.168.1.1 filename userdb1
```

Syntax: `import-users tftp <ip-address> filename <filename>`

The `<ip-address>` parameter specifies the IPv4 address of the TFTP server on which the desired text file resides.

The `<filename>` parameter specifies the name of the image on the TFTP server.

Using a RADIUS server as the web authentication method

By default, Web Authentication will use a RADIUS server to authenticate hosts’ usernames and passwords, unless the device is configured to use the local user database (see the previous section). To configure the FastIron switch to use a RADIUS server, refer to “Configuring RADIUS security” on page 1460. You must also do the following.

1. Configure the RADIUS server information on the FastIron switch. Enter a command such as the following.

   ```
   FastIron(config)#radius-server host 10.1.1.8 auth-port 1812 acct-port 1813 default key $GSig@U
   ```

 NOTE
 Web Authentication will use the first reachable RADIUS server listed in the configuration. The `use-radius-server` on individual ports is not supported for Web Authentication.

2. Enable the username and password authentication mode.

   ```
   FastIron(config-vlan-10-webauth)#auth-mode username-password
   ```

3. Enable the RADIUS authentication method. Refer to “Setting the local user database authentication method” on page 1614 or “Setting the web authentication failover sequence” on page 1615.

Setting the local user database authentication method

By default, the FastIron switch uses a RADIUS server to authenticate users in a VLAN. The previous section describes how to configure a RADIUS server to authenticate users in a VLAN. To configure the switch to instead use a local user database to authenticate users in a VLAN, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#auth-mode username-password auth-methods local
```

Syntax: `auth-mode username-password auth-methods local`

To revert back to using the RADIUS server, enter the following command.

```
FastIron(config-vlan-10-webauth)#auth-mode username-password auth-methods radius
```
Configuring the web authentication mode

Syntax: auth-mode username-password auth-methods radius

Setting the web authentication failover sequence

You can optionally specify a failover sequence for RADIUS and local user database authentication methods. For example, you can configure Web Authentication to first use a local user database to authenticate users in a VLAN. If the local user database is not available, it will use a RADIUS server. Enter the following command.

FastIron(config-vlan-10-webauth)#auth-mode username-password auth-methods local radius

Syntax: auth-mode username-password auth-methods <method1> <method2>

For <method1> <method2>, enter radius local or local radius.

Assigning a local user database to a web authentication VLAN

After creating or importing a local user database on the FastIron switch and setting the local user database authentication method to local, you can configure a Web Authentication VLAN to use the database to authenticate users in a VLAN. To do so, enter a command such as the following.

FastIron(config-vlan-10-webauth)#auth-mode username-password local-user-database userdb1

These commands configure Web Authentication to use the usernames and passwords in the userdb1 database to authenticate users in VLAN 10.

Syntax: [no] auth-mode username-password local-user-database <db-name>

For <db-name>, enter a valid local user database.

Use the no form of the command to remove the database from the Web Authentication VLAN.

Using passcodes

Web Authentication supports the use of passcodes to authenticate users. Users are blocked from accessing the switch until they enter a valid passcode on a web login page. Unlike username and password authentication, passcode authentication uses a simple number to authenticate users. The simplicity of a passcode reduces user errors and lowers the overhead of supporting and managing simple tasks, such as Internet access for guests and visitors in the office.

When passcodes are enabled, the system will automatically generate them every 1440 minutes (24 hours), and when the system boots up. You can optionally create up to four static passcodes which will be used in conjunction with the dynamic passcodes generated by the system.

Configuration steps

Follow the steps given below to configure the device to use the passcode authentication mode.

1. Optionally create up to four static passcodes
2. Enable passcode authentication
3. Configure other options
Creating static passcodes

Static passcodes can be used for troubleshooting purposes, or for networks that want to use passcode authentication, but do not have the ability to support automatically-generated passcodes (for example, the network does not fully support the use of SNMP traps or Syslog messages with passcodes).

Manually-created passcodes are used in conjunction with dynamic passcodes. You can configure up to four static passcodes that never expire. Unlike dynamically-created passcodes, static passcodes are saved to flash memory. By default, there are no static passcodes configured on the switch.

To create static passcodes, enter commands such as the following.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode static 3267345
FastIron(config-vlan-10-webauth)#auth-mode passcode static 56127
```

Syntax: `auth-mode passcode static <passcode>

For `<passcode>`, enter a number from 4 to 16 digits in length. You can create up to four static passcodes, each with a different length. Static passcodes do not have to be the same length as passcodes that are automatically generated.

After creating static passcodes, you can enable passcode authentication as described in the next section.

To view the passcodes configured on the switch, use the `show webauth vlan <vlan-id> passcode` command. Refer to “Displaying passcodes” on page 1638.

Enabling passcode authentication

To enable passcode authentication, enter the following command.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode
```

This command enables Web Authentication to use dynamically-created passcodes to authenticate users in the VLAN. If the configuration includes static passcodes, they are used in conjunction with dynamically-created passcodes.

Syntax: `[no]auth-mode passcode

Enter `no auth-mode passcode` to disable passcode authentication.

Configuring the length of dynamically-generated passcodes

By default, dynamically-generated passcodes are 4 digits in length, for example, 0123. If desired, you can increase the passcode length to up to 16 digits. To do so, enter a command such as the following at the Web Authentication level of the CLI.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode length 10
```

The next dynamically-created passcode will be 10 digits in length, for example, 0123456789.

Syntax: `auth-mode passcode length <value>

For `<value>`, enter a number from 4 to 16.
Configuring the passcode refresh method

Passcode authentication supports two passcode refresh methods:

- **Duration of time** – By default, dynamically-created passcodes are refreshed every 1440 minutes (24 hours). When refreshed, a new passcode is generated and the old passcode expires. You can increase or decrease the duration of time after which passcodes are refreshed, or you can configure the device to refresh passcodes at a certain time of day instead of after a duration of time.

- **Time of day** – When initially enabled, the time of day method will cause passcodes to be refreshed at 0:00 (12:00 midnight). If desired, you can change this time of day, and you can add up to 24 refresh periods in a 24-hour period.

When a passcode is refreshed, the old passcode will no longer work, unless a grace period is configured (refer to “Configuring a Grace Period for an expired passcode” on page 1618).

If a user changes the passcode refresh value, the configuration is immediately applied to the current passcode. For example, if the passcode duration is 100 minutes and the passcode was last generated 60 minutes prior, a new passcode will be generated in 40 minutes. However, if the passcode duration is changed from 100 to 75 minutes, and the passcode was last generated 60 minutes prior, a new passcode will be generated in 15 minutes. Similarly, if the passcode duration is changed from 100 to 50 minutes, and the passcode was last generated 60 minutes prior, the passcode will immediately expire and a new passcode will be generated. The same principles apply to the time of day passcode refresh method.

If you configure both duration of time and time of day passcode refresh values, they are saved to the configuration file. You can switch back and forth between the passcode refresh methods, but only one method can be enabled at a time.

NOTE

Passcodes are not stateful, meaning a software reset or reload will cause the system to erase the passcode. When the FastIron switch comes back up, a new passcode will be generated.

Changing the passcode refresh duration

To change the duration of time after which passcodes are refreshed, enter commands such as the following.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode refresh-type duration 4320
```

The passcode will be refreshed after 4320 minutes (72 hours).

Syntax: auth-mode passcode refresh-type duration <value>

For <value>, enter a number from 5 to 9999 minutes. The default is 1440 minutes (24 hours).

Refreshing passcodes at a certain time of the day

You can configure the FastIron switch to refresh passcodes at a certain time of day, up to 24 times each day, instead of after a duration of time. When this feature is enabled, by default passcodes will be refreshed at 00:00 (12 midnight).

To configure the switch to refresh passcodes at a certain time of day, enter commands such as the following.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode refresh-type time 6:00
FastIron(config-vlan-10-webauth)#auth-mode passcode refresh-type time 14:30
```

The passcode will be refreshed at 6:00am, 2:30pm, and 0:00 (12 midnight).
Syntax: [no] auth-mode passcode refresh-type time <hh:mm>.

<hh:mm> is the hour and minutes. If you do not enter a value for <hh:mm>, by default, passcodes will be refreshed at 00:00 (12:00 midnight). You can configure up to 24 refresh times. Each must be at least five minutes apart.

Enter the no form of the command to remove the passcode refresh time of day.

Resetting the passcode refresh time of day configuration

If the FastIron switch is configured to refresh passcodes several times during the day (time of day configuration), you can use the following command to delete all of the configured times and revert back to the default time of 00:00 (12 midnight).

FastIron(config-vlan-10-webauth)#auth-mode passcode refresh-type time delete-all

Syntax: auth-mode passcode refresh-type time delete-all

Configuring a Grace Period for an expired passcode

You can optionally configure a grace period for an expired passcode. The grace period is the period of time that a passcode will remain valid, even after a new passcode is generated. For example, if a five minute grace period is set and the passcode 1234 is refreshed to 5678, both passcodes will be valid for five minutes, after which the 1234 passcode will expire and the 5678 passcode will remain in effect.

To configure the grace period for an expired passcode, enter a command such as the following.

FastIron(config-vlan-10-webauth)#auth-mode passcode grace-period 5

Syntax: auth-mode passcode grace-period <value>

<value> is a number between 0 and 5 minutes. 0 means there is no grace period.

NOTE

If the grace period is re-configured while a passcode is already in the grace period, the passcode is not affected by the configuration change. The new grace period will apply only to passcodes that expire after the new grace period is set.

Flushing all expired passcodes that are in the grace period

You can delete old passcodes that have expired but are still valid because they are in the grace period. This feature is useful in situations where the old passcodes have been compromised but are still valid because of the grace period. This feature does not affect current valid passcodes or passcodes that newly expire.

To flush out all expired passcodes that are currently in the grace period, enter the following command.

FastIron(config-vlan-10-webauth)#auth-mode passcode flush-expired

Syntax: auth-mode passcode flush-expired

Disabling and re-enabling passcode logging

The software generates a Syslog message and SNMP trap message every time a new passcode is generated and passcode authentication is attempted. This is the default behavior. If desired, you can disable passcode-related Syslog messages or SNMP trap messages, or both.
Configuring the web authentication mode

The following shows an example Syslog message and SNMP trap message related to passcode authentication.

New passcode: 01234567. Expires in 1440 minutes. Old passcode is valid for another 5 minutes.

To disable Syslog messages for passcodes, enter the following command.

```
FastIron(config-vlan-10-webauth)#no auth-mode passcode log syslog
```

Enter the following command to disable SNMP trap messages for passcodes.

```
FastIron(config-vlan-10-webauth)#no auth-mode passcode log snmp-trap
```

Enter the following command to re-enable Syslog messages for passcodes after they have been disabled.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode log syslog
```

Enter the following command to re-enable SNMP trap messages for passcodes after they have been disabled.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode log snmp-trap
```

Syntax: `[no] auth-mode passcode log syslog | snmp-trap`

Re-sending the passcode log message

If passcode logging is enabled, you can enter a CLI command to retransmit the current passcode to a Syslog message or SNMP trap. To do so, enter the following command.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode resend-log
```

Syntax: `auth-mode passcode resend-log`

NOTE

The switch retransmits the current passcode only. Passcodes that are in the grace period are not sent.

Manually refreshing the passcode

You can manually refresh the passcode instead of waiting for the system to automatically generate one. When manually refreshed, the old passcode will no longer work, even if a grace period is configured. Also, if the passcode refresh method `duration of time` is used, the duration counter is reset when the passcode is manually refreshed. The passcode refresh method `time of day` is not affected when the passcode is manually refreshed.

To immediately refresh the passcode, enter the following CLI command.

```
FastIron(config-vlan-10-webauth)#auth-mode passcode generate
```

Syntax: `auth-mode passcode generate`

Using automatic authentication

By default, if Web Authentication is enabled, hosts need to login and enter authentication credentials in order to gain access to the network. If a re-authentication period is configured, the host will be asked to re-enter authentication credentials once the re-authentication period ends.
You can configure Web Authentication to authenticate a host when the user presses the ‘Login’ button. When a host enters a valid URL address, Web Authentication checks the list of blocked MAC addresses. If the hosts’ MAC address is not on the list and the number of allowable hosts has not been reached, after pressing the ‘Login’ button, the host is automatically authenticated for the duration of the configured re-authentication period, if one is configured. Once the re-authentication period ends, the host is logged out and needs to enter the URL address again.

NOTE
Automatic authentication is not the same as permanent authentication. (Refer to “Specifying hosts that are permanently authenticated” on page 1621). You must still specify devices that are to be permanently authenticated even if automatic authentication is enabled.

To enable automatic authentication, enter the following command.

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)#webauth
FastIron(config-vlan-10-webauth)#auth-mode none
```

Syntax: `[no] auth-mode none`
If automatic authentication is enabled and a host address is not in the blocked MAC address list, Web Authentication authenticates the host and displays the Login page without user credentials, then provides a hyperlink to the requested URL site.

To determine if automatic authentication is enabled on your device, issue the `show webauth vlan <vlan-id>` command at the VLAN configuration level.

Syslog messages are generated under the following conditions:

- The feature is enabled
- The feature is disabled
- A MAC address is successfully authenticated
- Automatic authentication cannot occur because the maximum number of hosts allowed has been reached

Configuring web authentication options

The sections below explain other configuration options for Web Authentication.

Enabling RADIUS accounting for web authentication

When Web Authentication is enabled, you can enable RADIUS accounting to record login (start) and logout (stop) events per host. The information is sent to a RADIUS server. Note that packet/byte count is not supported.

To enable RADIUS accounting, enter the following command.

```
FastIron(config-vlan-10-webauth)#accounting
```

Syntax: `[no] accounting`
Enter the `no accounting` command to disable RADIUS accounting for Web Authentication.
Changing the login mode (HTTPS or HTTP)

Web Authentication can be configured to use secure (HTTPS) or non-secure (HTTP) login and logout pages. By default, HTTPS is used. Figure 177 shows an example Login page.

To change the login mode to non-secure (HTTP), enter the following command.

```
FastIron(config-vlan-10-webauth)#no secure-login
```

To revert back to secure mode, enter the following command.

```
FastIron(config-vlan-10-webauth)#secure-login
```

Syntax: [no] secure-login

Specifying trusted ports

You can configure certain ports of a Web Authentication VLAN as trusted ports. All hosts connected to the trusted ports need not authenticate and are automatically allowed access to the network.

To create a list of trusted ports, enter commands such as the following.

```
FastIron(config-vlan-10-webauth)#trust-port ethernet 3
FastIron(config-vlan-10-webauth)#trust port ethernet 6 to 10
```

The above commands configure ports 3 and 6 – 10 as trusted ports.

Syntax: trust-port ethernet [<slotnum>/]<portnum> [to [<slotnum>/]<portnum>]

Specifying hosts that are permanently authenticated

Certain hosts, such as DHCP server, gateway, printers, may need to be permanently authenticated. Typically, these hosts are managed by the network administrator and are considered to be authorized hosts. Also, some of these hosts (such as printers) may not have a Web browser and will not be able to perform the Web Authentication.

To permanently authenticate these types of hosts, enter a command such as the following at the "webauth" configuration level.

```
FastIron(config-vlan-10-webauth)#add mac 0004.80eb.2d14 duration 0
FastIron(config-vlan-10-webauth)#add mac 0007.e90e.de3b duration 0
```

Syntax: [no] add mac <mac-address> duration <seconds> | ethernet <port-number> duration <seconds>

```
Syntax: no add mac <mac-address>
```

<seconds> specifies how long the MAC address remains authenticated. Enter 0 – 128000 seconds. The default is the current value of reauth-time. A value of "0" means that Web Authentication for the MAC address will not expire.

Instead of just entering a duration for how long the MAC address remains authenticated, you can specify the MAC address to be added by the specified port that is a member of the VLAN. To do this, enter values for the ethernet <port-number> duration <seconds> option. Enter the port number and the number of seconds the MAC address remains authenticated.

Entering a no add mac <mac-address> duration <seconds> | ethernet <port-number> duration <seconds> command sets duration and ethernet to their default values. If you want to remove a host, enter the no add mac <mac-address> command.
NOTE
If a MAC address is statically configured, this MAC address will not be allowed to be dynamically configured on any port.

Configuring the re-authentication period

After a successful authentication, a user remains authenticated for a duration of time. At the end of this duration, the host is automatically logged off. The user must be re-authenticated again. To set the number of seconds a host remains authenticated before being logged off, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#reauth-time 10
```

Syntax: `[no] reauth-time <seconds>`

You can specify 0 – 128000 seconds. The default is 28800 seconds, and 0 means the user is always authenticated and will never have to re-authenticate, except if an inactive period less than the re-authentication period is configured on the Web Authentication VLAN. If this is the case, the user becomes de-authenticated if there is no activity and the timer for the inactive period expires.

Defining the web authentication cycle

You can set a limit as to how many seconds users have to be Web Authenticated by defining a cycle time. This time begins at a user first Login attempt on the Login page. If the user has not been authenticated successfully when this time expires, the user must enter a valid URL again to display the Web Authentication Welcome page.

To define a cycle time, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#cycle time 20
```

Syntax: `[no] cycle time <seconds>`

Enter 0 – 3600 seconds, where 0 means there is no time limit. The default is 600 seconds.

Limiting the number of web authentication attempts

You can set a limit on the number of times a user enters an invalid user name and password during the specified cycle time. If the user exceeds the limit, the user is blocked for a duration of time, which is defined by the `block duration` command. Also, the Web browser will be redirected to the Exceeded Allowable Attempts webpage.

To limit the number of Web Authentication attempts, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#attempt-max-num 4
```

Syntax: `[no] attempt-max-num <number>`

Enter a number from 0 to 64, where 0 means there is no limit to the number of Web Authentication attempts. The default is 5.
Clearing authenticated hosts from the web authentication table

Use the following commands to clear dynamically-authenticated hosts from the Web Authentication table.

To clear all authenticated hosts in a Web authentication VLAN, enter a command such as the following.

```
FastIron#clear webauth vlan 25 authenticated-mac
```

This command clears all the authenticated hosts in VLAN 25.

To clear a particular host in a Web authentication VLAN, enter a command such as the following.

```
FastIron#clear webauth vlan 25 authenticated-mac 1111.2222.3333
```

This command clears host 1111.2222.3333 from VLAN 25.

Syntax: `clear webauth vlan <vlan-id> authenticated-mac [<mac-address>]`

Setting and clearing the block duration for web authentication attempts

After users exceed the limit for Web Authentication attempts, specify how many seconds users must wait before the next cycle of Web Authenticated begins. Enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#block duration 4
```

Syntax: `[no] block duration <seconds>`

Users cannot attempt Web Authentication during this time.

Enter 0–128000 seconds. The default is 90 seconds, and entering 0 means that the MAC address is infinitely blocked.

To unblock the MAC address, wait until the block duration timer expires or enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#clear webauth vlan 10 block-mac 000.000.1234
```

Syntax: `clear webauth vlan <vlan-id> block-mac [<mac-address>]`

If you do not enter a `<mac-address>`, then all the entries for the specified VLAN will be cleared.

Manually blocking and unblocking a specific host

A host can be temporarily or permanently blocked from attempting Web Authentication by entering a command such as the following.

```
FastIron(config-vlan-10-webauth)#block mac 0123.17d1.0a3d duration 4
```

Syntax: `[no] block mac <mac-address> duration <seconds>`

Syntax: `no block mac <mac-address>`

Enter 0 – 128000 for `<seconds>`. The default is the current value of `block duration` command. Entering a value of "0" means the MAC address is blocked permanently.
Configuring web authentication options

Entering **no block mac** `<mac-address>` **duration** `<seconds>` resets duration to its default value.

You can unblock a host by entering the **no block mac** `<mac-address>` command.

Limiting the number of authenticated hosts

You can limit the number of hosts that are authenticated at any one time by entering a command such as the following.

```
FastIron(config-vlan-10-webauth)#host-max-num 300
```

Syntax: `[no] host-max-num <number>`

You can enter 0 – 8192, where 0 means there is no limit to the number of hosts that can be authenticated. The default is 0. The maximum is 8192 or the maximum number of MAC addresses the device supports.

When the maximum number of hosts has been reached, the FastIron switch redirects any new host that has been authenticated successfully to the Maximum Host webpage.

Filtering DNS queries

Many of the Web Authentication solutions allow DNS queries to be forwarded from unauthenticated hosts. To eliminate the threat of forwarding DNS queries from unauthenticated hosts to unknown or untrusted servers (also known as domain-casting), you can restrict DNS queries from unauthenticated hosts to be forwarded explicitly to defined servers by defining DNS filters. Any DNS query from an unauthenticated host to a server that is not defined in a DNS filter are dropped. Only DNS queries from unauthenticated hosts are affected by DNS filters; authenticated hosts are not. If the DNS filters are not defined, then any DNS queries can be made to any server.

You can have up to four DNS filters. Create a filter by entering the following command.

```
FastIron(config-vlan-10-webauth)#dns-filter 1 191.166.2.44/24
```

Syntax: `[no] dns-filter <number> <ip-address> <subnet-mask> | <wildcard>`

For `<number>`, enter a number from 1 to 4 to identify the DNS filter.

Enter the IP address and subnet mask of unauthenticated hosts that will be forwarded to the unknown/untrusted servers. Use the `<ip-address> <subnet-mask>` or `<ip-address>/<subnet-mask>` format.

You can use a `<wildcard>` for the filter. The `<wildcard>` is in dotted-decimal notation (IP address format). It is a four-part value, where each part is 8 bits (one byte) separated by dots, and each bit is a one or a zero. Each part is a number ranging from 0 to 255, for example 0.0.0.255. Zeros in the mask mean the packet source address must match the IP address. Ones mean any value matches. For example, the `<ip-address>` and `<subnet-mask>` values 209.157.22.26 0.0.0.255 mean that all hosts in the Class C sub-net 209.157.22.x match the policy.

Forcing re-authentication when ports are down

If all ports on the device go down, you may want to force all authenticated hosts to be re-authenticated. You can do this by entering the following command.

```
FastIron(config-vlan-10-webauth)#port-down-auth-mac-cleanup
```

Syntax: `[no] port-down-auth-mac-cleanup`
While this command is enabled, the device checks the link state of all ports that are members of the Web Authentication VLAN. If the state of all the ports is down, then the device forces all authenticated hosts to re-authenticate. However, hosts that were authenticated using the add mac command will remain authenticated; they are not affected by the `port-down-auth-mac-cleanup` command.

Forcing re-authentication after an inactive period

You can force Web Authenticated hosts to be re-authenticated if they have been inactive for a period of time. The inactive duration is calculated by adding the mac-age-time that has been configured for the device and the configured `authenticated-mac-age-time`. (The `mac-age-time` command defines how long a port address remains active in the address table.) If the authenticated host is inactive for the sum of these two values, the host is forced to be re-authenticated.

To force authenticated hosts to re-authenticate after a period of inactivity, enter commands such as the following.

```
FastIron(config)#mac-age-time 600
FastIron(config)#vlan 23
FastIron(config-vlan-23)webauth
FastIron(config-vlan-23-webauth)#reauth-time 303
FastIron(config-vlan-23-webauth)#authenticated-mac-age-time 300
```

Syntax: `[no] authenticated-mac-age-time <seconds>`

You can enter a value from 0 to the value entered for `reauth-time`. The default is 3600.

Refer to “Changing the MAC age time and disabling MAC address learning” on page 363 for details on the `mac-age-time` command. The default `mac-age-time` is 300 seconds and can be configured to be between 60 and 600 on the FastIron switch. If it is configured to be 0, then the MAC address does not age out due to inactivity.

Defining the web authorization redirect address

When a user enters a valid URL address (one that exists), the user is redirected to a Web Authentication address and the Welcome page for Web Authentication is displayed. By default, this Web Authentication address is the IP address of the FastIron switch. You can change this address so that the address matches the name on the security certificates.

To change the address on a Layer 2 switch, enter a command such as the following at the global configuration level.

```
FastIron(config)#webauth-redirect-address my.domain.net
```

To change the address on a Layer 3 switch, enter a command such as the following at the Web Authentication VLAN level.

```
FastIron(config-vlan-10-webauth)#webauth-redirect-address my.domain.net
```

Entering "my.domain.net" redirects the browser to https://my.domain.net/ when the user enters a valid URL on the Web browser.

Syntax: `[no] webauth-redirect-address <string>`

For `<string>`, enter up to 64 alphanumeric characters. You can enter any value for `<string>`, but entering the name on the security certificate prevents the display of error messages saying that the security certificate does not match the name of the site.
Deleting a web authentication VLAN

To delete a Web Authentication VLAN, enter the following command:

```
FastIron(config)#vlan 10
FastIron(config-vlan-10)#no webauth
```

Syntax: no webauth

Web authentication pages

There are several pages that can be displayed for Web Authentication.

When a user first enters a valid URL address on the Web browser, the browser is redirected to the Web Authentication URL (refer to “Defining the web authorization redirect address” on page 1625).

If Automatic Authentication is enabled, the following Welcome page appears:

FIGURE 176 Example of a welcome page when automatic authentication is enabled

The browser will then be directed to the requested URL.

If username and password (Local User Database) authentication is enabled, the following Login page appears.
FIGURE 177 Example of a login page when automatic authentication is disabled and local user database is enabled

The user enters a user name and password, which are then sent for authentication.

If passcode authentication is enabled, the following Login page appears.

FIGURE 178 Example of a login page when automatic authentication is disabled and passcode Authentication is Enabled

The user enters a passcode, which is then sent for authentication.

If the Web Authentication fails, the page to try again is displayed (Figure 179).
FIGURE 179 Example of a try again page

If the limit for the number of authenticated users on the network is exceeded, the Maximum Host Limit page is displayed (Figure 180).

FIGURE 180 Example of a maximum Host limit page

If the number of Web Authentication attempts by a user has been exceeded, the Maximum Attempts Limit page is displayed (Figure 181). The user is blocked from attempting any Web Authentication unless either the user MAC address is removed from the blocked list (using the `clear webauth block-mac <mac-address>` command) or when the block duration timer expires.

FIGURE 181 Example of a maximum attempts limit page

If the user Web Authentication attempt is successful, the Success page is displayed (Figure 182).
Once a host is authenticated, that host can manually de-authenticate by clicking the ‘Logout’ button in the Login Success page. The host remains logged in until the re-authentication period expires. At that time, the host is automatically logged out. However, if a re-authentication period is not configured, then the host remains logged in indefinitely.

NOTE
If you accidentally close the Success page, you will not be able to log out. If a re-authentication period is configured, you will be logged out once the re-authentication period ends.

The host can log out of the Web session by simply clicking the Logout button. Once logged out, the following window appears.

You can customize the top and bottom text for all of the windows shown in Figure 176 through Figure 182.

Displaying text for web authentication pages

Use the `show webauth vlan <vlan-ID> webpage` command to determine what text has been configured for Web Authentication pages.
Configuring web authentication options

FastIron#show webauth vlan 25 webpage

=================================
Web Page Customizations (VLAN 25):
 Top (Header): Default Text
 "<h3>Welcome to Brocade Communications, Inc. Web Authentication Homepage</h3>"
 Bottom (Footer): Custom Text
 "Copyright 2009 SNL"
 Title: Default Text
 "Web Authentication"
 Login Button: Custom Text
 "Sign On"
 Web Page Logo: blogo.gif
 align: left (Default)
 Web Page Terms and Conditions: policy1.txt

Syntax: show webauth vlan <vlan-id> webpage

Customizing web authentication pages

You can customize the following objects in the Web Authentication pages shown in Figure 176 through Figure 182:

- Title bar
- Banner image (the logo)
- Header
- Text box
- Login button
- Footer

You can use the CLI commands `show webauth` and `show webauth vlan <vlan-id> webpage` to determine what text has been configured for Web Authentication pages.

NOTE
The banner image does not apply to the Web Authentication Maximum Attempts Limit page (Figure 181). The text box and Login button apply to the Login page only.

Figure 183 shows the placement of these objects in the Login page.
Customizing the title bar
You can customize the title bar that appears on all Web Authentication pages (refer to Figure 183). To do so, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#webpage custom-text title "Brocade Secure Access Page"
```

Syntax: `[no] webpage custom-text title "<title>"`

For `<title>`, enter up to 128 alphanumeric characters. The default title bar is "Web Authentication".

To reset the title bar back to the default value, enter the command `no webpage custom-text title`.

Customizing the banner image (Logo)
You can customize the logo that appears on all Web Authentication pages. Figure 183 shows placement of the banner image in the Login page.

NOTE
The banner image does not display in the Maximum Attempts Limit page (Figure 181).

To customize the banner image, use the TFTP protocol to upload an image file from a TFTP server to the FastIron switch. The image file can be in the format jpg, bmp, or gif, and its size must be 64K or less. When you upload a new image file, it will overwrite the existing image file.

To replace the existing logo with a new one, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#webpage logo copy tftp 10.10.5.1 brocadelogo.gif
```

Syntax: `[no] webpage logo copy tftp <ip-address> <filename>`
Configuring web authentication options

NOTE
This command downloads the image file and stores it in the device flash memory. Therefore, it is not necessary to follow this command with a write memory.

The `<ip-address>` parameter specifies the address of the TFTP server on which the image file resides.

The `<filename>` parameter specifies the name of the image file on the TFTP server.

Use the no webpage logo command to delete the logo from all Web Authentication pages and remove it from flash memory.

Aligning the banner image (Logo)
You can optionally configure the placement of the logo that appears on all Web Authentication pages (refer to Figure 183). By default, the logo is left-aligned at the top of the page. To center the logo at the top of the page, enter the following command.

```
FastIron(config-vlan-10-webauth)#webpage logo align center
```

To right-justify the logo at the top of the page, enter the following command.

```
FastIron(config-vlan-10-webauth)#webpage logo align right
```

Syntax: `[no] webpage logo align center | left | right`

Use the no webpage logo align command to reset the logo back to its default position (left).

Customizing the header
You can customize the header that appears on all Web Authentication pages. Figure 183 shows placement of the header in the Login page.

To customize the header, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#webpage custom-text top "Welcome to Network One"
```

Syntax: `[no] webpage custom-text top <text>`

For `<text>`, enter up to 255 alphanumeric characters.

To reset the header back to the default text, enter the command no webpage custom-text top. The default text is "Welcome to Brocade Communications, Inc. Web Authentication Homepage".

Customizing the text box
You can customize the text box that appears on the Web Authentication Login page. Figure 183 shows placement of the text box in the Login page. By default, the text box is empty and is not visible. To create a text box or to replace the existing one, upload an ASCII text file from a TFTP server to the FastIron switch. The text file size must not exceed 2K.

To create or replace a text box, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#webpage terms copy tftp 10.10.5.1 policy.txt
```

Syntax: `[no] webpage terms copy tftp <ip-address> <filename>`

NOTE
This command downloads the text file and stores it in the device flash memory. Therefore, it is not necessary to follow this command with a write memory.

The `<ip-address>` parameter is the address of the TFTP server on which the image resides.
The `<filename>` parameter is the name of the text file on the TFTP server.

To revert back to the default text box (none), enter the command **no webpage terms**.

Customizing the login button

You can customize the Login button that appears on the bottom of the Web Authentication Login page (refer to **Figure 183**). To do so, enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#webpage custom-text login-button "Press to Log In"
```

Syntax: [no] webpage custom-text login-button "<text>"

For `<text>`, enter up to 32 alphanumeric characters.

To reset the Login button back to the default value ("Login"), enter the command **no webpage custom-text login-button**.

Customizing the footer

You can customize the footer that appears on all Web Authentication pages. **Figure 183** shows placement of the footer in the Login page.

To customize the footer enter a command such as the following.

```
FastIron(config-vlan-10-webauth)#webpage custom-text bottom "Network One Copyright 2009"
```

Syntax: [no] webpage custom-text bottom "<text>"

For `<text>`, enter up to 255 alphanumeric characters.

To reset the footer back to the default text, enter the command **no webpage custom-text bottom**.

The default text is "This network is restricted to authorized users only. Violators may be subjected to legal prosecution. Activity on this network is monitored and may be used as evidence in a court of law. Copyright 2009 Brocade Communications, Inc., Inc."

Displaying web authentication information

The following sections present the **show** commands you can use to display information about the Web Authentication feature.

Displaying the web authentication configuration

Enter the following command to display the configuration for the Web Authentication feature.

```
FastIron#show webauth
```

```
WEB AUTHENTICATION (VLAN 25): Enable
attempt-max-num: 5 (Default)
host-max-num: 0 (Default)
block duration: 90 (Default)
cycle-time: 600 (Default)
port-down-authenticated-mac-cleanup: Enable (Default)
reauth-time: 28800 (Default)
authenticated-mac-age-time: 3600 (Default)
```
Displaying web authentication information

dns-filter: Disable (Default)
authentication mode: username and password (Default)
 authentication methods: radius
 Local user database name: <none>
Radius accounting: Enable (Default)
Trusted port list: None
Secure Login (HTTPS): Enable (Default)
Web Page Customizations:
 Top (Header): Default Text
 Bottom (Footer): Custom Text
 "SNL Copyright 2009"
 Title: Default Text
 Login Button: Custom Text
 "Sign On"
 Web Page Logo: blogo.gif
 align: left (Default)
 Web Page Terms and Conditions: policy1.txt
Host statistics:
 Number of hosts dynamically authenticated: 0
 Number of hosts statically authenticated: 2
 Number of hosts dynamically blocked: 0
 Number of hosts statically blocked: 0
 Number of hosts authenticating: 1

The display shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEB AUTHENTICATION (VLAN 10)</td>
<td>Identifies the VLAN on which Web Authentication is enabled.</td>
</tr>
<tr>
<td>attempt-max-num</td>
<td>The maximum number of Web Authentication attempts during a cycle.</td>
</tr>
<tr>
<td>host-max-num</td>
<td>The maximum number of users that can be authenticated at one time.</td>
</tr>
<tr>
<td>block duration</td>
<td>How many seconds a user who failed Web Authentication must wait before attempting to be authenticated.</td>
</tr>
<tr>
<td>cycle-time</td>
<td>The number of seconds in one Web Authentication cycle.</td>
</tr>
<tr>
<td>port-down-authenticated-mac-clean-up</td>
<td>Indicates if this option is enabled or disabled. If enabled, all authenticated users are de-authenticated if all the ports in the VLAN go down.</td>
</tr>
<tr>
<td>reauth-time</td>
<td>The number of seconds an authenticated user remains authenticated. Once this timer expires, the user must re-authenticate.</td>
</tr>
<tr>
<td>authenticated-mac-age-time</td>
<td>If a user is inactive, this time shows how many seconds a user has before the user associated MAC address is aged out. The user will be forced to re-authenticate.</td>
</tr>
<tr>
<td>dns-filter</td>
<td>Shows the definition of any DNS filter that have been set. (Refer to “Filtering DNS queries” on page 1624</td>
</tr>
</tbody>
</table>
Displaying web authentication information

Syntax: show webauth [vlan <vlan-id>]

The show webauth command by itself displays information for all VLANs on which Web Authentication is enabled. Use the vlan <vlan-id> parameter to display information for a specific VLAN.

Displaying a list of authenticated hosts

Enter the following command to display a list of hosts that are currently authenticated.

```
FastIron#show webauth allowed-list
```

<table>
<thead>
<tr>
<th>VLAN #: Web Authentication</th>
<th>The ID of the VLAN on which Web Authentication is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Authenticated List MAC Address</td>
<td>The MAC addresses that have been authenticated.</td>
</tr>
<tr>
<td>User Name</td>
<td>Configuration</td>
</tr>
<tr>
<td>Static/Dynamic</td>
<td>HH:MM:SS</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>00a0.f86c.2807</td>
<td>N/A</td>
</tr>
<tr>
<td>0009.5b69.79ea</td>
<td>fdry1</td>
</tr>
<tr>
<td>000c.db82.8bca</td>
<td>N/A</td>
</tr>
<tr>
<td>0007.e90e.de3b</td>
<td>N/A</td>
</tr>
<tr>
<td>000a.e422.a50e</td>
<td>fdry2</td>
</tr>
</tbody>
</table>

The displays shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication mode</td>
<td>The authentication mode:</td>
</tr>
<tr>
<td>• username and password (default)</td>
<td></td>
</tr>
<tr>
<td>• passcode</td>
<td></td>
</tr>
<tr>
<td>• none</td>
<td></td>
</tr>
<tr>
<td>Also displays configuration details for the authentication mode.</td>
<td></td>
</tr>
<tr>
<td>RADIUS accounting</td>
<td>Whether RADIUS accounting is enabled or disabled.</td>
</tr>
<tr>
<td>Trusted port list</td>
<td>The statically-configured trusted ports of the Web Authentication VLAN.</td>
</tr>
<tr>
<td>Secure login (HTTPS)</td>
<td>Whether HTTPS is enabled or disabled.</td>
</tr>
<tr>
<td>Web Page Customizations</td>
<td>The current configuration for the text that appears on the Web Authentication pages. Either "Custom Text" or "Default Text" displays for each page type:</td>
</tr>
<tr>
<td>• "Custom Text" means the message for the page has been customized. The custom text is also displayed.</td>
<td></td>
</tr>
<tr>
<td>• "Default Text" means the default message that ships with the FastIron switch is used.</td>
<td></td>
</tr>
<tr>
<td>The actual text on the Web Authentication pages can be displayed using the show webauth vlan <vlan-id> webpage command. Refer to “Displaying text for web authentication pages” on page 1629.</td>
<td></td>
</tr>
<tr>
<td>Host statistics</td>
<td>The authentication status and the number of hosts in each state.</td>
</tr>
</tbody>
</table>

```
FastIron#show webauth allowed-list
=============================================================================  
VLAN 1: Web Authentication  
-----------------------------------------------------------------------------  
Web Authenticated List      Configuration       Authenticated Duration Remaining  
MAC Address      User Name  Static/Dynamic      HH:MM:SS  
-----------------------------------------------------------------------------  
00a0.f86c.2807   N/A        D                   00:03:05  
0009.5b69.79ea   fdry1      D                   04:58:01  
000c.db82.8bca   N/A        S                   Infinite  
0007.e90e.de3b   N/A        S                   Infinite  
000a.e422.a50e   fdry2      D                   00:25:25  
-----------------------------------------------------------------------------  
```
Displaying web authentication information

Syntax: show webauth allowed-list

Displaying a list of hosts attempting to authenticate

Enter the following command to display a list of hosts that are trying to authenticate.

```
FastIron# show webauth authenticating-list
```

```
===============================================================================
VLAN 25: Web Authentication
-----------------------------------------------------------------------------
Web Authenticating List                        # of Failed    Cycle Time
Remaining                                      Attempts        HH:MM:SS
MAC Address     User Name                       ---------------  ------------
-----------------------------------------------------------------------------
0012.3ff9.1fc6  N/A                             0               00:09:46
-----------------------------------------------------------------------------
```

The report shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>The authenticated username.</td>
</tr>
<tr>
<td>Configuration Static/Dynamic</td>
<td>If the MAC address was dynamically (passed Web Authentication) or statically (added to the authenticated list using the add mac command) authenticated.</td>
</tr>
<tr>
<td>Authenticated Duration</td>
<td>The remainder of time the MAC address will remain authenticated</td>
</tr>
</tbody>
</table>

Syntax: show webauth authenticating-list

Displaying a list of blocked hosts

Enter the following command to display a list of hosts that are currently blocked from any Web Authentication Attempt.

```
FastIron# show webauth authenticating-list
```
Displaying web authentication information

FastIron#show webauth blocked-list

<table>
<thead>
<tr>
<th>VLAN #: Web Authentication</th>
<th>Web Block List</th>
<th>Configuration</th>
<th>Block Duration Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAC Address</td>
<td>User Name</td>
<td>Static/Dynamic</td>
</tr>
<tr>
<td></td>
<td>0009.a213.ff09</td>
<td>bauser</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>00a0.f86c.2807</td>
<td>causer</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>00a0.f890.lab3</td>
<td>dauser</td>
<td>S</td>
</tr>
</tbody>
</table>

The report shows the following information.

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN #: Web Authentication</td>
<td>The ID of the VLAN on which Web Authentication is enabled.</td>
</tr>
<tr>
<td>Web Block List MAC Address</td>
<td>The MAC addresses that have been blocked from Web Authentication.</td>
</tr>
<tr>
<td>User Name</td>
<td>The User Name associated with the MAC address.</td>
</tr>
<tr>
<td>Configuration Static/Dynamic</td>
<td>If the MAC address was dynamically or statically blocked. The block mac command statically blocks MAC addresses.</td>
</tr>
<tr>
<td>Block Duration Remaining</td>
<td>The remaining time the MAC address has before the user with that MAC address can attempt Web Authentication.</td>
</tr>
</tbody>
</table>

Syntax: show webauth blocked-list

Displaying a list of local user databases

The following command displays a list of all local user databases configured on the FastIron switch and the number of users in each database.

FastIron#show local-userdb

<table>
<thead>
<tr>
<th>Local User Database Name</th>
<th>Number of users in the database</th>
</tr>
</thead>
<tbody>
<tr>
<td>My_Database</td>
<td>4</td>
</tr>
<tr>
<td>test</td>
<td>3</td>
</tr>
<tr>
<td>test123</td>
<td>3</td>
</tr>
</tbody>
</table>

Syntax: show local-userdb

Displaying a list of users in a local user database

The following command displays a list of all users in a particular local user database.
Displaying web authentication information

Gas Iron#show local-userdb test

+--+
| Local User Database : test |
| Username Password |
| ----------- ----------- |
| user1 e&Z9'%*&+ |
| user2 e,)A=)65N,%-3%1?@U |
| user3 e5%&-5%YO&Al%6%<@U |

As shown in the above example, passwords are encrypted in the command output.

Syntax: show local-userdb <db-name>

Displaying passcodes

If the passcode Web authentication mode is enabled, you can use the following command to display current passcodes.

FastIron#show webauth vlan 25 passcode
Current Passcode : 1389
This passcode is valid for 35089 seconds

Syntax: show webauth vlan <vlan-id> passcode
Protecting against Smurf attacks

This chapter explains how to protect your Brocade devices from Denial of Service (DoS) attacks. In a Denial of Service (DoS) attack, a router is flooded with useless packets, hindering normal operation. Brocade devices include measures for defending against two types of DoS attacks: Smurf attacks and TCP SYN attacks.

A **Smurf attack** is a kind of DoS attack where an attacker causes a victim to be flooded with ICMP echo (Ping) replies sent from another network. Figure 184 illustrates how a Smurf attack works.

FIGURE 184 How a Smurf attack floods a victim with ICMP replies

The attacker sends an ICMP echo request packet to the broadcast address of an intermediary network. The ICMP echo request packet contains the spoofed address of a victim network as its source. When the ICMP echo request reaches the intermediary network, it is converted to a Layer 2 broadcast and sent to the hosts on the intermediary network. The hosts on the intermediary network then send ICMP replies to the victim network.

For each ICMP echo request packet sent by the attacker, a number of ICMP replies equal to the number of hosts on the intermediary network are sent to the victim. If the attacker generates a large volume of ICMP echo request packets, and the intermediary network contains a large number of hosts, the victim can be overwhelmed with ICMP replies.

Avoiding being an intermediary in a Smurf attack

A Smurf attack relies on the intermediary to broadcast ICMP echo request packets to hosts on a target subnet. When the ICMP echo request packet arrives at the target subnet, it is converted to a Layer 2 broadcast and sent to the connected hosts. This conversion takes place only when directed broadcast forwarding is enabled on the device.
To avoid being an intermediary in a Smurf attack, make sure forwarding of directed broadcasts is disabled on the Brocade device. Directed broadcast forwarding is disabled by default. To disable directed broadcast forwarding, do one of the following.

FastIron(config)# no ip directed-broadcast

Syntax: [no] ip directed-broadcast

Avoiding being a victim in a Smurf attack

You can configure the Brocade device to drop ICMP packets when excessive numbers are encountered, as is the case when the device is the victim of a Smurf attack. You can set threshold values for ICMP packets that are targeted at the router itself or passing through an interface, and drop them when the thresholds are exceeded.

The syntax to set threshold values for ICMP packets targeted on a FastIron device is as follows.

Syntax: ip icmp burst-normal <value> burst-max <value> lockup <seconds>

The <value> of burst-normal and burst-max is specified in packets per second.

For example, to set threshold values for ICMP packets targeted on the router, enter the following command in the CONFIG mode.

FastIron(config)# ip icmp burst-normal 5000 burst-max 10000 lockup 300

To set threshold values for ICMP packets received on interface 3/11, enter the following command.

FastIron(config)# int e 3/11
FastIron(config-if-e1000-3/11)# ip icmp burst-normal 5000 burst-max 10000 lockup 300

Syntax: ip icmp burst-normal <value> burst-max <value> lockup <seconds>

The burst-normal value can be from 1 – 100000.

The burst-max value can be from 1 – 100000.

The lockup value can be from 1 – 10000.

This command is supported on Ethernet and Layer 3 ATM interfaces.

The number of incoming ICMP packets per second are measured and compared to the threshold values as follows:

- If the number of ICMP packets exceeds the burst-normal value, the excess ICMP packets are dropped.
- If the number of ICMP packets exceeds the burst-max value, all ICMP packets are dropped for the number of seconds specified by the lockup value. When the lockup period expires, the packet counter is reset and measurement is restarted.

In the example above, if the number of ICMP packets received per second exceeds 5,000, the excess packets are dropped. If the number of ICMP packets received per second exceeds 10,000, the device drops all ICMP packets for the next 300 seconds (five minutes).

Protection against ICMP attacks in TurboIron devices

The ICMP flood attack protection is implemented in hardware on TurboIron X series devices running software release 04.2.00 and later. This feature can coexist with port-based rate-limiting, MAC filters, Layer 4 ACLs, and other features.
You can set threshold values for ICMP packets that are targeted at the router itself or passing through an interface, and drop them when the thresholds are exceeded.

The syntax to set threshold values for ICMP packets targeted on a TurboIron device is as follows.

Syntax: ip icmp attack-rate burst-normal `<value>` burst-max `<value>` lockup `<seconds>`

The `attack-rate` keyword indicates that the normal burst value and maximum burst values to be specified in kilobits per second (kbps).

The `burst-normal` value ranges from 20 through 10000000.

The `burst-max` value ranges from 20 through 10000000.

The `lockup` value ranges from 1 through 10000.

Configuration notes

Consider the following statements when DoS attack protection is implemented at port level or VLAN level.

- The ACL based ingress rate-limiting for ICMP flow on a port is not accurate if ICMP Dos attack protection is enabled on the same port. Non-ICMP flows are not affected.

- ICMP DoS attack protection considers packet marked as drop by port-based ingress rate limiting. In this case, even if the port-based ingress rate-limiting reduces the packet per byte rate, DoS attack is still detected by using actual ingress packet per byte rate on a port.

NOTE

If you configure both DoS attack protection and ACL or MAC filter, the DoS attack statistics for dropped ICMP or TCP SYN packet increments even if the ACL or MAC filter denies the traffic.

Protecting against TCP SYN attacks

TCP SYN attacks exploit the process of how TCP connections are established in order to disrupt normal traffic flow. When a TCP connection starts, the connecting host first sends a TCP SYN packet to the destination host. The destination host responds with a SYN ACK packet, and the connecting host sends back an ACK packet. This process, known as a “TCP three-way handshake”, establishes the TCP connection.

While waiting for the connecting host to send an ACK packet, the destination host keeps track of the as-yet incomplete TCP connection in a connection queue. When the ACK packet is received, information about the connection is removed from the connection queue. Usually there is not much time between the destination host sending a SYN ACK packet and the source host sending an ACK packet, so the connection queue clears quickly.

In a TCP SYN attack, an attacker floods a host with TCP SYN packets that have random source IP addresses. For each of these TCP SYN packets, the destination host responds with a SYN ACK packet and adds information to the connection queue. However, since the source host does not exist, no ACK packet is sent back to the destination host, and an entry remains in the connection queue until it ages out (after around a minute). If the attacker sends enough TCP SYN packets, the connection queue can fill up, and service can be denied to legitimate TCP connections.
To protect against TCP SYN attacks, you can configure the Brocade device to drop TCP SYN packets when excessive numbers are encountered. You can set threshold values for TCP SYN packets that are targeted at the router itself or passing through an interface, and drop them when the thresholds are exceeded.

For example, to set threshold values for TCP SYN packets targeted at the router, enter the following command in CONFIG mode.

`FastIron(config)# ip tcp burst-normal 10 burst-max 100 lockup 300`

To set threshold values for TCP SYN packets received on interface 3/11, enter the following command.

`FastIron(config)# int e 3/11
FastIron(config-if-e1000-3/11)# ip tcp burst-normal 10 burst-max 100 lockup 300`

Syntax: `ip tcp burst-normal <value> burst-max <value> lockup <seconds>`

NOTE
This command is available at the global CONFIG level on both Chassis devices and Stackable devices. On Chassis devices, this command is available at the Interface level as well. This command is supported on Ethernet and Layer 3 ATM interfaces.

The `burst-normal` value ranges from 1 through 100000.

The `burst-max` value ranges from 1 through 100000.

The `lockup` value ranges from 1 through 10000.

The TurboIron X Series device running software release 04.2.00 and later supports the following burst-normal, burst-max, and lockup values.

The `burst-normal` value ranges from 30 through 16000000.

The `burst-max` value ranges from 30 through 16000000.

The `lockup` value ranges from 1 through 10000.

The number of incoming TCP SYN packets per second are measured and compared to the threshold values as follows:

- If the number of TCP SYN packets exceeds the `burst-normal` value, the excess TCP SYN packets are dropped.
- If the number of TCP SYN packets exceeds the `burst-max` value, all TCP SYN packets are dropped for the number of seconds specified by the `lockup` value. When the lockup period expires, the packet counter is reset and measurement is restarted.

In the example above, if the number of TCP SYN packets received per second exceeds 10, the excess packets are dropped. If the number of TCP SYN packets received per second exceeds 100, the device drops all TCP SYN packets for the next 300 seconds (five minutes).

Protection against TCP-SYN attacks in TurboIron devices

The TCP-SYN flood attack protection is implemented in hardware on TurboIron X Series devices running software release 04.2.00 and later. The protection against TCP SYN flood assume that the TCP SYN packet size is 74 bytes, which includes L2, IPv4, and TCP header. If packet size of the attack exceeds the limit, the TCP attack protection takes effect faster than the configured burst values.
Configuration notes

Consider the following statements when DoS attack protection is implemented at port level or Virtual Interface (VE) level.

- The ACL based ingress rate-limiting for TCP flow on a port is not accurate if TCP DoS attack protection is enabled on the same port. Non-TCP flows are not affected.
- TCP DoS attack protection considers packet marked as drop by port-based ingress rate limiting. In this case, even if the port-based ingress rate-limiting reduces the packet per byte rate, DoS attack is still detected by using actual ingress packet per byte rate on a port.

TCP security enhancement

TCP security enhancement improves upon the handling of TCP inbound segments. This enhancement eliminates or minimizes the possibility of a TCP reset attack, in which a perpetrator attempts to prematurely terminate an active TCP session, and a data injection attack, wherein an attacker injects or manipulates data in a TCP connection.

In both cases, the attack is blind, meaning the perpetrator does not have visibility into the content of the data stream between two devices, but blindly injects traffic. Also, the attacker does not see the direct effect, the continuing communications between the devices and the impact of the injected packet, but may see the indirect impact of a terminated or corrupted session.

The TCP security enhancement prevents and protects against the following three types of attacks:

- Blind TCP reset attack using the reset (RST) bit.
- Blind TCP reset attack using the synchronization (SYN) bit
- Blind TCP packet injection attack

The TCP security enhancement is automatically enabled.

Protecting against a blind TCP reset attack using the RST bit

In a blind TCP reset attack using the RST bit, a perpetrator attempts to guess the RST segments in order to prematurely terminate an active TCP session.

To prevent a user from using the RST bit to reset a TCP connection, the RST bit is subject to the following rules when receiving TCP segments:

- If the RST bit is set and the sequence number is outside the expected window, the Brocade device silently drops the segment.
- If the RST bit is exactly the next expected sequence number, the Brocade device resets the connection.
- If the RST bit is set and the sequence number does not exactly match the next expected sequence value, but is within the acceptable window, the Brocade device sends an acknowledgement.

Prior software releases apply the following rules to the RST bit when receiving TCP segments:

- If the RST bit is set and the sequence number is outside the expected window, the Brocade device silently drops the segment.
- If the RST bit is set and the sequence number is within the acceptable range, the Brocade device resets the connection.
Protecting against a blind TCP reset attack using the SYN bit

In a blind TCP reset attack, a perpetrator attempts to guess the SYN bits to prematurely terminate an active TCP session.

To prevent a user from using the SYN bit to tear down a TCP connection, in current software releases, the SYN bit is subject to the following rules when receiving TCP segments:

- If the SYN bit is set and the sequence number is outside the expected window, the Brocade device sends an acknowledgement (ACK) back to the peer.
- If the SYN bit is set and the sequence number is an exact match to the next expected sequence, the Brocade device sends an ACK segment to the peer. Before sending the ACK segment, the software subtracts one from the value being acknowledged.
- If the SYN bit is set and the sequence number is acceptable, the Brocade device sends an acknowledgement (ACK) segment to the peer.

Prior software releases apply the following rules to the SYN bit when receiving TCP segments:

- If the SYN bit is set and the sequence number is outside the expected window, the Brocade device sends an ACK back to the sender.
- If the SYN bit is set and the sequence number is acceptable, the Brocade device sends a RST segment to the peer.

Protecting against a blind injection attack

In a blind TCP injection attack, a perpetrator tries to inject or manipulate data in a TCP connection.

To reduce the chances of a blind injection attack, an additional check on all incoming TCP segments is performed.

Displaying statistics about packets dropped because of DoS attacks

To display information about ICMP and TCP SYN packets dropped because burst thresholds were exceeded, enter the following command.

```
FastIron# show statistics dos-attack
```

```
---------------------------- Local Attack Statistics --------------------------
ICMP Drop Count    ICMP Block Count    SYN Drop Count    SYN Block Count
---------------    ----------------    --------------    ---------------
0                   0                 0                  0
--------------------------- Transit Attack Statistics -------------------------
Port   ICMP Drop Count    ICMP Block Count    SYN Drop Count    SYN Block Count
-----  ---------------    ----------------    --------------    ---------------
3/11               0                   0                 0                  0
```

Syntax: `show statistics dos-attack`

To clear statistics about ICMP and TCP SYN packets dropped because burst thresholds were exceeded, enter the following command.

```
FastIron# clear statistics dos-attack
```

Syntax: `clear statistics dos-attack`
Displaying statistics about packets dropped because of DoS attacks in TurboIron device

To display information about ICMP and TCP SYN packets dropped because burst thresholds were exceeded, enter the following command.

```
TurboIron# show statistics dos-attack
```

<table>
<thead>
<tr>
<th>Local Attack Statistics</th>
<th>TCP-SYN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>TCP-SYN</td>
</tr>
<tr>
<td>Dropped pkts</td>
<td>Dropped pkts</td>
</tr>
<tr>
<td>Blocked pkts</td>
<td>Blocked pkts</td>
</tr>
<tr>
<td>Lockup Count</td>
<td>Lockup Count</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transit Attack Statistics</th>
<th>TCP-SYN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>TCP-SYN</td>
</tr>
<tr>
<td>Port/VE Dropped pkts</td>
<td>TCP-SYN</td>
</tr>
<tr>
<td>Blocked pkts</td>
<td>Blocked pkts</td>
</tr>
<tr>
<td>Lockup Count</td>
<td>Lockup Count</td>
</tr>
<tr>
<td>25</td>
<td>76</td>
</tr>
<tr>
<td>1754</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 262 defines the fields in the output command.

TABLE 262 Output of show statistics dos-attack command

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped pkts</td>
<td>Displays the number of packets dropped due to exceeding the configured burst-normal rate.</td>
</tr>
<tr>
<td>Blocked pkt</td>
<td>Displays the number of packets dropped due to exceeding the configured burst-max rate.</td>
</tr>
<tr>
<td>Lockup Count</td>
<td>Displays the number of times a port or VE is locked down for ICMP or TCP-SYN packets.</td>
</tr>
</tbody>
</table>
Protecting against TCP SYN attacks
Dynamic ARP inspection

For enhanced network security, you can configure the Brocade device to inspect and keep track of Dynamic Host Configuration Protocol (DHCP) assignments.

NOTE
TurboIron X Series devices do not support the features in this chapter.

Dynamic ARP Inspection (DAI) enables the Brocade device to intercept and examine all ARP request and response packets in a subnet and discard those packets with invalid IP to MAC address bindings. DAI can prevent common man-in-the-middle (MIM) attacks such as ARP cache poisoning, and disallow mis-configuration of client IP addresses.

ARP poisoning

ARP provides IP communication within a Layer 2 broadcast domain by mapping an IP address to a MAC address. Before a host can talk to another host, it must map the IP address to a MAC address first. If the host does not have the mapping in its ARP table, it creates an ARP request to resolve the mapping. All computers on the subnet will receive and process the ARP requests, and the host whose IP address matches the IP address in the request will send an ARP reply.

An ARP poisoning attack can target hosts, switches, and routers connected to the Layer 2 network by poisoning the ARP caches of systems connected to the subnet and by intercepting traffic intended for other hosts on the subnet. For instance, a malicious host can reply to an ARP request with its own MAC address, thereby causing other hosts on the same subnet to store this information in their ARP tables or replace the existing ARP entry. Furthermore, a host can send gratuitous replies without having received any ARP requests. A malicious host can also send out ARP packets claiming to have an IP address that actually belongs to another host (e.g., the default router). After the attack, all traffic from the device under attack flows through the attacker computer and then to the router, switch, or host.

How DAI works

DAI allows only valid ARP requests and responses to be forwarded.

A Brocade device on which DAI is configured does the following:

- Intercepts ARP packets received by the system CPU
- Inspects all ARP requests and responses received on untrusted ports
- Verifies that each of the intercepted packets has a valid IP-to-MAC address binding before updating the local ARP table, or before forwarding the packet to the appropriate destination
- Drops invalid ARP packets
When you enable DAI on a VLAN, by default, all member ports are untrusted. You must manually configure trusted ports. In a typical network configuration, ports connected to host ports are untrusted. You configure ports connected to other switches or routers as trusted.

DAI inspects ARP packets received on untrusted ports, as shown in Figure 185. DAI carries out the inspection based on IP-to-MAC address bindings stored in a trusted binding database. For the Brocade device, the binding database is the ARP table, which supports DAI, DHCP snooping, and IP Source Guard. To inspect an ARP request packet, DAI checks the source IP and source MAC address against the ARP table. For an ARP reply packet, DAI checks the source IP, source MAC, destination IP, and destination MAC addresses. DAI forwards the valid packets and discards those with invalid IP-to-MAC address bindings.

When ARP packets reach a trusted port, DAI lets them through, as shown in Figure 185.

FIGURE 185 Dynamic ARP inspection at work

ARP entries

DAI uses the IP/MAC mappings in the ARP table to validate ARP packets received on untrusted ports.

ARP entries in the ARP table derive from the following:

- **Dynamic ARP** – normal ARP learned from trusted ports.
- **Static ARP** – statically configured IP/MAC/port mapping.
- **Inspection ARP** – statically configured IP/MAC mapping, where the port is initially unspecified. The actual physical port mapping will be resolved and updated from validated ARP packets. Refer to “Configuring an inspection ARP entry” on page 1650.
- **DHCP-Snooping ARP** – information collected from snooping DHCP packets when DHCP snooping is enabled on VLANs.

The status of an ARP entry is either pending or valid:

- **Valid** – the mapping is valid, and the port is resolved. This is always the case for static ARP entries.
- **Pending** – for normal dynamic and inspection ARP entries before they are resolved, and the port mapped. Their status changes to valid when they are resolved, and the port mapped.

Refer to also “System reboot and the binding database” on page 1653.
Configuration notes and feature limitations

The following limits and restrictions apply when configuring DAI:

- To run Dynamic ARP Inspection, you must first enable support for ACL filtering based on VLAN membership or VE port membership. To do so, enter the following commands at the Global CONFIG Level of the CLI.

 FastIron(config)#enable ACL-per-port-per-vlan
 FastIron(config)#write memory
 FastIron(config)#exit
 FastIron#reload

 NOTE
 You must save the configuration and reload the software to place the change into effect.

- Brocade recommends that you do not enable DAI on a trunk port.

- The maximum number of DHCP and static DAI entries depends on the maximum number of ARP table entries allowed on the device. A FastIron Layer 2 switch can have up to 256 ARP entries and a FastIron Layer 3 switch can have up to 64,000 ARP entries. In a FastIron Layer 3 switch, you can use the `system-max arp` command to change the maximum number of ARP entries for the device.
 However, only up to 1024 DHCP entries can be saved to flash.

- Starting in software release FSX 04.0.01, ACLs are supported on member ports of a VLAN on which DHCP snooping and Dynamic ARP Inspection (DAI) are enabled.

- Starting in software release FSX 04.2.00, DAI is supported together with multi-device port authentication and dynamic ACLs. For details, refer to “Support for dynamic ARP inspection with dynamic ACLs” on page 1573.

- DAI is supported on a VLAN without a VE, or on a VE with or without an assigned IP address.

Configuring DAI

Configuring DAI consists of the following steps.

1. Configure inspection ARP entries for hosts on untrusted ports. Refer to “Configuring an inspection ARP entry” on page 1650.

2. Enable DAI on a VLAN to inspect ARP packets. Refer to “Enabling DAI on a VLAN” on page 1650.

3. Configure the trust settings of the VLAN members. ARP packets received on trusted ports bypass the DAI validation process. ARP packets received on untrusted ports go through the DAI validation process. Refer to “Enabling trust on a port” on page 1650.

4. Enable DHCP snooping to populate the DHCP snooping IP-to-MAC binding database.

The following shows the default settings of DAI.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic ARP Inspection</td>
<td>Disabled</td>
</tr>
<tr>
<td>Trust setting for ports</td>
<td>Untrusted</td>
</tr>
</tbody>
</table>
Configuring an inspection ARP entry

Static ARP and static inspection ARP entries need to be configured for hosts on untrusted ports. Otherwise, when DAI checks ARP packets from these hosts against entries in the ARP table, it will not find any entries for them, and the Brocade device will not allow and learn ARP from an untrusted host.

When the inspection ARP entry is resolved with the correct IP/MAC mapping, its status changes from pending to valid.

To configure an inspection ARP entry, enter a command such as the following.

```
FastIron(config)#arp 20.20.20.12 0001.0002.0003 inspection
```

This command defines an inspection ARP entry, mapping a device IP address 20.20.20.12 with its MAC address 0001.0002.0003. The ARP entry will be in Pend (pending) status until traffic with the matching IP-to-MAC is received on a port.

Syntax: `[no] arp <index> <ip-addr> <mac-addr> inspection`

The `<index>` can be from 1 up to the maximum number of static entries allowed.

The `<ip-addr> <mac-addr>` parameter specifies a device IP address and MAC address pairing.

Enabling DAI on a VLAN

DAI is disabled by default. To enable DAI on an existing VLAN, enter the following command.

```
FastIron(config)#ip arp inspection vlan 2
```

The command enables DAI on VLAN 2. ARP packets from untrusted ports in VLAN 2 will undergo DAI inspection.

Syntax: `[no] ip arp inspection vlan <vlan-number>`

The `<vlan-number>` variable specifies the ID of a configured VLAN.

Enabling trust on a port

The default trust setting for a port is untrusted. For ports that are connected to host ports, leave their trust settings as untrusted.

To enable trust on a port, enter commands such as the following.

```
FastIron(config)#interface ethernet 1/4
FastIron(config-if-e10000-1/4)#arp inspection trust
```

The commands change the CLI to the interface configuration level of port 1/4 and set the trust setting of port 1/4 to trusted.

Syntax: `[no] arp inspection trust`

Displaying ARP inspection status and ports

To display the ARP inspection status for a VLAN and the trusted/untrusted port, enter the following command.
DHCP snooping

Dynamic Host Configuration Protocol (DHCP) snooping enables the Brocade device to filter untrusted DHCP packets in a subnet. DHCP snooping can ward off MiM attacks, such as a malicious user posing as a DHCP server sending false DHCP server reply packets with the intention of misdirecting other users. DHCP snooping can also stop unauthorized DHCP servers and prevent errors due to user mis-configuration of DHCP servers.

Often DHCP snooping is used together with Dynamic ARP Inspection and IP Source Guard.

Syntax: show ip arp inspection [vlan <vlan_id>]

The <vlan_id> variable specifies the ID of a configured VLAN.

Displaying the ARP table

To display the ARP table, enter the following command.

```
FastIron#show arp
```

```
Total number of ARP entries: 2

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
<th>Age</th>
<th>Port</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.43.1.1</td>
<td>0004.80a0.4000</td>
<td>Dynamic</td>
<td>0</td>
<td>mgmt1</td>
<td>Valid</td>
</tr>
<tr>
<td>10.43.1.78</td>
<td>00e0.8160.6ab1</td>
<td>Dynamic</td>
<td>2</td>
<td>mgmt1</td>
<td>Valid</td>
</tr>
</tbody>
</table>
```

The command displays all ARP entries in the system. For field definitions, refer to Table 183 on page 1092.

Syntax: show arp
How DHCP snooping works

When enabled on a VLAN, DHCP snooping stands between untrusted ports (those connected to host ports) and trusted ports (those connected to DHCP servers). A VLAN with DHCP snooping enabled forwards DHCP request packets from clients and discards DHCP server reply packets on untrusted ports, and it forwards DHCP server reply packets on trusted ports to DHCP clients, as shown in the following figures.

FIGURE 186 DHCP snooping at work - on an untrusted port

FIGURE 187 DHCP snooping at work - on a trusted port

DHCP binding database

When it forwards DHCP server reply packets on trusted ports, the Brocade device saves the client IP-to-MAC address binding information in the DHCP binding database. This is how the DHCP snooping binding table is populated. The information saved includes MAC address, IP address, lease time, VLAN number, and port number.

In the Brocade device, the DHCP binding database is integrated with the enhanced ARP table, which is used by Dynamic ARP Inspection. For more information, refer to “ARP entries” on page 1648.

The lease time will be refreshed when the client renews its IP address with the DHCP server; otherwise the Brocade device removes the entry when the lease time expires.
About client IP-to-MAC address mappings

Starting in release FSX 04.2.00, client IP addresses need not be on directly-connected networks, as long as the client MAC address is learned on the client port and the client port is in the same VLAN as the DHCP server port. In this case, the system will learn the client IP-to-MAC port mapping. Therefore, a VLAN with DHCP snooping enabled does not require a VE interface.

In releases prior to FSX 04.2.00, in the Layer 3 software image, DHCP snooping does not learn the secure IP-to-MAC address mapping for a client, if the client port is not a virtual ethernet (VE) interface with an IP subnet address. In other words, the client IP address had to match one of the subnets of the client port in order for DHCP to learn the address mapping.

System reboot and the binding database

To allow DAI and DHCP snooping to work smoothly across a system reboot, the binding database is saved to a file in the system flash memory after an update to the binding database, with a 30 second delay. The flash file is written and read only if DHCP snooping is enabled.

Configuration notes and feature limitations

The following limits and restrictions apply to DHCP snooping:

- To run DHCP snooping, you must first enable support for ACL filtering based on VLAN membership or VE port membership. To do so, enter the following commands at the Global CONFIG Level of the CLI.

```
FastIron(config)#enable ACL-per-port-per-vlan
FastIron(config)#write memory
FastIron(config)#exit
FastIron#reload
```

NOTE

You must save the configuration and reload the software to place the change into effect.

- DHCP snooping is not supported on trunk ports.
- A switch can have up to 256 ARP entries, therefore, DHCP entries are limited to 256. A router, however, can have 64,000 ARP entries, so a router can have up to 64,000 DHCP entries, of which only 1024 entries can be saved to flash on reboot.
- Starting in software release FSX 04.0.01, ACLs are supported on member ports of a VLAN on which DHCP snooping and Dynamic ARP Inspection (DAI) are enabled.
- See also “About client IP-to-MAC address mappings” on page 1653.
- Starting in software release FSX 04.2.00, DHCP snooping is supported together with multi-device port authentication and dynamic ACLs. For details, refer to “Support for DHCP snooping with dynamic ACLs” on page 1574.
- Starting in software release FSX 05.0.00, DHCP snooping supports DHCP relay agent information (DHCP Option 82). For details, refer to “DHCP relay agent information (DHCP Option 82)” on page 1656.

Configuring DHCP snooping

Configuring DHCP snooping consists of the following steps.
1. Enable DHCP snooping on a VLAN. Refer to “Enabling DHCP snooping on a VLAN” on page 1654.

2. For ports that are connected to a DHCP server, change their trust setting to trusted. Refer to “Enabling trust on a port” on page 1654.

The following shows the default settings of DHCP snooping.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP snooping</td>
<td>Disabled</td>
</tr>
<tr>
<td>Trust setting for ports</td>
<td>Untrusted</td>
</tr>
</tbody>
</table>

Enabling DHCP snooping on a VLAN

DHCP packets for a VLAN with DHCP snooping enabled are inspected.

DHCP snooping is disabled by default. This feature must be enabled on the client and the DHCP server VLANs. To enable DHCP snooping, enter the following global command for these VLANs.

FastIron(config)#ip dhcp snooping vlan 2

The command enables DHCP snooping on VLAN 2.

Syntax: `[no] ip dhcp snooping vlan <vlan-number>`

The `<vlan-number>` variable specifies the ID of a configured client or DHCP server VLAN.

Enabling trust on a port

The default trust setting for a port is untrusted. To enable trust on a port connected to a DHCP server, enter commands such as the following.

FastIron(config)#interface ethernet 1/1
FastIron(config-if-e10000-1/1)#dhcp snooping trust

Port 1/1 is connected to a DHCP server. The commands change the CLI to the interface configuration level of port 1/1 and set the trust setting of port 1/1 to trusted.

Syntax: `[no] dhcp snooping trust`

Clearing the DHCP binding database

You can clear the DHCP binding database using the CLI command `clear dhcp`. You can remove all entries in the database, or remove entries for a specific IP address only.

To remove all entries from the DHCP binding database, enter the following command.

FastIron#clear dhcp

To clear entries for a specific IP address, enter a command such as the following.

FastIron#clear dhcp 10.10.102.4

Syntax: `clear dhcp [<ip-addr>]`
Displaying DHCP snooping status and ports

To display the DHCP snooping status for a VLAN and the trusted/untrusted port, use the `show ip dhcp snooping vlan` command.

```
FastIron#show ip dhcp snooping vlan 2
IP DHCP snooping VLAN 2: Enabled
```

Syntax: `show ip dhcp snooping [vlan <vlan-id>]`

Displaying the DHCP snooping binding database

To display the DHCP snooping binding database, use the `show ip dhcp snooping info` command.

```
FastIron#show ip dhcp snooping info
DHCP snooping Info
Total learnt entries 1
SAVED DHCP ENTRIES IN FLASH
 IP Address  Mac Address  Port  vlan  lease
 0        10.10.10.20  0001.0002.0003  6/13  1112  361
```

Syntax: `show ip dhcp snooping info`

Displaying DHCP binding entry and status

To display the DHCP binding entry and its current status, use the `show arp` command.

```
FastIron#show arp
Total number of ARP entries: 2
 IP Address  MAC Address  Type   Age    Port  Status
 1     10.43.1.1       00e0.0001.c320  Dynamic 0     mgmt1  Valid
 2     10.43.1.199     00e0.0002.b263  Dynamic 7     mgmt1  Valid
```

Syntax: `show arp`

For field definitions, refer to Table 183 on page 1092.

DHCP snooping configuration example

The following example configures VLAN 2 and VLAN 20, and changes the CLI to the global configuration level to enable DHCP snooping on the two VLANs. The commands are as follows.

```
FastIron(config)#vlan 2
FastIron(config-vlan-2)#untagged ethe 1/3 to 1/4
FastIron(config-vlan-2)#router-interface ve 2
FastIron(config-vlan-2)#exit
FastIron(config)#ip dhcp snooping vlan 2

FastIron(config)#vlan 20
FastIron(config-vlan-20)#untagged ethe 1/1 to 1/2
FastIron(config-vlan-20)#router-interface ve 20
FastIron(config-vlan-20)#exit
FastIron(config)#ip dhcp snooping vlan 20
```
On VLAN 2, client ports 1/3 and 1/4 are untrusted by default all client ports are untrusted. Hence, only DHCP client request packets received on ports 1/3 and 1/4 are forwarded.

On VLAN 20, ports 1/1 and 1/2 are connected to a DHCP server. DHCP server ports are set to trusted.

FastIron(config)#interface ethernet 1/1
FastIron(config-if-e10000-1/1)#dhcp snooping trust
FastIron(config-if-e10000-1/1)#exit
FastIron(config)#interface ethernet 1/2
FastIron(config-if-e10000-1/2)#dhcp snooping trust
FastIron(config-if-e10000-1/2)#exit

Hence, DHCP server reply packets received on ports 1/1 and 1/2 are forwarded, and client IP/MAC binding information is collected.

The example also sets the DHCP server address for the local relay agent.

FastIron(config)#interface ve 2
FastIron(config-vif-2)#ip address 20.20.20.1/24
FastIron(config-vif-2)#ip helper-address 1 30.30.30.4
FastIron(config-vif-2)#interface ve 20
FastIron(config-vif-20)#ip address 30.30.30.1/24

DHCP relay agent information (DHCP Option 82)

DHCP relay agent information, also known as DHCP option 82, enables a DHCP relay agent to insert information about a client's identity into a DHCP client request being sent to a DHCP server.

Starting with software release FSX 05.0.00, when DHCP snooping is enabled on the FastIron switch, DHCP option 82 is automatically enabled. DHCP packets are processed as follows:

- Before relaying a DHCP discovery packet or DHCP request packet from a client to a DHCP server, the FastIron switch will add agent information to the packet.
- Before relaying a DHCP reply packet from a DHCP server to a client, the FastIron switch will remove relay agent information from the packet.

As illustrated in Figure 188, the DHCP relay agent (the FastIron switch), inserts DHCP option 82 attributes when relaying a DHCP request packet to a DHCP server.

FIGURE 188 DHCP Option 82 attributes added to the DHCP packet

As illustrated in Figure 189, the FastIron switch deletes DHCP option 82 attributes before forwarding a server reply packet back to a DHCP client.
DHCP relay agent information (DHCP Option 82)

The DHCP option 82 insertion/deletion feature is available only when DHCP snooping is enabled for the client/server ports.

Configuration notes

- DHCP snooping and DHCP option 82 are supported on a per-VLAN basis.
- DHCP option 82 follows the same configuration rules and limitations as for DHCP snooping. For more information, refer to “Configuration notes and feature limitations” on page 1653.

DHCP Option 82 sub-options

The Brocade implementation of DHCP Option 82 supports the following sub-options:

- Sub-Option 1 – Circuit ID
- Sub-Option 2 - Remote ID
- Sub-Option 6 – Subscriber ID

These sub-options are described in the following sections.

Sub-option 1 – circuit id

The Circuit ID (CID) identifies the circuit or port from which a DHCP client request was sent. The FastIron switch uses this information to relay DHCP responses back to the proper circuit, for example, the port number on which the DHCP client request packet was received.
Brocade FastIron devices support the **General CID packet format**. This simple format encodes the CID type, actual information length, VLAN ID, slot number, and port number. This format is compatible with the format used by other vendors’ devices. Figure 190 illustrates the general CID packet format.

FIGURE 190 General CID packet format

<table>
<thead>
<tr>
<th>1</th>
<th>6</th>
<th>0</th>
<th>4</th>
<th>VLAN ID</th>
<th>Slot ID</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td>2 Bytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-option 2 – Remote ID

The Remote ID (RID) identifies the remote host end of the circuit (the relay agent). Brocade devices use the MAC address to identify itself as the relay agent. Figure 191 illustrates the RID packet format.

FIGURE 191 RID packet format

<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>0</th>
<th>6</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-option 6 - subscriber id

The Subscriber ID (SID) is a unique identification number that enables an Internet Service Provider to:

- Identify a subscriber
- Assign specific attributes to that subscriber (for example, host IP address, subnet mask, and domain name server (DNS))
- Trigger accounting

Figure 192 illustrates the SID packet format.

FIGURE 192 SID packet format

<table>
<thead>
<tr>
<th>6</th>
<th>N</th>
<th>ASCII String 1.....N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The second byte (N in Figure 192) is the length of the ASCII string that follows. The FastIron switch supports up to 50 ASCII characters.

Configuring DHCP option 82

When DHCP snooping is enabled on a VLAN, by default, DHCP option 82 also is enabled. You do not need to perform any extra configuration steps to enable this feature. To enable DHCP snooping, refer to “Enabling DHCP snooping on a VLAN” on page 1654.
When processing DHCP packets, the FastIron switch applies the following default behavior when DHCP option 82 is enabled:

- Subjects all ports in the VLAN to DHCP option 82 processing
- Uses the general CID packet format
- Uses the standard RID packet format
- Replaces relay agent information received in DHCP packets with its own information
- Does not enable SID processing

When DHCP option 82 is enabled, you can optionally:

- Disable DHCP Option 82 processing on individual ports in the VLAN
- Configure the device to drop or keep the relay agent information in a DHCP packet instead of replacing it with its own information
- Enable SID processing

Disabling and re-enabling DHCP option 82 processing on an individual interface

By default, when DHCP option 82 is enabled on a VLAN, DHCP packets received on all member ports of the VLAN are subject to DHCP option 82 processing. You can optionally disable and later re-enable DHCP option 82 processing on one or more member ports of the VLAN. To do so, use the commands in this section.

To disable a particular port in a VLAN from adding relay agent information to DHCP packets, enter commands such as the following.

```
FastIron(config)#ip dhcp snooping vlan 1
FastIron(config)#interface ethernet 1/4
FastIron(config-if-e1000-1/4)#no dhcp snooping relay information
```

The first CLI command enables DHCP snooping and DHCP option 82 on VLAN 1. The second command changes the CLI configuration level to the Interface configuration level for port e 1/4. The last command disables DHCP option 82 on interface e 1/4, which is a member of VLAN 1.

To re-enable DHCP option 82 on an interface after it has been disabled, enter the following command at the Interface level of the CLI.

```
FastIron(config-if-e1000-1/4)#dhcp snooping relay information
```

Syntax: `[no] dhcp snooping relay information`

Use the `show ip dhcp snooping vlan` command to view the ports on which DHCP option 82 processing is disabled. For more information, refer to “Viewing the ports on which DHCP option 82 is disabled” on page 1661.

Changing the forwarding policy

When the Brocade device receives a DHCP message that contains relay agent information, by default, the device replaces the information with its own relay agent information. If desired, you can configure the device to drop or keep the information instead of replacing it. To do so, use the CLI commands in this section.

For example, to configure the device to keep the relay agent information contained in a DHCP message, enter the following command.

```
FastIron(config)#ip dhcp relay information policy keep
```
To configure the device to drop messages that contain the relay agent information, enter the following command.

```
FastIron(config)#ip dhcp relay information policy drop
```

Syntax: `ip dhcp relay information policy <policy-type>`

- `<policy-type>` can be one of the following:
 - **drop** – Configures the device to discard messages containing relay agent information
 - **keep** – Configures the device to keep the existing relay agent information
 - **replace** – Configures the device to overwrite the relay agent information with the information in the Brocade configuration. This is the default behavior.

NOTE

This command is not supported on TurboIron X Series devices running software release 04.2.00.

Use the `show ip dhcp relay information` command to view the forwarding policy configured on the switch. Refer to “Viewing the circuit ID, remote id, and forwarding policy” on page 1660.

Enabling and disabling subscriber ID processing

You can configure a unique subscriber ID (SID) per port. Unlike the CID and RID sub-options, the SID sub-option is not automatically enabled when DHCP option 82 is enabled. To enable SID processing, enter commands such as the following.

```
FastIron(config)#ip dhcp snooping vlan 1
FastIron(config)#interface ethernet 1/4
FastIron(config-if-e1000-1/4)#dhcp snooping relay information subscriber-id Brcd01
```

The first CLI command enables DHCP snooping and DHCP option 82 on VLAN 1. The second command changes the CLI configuration level to the Interface configuration level for port e 1/4. The last command enables interface e 1/4 to insert the SID information in DHCP packets. In this case, the SID is Fdry01. All other ports in VLAN 1 on which SID is not enabled will send the standard relay agent information (CID and RID information) only.

Syntax: `[no] dhcp snooping relay information option subscriber-id <ASCII string>`

Enter up to 50 alphanumeric characters for `<ASCII string>`.

Use the `no` form of the command to disable SID processing once it is enabled.

Use the `show interfaces ethernet` command to view the subscriber ID configured on a port. Refer to “Viewing the status of DHCP option 82 and the subscriber id” on page 1661.

Viewing information about DHCP option 82 processing

Use the commands in this section to view information about DHCP option 82 processing.

Viewing the circuit Id, remote id, and forwarding policy

Use the `show ip dhcp relay information` command to obtain information about the circuit ID, remote ID, and forwarding policy for DHCP option 82. The following shows an example output.
DHCP relay agent information (DHCP Option 82)

Syntax: `show ip dhcp relay information`

NOTE
This command is not supported on TurboIron X Series devices running software release 04.2.00.

TABLE 263 Output for the `ip dhcp relay information` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays</th>
</tr>
</thead>
</table>
| Circuit-ID | The agent circuit ID format:
| | • `vlan-mod-port` – The default circuit ID format. |
| Remote-ID | The remote ID format. In software release 05.0.00, this field displays `mac`, which is the default remote ID format. |
| Policy | How the Brocade switch processes relay agent information it receives in DHCP messages:
| | • `drop` – drops the relay agent information
| | • `keep` – keeps the relay agent information
| | • `replace` – replaces the relay agent information with its own |

Viewing the ports on which DHCP option 82 is disabled

Use the following command to refer which port in a DHCP snooping VLAN has DHCP Option 82 disabled.

FastIron# `show ip dhcp snooping vlan 1`

IP DHCP snooping VLAN 1: Enabled

```
Trusted Ports : ethe 3
Untrusted Ports : ethe 1 to 2 ethe 4 to 24
Relay Info. disabled Ports: ethe 10
```

Syntax: `show ip dhcp snooping vlan <vlan-id>`

TABLE 264 Output for the `show ip dhcp snooping vlan` command

<table>
<thead>
<tr>
<th>This field...</th>
<th>Displays</th>
</tr>
</thead>
</table>
| IP DHCP snooping VLAN `<vlan-id>` | The DHCP snooping and DHCP option 82 status for a VLAN:
| | • Enabled
| | • Disabled |
| Trusted Ports | A list of trusted ports in the VLAN. |
| Untrusted Ports | A list of untrusted ports in the VLAN. |
| Relay Info. disabled Ports | Ports on which DHCP option 82 was disabled. |

Viewing the status of DHCP option 82 and the subscriber id

Use the `show interfaces ethernet` command to obtain information about the status of DHCP option 82 and the configured subscriber ID, if applicable. In the example below, the text in **bold** type displays the information specific to DHCP option 82.
The above output shows that DHCP option 82 is **Enabled** on the device and the configured subscriber ID is **Brocade001**.

Syntax: `show interfaces ethernet <slotnum/portnum>`

IP source guard

You can use IP Source Guard together with Dynamic ARP Inspection on untrusted ports. Refer to “**DHCP snooping**” on page 1651 and “**Dynamic ARP inspection**” on page 1647.

The Brocade implementation of the IP Source Guard feature supports configuration on a port, on specific VLAN memberships on a port (Layer 2 devices only), and on specific ports on a virtual interface (VE) (Layer 3 devices only).

When IP Source Guard is first enabled, only DHCP packets are allowed and all other IP traffic is blocked. When the system learns a valid IP address, IP Source Guard then allows IP traffic. Only the traffic with valid source IP addresses are permitted. The system learns of a valid IP address from DHCP Snooping. When it learns a valid IP address, the system permits the learned source IP address.

When a new IP source entry binding on the port is created or deleted, the ACL will be recalculated and reapplied in hardware to reflect the change in IP source binding. By default, if IP Source Guard is enabled without any IP source binding on the port, an ACL that denies all IP traffic is loaded on the port.
Configuration notes and feature limitations

- To run IP Source Guard, you must first enable support for ACL filtering based on VLAN membership or VE port membership. To do so, enter the following commands at the Global CONFIG Level of the CLI.

 FastIron(config)#enable ACL-per-port-per-vlan
 FastIron(config)#write memory
 FastIron(config)#exit
 FastIron#reload

 NOTE
 You must save the configuration and reload the software to place the change into effect.

- Brocade devices support IP Source Guard together with IPv4 ACLs (similar to ACLs for Dot1x), as long as both features are configured at the port-level or per-port-per-VLAN level. Brocade devices do not support IP Source Guard and IPv4 ACLs on the same port if one is configured at the port-level and the other is configured at the per-port-per-VLAN level.

- IP source guard and IPv6 ACLs are supported together on the same device, as long as they are not configured on the same port or virtual interface.

- The following limitations apply when configuring IP Source Guard on Layer 3 devices:
 - You cannot enable IP Source Guard on a tagged port on a Layer 3 device. To enable IP Source Guard on a tagged port, enable it on a per-VE basis.
 - You cannot enable IP Source Guard on an untagged port with VE on a Layer 3 device. To enable IP Source Guard in this configuration, enable it on a per-VE basis.
 - There are no restrictions for Layer 2, either on the port or per-VLAN.

- You cannot enable IP Source Guard on a port that has any of the following features enabled:
 - MAC address filter
 - Rate limiting
 - Trunk port
 - 802.1x with ACLs
 - Multi-device port authentication with ACLs

- A port on which IP Source Guard is enabled limits the support of IP addresses, VLANs, and ACL rules per port. An IP Source Guard port supports a maximum of:
 - 64 IP addresses
 - 64 VLANs
 - 64 rules per ACL

- The number of configured ACL rules affect the rate at which hardware resources are used when IP Source Guard is enabled. Use the `show access-list hw-usage on` command to enable hardware usage for an ACL, followed by a `show access-list <access-list-id>` command to determine the hardware usage for an ACL.

 Example

 FastIron#show access-list hw-usage on
 FastIron#show access-list 100
 Extended IP access list 100 (hw usage : 2)
 deny ip any any (hw usage : 1)
To provide more hardware resource for IP Source Guard addresses, modify the ACL rules so that it uses less hardware resource.

- If you enable IP Source Guard in a network topology that has DHCP clients, you must also enable DHCP snooping. Otherwise, all IP traffic including DHCP packets will be blocked.
- When you enable IP Source Guard in a network topology that does not have DHCP clients, you must create an IP source binding for each client that will be allowed access to the network. Otherwise, data packets will be blocked. Refer to “Defining static IP source bindings” on page 1664.
- Software release FSX 04.2.00 introduced a form of IP Source Guard called Source Guard Protection. This feature enables concurrent support with multi-device port authentication. For details, Refer to “Enabling source guard protection” on page 1586.
- IP Source Guard is supported on a VE with or without an assigned IP address.

Enabling IP source guard on a port

You can enable IP Source Guard on DHCP snooping untrusted ports. Refer to “DHCP snooping” on page 1651 for how to configure DHCP and DHCP untrusted ports.

By default, IP Source Guard is disabled. To enable IP Source Guard on a DHCP untrusted port, enter the following commands.

```
FastIron(config)#interface ethernet 1/4
FastIron(config-if-e10000-1/4)#source-guard enable
```

The commands change the CLI to the interface configuration level for port 1/4 and enable IP Source Guard on the port.

Syntax: `[no] source-guard enable`

Defining static IP source bindings

You can manually enter valid IP addresses in the binding database. To do so, enter a command such as the following.

```
FastIron(config)#ip source binding 10.10.10.1 e 2/4 vlan 4
```

Syntax: `[no] ip source binding <ip-addr> ethernet [<slotnum>/]<portnum> [vlan <vlannum>]

For `<ip-addr>`, enter a valid IP address.

The `<slotnum>` parameter is required on chassis devices.

The `<portnum>` parameter is a valid port number.

The `[vlan <vlannum>]` parameter is optional. If you enter a VLAN number, the binding applies to that VLAN only. If you do not enter a VLAN number, the static binding applies to all VLANs associated with the port. Note that since static IP source bindings consume system resources, you should avoid unnecessary bindings.

Enabling IP source guard per-port-per-VLAN

To enable IP Source Guard per-port-per VLAN, enter commands such as the following.
IP source guard

FastIron(config)#vlan 12 name vlan12
FastIron(config-vlan-12)#untag ethernet 5 to 8
FastIron(config-vlan-12)#tag ethernet 23 to 24
FastIron(config-vlan-12)#exit
FastIron(config)#int e 23
FastIron(config-if-e1000-23)#per-vlan vlan12
FastIron(config-if-e1000-23-vlan-12))#source-guard enable

The commands in this example configure port-based VLAN 12, and add ports e 5 – 8 as untagged ports and ports e 23 – 24 as tagged ports to the VLAN. The last two commands enable IP Source Guard on port e 23, a member of VLAN 12.

Syntax: [no] source-guard enable

Enabling IP source guard on a VE

To enable IP Source Guard on a virtual interface, enter commands such as the following.

FastIron(config)#vlan 2
FastIron(config-vlan-2)#tag e1
Added tagged port(s) ethe 1 to port-vlan 2
FastIron(config-vlan-2)#router-int ve 2
FastIron(config-vlan-2)#int ve 2
FastIron(config-vlan-2)#source-guard enable e 1

Syntax: [no] source-guard enable

Displaying learned IP addresses

To display the learned IP addresses for IP Source Guard ports, use the CLI commands show ip source-guard ethernet.
IP source guard
SNMP overview

SNMP is a set of protocols for managing complex networks. SNMP sends messages, called protocol data units (PDUs), to different parts of a network. SNMP-compliant devices, called agents, store data about themselves in Management Information Bases (MIBs) and return this data to the SNMP requesters.

Chapter 39, “Securing Access to Management Functions” introduced a few methods used to secure SNMP access. They included the following:

- “Using ACLs to restrict SNMP access” on page 1416
- “Restricting SNMP access to a specific IP address” on page 1418
- “Restricting SNMP access to a specific VLAN” on page 1421
- “Disabling SNMP access” on page 1425

This chapter presents additional methods for securing SNMP access to Brocade devices. It contains the following sections:

- “Establishing SNMP community strings”
- “Using the user-based security model”
- “SNMP v3 Configuration examples”
- “SNMP version 3 traps”
- “Displaying SNMP Information”
- “SNMP v3 Configuration examples”

Restricting SNMP access using ACL, VLAN, or a specific IP address constitute the first level of defense when the packet arrives at a Brocade device. The next level uses one of the following methods:

- Community string match In SNMP versions 1 and 2
- User-based model in SNMP version 3

SNMP views are incorporated in community strings and the user-based model.

Establishing SNMP community strings

SNMP versions 1 and 2 use community strings to restrict SNMP access. The default passwords for Web management access are the SNMP community strings configured on the device:

- The default read-only community string is “public”. To open a read-only Web management session, enter “get” and “public” for the user name and password.
• There is no default read-write community string. Thus, by default, you cannot open a read-write management session using the Web Management Interface. You first must configure a read-write community string using the CLI. Then you can log on using “set” as the user name and the read-write community string you configure as the password.

You can configure as many additional read-only and read-write community strings as you need. The number of strings you can configure depends on the memory on the device. There is no practical limit.

The Web Management Interface supports only one read-write session at a time. When a read-write session is open on the Web Management Interface, subsequent sessions are read-only, even if the session login is “set” with a valid read-write password.

NOTE
If you delete the startup-config file, the device automatically re-adds the default “public” read-only community string the next time you load the software.

NOTE
As an alternative to the SNMP community strings, you can secure Web management access using local user accounts or ACLs. Refer to “Setting up local user accounts” on page 1430 or “Using an ACL to restrict Web management access” on page 1415.

Encryption of SNMP community strings

The software automatically encrypts SNMP community strings. Users with read-only access or who do not have access to management functions in the CLI cannot display the strings. For users with read-write access, the strings are encrypted in the CLI but are shown in the clear in the Web Management Interface.

Encryption is enabled by default. You can disable encryption for individual strings or trap receivers if desired. Refer to the next section for information about encryption.

Adding an SNMP community string

When you add a community string, you can specify whether the string is encrypted or clear. By default, the string is encrypted.

To add an encrypted community string, enter commands such as the following.

```
FastIron(config)# snmp-server community private rw
FastIron(config)# write memory
```

Syntax: `snmp-server community [0 | 1] <string> [ro | rw [view <viewname>] [<standard-ACL-name> | <standard-ACL-id>]]`

The `<string>` parameter specifies the community string name. The string can be up to 32 characters long.

The `ro | rw` parameter specifies whether the string is **read-only (ro)** or **read-write (rw)**.

The `0 | 1` parameter affects encryption for display of the string in the running-config and the startup-config file. Encryption is enabled by default. When encryption is enabled, the community string is encrypted in the CLI regardless of the access level you are using. In the Web Management Interface, the community string is encrypted at the read-only access level but is visible at the read-write access level.
The encryption option can be omitted (the default) or can be one of the following:

- **0** – Disables encryption for the community string you specify with the command. The community string is shown as clear text in the running-config and the startup-config file. Use this option if you do not want the display of the community string to be encrypted.

- **1** – Assumes that the community string you enter is encrypted, and decrypts the value before using it.

NOTE
If you want the software to assume that the value you enter is the clear-text form, and to encrypt display of that form, do not enter **0** or **1**. Instead, omit the encryption option and allow the software to use the default behavior.

NOTE
If you specify encryption option **1**, the software assumes that you are entering the encrypted form of the community string. In this case, the software decrypts the community string you enter before using the value for authentication. If you accidentally enter option **1** followed by the clear-text version of the community string, authentication will fail because the value used by the software will not match the value you intended to use.

The command in the example above adds the read-write SNMP community string “private”. When you save the new community string to the startup-config file (using the **write memory** command), the software adds the following command to the file.

```
snmp-server community 1 <encrypted-string> rw
```

To add a non-encrypted community string, you must explicitly specify that you do not want the software to encrypt the string. Here is an example.

```
FastIron(config)# snmp-server community 0 private rw
FastIron(config)# write memory
```

The command in this example adds the string “private” in the clear, which means the string is displayed in the clear. When you save the new community string to the startup-config file, the software adds the following command to the file.

```
snmp-server community 0 private rw
```

The **view** <viewname> parameter is optional. It allows you to associate a view to the members of this community string. Enter up to 32 alphanumeric characters. If no view is specified, access to the full MIB is granted. The view that you want must exist before you can associate it to a community string. Here is an example of how to use the view parameter in the community string command.

```
FastIron(config)# snmp-s community myread ro view sysview
```

The command in this example associates the view “sysview” to the community string named “myread”. The community string has read-only access to “sysview”. For information on how to create views, refer to **“SNMP v3 Configuration examples”** on page 1682.

The **<standard-ACL-name>** | **<standard-ACL-id>** parameter is optional. It allows you to specify which ACL group will be used to filter incoming SNMP packets. You can enter either the ACL name or its ID. Here are some examples.

```
FastIron(config)# snmp-s community myread ro view sysview 2
FastIron(config)# snmp-s community myread ro view sysview myACL
```
The command in the first example indicates that ACL group 2 will filter incoming SNMP packets; whereas, the command in the second example uses the ACL group called “myACL” to filter incoming packets. Refer to “Using ACLs to restrict SNMP access” on page 1416 for more information.

NOTE
To make configuration changes, including changes involving SNMP community strings, you must first configure a read-write community string using the CLI. Alternatively, you must configure another authentication method and log on to the CLI using a valid password for that method.

Displaying the SNMP community strings

To display the configured community strings, enter the following command at any CLI level.

```
FastIron# show snmp server
Contact: Marshall
Location: Copy Center
Community(ro): public
Community(rw): private
Traps
  Cold start: Enable
  Link up: Enable
  Link down: Enable
  Authentication: Enable
  Locked address violation: Enable
  Power supply failure: Enable
  Fan failure: Enable
  Temperature warning: Enable
  STP new root: Enable
  STP topology change: Enable
  ospf: Enable

Total Trap-Receiver Entries: 4
Trap-Receiver IP Address    Community
  1   207.95.6.211
  2   207.95.5.21
```

Syntax: show snmp server

NOTE
If display of the strings is encrypted, the strings are not displayed. Encryption is enabled by default.

Using the user-based security model

Platform Support:

- FastIron X Series devices running software release 03.0.00 and later
- FGS and FLS devices running software release 03.2.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX devices running software release 6.0 and later
SNMP version 3 (RFC 2570 through 2575) introduces a User-Based Security model (RFC 2574) for authentication and privacy services.

SNMP version 1 and version 2 use community strings to authenticate SNMP access to management modules. This method can still be used for authentication. In SNMP version 3, the User-Based Security model of SNMP can be used to secure against the following threats:

- Modification of information
- Masquerading the identity of an authorized entity
- Message stream modification
- Disclosure of information

SNMP version 3 also supports View-Based Access Control Mechanism (RFC 2575) to control access at the PDU level. It defines mechanisms for determining whether or not access to a managed object in a local MIB by a remote principal should be allowed. (refer to “SNMP v3 Configuration examples” on page 1682.)

Configuring your NMS

In order to use the SNMP version 3 features.

1. Make sure that your Network Manager System (NMS) supports SNMP version 3.
2. Configure your NMS agent with the necessary users.
3. Configure the SNMP version 3 features in Brocade devices.

Configuring SNMP version 3 on Brocade devices

Follow the steps given below to configure SNMP version 3 on Brocade devices.

1. Enter an engine ID for the management module using the `snmp-server engineid` command if you will not use the default engine ID. Refer to “Defining the engine id” on page 1671.
2. Create views that will be assigned to SNMP user groups using the `snmp-server view` command. Refer to “SNMP v3 Configuration examples” on page 1682 for details.
3. Create ACL groups that will be assigned to SNMP user groups using the `access-list` command.
4. Create user groups using the `snmp-server group` command. Refer to “Defining an SNMP group” on page 1672.
5. Create user accounts and associate these accounts to user groups using the `snmp-server user` command. Refer to “Defining an SNMP user account” on page 1673.

If SNMP version 3 is not configured, then community strings by default are used to authenticate access.

Defining the engine id

A default engine ID is generated during system start up. To determine what the default engine ID of the device is, enter the `show snmp engineid` command and find the following line:

```
Local SNMP Engine ID: 800007c70300e05290ab60
```

See the section “Displaying the Engine ID” on page 1680 for details.
The default engine ID guarantees the uniqueness of the engine ID for SNMP version 3. If you want to change the default engine ID, enter a command such as the following.

```
FastIron(config)# snmp-server engineid local 800007c70300e05290ab60
```

Syntax:

```
[no] snmp-server engineid local <hex-string>
```

The `local` parameter indicates that engine ID to be entered is the ID of this device, representing an SNMP management entity.

NOTE

Each user localized key depends on the SNMP server engine ID, so all users need to be reconfigured whenever the SNMP server engine ID changes.

NOTE

Since the current implementation of SNMP version 3 does not support Notification, remote engine IDs cannot be configured at this time.

The `<hex-string>` variable consists of 11 octets, entered as hexadecimal values. There are two hexadecimal characters in each octet. There should be an even number of hexadecimal characters in an engine ID.

The default engine ID has a maximum of 11 octets:

- Octets 1 through 4 represent the agent's SNMP management private enterprise number as assigned by the Internet Assigned Numbers Authority (IANA). The most significant bit of Octet 1 is "1". For example, "000007c7" is the ID for Brocade Communications, Inc. in hexadecimal. With Octet 1 always equal to "1", the first four octets in the default engine ID is always "800007c7" (which is 1991 in decimal).
- Octet 5 is always 03 in hexadecimal and indicates that the next set of values represent a MAC address.
- Octets 6 through 11 form the MAC address of the lowest port in the management module.

NOTE

Engine ID must be a unique number among the various SNMP engines in the management domain. Using the default engine ID ensures the uniqueness of the numbers.

Defining an SNMP group

SNMP groups map SNMP users to SNMP views. For each SNMP group, you can configure a read view, a write view, or both. Users who are mapped to a group will use its views for access control.

To configure an SNMP user group, enter a command such as the following.

```
FastIron(config)# snmp-server group admin v3 auth read all write all
```

Syntax:

```
[no] snmp-server group <groupname> v1 | v2 | v3 auth | noauth | priv [access <standard-ACL-id>] [read <viewstring> | write <viewstring>]
```

Using the user-based security model

NOTE
This command is not used for SNMP version 1 and SNMP version 2. In these versions, groups and group views are created internally using community strings. (refer to “Establishing SNMP community strings” on page 1667.) When a community string is created, two groups are created, based on the community string name. One group is for SNMP version 1 packets, while the other is for SNMP version 2 packets.

The group <groupname> parameter defines the name of the SNMP group to be created.

The v1, v2, or v3 parameter indicates which version of SNMP is used. In most cases, you will be using v3, since groups are automatically created in SNMP versions 1 and 2 from community strings.

The auth | noauth parameter determines whether or not authentication will be required to access the supported views. If auth is selected, then only authenticated packets are allowed to access the view specified for the user group. Selecting noauth means that no authentication is required to access the specified view. Selecting priv means that an authentication password will be required from the users.

The access <standard-ACL-id> parameter is optional. It allows incoming SNMP packets to be filtered based on the standard ACL attached to the group.

The read <viewstring> | write <viewstring> parameter is optional. It indicates that users who belong to this group have either read or write access to the MIB.

The <viewstring> variable is the name of the view to which the SNMP group members have access. If no view is specified, then the group has no access to the MIB.

The value of <viewstring> is defined using the snmp-server view command. The SNMP agent comes with the "all" default view, which provides access to the entire MIB; however, it must be specified when creating the group. The "all" view also allows SNMP version 3 to be backwards compatibility with SNMP version 1 and version 2.

NOTE
If you will be using a view other than the "all" view, that view must be configured before creating the user group. Refer to the section “SNMP v3 Configuration examples” on page 1682, especially for details on the include | exclude parameters.

Defining an SNMP user account

The snmp-server user command does the following:

- Creates an SNMP user.
- Defines the group to which the user will be associated.
- Defines the type of authentication to be used for SNMP access by this user.
- Specifies one of the following encryption types used to encrypt the privacy password:
 - Data Encryption Standard (DES) – A symmetric-key algorithm that uses a 56-bit key.
 - Advanced Encryption Standard (AES) – The 128-bit encryption standard adopted by the U.S. government. This standard is a symmetric cipher algorithm chosen by the National Institute of Standards and Technology (NIST) as the replacement for DES.
NOTE
AES encryption is supported starting in software release FSX 05.0.00. It is also supported for FGS, FLS, and FWS devices in software release FGS 04.3.02 and for FGS-STK and FLS-STK devices in release 05.0.02, and FCX devices running software release 06.0.00 and later.

NOTE
On Turbolron X Series devices, AES encryption is supported on devices running software release 04.2.00 and later.

Here is an example of how to create an SNMP User account.

FastIron(config)# snmp-s user bob admin v3 access 2 auth md5 bobmd5 priv des bobdes

The CLI for creating SNMP version 3 users has been updated as follows.

Syntax: [no] snmp-server user <name> <groupname> v3

[access <standard-ACL-id>]

[[encrypted] [auth md5 <md5-password> | sha <sha-password>]

[priv [encrypted] des <des-password-key> | aes <aes-password-key>]]

The <name> parameter defines the SNMP user name or security name used to access the management module.

The <groupname> parameter identifies the SNMP group to which this user is associated or mapped. All users must be mapped to an SNMP group. Groups are defined using the snmp-server group command.

NOTE
The SNMP group to which the user account will be mapped should be configured before creating the user accounts; otherwise, the group will be created without any views. Also, ACL groups must be configured before configuring user accounts.

The v3 parameter is required.

The access <standard-ACL-id> parameter is optional. It indicates that incoming SNMP packets are filtered based on the ACL attached to the user account.

NOTE
The ACL specified in a user account overrides the ACL assigned to the group to which the user is mapped. If no ACL is entered for the user account, then the ACL configured for the group will be used to filter packets.

The encrypted parameter means that the MD5 or SHA password will be a digest value. MD5 has 16 octets in the digest. SHA has 20. The digest string has to be entered as a hexadecimal string. In this case, the agent need not generate any explicit digest. If the encrypted parameter is not used, the user is expected to enter the authentication password string for MD5 or SHA. The agent will convert the password string to a digest, as described in RFC 2574.

The auth md5 | sha parameter is optional. It defines the type of encryption that the user must have to be authenticated. Choose between MD5 or SHA encryption. MD5 and SHA are two authentication protocols used in SNMP version 3.

The <md5-password> and <sha-password> define the password the user must use to be authenticated. These password must have a minimum of 8 characters. If the encrypted parameter is used, then the digest has 16 octets for MD5 or 20 octets for SHA.
NOTE
Once a password string is entered, the generated configuration displays the digest (for security reasons), not the actual password.

The `priv [encrypted]` parameter is optional after you enter the md5 or sha password. The `priv` parameter specifies the encryption type (DES or AES) used to encrypt the privacy password. If the `encrypted` keyword is used, do the following:

NOTE
All FastIron devices support the DES encryption type. The AES encryption type is supported on FastIron X Series devices running software release FSX 05.0.00 and later. On TurboIron devices, AES encryption is supported on devices running software release 04.2.00 and later.

- If DES is the privacy protocol to be used, enter `des` followed by a 16-octet DES key in hexadecimal format for the `<des-password-key>`. If you include the encrypted keyword, enter a password string of at least 8 characters.
- If AES is the privacy protocol to be used, enter `aes` followed by the AES password key. For a small password key, enter 12 characters. For a big password key, enter 16 characters. If you include the encrypted keyword, enter a password string containing 32 hexadecimal characters.

NOTE
AES encryption is supported starting in software release FSX 05.0.00.

Defining SNMP views

SNMP views are named groups of MIB objects that can be associated with user accounts to allow limited access for viewing and modification of SNMP statistics and system configuration. SNMP views can also be used with other commands that take SNMP views as an argument. SNMP views reference MIB objects using object names, numbers, wildcards, or a combination of the three. The numbers represent the hierarchical location of the object in the MIB tree. You can reference individual objects in the MIB tree or a subset of objects from the MIB tree.

To configure the number of SNMP views available on the Brocade device, enter the following command.

```
FastIron(config)# system-max view 15
```

Syntax: `system-max view <number-of-views>`

This command specifies the maximum number of SNMPv2 and v3 views that can be configured on a device. The number of views can be from 10 – 65536. The default is 10 views.

To add an SNMP view, enter one of the following commands.

```
FastIron(config)# snmp-server view Maynes system included
FastIron(config)# snmp-server view Maynes system.2 excluded
FastIron(config)# snmp-server view Maynes 2.3.*.6 included
FastIron(config)# write mem
```

NOTE
The `snmp-server view` command supports the MIB objects as defined in RFC 1445.

Syntax: `[no] snmp-server view <name> <mib_tree> included | excluded`
The `<name>` parameter can be any alphanumeric name you choose to identify the view. The names cannot contain spaces.

The `<mib_tree>` parameter is the name of the MIB object or family. MIB objects and MIB sub-trees can be identified by a name or by the numbers called Object Identifiers (OIDs) that represent the position of the object or sub-tree in the MIB hierarchy. You can use a wildcard (*) in the numbers to specify a sub-tree family.

The `included | excluded` parameter specifies whether the MIB objects identified by the `<mib_family>` parameter are included in the view or excluded from the view.

NOTE
All MIB objects are automatically excluded from any view unless they are explicitly included; therefore, when creating views using the `snmp-server view` command, indicate which portion of the MIB you want users to access.

For example, you may want to assign the view called “admin” a community string or user group. The “admin” view will allow access to the Brocade MIBs objects that begin with the 1.3.6.1.4.1.1991 object identifier. Enter the following command.

```
FastIron(config)# snmp-server view admin 1.3.6.1.4.1.1991 included
```

You can exclude portions of the MIB within an inclusion scope. For example, if you want to exclude the `snAgentSys` objects, which begin with 1.3.6.1.4.1.1991.1.1.2 object identifier from the `admin` view, enter a second command such as the following.

```
FastIron(config)# snmp-server view admin 1.3.6.1.4.1.1991.1.1.2 excluded
```

NOTE
Note that the exclusion is within the scope of the inclusion.

To delete a view, use the `no` parameter before the command.

SNMP version 3 traps

Brocade devices support SNMP notifications in SMv2 format. This allows notifications to be encrypted and sent to the target hosts in a secure manner.

Defining an SNMP group and specifying which view is notified of traps

The SNMP group command allows configuration of a viewname for notification purpose, similar to the read and write view. The default viewname is "all", which allows access to the entire MIB.

To configure an SNMP user group, first configure SNMP v3 views using the `snmp-server view` command. Refer to “SNMP v3 Configuration examples” on page 1682. Then enter a command such as the following.

```
FastIron(config)# snmp-server group admin v3 auth read all write all notify all
```

Syntax: `[no] snmp-server group <groupname>
 v1 | v2 | v3`
The **group** `<groupname>` parameter defines the name of the SNMP group to be created.

The **v1**, **v2**, or **v3** parameter indicates which version of SNMP to use. In most cases, you will use v3, since groups are automatically created in SNMP versions 1 and 2 from community strings.

The **auth | noauth | priv** parameter determines whether or not authentication will be required to access the supported views. If auth is selected, then only authenticated packets are allowed to access the view specified for the user group. Selecting **noauth** means that no authentication is required to access the specified view. Selecting **priv** means that an authentication password will be required from the users.

The **access <standard-ACL-id>** parameter is optional. It allows incoming SNMP packets to be filtered based on the standard ACL attached to the group.

The **read <viewstring> | write <viewstring>** parameter is optional. It indicates that users who belong to this group have either read or write access to the MIB.

The **notify** view allows administrators to restrict the scope of varbind objects that will be part of the notification. All of the varbinds need to be in the included view for the notification to be created.

The `<viewstring>` variable is the name of the view to which the SNMP group members have access. If no view is specified, then the group has no access to the MIB.

Defining the UDP port for SNMP v3 traps

Platform Support:
- FastIron X Series devices
- FGS and FLS devices running software release 03.2.00 and later
- FWS devices running software release 04.3.00 or later
- TurboIron X Series devices running software release 04.1.00 and later
- FCX devices running software release 6.0 and later

The SNMP host command enhancements allow configuration of notifications in SMIV2 format, with or without encryption, in addition to the previously supported SMIV1 trap format.

You can define a port that receives the SNMP v3 traps by entering a command such as the following.

```
FastIron(config)# snmp-server host 192.168.4.11 version v3 auth security-name port 4/1 [no] snmp-server host <ip-addr> | <ipv6-addr> version [ v1 | v2c <community-string> | v3 auth | noauth | priv <security-name>] [port <trap-UDP-port-number>]
```

The `<ip-addr>` parameter specifies the IP address of the host that will receive the trap.

For **version**, indicate one of the following

For SNMP version 1, enter **v1** and the name of the community string (`<community-string>`). This string is encrypted within the system.
NOTE

The options "v2c" and "v3" are new in software release 03.0.00. If the configured version is v2c, then the notification is sent out in SMIv2 format, using the community string, but in cleartext mode. To send the SMIv2 notification in SNMPv3 packet format, configure v3 with auth or privacy parameters, or both, by specifying a security name. The actual authorization and privacy values are obtained from the security name.

For SNMP version 2c, enter v2 and the name of the community string. This string is encrypted within the system.

For SNMP version 3, enter one of the following depending on the authorization required for the host:

- v3 auth <security-name>: Allow only authenticated packets.
- v3 no auth <security-name>: Allow all packets.
- v3 priv <security-name>: A password is required

For port <trap-UDP-port-number>, specify the UDP port number on the host that will receive the trap.

Trap MIB changes

To support the SNMP V3 trap feature, the Brocade Enterprise Trap MIB was rewritten in SMIv2 format, as follows:

- The MIB name was changed from FOUNDARY-SN-TRAP-MIB to FOUNDARY-SN-NOTIFICATION-MIB
- Individual notifications were changed to NOTIFICATION-TYPE instead of TRAP-TYPE.
- As per the SMIv2 format, each notification has an OID associated with it. The root node of the notification is snTraps (OID enterprise.foundry.0). For example, OID for snTrapRunningConfigChanged is {snTraps.73}. Earlier, each trap had a trap ID associated with it, as per the SMIv1 format.

Backward compatibility with SMIv1 trap format

The Brocade device will continue to support creation of traps in SMIv1 format, as before. To allow the device to send notifications in SMIv2 format, configure the device as described above. The default mode is still the original SMIv1 format.

Restricting SNMP Access to an IPv6 node

You can restrict SNMP access so that the device (including IronView Network Manager) can only be accessed by the IPv6 host address that you specify. To do so, enter a command such as the following.

FastIron(config)# snmp-client ipv6 2001:efff:89::23

Syntax: snmp-client ipv6 <ipv6-address>

The <ipv6-address> must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.
Specifying an IPv6 host as an SNMP trap receiver

You can specify an IPv6 host as a trap receiver to ensure that all SNMP traps sent by the device will go to the same SNMP trap receiver or set of receivers, typically one or more host devices on the network. To do so, enter a command such as the following:

```
FastIron(config)# snmp-server host ipv6 2001:efff:89::13
```

Syntax: `snmp-server host ipv6 <ipv6-address>`

The `<ipv6-address>` must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

SNMP v3 over IPv6

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later
- FGS and FLS devices running software release 04.0.00 and later
- FWS devices running software release 04.3.00 or later

The above devices support IPv6 for SNMP version 3.

Restricting SNMP Access to an IPv6 Node

You can restrict SNMP access so that the Brocade device (including IronView Network Manager) can only be accessed by the IPv6 host address that you specify. To do so, enter a command such as the following:

```
FastIron(config)# snmp-client ipv6 2001:efff:89::23
```

Syntax: `snmp-client ipv6 <ipv6-address>`

The `<ipv6-address>` must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

Specifying an IPv6 host as an SNMP trap receiver

You can specify an IPv6 host as a trap receiver to ensure that all SNMP traps sent by the Brocade device will go to the same SNMP trap receiver or set of receivers, typically one or more host devices on the network. To do so, enter a command such as the following:

```
FastIron(config)# snmp-server host ipv6 2001:efff:89::13
```

Syntax: `snmp-server host ipv6 <ipv6-address>`

The `<ipv6-address>` must be in hexadecimal format using 16-bit values between colons as documented in RFC 2373.

Viewing IPv6 SNMP server addresses

Platform Support:
- FastIron X Series devices running software release 02.4.00 and later
- FGS and FLS devices running software release 04.0.00 and later
Displaying SNMP Information

This section lists the commands for viewing SNMP-related information.

Displaying the Engine ID

To display the engine ID of a management module, enter a command such as the following.

FastIron# show snmp engineid
Local SNMP Engine ID: 800007c70300e05290ab60
Engine Boots: 3
Engine time: 5

Syntax: show snmp engineid

The engine ID identifies the source or destination of the packet.

The engine boots represents the number of times that the SNMP engine reinitialized itself with the same engine ID. If the engineID is modified, the boot count is reset to 0.

The engine time represents the current time with the SNMP agent.

Displaying SNMP groups

To display the definition of an SNMP group, enter a command such as the following.
Displaying SNMP Information

FastIron# show snmp group
groupname = exceptifgrp
security model = v3
security level = authNoPriv
ACL id = 2
readview = exceptif
writeview = <none>

Syntax: show snmp group

The value for security level can be one of the following.

<table>
<thead>
<tr>
<th>Security level</th>
<th>Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td><none></td>
<td>If the security model shows v1 or v2, then security level is blank. User names are not used to authenticate users; community strings are used instead.</td>
</tr>
<tr>
<td>noauthNoPriv</td>
<td>Displays if the security model shows v3 and user authentication is by user name only.</td>
</tr>
<tr>
<td>authNoPriv</td>
<td>Displays if the security model shows v3 and user authentication is by user name and the MD5 or SHA algorithm.</td>
</tr>
</tbody>
</table>

Displaying user information

To display the definition of an SNMP user account, enter a command such as the following.

FastIron# show snmp user
username = bob
ACL id = 2
group = admin
security model = v3
group ACL id = 0
authtype = md5
authkey = 3aca18d90b8d172760e2dd2e8f59b7fe
privtype = des, privkey = 1088359afb3701730173a6332d406eec
genre ID= 800007c70300e052ab0000

Syntax: show snmp user

Interpreting varbinds in report packets

If an SNMP version 3 request packet is to be rejected by an SNMP agent, the agent sends a report packet that contains one or more varbinds. The varbinds contain additional information, showing the cause of failures. An SNMP manager application decodes the description from the varbind. The following table presents a list of varbinds supported by the SNMP agent.

<table>
<thead>
<tr>
<th>Varbind object Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.6.1.6.3.11.2.1.3.0</td>
<td>Unknown packet data unit.</td>
</tr>
<tr>
<td>1.3.6.1.6.3.12.1.5.0</td>
<td>The value of the varbind shows the engine ID that needs to be used in the snmp-server engineid command</td>
</tr>
<tr>
<td>1.3.6.1.6.3.15.1.1.0</td>
<td>Unsupported security level.</td>
</tr>
<tr>
<td>1.3.6.1.6.3.15.1.1.2.0</td>
<td>Not in time packet.</td>
</tr>
</tbody>
</table>
The following sections present examples of how to configure SNMP v3.

Simple SNMP v3 configuration

```
FastIron(config)# snmp-s group admingrp v3 priv read all write all notify all
FastIron(config)# snmp-s user adminuser admingrp v3 auth md5 <auth password> priv
privacy password
FastIron(config)# snmp-s host <dest-ip> version v3 privacy adminuser
```

More detailed SNMP v3 configuration

```
FastIron(config)# snmp-server view internet internet included
FastIron(config)# snmp-server view system system included
FastIron(config)# snmp-server community .... ro
FastIron(config)# snmp-server community ...... rw
FastIron(config)# snmp-server contact isc-operations
FastIron(config)# snmp-server location sdh-pillbox
FastIron(config)# snmp-server host 128.91.255.32 ....
FastIron(config)# snmp-server group ops v3 priv read internet write system
FastIron(config)# snmp-server group admin v3 priv read internet write internet
FastIron(config)# snmp-server group restricted v3 priv read internet
FastIron(config)# snmp-server user ops ops v3 encrypted auth md5
ab8e9cd6d46e7a270b8c9549d92a069 priv encrypted des
0e1b153303b618908941147dbc32de
FastIron(config)# snmp-server user admin admin v3 encrypted auth md5
0d8a2123f91bf6d8695fef16a6f4207b priv encrypted des
18e0cf359fce4fcd60df19c2b6515448
FastIron(config)# snmp-server user restricted restricted v3 encrypted auth md5
261fd8f56a3ad51c8bcecle4609f54dc priv encrypted des
d32e66152f89de9b2e0cb17a65595f43
```
Enabling the Foundry Discovery Protocol (FDP) and Reading Cisco Discovery Protocol (CDP) Packets

Using FDP

The Foundry Discovery Protocol (FDP) enables Brocade devices to advertise themselves to other Brocade devices on the network. When you enable FDP on a Brocade device, the device periodically advertises information including the following:

- Hostname (device ID)
- Product platform and capability
- Software version
- VLAN and Layer 3 protocol address information for the port sending the update. IP, IPX, and AppleTalk Layer 3 information is supported.

A Brocade device running FDP sends FDP updates on Layer 2 to MAC address 01-E0-52-CC-CC-CC. Other Brocade devices listening on that address receive the updates and can display the information in the updates. Brocade devices can send and receive FDP updates on Ethernet interfaces.

FDP is disabled by default.

NOTE

If FDP is not enabled on a Brocade device that receives an FDP update or the device is running a software release that does not support FDP, the update passes through the device at Layer 2.

Configuring FDP

The following sections describe how to enable FDP and how to change the FDP update and hold timers.

Enabling FDP globally

To enable a Brocade device to globally send FDP packets, enter the following command at the global CONFIG level of the CLI.

```
FESX Router(config)# fdp run
```

Syntax: `[no] fdp run`

The feature is disabled by default.

Enabling FDP at the interface level

You can enable FDP at the interface level by entering commands such as the following.

```
FESX Router(config)# int e 2/1
FESX Router(config-if-2/1)# fdp enable
```
Syntax: [no] fdp enable
By default, the feature is enabled on an interface once FDP is enabled on the device.

Changing the FDP update timer

By default, a Brocade device enabled for FDP sends an FDP update every 60 seconds. You can change the update timer to a value from 5 – 900 seconds.

To change the FDP update timer, enter a command such as the following at the global CONFIG level of the CLI.

FESX Router(config)# fdp timer 120

Syntax: [no] fdp timer <secs>
The <secs> parameter specifies the number of seconds between updates and can be from 5 – 900 seconds. The default is 60 seconds.

Changing the FDP hold time

By default, a Brocade device that receives an FDP update holds the information until one of the following events occurs:

- The device receives a new update.
- 180 seconds have passed since receipt of the last update. This is the hold time.

Once either of these events occurs, the device discards the update.

To change the FDP hold time, enter a command such as the following at the global CONFIG level of the CLI.

FESX Router(config)# fdp holdtime 360

Syntax: [no] fdp holdtime <secs>
The <secs> parameter specifies the number of seconds a Brocade device that receives an FDP update can hold the update before discarding it. You can specify from 10 – 255 seconds. The default is 180 seconds.

Displaying FDP information

You can display the following FDP information:

- FDP entries for Brocade neighbors
- Individual FDP entries
- FDP information for an interface on the device you are managing
- FDP packet statistics

NOTE
If the Brocade device has intercepted CDP updates, then the CDP information is also displayed.

Displaying neighbor information

To display a summary list of all the Brocade neighbors that have sent FDP updates to this Brocade device, enter the following command.
Syntax: `show fdp neighbor [ethernet [<slotnum>/]<portnum>] [detail]`

The `ethernet [<slotnum>/]<portnum>` parameter lists the information for updates received on the specified slot/port.

The `detail` parameter lists detailed information for each device.

The `show fdp neighbor` command, without optional parameters, displays the following information.

TABLE 265 Summary FDP and CDP neighbor information

<table>
<thead>
<tr>
<th>This line...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>The hostname of the neighbor.</td>
</tr>
<tr>
<td>Local Int</td>
<td>The interface on which this Brocade device received an FDP or CDP update for the neighbor.</td>
</tr>
<tr>
<td>Holdtm</td>
<td>The maximum number of seconds this device can keep the information received in the update before discarding it.</td>
</tr>
<tr>
<td>Capability</td>
<td>The role the neighbor is capable of playing in the network.</td>
</tr>
<tr>
<td>Platform</td>
<td>The product platform of the neighbor.</td>
</tr>
<tr>
<td>Port ID</td>
<td>The interface through which the neighbor sent the update.</td>
</tr>
</tbody>
</table>

To display detailed information, enter the following command.

```plaintext
FESX RouterA# show fdp neighbor detail
Device ID: FastIronB configured as default VLAN1, tag-type8100
Entry address(es):
Platform: FastIron Router, Capabilities: Router
Interface: Eth 2/9
Port ID (outgoing port): Eth 2/9 is TAGGED in following VLAN(s):
  9 10 11
Holdtime : 176 seconds
Version : Foundry, Inc. Router, IronWare Version 07.6.01b1T53 Compiled on Aug 29 2002 at 10:35:21 labeled as B2R07601b1
```

The `show fdp neighbor detail` command displays the following information.
Displaying FDP entries

To display the detailed neighbor information for a specific device, enter a command such as the following.

```
FESX RouterA# show fdp entry FastIronB
Device ID: FastIronB configured as default VLAN1, tag-type8100
Entry address(es):
Platform: FastIron Router, Capabilities: Router
Interface: Eth 2/9
Port ID (outgoing port): Eth 2/9 is TAGGED in following VLAN(s):
    9 10 11
Holdtime : 176 seconds
Version : Foundry, Inc. Router, IronWare Version 07.6.01b1T53 Compiled on Aug 29 2002 at 10:35:21 labeled as B2R07601b1
```

Syntax: `show fdp entry * | <device-id>`

The `*` | `<device-id>` parameter specifies the device ID. If you enter `*`, the detailed updates for all neighbor devices are displayed. If you enter a specific device ID, the update for that device is displayed. For information about the display, refer to Table 266.

Displaying FDP information for an interface

To display FDP information for an interface, enter a command such as the following.

```
FESX RouterA# show fdp interface ethernet 2/3
FastEthernet2/3 is up, line protocol is up
    Encapsulation ethernet
    Sending FDP packets every 5 seconds
    Holdtime is 180 seconds
```
This example shows information for Ethernet port 2/3. The port sends FDP updates every 5 seconds. Neighbors that receive the updates can hold them for up to 180 seconds before discarding them.

Syntax: `show fdp interface [ethernet [<slotnum>/]<portnum>]

The `ethernet [<slotnum>/]<portnum>` parameter lists the information only for the specified interface.

Displaying FDP and CDP statistics

To display FDP and CDP packet statistics, enter the following command.

```plaintext
FESX RouterA# show fdp traffic
CDP/FDP counters:
  Total packets output: 6, Input: 5
 Hdr syntax: 0, Chksum error: 0, Encaps failed: 0
  No memory: 0, Invalid packet: 0, Fragmented: 0
  Internal errors: 0
```

Clearing FDP and CDP information

You can clear the following FDP and CDP information:

- Information received in FDP and CDP updates
- FDP and CDP statistics

The same commands clear information for both FDP and CDP.

Clearing FDP and CDP neighbor information

To clear the information received in FDP and CDP updates from neighboring devices, enter the following command.

```plaintext
FESX Router# clear fdp table
```

Syntax: `clear fdp table`

NOTE

This command clears all the updates for FDP and CDP.

Clearing FDP and CDP statistics

To clear FDP and CDP statistics, enter the following command.

```plaintext
FESX Router# clear fdp counters
```

Syntax: `clear fdp counters`
Reading CDP packets

Cisco Discovery Protocol (CDP) packets are used by Cisco devices to advertise themselves to other Cisco devices. By default, Brocade devices forward these packets without examining their contents. You can configure a Brocade device to intercept and display the contents of CDP packets. This feature is useful for learning device and interface information for Cisco devices in the network.

Brocade devices support intercepting and interpreting CDP version 1 and version 2 packets.

NOTE
The Brocade device can interpret only the information fields that are common to both CDP version 1 and CDP version 2.

NOTE
When you enable interception of CDP packets, the Brocade device drops the packets. As a result, Cisco devices will no longer receive the packets.

Enabling interception of CDP packets globally

To enable the device to intercept and display CDP packets, enter the following command at the global CONFIG level of the CLI.

FESX Router(config)# cdp run

Syntax: [no] cdp run

The feature is disabled by default.

Enabling interception of CDP packets on an interface

You can disable and enable CDP at the interface level.

You can enter commands such as the following.

FastIron(config)# int e 2/1
FastIron(config-if-2/1)# cdp enable

Syntax: [no] cdp enable

By default, the feature is enabled on an interface once CDP is enabled on the device.

Displaying CDP information

You can display the following CDP information:

- Cisco neighbors
- CDP entries for all Cisco neighbors or a specific neighbor
- CDP packet statistics
Displaying neighbors

To display the Cisco neighbors the Brocade device has learned from CDP packets, enter the following command.

```
FESX Router# show fdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                S - Switch, H - Host, I - IGMP, r - Repeater
                (*) indicates a Cisco device

Device ID     Local Int    Holdtm  Capability Platform    Port ID
------------- ------------ ------ ---------- ----------- ---------------
(*)Router     Eth 1/1      124    R          cisco RSP4     FastEthernet5/0/0
```

To display detailed information for the neighbors, enter the following command.

```
FESX Router# show fdp neighbors detail
Device ID: Router
Entry address(es):
    IP address: 207.95.6.143
Platform: cisco RSP4, Capabilities: Router
Interface: Eth 1/1, Port ID (outgoing port): FastEthernet5/0/0
Holdtime : 150 seconds
Version :
Cisco Internetwork Operating System Software
IOS (tm) RSP Software (RSP-JSV-M), Version 12.0(5)T1, RELEASE SOFTWARE (fc1)
Copyright (c) 1986-1999 by cisco Systems, Inc.
Compiled Thu 19-Aug-99 04:12 by cmong

FESX Router# show fdp neighbors ethernet 1/1
Device ID: Router
Entry address(es):
    IP address: 207.95.6.143
Platform: cisco RSP4, Capabilities: Router
Interface: Eth 1/1, Port ID (outgoing port): FastEthernet5/0/0
Holdtime : 127 seconds
Version :
Cisco Internetwork Operating System Software
IOS (tm) RSP Software (RSP-JSV-M), Version 12.0(5)T1, RELEASE SOFTWARE (fc1)
Copyright (c) 1986-1999 by cisco Systems, Inc.
Compiled Thu 19-Aug-99 04:12 by cmong
```

Syntax: `show fdp neighbors [detail | ethernet [slotnum]/portnum]`

Displaying CDP entries

To display CDP entries for all neighbors, enter the following command.
To display CDP entries for a specific device, specify the device ID. Here is an example.

FESX Router# show fdp entry *
Device ID: Router
Entry address(es):
 IP address: 207.95.6.143
Platform: cisco RSP4, Capabilities: Router
Interface: Eth 1/1, Port ID (outgoing port): FastEthernet5/0/0
Holdtime : 124 seconds
Version :
Cisco Internetwork Operating System Software
IOS (tm) RSP Software (RSP-JSV-M), Version 12.0(5)T1, RELEASE SOFTWARE
(fc1)
Copyright (c) 1986-1999 by cisco Systems, Inc.
Compiled Thu 19-Aug-99 04:12 by cmong

Syntax: show fdp entry * | <device-id>

Displaying CDP statistics

To display CDP packet statistics, enter the following command.

FESX Router# show fdp traffic
CDP counters:
 Total packets output: 0, Input: 3
 Hdr syntax: 0, Chksum error: 0, Encaps failed: 0
 No memory: 0, Invalid packet: 0, Fragmented: 0

Syntax: show fdp traffic

Clearing CDP information

You can clear the following CDP information:

- Cisco Neighbor information
- CDP statistics

To clear the Cisco neighbor information, enter the following command.

FESX Router# clear fdp table
Syntax: clear fdp table

To clear CDP statistics, enter the following command.
FESX Router# clear fdp counters

Syntax: clear fdp counters
Reading CDP packets
This chapter describes how to display Syslog messages and how to configure the Syslog facility, and lists the Syslog messages that Brocade devices can display during standard operation.

NOTE
This chapter does not list Syslog messages that can be displayed when a debug option is enabled.

Overview

Brocade software can write syslog messages to provide information at the following severity levels:

- Emergencies
- Alerts
- Critical
- Errors
- Warnings
- Notifications
- Informational
- Debugging

The device writes the messages to a local buffer.

You also can specify the IP address or host name of up to six Syslog servers. When you specify a Syslog server, the Brocade device writes the messages both to the system log and to the Syslog server.

Using a Syslog server ensures that the messages remain available even after a system reload. The Brocade local Syslog buffer is cleared during a system reload or reboot, but the Syslog messages sent to the Syslog server remain on the server.

NOTE
Starting in software release 02.5.00, you can enable the Brocade device to retain Syslog messages after a soft reboot (`reload` command). Refer to “Retaining Syslog messages after a soft reboot” on page 1702.

The Syslog service on a Syslog server receives logging messages from applications on the local host or from devices such as a Layer 2 Switch or Layer 3 Switch. Syslog adds a time stamp to each received message and directs messages to a log file. Most Unix workstations come with Syslog configured. Some third party vendor products also provide Syslog running on NT.

Syslog uses UDP port 514 and each Syslog message thus is sent with destination port 514. Each Syslog message is one line with Syslog message format. The message is embedded in the text portion of the Syslog format. There are several subfields in the format. Keywords are used to identify each subfield, and commas are delimiters. The subfield order is insensitive except that the text subfield should be the last field in the message. All the subfields are optional.
Displaying Syslog messages

To display the Syslog messages in the device local buffer, enter the `show logging` command at any level of the CLI. The following shows an example display output.

FastIron>show logging

Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Buffer logging: level ACDMEINW, 3 messages logged
level code: A=alert C=critical D=debugging M=emergency E=error
I=informational N=notification W=warning

Static Log Buffer:
Dec 15 19:04:14:A:Fan 1, fan on right connector, failed

Dynamic Log Buffer (50 entries):
Dec 15 18:46:17:I:Interface ethernet 4, state up
Dec 15 18:45:21:I:Bridge topology change, vlan 4095, interface 4, changed state to forwarding
Dec 15 18:45:15:I:Warm start

For information about the Syslog configuration information, time stamps, and dynamic and static buffers, refer to “Displaying the Syslog configuration” on page 1696.

Enabling real-time display of Syslog messages

By default, to view Syslog messages generated by a Brocade device, you need to display the Syslog buffer or the log on a Syslog server used by the Brocade device.

You can enable real-time display of Syslog messages on the management console. When you enable this feature, the software displays a Syslog message on the management console when the message is generated. However, to enable display of real-time Syslog messages in Telnet or SSH sessions, you also must enable display within the individual sessions.

To enable real-time display of Syslog messages, enter the following command at the global CONFIG level of the CLI.

FastIron(config)#logging console

Syntax: [no] logging console

This command enables the real-time display of Syslog messages on the serial console. You can enter this command from the serial console or a Telnet or SSH session.

Enabling real-time display for a Telnet or SSH session

To also enable the real-time display for a Telnet or SSH session, enter the following command from the Privileged EXEC level of the session.

telnet@FastIron#terminal monitor
Syslog trace was turned ON

Syntax: terminal monitor
Configuring the Syslog service

Notice that the CLI displays a message to indicate the status change for the feature. To disable the feature in the management session, enter the `terminal monitor` command again. The command toggles the feature on and off.

telnet@FastIron#terminal monitor
Syslog trace was turned OFF

Here is an example of how the Syslog messages are displayed.

telnet@FastIron#terminal monitor
Syslog trace was turned ON
SYSLOG: <9>FastIron, Power supply 2, power supply on left connector, failed
SYSLOG: <14>FastIron, Interface ethernet 6, state down
SYSLOG: <14>FastIron, Interface ethernet 2, state up

Show log on all terminals

Platform Support:

- FGS and FLS devices running software release 04.1.00 and later
- FWS devices running software release 04.3.00 or later
- FastIron X Series devices running software release 04.1.00 and later – L2, BL3, L3
- Turbolron X Series devices running software release 04.1.00 and later
- FastIron CX devices running software release 06.0.00 and later

In software release versions prior to those listed above, log messages could only be sent to a single terminal logged on to a Brocade switch. The above software versions remove that limitation and permits any terminal logged on to a Brocade switch to receive real-time Syslog messages when the `terminal monitor` command is issued.

Configuring the Syslog service

The procedures in this section describe how to perform the following Syslog configuration tasks:

- Specify a Syslog server. You can configure the Brocade device to use up to six Syslog servers. (Use of a Syslog server is optional. The system can hold up to 1000 Syslog messages in an internal buffer.)

 NOTE
 For FLS devices, the Layer 2 internal buffer message limit is 100. For the Layer 3 image, the limit is 1,000.

- Change the level of messages the system logs.
- Change the number of messages the local Syslog buffer can hold.
- Display the Syslog configuration.
- Clear the local Syslog buffer.

Logging is enabled by default, with the following settings:

- Messages of all severity levels (Emergencies – Debugging) are logged.
- By default, up to 50 messages are retained in the local Syslog buffer. This can be changed.
• No Syslog server is specified.

Displaying the Syslog configuration

To display the Syslog parameters currently in effect on a Brocade device, enter the following command from any level of the CLI.

FastIron>#show logging
 Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
 Buffer logging: level ACDMEINW, 3 messages logged
 level code: A=alert C=critical D=debugging E=emergency M=emergency
 E=error I=informational N=notification W=warning

Static Log Buffer:
 Dec 15 19:04:14:A:Fan 1, fan on right connector, failed

Dynamic Log Buffer (50 entries):
 Dec 15 18:46:17:I:Interface ethernet 1/4, state up
 Dec 15 18:45:21:I:Bridge topology change, vlan 4095, interface 4, changed
 state to forwarding
 Dec 15 18:45:15:I:Warm start

Syntax: show logging

The Syslog display shows the following configuration information, in the rows above the log entries themselves.

<table>
<thead>
<tr>
<th>TABLE 267 CLI display of Syslog buffer configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
</tr>
<tr>
<td>Syslog logging</td>
</tr>
<tr>
<td>messages dropped</td>
</tr>
<tr>
<td>flushes</td>
</tr>
<tr>
<td>overruns</td>
</tr>
<tr>
<td>level</td>
</tr>
<tr>
<td>messages logged</td>
</tr>
<tr>
<td>level code</td>
</tr>
</tbody>
</table>

Static and dynamic buffers

The software provides two buffers:
Configuring the Syslog service

- **Static** – logs power supply failures, fan failures, and temperature warning or shutdown messages
- **Dynamic** – logs all other message types

In the static log, new messages replace older ones, so only the most recent message is displayed. For example, only the most recent temperature warning message will be present in the log. If multiple temperature warning messages are sent to the log, the latest one replaces the previous one. The static buffer is not configurable.

The message types that appear in the static buffer do not appear in the dynamic buffer. The dynamic buffer contains up to the maximum number of messages configured for the buffer (50 by default), then begins removing the oldest messages (at the bottom of the log) to make room for new ones.

The static and dynamic buffers are both displayed when you display the log.

```
FastIron#show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
  Buffer logging: level ACDMEINW, 3 messages logged
    level code: A=alert C=critical D=debugging M=emergency E=error
    I=informational N=notification W=warning

Static Log Buffer:
Dec 15 19:04:14:A:Fan 1, fan on right connector, failed
Dec 15 19:00:14:A:Fan 2, fan on left connector, failed

Dynamic Log Buffer (50 entries):
Dec 15 18:46:17:1:I:Interface ethernet 4, state up
Dec 15 18:45:21:1:I:Bridge topology change, vlan 4095, interface 4, changed
  state to forwarding
Dec 15 18:45:15:1:I:Warm start
```

Notice that the static buffer contains two separate messages for fan failures. Each message of each type has its own buffer. Thus, if you replace fan 1 but for some reason that fan also fails, the software replaces the first message about the failure of fan 1 with the newer message. The software does not overwrite the message for fan 2, unless the software sends a newer message for fan 2.

When you clear log entries, you can selectively clear the static or dynamic buffer, or you can clear both. For example, to clear only the dynamic buffer, enter the following command at the Privileged EXEC level.

```
FastIron#clear logging dynamic-buffer
```

Syntax: `clear logging [dynamic-buffer | static-buffer]`

You can specify `dynamic-buffer` to clear the dynamic buffer or `static-buffer` to clear the static buffer. If you do not specify a buffer, both buffers are cleared.

Time stamps

The contents of the time stamp differ depending on whether you have set the time and date on the onboard system clock:

- If you have set the time and date on the onboard system clock, the date and time are shown in the following format.

 `mm dd hh:mm:ss`
Configuring the Syslog service

where

- \(mm \) – abbreviation for the name of the month
- \(dd \) – day
- \(hh \) – hours
- \(mm \) – minutes
- \(ss \) – seconds

For example, “Oct 15 17:38:03” means October 15 at 5:38 PM and 3 seconds.

- If you have not set the time and date on the onboard system clock, the time stamp shows the amount of time that has passed since the device was booted, in the following format.

\(<num>d<num>h<num>m<num>s\)

where

- \(<num>d\) – day
- \(<num>h\) – hours
- \(<num>m\) – minutes
- \(<num>s\) – seconds

For example, “188d1h01m00s” means the device had been running for 188 days, 11 hours, one minute, and zero seconds when the Syslog entry with this time stamp was generated.

Example of Syslog messages on a device with the onboard clock set

The example shows the format of messages on a device where the onboard system clock has been set. Each time stamp shows the month, the day, and the time of the system clock when the message was generated. For example, the system time when the most recent message (the one at the top) was generated was October 15 at 5:38 PM and 3 seconds.

FastIron#show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Buffer logging: level ACDMEINW, 38 messages logged
level code: A=alert C=critical D=debugging M=emergency E=error I=informational N=notification W=warning

Static Log Buffer:
Dec 15 19:04:14:A:Fan 1, fan on right connector, failed
Dec 15 19:00:14:A:Fan 2, fan on left connector, failed

Dynamic Log Buffer (50 entries):
Oct 15 17:38:03:warning:list 101 denied tcp 209.157.22.191(0)(Ethernet 18 0010.5af.77ed) -> 198.99.4.69(http), 1 event(s)
Oct 15 07:03:30:warning:list 101 denied tcp 209.157.22.26(0)(Ethernet 18 0010.5af.77ed) -> 198.99.4.69(http), 1 event(s)
Oct 15 06:58:30:warning:list 101 denied tcp 209.157.22.198(0)(Ethernet 18 0010.5af.77ed) -> 198.99.4.69(http), 1 event(s)

Example of Syslog messages on a device with the onboard clock not set

The example shows the format of messages on a device where the onboard system clock is not set. Each time stamp shows the amount of time the device had been running when the message was generated. For example, the most recent message, at the top of the list of messages, was generated when the device had been running for 21 days, seven hours, two minutes, and 40 seconds.
Disabling or re-enabling Syslog

Syslog is enabled by default. To disable it, enter the following command at the global CONFIG level.

```
FastIron(config)#no logging on
```

Syntax: [no] logging on [udp-port]

The `<udp-port>` parameter specifies the application port used for the Syslog facility. The default is 514.

To re-enable logging, enter the following command.

```
FastIron(config)#logging on
```

This command enables local Syslog logging with the following defaults:

- Messages of all severity levels (Emergencies – Debugging) are logged.
- Up to 50 messages are retained in the local Syslog buffer.
- No Syslog server is specified.

Specifying a Syslog server

To specify a Syslog server, enter a command such as the following.

```
FastIron(config)#logging host 10.0.0.99
```

Syntax: logging host <ip-addr> | <server-name>

Specifying an additional Syslog server

To specify an additional Syslog server, enter the `logging host <ip-addr>` command again, as in the following example. You can specify up to six Syslog servers.

```
FastIron(config)#logging host 10.0.0.99
```

Syntax: logging host <ip-addr> | <server-name>
Disabling logging of a message level

To change the message level, disable logging of specific message levels. You must disable the message levels on an individual basis.

For example, to disable logging of debugging and informational messages, enter the following commands.

```
FastIron(config)#no logging buffered debugging
FastIron(config)#no logging buffered informational
```

Syntax: `[no] logging buffered <level> | <num-entries>`

The `<level>` parameter can have one of the following values:

- alerts
- critical
- debugging
- emergencies
- errors
- informational
- notifications
- warnings

The commands in the example above change the log level to notification messages or higher. The software will not log informational or debugging messages. The changed message level also applies to the Syslog servers.

Changing the number of entries the local buffer can hold

You also can use the `logging buffered` command to change the number of entries the local Syslog buffer can store. For example.

```
FastIron(config)#logging buffered 100
FastIron(config)#write mem
FastIron(config)#exit
FastIron#reload
```

Syntax: `logging buffered <num>`

The default number of messages is 50. On most FastIron Layer 2 and Layer 3 switches, the buffer can hold up to 1000 entries.

NOTE

For FastIron LS devices running Layer 2 software, the syslog buffer limit is 100 entries. For FLS devices running the EPREM software image, the syslog buffer limit is 1000 entries.

Configuration notes

- In software releases FSX 02.5.00 and later, you must save the configuration and reload the software to place the change into effect. In releases prior to 02.5.00, the change takes effect immediately and does not require you to reload the software.
- If you decrease the size of the buffer, the software clears the buffer before placing the change into effect.
• If your device is running software release 02.4.00 and you increase the size of the Syslog buffer, the software will clear some of the older locally buffered Syslog messages.

Changing the log facility

The Syslog daemon on the Syslog server uses a facility to determine where to log the messages from the Brocade device. The default facility for messages the Brocade device sends to the Syslog server is "user". You can change the facility using the following command.

NOTE

You can specify only one facility. If you configure the Brocade device to use two Syslog servers, the device uses the same facility on both servers.

```
FastIron(config)#logging facility local0
```

Syntax: `logging facility <facility-name>`

The `<facility-name>` can be one of the following:

- **kern** – kernel messages
- **user** – random user-level messages
- **mail** – mail system
- **daemon** – system daemons
- **auth** – security or authorization messages
- **syslog** – messages generated internally by Syslog
- **lpr** – line printer subsystem
- **news** – netnews subsystem
- **uucp** – uucp subsystem
- **sys9** – cron/at subsystem
- **sys10** – reserved for system use
- **sys11** – reserved for system use
- **sys12** – reserved for system use
- **sys13** – reserved for system use
- **sys14** – reserved for system use
- **cron** – cron/at subsystem
- **local0** – reserved for local use
- **local1** – reserved for local use
- **local2** – reserved for local use
- **local3** – reserved for local use
- **local4** – reserved for local use
- **local5** – reserved for local use
- **local6** – reserved for local use
- **local7** – reserved for local use
Displaying Interface names in Syslog messages

By default, an interface slot number (if applicable) and port number are displayed when you display Syslog messages. If you want to display the name of the interface instead of its number, enter the following command:

```
FastIron(config)# ip show-portname
```

This command is applied globally to all interfaces on Layer 2 Switches and Layer 3 Switches.

Syntax:
```
[no] ip show-portname
```

When you display the messages in the Syslog, you see the interface name under the Dynamic Log Buffer section. The actual interface number is appended to the interface name. For example, if the interface name is "lab" and its port number is "2", you see "lab2" displayed as in the example below:

```
FastIron# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
  Buffer logging: level ACDMEINW, 3 messages logged
    level code: A=alert C=critical D=debugging M=emergency E=error
    I=informational N=notification W=warning
Static Log Buffer:
Dec 15 19:04:14:A:Fan 1, fan on right connector, failed
Dynamic Log Buffer (50 entries):
Dec 15 18:46:17:I:Interface ethernet Lab2, state up
Dec 15 18:45:15:I:Warm start
```

Displaying TCP or UDP port numbers in Syslog messages

The command `ip show-service-number-in-log` allows you to change the display of TCP or UDP application information from the TCP or UDP well-known port name to the TCP or UDP port number. For example, when this command is in effect, the Brocade device will display `http` (the well-known port name) instead of `80` (the port number) in the output of show commands, and other commands that contain application port information. By default, Brocade devices display TCP or UDP application information in named notation.

To display TCP or UDP port numbers instead of their names, enter the following command.

```
FastIron(config)#ip show-service-number-in-log
```

Syntax:
```
[no] ip show-service-number-in-log
```

Retaining Syslog messages after a soft reboot

You can configure the FastIron X Series device to save the System log (Syslog) after a soft reboot (`reload` command). In releases prior to 02.5.00, the device clears the messages from the System log when the `reload` command is issued.

Configuration considerations

- If the number of entries that the Syslog buffer can hold was set to a lower value using the CLI command `logging buffered`, the System log will be cleared after a soft reboot, even when the `logging persistence` feature is in effect. To prevent the device from clearing the System log, either leave the number of entries allowed in the Syslog buffer unchanged, or increase the number of entries allowed in the Syslog buffer.
• This feature does not save Syslog messages after a hard reboot. When the Brocade device is power-cycled, the Syslog messages are cleared.

• If logging persistence is enabled and you load a new software image on the device, you must first clear the log file if you want to reload the device. (Refer to “Clearing the Syslog messages from the local buffer” on page 1703.)

To configure the device to save the System log messages after a soft reboot, enter the following command.

```
FastIron(config)#logging persistence
```

Syntax: `[no] logging persistence`
Enter `no logging persistence` to disable this feature after it has been enabled.

Clearing the Syslog messages from the local buffer

To clear the Syslog messages stored in the local buffer of the Brocade device, enter the following command.

```
FastIron#clear logging
```

Syntax: `clear logging`

Syslog messages for hardware errors

Platform Support:

• FastIron chassis devices running software release 04.2.00 and later

FastIron Chassis devices support the display of hardware read and write errors encountered on a slot or module during bootup and during normal system operations. There are four types of errors, which may cause the system to disable or power down the modules on which they occur:

• Configuration read error
• Configuration write error
• Memory read error
• Memory write error

The following shows examples of some hardware errors in the `show logging` display output.
Syslog messages

Syslog messages (alerts) for hardware errors are listed in Table 268 on page 1704.

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert</td>
<td><num-modules> modules and 1 power supply, need more power supply!!</td>
<td>Indicates that the chassis needs more power supplies to run the modules in the chassis. The <num-modules> parameter indicates the number of modules in the chassis.</td>
</tr>
<tr>
<td>Alert</td>
<td>Fan <num>, <location>, failed</td>
<td>A fan has failed. The <num> is the fan number. The <location> describes where the failed fan is in the chassis.</td>
</tr>
<tr>
<td>Alert</td>
<td>ISIS MEMORY USE EXCEEDED</td>
<td>IS-IS is requesting more memory than is available.</td>
</tr>
</tbody>
</table>
Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert</td>
<td>MAC Authentication failed for <code><mac-address></code> on <code><portnum></code></td>
<td>RADIUS authentication was successful for the specified <code><mac-address></code> on the specified <code><portnum></code>; however, the VLAN returned in the RADIUS Access-Accept message did not refer to a valid VLAN or VLAN ID on the Brocade device. This is treated as an authentication failure.</td>
</tr>
<tr>
<td>Alert</td>
<td>MAC Authentication failed for <code><mac-address></code> on <code><portnum></code> (Invalid User)</td>
<td>RADIUS authentication failed for the specified <code><mac-address></code> on the specified <code><portnum></code> because the MAC address sent to the RADIUS server was not found in the RADIUS server users database.</td>
</tr>
<tr>
<td>Alert</td>
<td>MAC Authentication failed for <code><mac-address></code> on <code><portnum></code> (No VLAN Info received from RADIUS server)</td>
<td>RADIUS authentication was successful for the specified <code><mac-address></code> on the specified <code><portnum></code>; however, dynamic VLAN assignment was enabled for the port, but the RADIUS Access-Accept message did not include VLAN information. This is treated as an authentication failure.</td>
</tr>
<tr>
<td>Alert</td>
<td>MAC Authentication failed for <code><mac-address></code> on <code><portnum></code> (Port is already in another radius given vlan)</td>
<td>RADIUS authentication was successful for the specified <code><mac-address></code> on the specified <code><portnum></code>; however, the RADIUS Access-Accept message specified a VLAN ID, although the port had previously been moved to a different RADIUS-assigned VLAN. This is treated as an authentication failure.</td>
</tr>
<tr>
<td>Alert</td>
<td>MAC Authentication failed for <code><mac-address></code> on <code><portnum></code> (RADIUS given vlan does not exist)</td>
<td>RADIUS authentication was successful for the specified <code><mac-address></code> on the specified <code><portnum></code>; however, the RADIUS Access-Accept message specified a VLAN that does not exist in the Brocade configuration. This is treated as an authentication failure.</td>
</tr>
<tr>
<td>Alert</td>
<td>MAC Authentication failed for <code><mac-address></code> on <code><portnum></code> (RADIUS given VLAN does not match with TAGGED vlan)</td>
<td>Multi-device port authentication failed for the <code><mac-address></code> on a tagged port because the packet with this MAC address as the source was tagged with a VLAN ID different from the RADIUS-supplied VLAN ID.</td>
</tr>
</tbody>
</table>
| Alert | Management module at slot `<slot-num>` state changed from `<module-state>` to `<module-state>`. | Indicates a state change in a management module. The `<slot-num>` indicates the chassis slot containing the module. The `<module-state>` can be one of the following:
 - active
 - standby
 - crashed
 - coming-up
 - unknown |
<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Alert | OSPF LSA Overflow, LSA Type = <lsa-type> | Indicates an LSA database overflow. The <lsa-type> parameter indicates the type of LSA that experienced the overflow condition. The LSA type is one of the following:
| | | • 1 – Router
| | | • 2 – Network
| | | • 3 – Summary
| | | • 4 – Summary
| | | • 5 – External |
| Alert | OSPF Memory Overflow | OSPF has run out of memory. |
| Alert | Power supply <num>, <location>, failed | A power supply has failed. The <num> is the power supply number. The <location> describes where the failed power supply is in the chassis. |
| Alert | System: Module in slot <slot-num> encountered PCI config read error: Bus <PCI-bus-number>, Dev <PCI-device-number>, Reg Offset <PCI-config-register-offset> | The module encountered a hardware configuration read error. |
| Alert | System: Module in slot <slot-num> encountered PCI config write error: Bus <PCI-bus-number>, Dev <PCI-device-number>, Reg Offset <PCI-config-register-offset> | The module encountered a hardware configuration write error. |
| Alert | System: Module in slot <slot-num> encountered PCI memory read error: Mem Addr <memory-address> | The module encountered a hardware memory read error. The <memory-address> is in hexadecimal format. |
| Alert | System: Module in slot <slot-num> encountered PCI memory write error: Mem Addr <memory-address> | The module encountered a hardware memory write error. The <memory-address> is in hexadecimal format. |
| Alert | System: Module in slot <slot-num> encountered unrecoverable PCI bridge validation failure. Module will be deleted. | The module encountered an unrecoverable (hardware) bridge validation failure. The module will be disabled or powered down. |
| Alert | System: Module in slot <slot-num> encountered unrecoverable PCI config read failure. Module will be deleted. | The module encountered an unrecoverable hardware configuration read failure. The module will be disabled or powered down. |
| Alert | System: Module in slot <slot-num> encountered unrecoverable PCI config write failure. Module will be deleted. | The module encountered an unrecoverable hardware configuration write failure. The module will be disabled or powered down. |
| Alert | System: Module in slot <slot-num> encountered unrecoverable PCI device validation failure. Module will be deleted. | The module encountered an unrecoverable (hardware) device validation failure. The module will be disabled or powered down. |
| Alert | System: Module in slot <slot-num> encountered unrecoverable PCI memory read failure. Module will be deleted. | The module encountered an unrecoverable hardware memory read failure. The module will be disabled or powered down. |
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alert</td>
<td>System: Module in slot <code><slot-num></code> encountered unrecoverable PCI memory write failure. Module will be deleted.</td>
<td>The module encountered an unrecoverable hardware memory write failure. The module will be disabled or powered down.</td>
</tr>
<tr>
<td>Alert</td>
<td>System: No Free Tcam Entry available. System will be unstable</td>
<td>In FWS devices, the limit for the TCAM routing entries has been reached. You must reboot the device.</td>
</tr>
<tr>
<td>Alert</td>
<td>System: Temperature is over shutdown level, system is going to be reset in <code><num></code> seconds</td>
<td>The chassis temperature has risen above shutdown level. The system will be shut down in the amount of time indicated.</td>
</tr>
<tr>
<td>Alert</td>
<td>Temperature <code><degrees></code> C degrees, warning level <code><warn-degrees></code> C degrees, shutdown level <code><shutdown-degrees></code> C degrees</td>
<td>Indicates an over temperature condition on the active module. The <code><degrees></code> value indicates the temperature of the module. The <code><warn-degrees></code> value is the warning threshold temperature configured for the module. The <code><shutdown-degrees></code> value is the shutdown temperature configured for the module.</td>
</tr>
<tr>
<td>Critical</td>
<td>Authentication shut down <code><portnum></code> due to DOS attack</td>
<td>Denial of Service (DoS) attack protection was enabled for multi-device port authentication on the specified <code><portnum></code>, and the per-second rate of RADIUS authentication attempts for the port exceeded the configured limit. The Brocade device considers this to be a DoS attack and disables the port.</td>
</tr>
<tr>
<td>Debug</td>
<td>BGP4: Not enough memory available to run BGP4</td>
<td>The device could not start the BGP4 routing protocol because there is not enough memory available.</td>
</tr>
<tr>
<td>Debug</td>
<td>DOT1X: Not enough memory</td>
<td>There is not enough system memory for 802.1X authentication to take place. Contact Brocade Technical Support.</td>
</tr>
<tr>
<td>Error</td>
<td>No of prefixes received from BGP peer <code><ip-addr></code> exceeds maximum prefix-limit...shutdown</td>
<td>The Layer 3 Switch has received more than the specified maximum number of prefixes from the neighbor, and the Layer 3 Switch is therefore shutting down its BGP4 session with the neighbor.</td>
</tr>
<tr>
<td>Information</td>
<td>IPv6: IPv6 protocol disabled on the device from <code><session-id></code></td>
<td>IPv6 protocol was disabled on the device during the specified session.</td>
</tr>
<tr>
<td>Information</td>
<td>IPv6: IPv6 protocol enabled on the device from <code><session-id></code></td>
<td>IPv6 protocol was enabled on the device during the specified session.</td>
</tr>
<tr>
<td>Information</td>
<td>MAC Filter applied to port <code><port-id></code> by <code><username></code> from <code><session-id></code> (filter id= <code><filter-ids></code>)</td>
<td>Indicates a MAC filter was applied to the specified port by the specified user during the specified session. <code><session-id></code> can be console, telnet, ssh, web, or snmp. <code><filter-ids></code> is a list of the MAC filters that were applied.</td>
</tr>
<tr>
<td>Message level</td>
<td>Message</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Information</td>
<td>MAC Filter removed from port <code><port-id></code> by <code><username></code> from <code><session-id></code> (filter id=<code><filter-ids></code>)</td>
<td>Indicates a MAC filter was removed from the specified port by the specified user during the specified session. <code><session-id></code> can be console, telnet, ssh, web, or snmp. <code><filter-ids></code> is a list of the MAC filters that were removed.</td>
</tr>
<tr>
<td>Information</td>
<td>Security: Password has been changed for user <code><username></code> from <code><session-id></code></td>
<td>Password of the specified user has been changed during the specified session ID or type. <code><session-id></code> can be console, telnet, ssh, web, or snmp.</td>
</tr>
<tr>
<td>Informational</td>
<td><code><device-name></code>: Logical link on interface ethernet <code><slot#/port#></code> is down.</td>
<td>The specified ports were logically brought down while <code>singleton</code> was configured on the port.</td>
</tr>
<tr>
<td>Informational</td>
<td><code><device-name></code>: Logical link on interface ethernet <code><slot#/port#></code> is up.</td>
<td>The specified ports were logically brought up while <code>singleton</code> was configured on the port.</td>
</tr>
<tr>
<td>Informational</td>
<td><code><user-name></code> login to PRIVILEGED mode</td>
<td>A user has logged into the Privileged EXEC mode of the CLI. The <code><user-name></code> is the user name.</td>
</tr>
<tr>
<td>Informational</td>
<td><code><user-name></code> login to USER EXEC mode</td>
<td>A user has logged into the USER EXEC mode of the CLI. The <code><user-name></code> is the user name.</td>
</tr>
<tr>
<td>Informational</td>
<td><code><user-name></code> logout from PRIVILEGED mode</td>
<td>A user has logged out of Privileged EXEC mode of the CLI. The <code><user-name></code> is the user name.</td>
</tr>
<tr>
<td>Informational</td>
<td><code><user-name></code> logout from USER EXEC mode</td>
<td>A user has logged out of the USER EXEC mode of the CLI. The <code><user-name></code> is the user name.</td>
</tr>
<tr>
<td>Informational</td>
<td>ACL <code><ACL id></code> added</td>
<td>A user created, modified, deleted, or applied an ACL through a Web, SNMP, console, SSH, or Telnet session.</td>
</tr>
<tr>
<td>Informational</td>
<td>Bridge is new root, vlan <code><vlan-id></code>, root ID <code><root-id></code></td>
<td>A Spanning Tree Protocol (STP) topology change has occurred, resulting in the Brocade device becoming the root bridge. The <code><vlan-id></code> is the ID of the VLAN in which the STP topology change occurred. The <code><root-id></code> is the STP bridge root ID.</td>
</tr>
<tr>
<td>Informational</td>
<td>Bridge root changed, vlan <code><vlan-id></code>, new root ID <code><string></code>, root interface <code><portnum></code></td>
<td>A Spanning Tree Protocol (STP) topology change has occurred. The <code><vlan-id></code> is the ID of the VLAN in which the STP topology change occurred. The <code><root-id></code> is the STP bridge root ID. The <code><portnum></code> is the number of the port connected to the new root bridge.</td>
</tr>
</tbody>
</table>
A Spanning Tree Protocol (STP) topology change has occurred on a port. The <vlan-id> is the ID of the VLAN in which the STP topology change occurred. The <portnum> is the port number. The <stp-state> is the new STP state and can be one of the following:
- disabled
- blocking
- listening
- learning
- forwarding
- unknown

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational</td>
<td>Bridge topology change, vlan <vlan-id>, interface <portnum>, changed state to <stp-state></td>
<td>A Spanning Tree Protocol (STP) topology change has occurred on a port. The <vlan-id> is the ID of the VLAN in which the STP topology change occurred. The <portnum> is the port number. The <stp-state> is the new STP state and can be one of the following:</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> Cannot apply an ACL or MAC filter on a port member of a VE (virtual interface)</td>
<td>The RADIUS server returned an IP ACL or MAC address filter, but the port is a member of a virtual interface (VE).</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> cannot remove inbound ACL</td>
<td>An error occurred while removing the inbound ACL.</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> Downloading a MAC filter, but MAC filter have no effect on router port</td>
<td>The RADIUS server returned a MAC address filter, but the <portnum> is a router port (it has one or more IP addresses).</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> Downloading an IP ACL, but IP ACL have no effect on a switch port</td>
<td>The RADIUS server returned an IP ACL, but the <portnum> is a switch port (no IP address).</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> Error - could not add all MAC filters</td>
<td>The Brocade device was unable to implement the MAC address filters returned by the RADIUS server.</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> Invalid MAC filter ID - this ID does not exist</td>
<td>The MAC address filter ID returned by the RADIUS server does not exist in the Brocade configuration.</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> Invalid MAC filter ID - this ID is defined and cannot be used</td>
<td>The port was assigned a MAC address filter ID that had been dynamically created by another user.</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> is unauthorized because system resource is not enough or the invalid information to set the dynamic assigned IP ACLs or MAC address filters</td>
<td>802.1X authentication failed for the Client with the specified <mac address> on the specified <portnum> either due to insufficient system resources on the device, or due to invalid IP ACL or MAC address filter information returned by the RADIUS server.</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> Port is already bound with MAC filter</td>
<td>The RADIUS server returned a MAC address filter, but a MAC address filter had already been applied to the port.</td>
</tr>
<tr>
<td>Informational</td>
<td>DOT1X : port <portnum> - mac <mac address> This device doesn't support ACL with MAC Filtering on the same port</td>
<td>The RADIUS server returned a MAC address filter while an IP ACL was applied to the port, or returned an IP ACL while a MAC address filter was applied to the port.</td>
</tr>
</tbody>
</table>
Informational | DOT1X Port <portnum> is unauthorized because system resource is not enough or the invalid information to set the dynamic assigned IP ACLs or MAC address filters | 802.1X authentication could not take place on the port. This happened because strict security mode was enabled and one of the following occurred:
• Insufficient system resources were available on the device to apply an IP ACL or MAC address filter to the port
• Invalid information was received from the RADIUS server (for example, the Filter-ID attribute did not refer to an existing IP ACL or MAC address filter)

Informational | DOT1X: Port <portnum> currently used vlan-id changes to <vlan-id> due to dot1x-RADIUS vlan assignment | A user has completed 802.1X authentication. The profile received from the RADIUS server specifies a VLAN ID for the user. The port to which the user is connected has been moved to the VLAN indicated by <vlan-id>.

Informational | DOT1X: Port <portnum> currently used vlan-id is set back to port default vlan-id <vlan-id> | The user connected to <portnum> has disconnected, causing the port to be moved back into its default VLAN, <vlan-id>.

Informational | DOT1X: Port <portnum>, AuthControlledPortStatus change: authorized | The status of the interface controlled port has changed from unauthorized to authorized.

Informational | DOT1X: Port <portnum>, AuthControlledPortStatus change: unauthorized | The status of the interface controlled port has changed from authorized to unauthorized.

Informational | Enable super | port-config | read-only password deleted | added | modified from console | telnet | ssh | web | snmp OR Line password deleted | added | modified from console | telnet | ssh | web | snmp | A user created, re-configured, or deleted an Enable or Line password through the Web, SNMP, console, SSH, or Telnet session.

Informational | ERR_DISABLE: Interface ethernet <port-number>, err-disable recovery timeout | Errdisable recovery timer expired and the port has been reenabled.

Informational | ERR_DISABLE: Interface ethernet 16, err-disable recovery timeout | If the wait time (port is down and is waiting to come up) expires and the port is brought up the following message is displayed.

Informational | ERR_DISABLE: Link flaps on port ethernet 16 exceeded threshold; port in err-disable state | The threshold for the number of times that a port link toggles from “up” to “down” and “down” to “up” has been exceeded.

Informational | Interface <portnum>, line protocol down | The line protocol on a port has gone down. The <portnum> is the port number.

Informational | Interface <portnum>, line protocol up | The line protocol on a port has come up. The <portnum> is the port number.

Informational | Interface <portnum>, state down | A port has gone down. The <portnum> is the port number.

Informational | Interface <portnum>, state up | A port has come up. The <portnum> is the port number.
Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational</td>
<td>MAC Based Vlan Disabled on port <code><port id></code></td>
<td>A MAC Based VLAN has been disabled on a port</td>
</tr>
<tr>
<td>Informational</td>
<td>MAC Based Vlan Enabled on port <code><port id></code></td>
<td>A MAC Based VLAN has been enabled on a port.</td>
</tr>
<tr>
<td>Informational</td>
<td>MAC Filter added</td>
<td>A user created, modified, deleted, or applied this MAC filter through the Web, SNMP, console, SSH, or Telnet session.</td>
</tr>
<tr>
<td>Informational</td>
<td>Informational</td>
<td>The optical transceiver is qualified by Brocade, but the transceiver does not support digital optical performance monitoring.</td>
</tr>
<tr>
<td>Informational</td>
<td>Port <code><p></code> priority changed to <code><n></code></td>
<td>A port priority has changed.</td>
</tr>
<tr>
<td>Informational</td>
<td>Port <code><portnum></code>, srcip-security max-ipaddr-per-int reached. Last IP=<code><ipaddr></code></td>
<td>The address limit specified by the <code>srcip-security max-ipaddr-per-interface</code> command has been reached for the port.</td>
</tr>
<tr>
<td>Informational</td>
<td>Port <code><portnum></code>, srcip-security max-ipaddr-per-int reached. Last IP=<code><ipaddr></code></td>
<td>The address limit specified by the <code>srcip-security max-ipaddr-per-interface</code> command has been reached for the port.</td>
</tr>
<tr>
<td>Informational</td>
<td>Security: console login by <code><username></code> to USER</td>
<td>The specified user logged into the device console into the specified EXEC mode.</td>
</tr>
<tr>
<td>Informational</td>
<td>Security: console logout by <code><username></code></td>
<td>The specified user logged out of the device console.</td>
</tr>
<tr>
<td>Informational</td>
<td>Security: telnet</td>
<td>SSH login by <code><username></code> from src IP <code><ip-address></code>, src MAC <code><mac-address></code> to USER</td>
</tr>
<tr>
<td>Informational</td>
<td>Security: telnet</td>
<td>SSH logout by <code><username></code> from src IP <code><ip-address></code>, src MAC <code><mac-address></code> to USER</td>
</tr>
<tr>
<td>Informational</td>
<td>SNMP read-only community</td>
<td>read-write community</td>
</tr>
<tr>
<td>Informational</td>
<td>SNMP Auth. failure, intruder IP: <code><ip-addr></code></td>
<td>A user has tried to open a management session with the device using an invalid SNMP community string. The <code><ip-addr></code> is the IP address of the host that sent the invalid community string.</td>
</tr>
<tr>
<td>Message level</td>
<td>Message</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Informational</td>
<td>SSH</td>
<td>A user enabled or disabled an SSH or Telnet session, or changed the SSH enable/disable configuration through the Web, SNMP, console, SSH, or Telnet session.</td>
</tr>
<tr>
<td>Informational</td>
<td>startup-config was changed</td>
<td>A configuration change was saved to the startup-config file. The <user-name> is the user ID, if they entered a user ID to log in.</td>
</tr>
<tr>
<td>Informational</td>
<td>STP: Root Guard Port <port-number>, VLAN <vlan-ID> consistent (Timeout).</td>
<td>Root guard unblocks a port.</td>
</tr>
<tr>
<td>Informational</td>
<td>STP: Root Guard Port <port-number>, VLAN <vlan-ID> inconsistent (Received superior BPDU).</td>
<td>Root guard blocked a port.</td>
</tr>
<tr>
<td>Informational</td>
<td>STP: VLAN <vlan-id> BPDU-Guard on Port <port id> triggered (Received BPDU), putting into err-disable state</td>
<td>The BPDU guard feature has detected an incoming BPDU on {vlan-id, port-id}.</td>
</tr>
<tr>
<td>Informational</td>
<td>STP: VLAN <vlan id> Root-Protect Port <port id>, Consistent (Timeout)</td>
<td>The root protect feature goes back to the consistent state.</td>
</tr>
<tr>
<td>Informational</td>
<td>STP: VLAN <vlan id> Root-Protect Port <port id>, Inconsistent (Received superior BPDU)</td>
<td>The root protect feature has detected a superior BPDU and goes into the inconsistent state on {vlan-id, port-id}.</td>
</tr>
<tr>
<td>Informational</td>
<td>STP: VLAN <vlan-id> BPDU-guard port <port-number> detect (Received BPDU), putting into err-disable state</td>
<td>STP placed a port into an errdisable state for BPDU guard.</td>
</tr>
<tr>
<td>Informational</td>
<td>STP: VLAN 1 BPDU-guard port <port-number> detect (Received BPDU), putting into err-disable state.</td>
<td>BPDU guard violation in occurred in STP or RSTP.</td>
</tr>
<tr>
<td>Informational</td>
<td>Syslog server <IP-address> deleted</td>
<td>A user made Syslog configuration changes to the specified Syslog server address, or enabled or disabled a Syslog operation through the Web, SNMP, console, SSH, or Telnet session.</td>
</tr>
<tr>
<td>Informational</td>
<td>SYSTEM: Optic is not Brocade-qualified (<port-number>)</td>
<td>Brocade does not support the optical transceiver.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Fan <fan id> (from left when facing right side), ok</td>
<td>The fan status has changed from fail to normal.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Fan speed changed automatically to <fan speed></td>
<td>The system automatically changed the fan speed to the speed specified in this message.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: No free TCAM entry. System will be unstable</td>
<td>There are no TCAM entries available.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Static Mac entry with Mac Address <mac-address> is added from the <unit>/<slot>/<port> to <unit>/<slot>/<port> on VLANs <vlan-id> to <vlan-id></td>
<td>A MAC address is added to a range of interfaces, which are members of the specified VLAN range.</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational</td>
<td>System: Static Mac entry with Mac Address <code><mac-address></code> is added to eTHE <code><unit>/</slot>/</port></code> to <code><unit>/</slot>/</port></code> on <code><vlan-id></code></td>
<td>A MAC address is added to a range of interfaces, which are members of the specified VLAN.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Static Mac entry with Mac Address <code><mac-address></code> is added to portnumber <code><unit>/</slot>/</port></code> on VLAN <code><vlan-id></code></td>
<td>A MAC address is added to an interface and the interface is a member of the specified VLAN.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Static Mac entry with Mac Address <code><mac-address></code> is deleted from eTHE <code><unit>/</slot>/</port></code> to <code><unit>/</slot>/</port></code> on <code><vlan-id></code></td>
<td>A MAC address is deleted from a range of interfaces, which are members of the specified VLAN.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Static Mac entry with Mac Address <code><mac-address></code> is deleted from portnumber <code><unit>/</slot>/</port></code> on VLANs <code><vlan-id></code> to <code><vlan-id></code></td>
<td>A MAC address is deleted from a range of interfaces, which are members of the specified VLAN range.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Static Mac entry with Mac Address <code><mac-address></code> is deleted from portnumber <code><unit>/</slot>/</port></code> on <code><vlan-id></code></td>
<td>A MAC address is deleted from an interface and the interface is a member of the specified VLAN.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Static Mac entry with Mac Address <code><mac-address></code> is deleted from portnumber <code><unit>/</slot>/</port></code> on VLANs <code><vlan-id></code> to <code><vlan-id></code></td>
<td>A MAC address is deleted from an interface and the interface is a member of the specified VLAN range.</td>
</tr>
<tr>
<td>Informational</td>
<td>telnet</td>
<td>SSH</td>
</tr>
<tr>
<td>Informational</td>
<td>trunk group <code><ports></code> created by 802.3ad link-aggregation module.</td>
<td>802.3ad link aggregation is configured on the device, and the feature has dynamically created a trunk group (aggregate link). The <code><ports></code> is a list of the ports that were aggregated to make the trunk group.</td>
</tr>
<tr>
<td>Informational</td>
<td>user <code><username></code> added</td>
<td>deleted</td>
</tr>
<tr>
<td>Informational</td>
<td>vlan <code><vlan id></code> added</td>
<td>deleted</td>
</tr>
<tr>
<td>Informational</td>
<td>Warm start</td>
<td>The system software (flash code) has been reloaded.</td>
</tr>
<tr>
<td>Informational</td>
<td>Stack: Stack unit <code><unit#></code> has been deleted to the stack system</td>
<td>The specified unit has been deleted from the stacking system.</td>
</tr>
</tbody>
</table>
Table 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational</td>
<td>Stack unit <unitNumber> has been elected as ACTIVE unit of the stack system</td>
<td>The specified unit in a stack has been elected as the Master unit for the stacking system.</td>
</tr>
<tr>
<td>Informational</td>
<td>Stack: Stack unit <unit#> has been added to the stack system</td>
<td>The specified unit has been added to the stacking system.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Management MAC address changed to <mac_address></td>
<td>The management MAC address of a stacking system has been changed</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Stack unit <unit#> Fan <fan#> (<description>), failed</td>
<td>The operational status of a fan in the specified unit in a stack changed from normal to failure.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Stack unit <unit#> Power supply <power-supply#> is down</td>
<td>The operational status of a power supply of the specified unit in a stack changed from normal to failure.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Stack unit <unit#> Power supply <power-supply#> is up</td>
<td>The operational status of a power supply of the specified unit in a stack changed from failure to normal.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Stack unit <unit#> Fan <fan#> (<description>), ok</td>
<td>The operational status of a fan in the specified unit in a stack changed from failure to normal.</td>
</tr>
<tr>
<td>Informational</td>
<td>System: Stack unit <unitNumber> Temperature <actual-temp> C degrees, warning level <warning-temp> C degrees, shutdown level <shutdown-temp> C degrees</td>
<td>The actual temperature reading for a unit in a stack is above the warning temperature threshold.</td>
</tr>
<tr>
<td>Informational</td>
<td>vlan <vlan-id> Bridge is RootBridge <mac-address> (MgmtPriChg)</td>
<td>802.1W changed the current bridge to be the root bridge of the given topology due to administrative change in bridge priority.</td>
</tr>
<tr>
<td>Informational</td>
<td>vlan <vlan-id> Bridge is RootBridge <mac-address> (MsgAgeExp)</td>
<td>The message age expired on the Root port so 802.1W changed the current bridge to be the root bridge of the topology.</td>
</tr>
<tr>
<td>Informational</td>
<td>vlan <vlan-id> interface <portnum> Bridge TC Event (DOT1wTransition)</td>
<td>802.1W recognized a topology change event in the bridge. The topology change event is the forwarding action that started on a non-edge Designated port or Root port.</td>
</tr>
<tr>
<td>Informational</td>
<td>vlan <vlan-id> interface <portnum> STP state -> <state> (DOT1wTransition)</td>
<td>802.1W changed the state of a port to a new state: forwarding, learning, blocking. If the port changes to blocking, the bridge port is in discarding state.</td>
</tr>
<tr>
<td>Informational</td>
<td>vlan <vlan-id> New RootBridge <mac-address> RootPort <portnum> (BpduRcvd)</td>
<td>802.1W selected a new root bridge as a result of the BPDUs received on a bridge port.</td>
</tr>
<tr>
<td>Informational</td>
<td>vlan <vlan-id> New RootPort <portnum> (RootSelection)</td>
<td>802.1W changed the port role to Root port, using the root selection computation.</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>ACL exceed max DMA L4 cam resource, using flow based ACL instead</td>
<td>The port does not have enough Layer 4 CAM entries for the ACL. To correct this condition, allocate more Layer 4 CAM entries. To allocate more Layer 4 CAM entries, enter the following command at the CLI configuration level for the interface: <code>ip access-group max-l4-cam <num></code></td>
</tr>
<tr>
<td>Notification</td>
<td>ACL insufficient L4 cam resource, using flow based ACL instead</td>
<td>The port does not have a large enough CAM partition for the ACLs</td>
</tr>
<tr>
<td>Notification</td>
<td>ACL insufficient L4 session resource, using flow based ACL instead</td>
<td>The device does not have enough Layer 4 session entries. To correct this condition, allocate more memory for sessions. To allocate more memory, enter the following command at the global CONFIG level of the CLI interface: <code>system-max session-limit <num></code></td>
</tr>
<tr>
<td>Notification</td>
<td>ACL port fragment packet inspect rate <code><rate></code> exceeded on port <code><portnum></code></td>
<td>The fragment rate allowed on an individual interface has been exceeded. The <code><rate></code> indicates the maximum rate allowed. The <code><portnum></code> indicates the port. This message can occur if fragment throttling is enabled.</td>
</tr>
<tr>
<td>Notification</td>
<td>ACL system fragment packet inspect rate <code><rate></code> exceeded</td>
<td>The fragment rate allowed on the device has been exceeded. The <code><rate></code> indicates the maximum rate allowed. This message can occur if fragment throttling is enabled.</td>
</tr>
<tr>
<td>Notification</td>
<td>Authentication Disabled on <code><portnum></code></td>
<td>The multi-device port authentication feature was disabled on the on the specified <code><portnum></code>.</td>
</tr>
<tr>
<td>Notification</td>
<td>Authentication Enabled on <code><portnum></code></td>
<td>The multi-device port authentication feature was enabled on the on the specified <code><portnum></code>.</td>
</tr>
<tr>
<td>Notification</td>
<td>BGP Peer <code><ip-addr></code> DOWN (IDLE)</td>
<td>Indicates that a BGP4 neighbor has gone down. The <code><ip-addr></code> is the IP address of the neighbor BGP4 interface with the Brocade device.</td>
</tr>
<tr>
<td>Notification</td>
<td>BGP Peer <code><ip-addr></code> UP (ESTABLISHED)</td>
<td>Indicates that a BGP4 neighbor has come up. The <code><ip-addr></code> is the IP address of the neighbor BGP4 interface with the Brocade device.</td>
</tr>
<tr>
<td>Notification</td>
<td>DOT1X issues software but not physical port down indication of Port <code><portnum></code> to other software applications</td>
<td>The device has indicated that the specified is no longer authorized, but the actual port may still be active.</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>DOT1X issues software but not physical port up indication of Port <code><portnum></code> to other software applications</td>
<td>The device has indicated that the specified port has been authenticated, but the actual port may not be active.</td>
</tr>
<tr>
<td>Notification</td>
<td>DOT1X: Port <code><port_id></code> Mac <code><mac_address></code> -user <code><user_id></code> - RADIUS timeout for authentication</td>
<td>The RADIUS session has timed out for this 802.1x port.</td>
</tr>
<tr>
<td>Notification</td>
<td>ISIS ENTERED INTO OVERLOAD STATE</td>
<td>The Layer 3 Switch has set the overload bit to on (1), indicating that the Layer 3 Switch IS-IS resources are overloaded.</td>
</tr>
<tr>
<td>Notification</td>
<td>ISIS EXITING FROM OVERLOAD STATE</td>
<td>The Layer 3 Switch has set the overload bit to off (0), indicating that the Layer 3 Switch IS-IS resources are no longer overloaded.</td>
</tr>
<tr>
<td>Notification</td>
<td>ISIS L1 ADJACENCY DOWN <code><system-id></code> on circuit <code><circuit-id></code></td>
<td>The Layer 3 Switch adjacency with this Level-1 IS has gone down. The <code><system-id></code> is the system ID of the IS. The <code><circuit-id></code> is the ID of the circuit over which the adjacency was established.</td>
</tr>
<tr>
<td>Notification</td>
<td>ISIS L1 ADJACENCY UP <code><system-id></code> on circuit <code><circuit-id></code></td>
<td>The Layer 3 Switch adjacency with this Level-1 IS has come up. The <code><system-id></code> is the system ID of the IS. The <code><circuit-id></code> is the ID of the circuit over which the adjacency was established.</td>
</tr>
<tr>
<td>Notification</td>
<td>ISIS L2 ADJACENCY DOWN <code><system-id></code> on circuit <code><circuit-id></code></td>
<td>The Layer 3 Switch adjacency with this Level-2 IS has gone down. The <code><system-id></code> is the system ID of the IS. The <code><circuit-id></code> is the ID of the circuit over which the adjacency was established.</td>
</tr>
<tr>
<td>Notification</td>
<td>ISIS L2 ADJACENCY UP <code><system-id></code> on circuit <code><circuit-id></code></td>
<td>The Layer 3 Switch adjacency with this Level-2 IS has come up. The <code><system-id></code> is the system ID of the IS. The <code><circuit-id></code> is the ID of the circuit over which the adjacency was established.</td>
</tr>
<tr>
<td>Notification</td>
<td>Local ICMP exceeds <code><burst-max></code> burst packets, stopping for <code><lockup></code> seconds!!</td>
<td>The number of ICMP packets exceeds the <code><burst-max></code> threshold set by the <code>ip icmp burst</code> command. The Brocade device may be the victim of a Denial of Service (DoS) attack. All ICMP packets will be dropped for the number of seconds specified by the <code><lockup></code> value. When the lockup period expires, the packet counter is reset and measurement is restarted.</td>
</tr>
</tbody>
</table>
Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>Local TCP exceeds <code><burst-max></code> burst packets, stopping for <code><lockup></code> seconds!!</td>
<td>The number of TCP SYN packets exceeds the <code><burst-max></code> threshold set by the <code>ip tcp burst</code> command. The Brocade device may be the victim of a TCP SYN DoS attack. All TCP SYN packets will be dropped for the number of seconds specified by the <code><lockup></code> value. When the lockup period expires, the packet counter is reset and measurement is restarted.</td>
</tr>
<tr>
<td>Notification</td>
<td>Local TCP exceeds <code><num></code> burst packets, stopping for <code><num></code> seconds!!</td>
<td>Threshold parameters for local TCP traffic on the device have been configured, and the maximum burst size for TCP packets has been exceeded. The first <code><num></code> is the maximum burst size (maximum number of packets allowed). The second <code><num></code> is the number of seconds during which additional TCP packets will be blocked on the device. NOTE: This message can occur in response to an attempted TCP SYN attack.</td>
</tr>
<tr>
<td>Notification</td>
<td>MAC Authentication RADIUS timeout for <code><mac_address></code> on port <code><port_id></code></td>
<td>The RADIUS session has timed out for the MAC address for this port.</td>
</tr>
<tr>
<td>Notification</td>
<td>MAC Authentication succeeded for <code><mac-address></code> on <code><portnum></code></td>
<td>RADIUS authentication was successful for the specified <code><mac-address></code> on the specified <code><portnum></code>.</td>
</tr>
<tr>
<td>Notification</td>
<td>Module was inserted to slot <code><slot-num></code></td>
<td>Indicates that a module was inserted into a chassis slot. The <code><slot-num></code> is the number of the chassis slot into which the module was inserted.</td>
</tr>
<tr>
<td>Notification</td>
<td>Module was removed from slot <code><slot-num></code></td>
<td>Indicates that a module was removed from a chassis slot. The <code><slot-num></code> is the number of the chassis slot from which the module was removed.</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF interface state changed, rid <code><router-id></code>, intf addr <code><ip-addr></code>, state <code><ospf-state></code></td>
<td>Indicates that the state of an OSPF interface has changed. The <code><router-id></code> is the router ID of the Brocade device. The <code><ip-addr></code> is the interface IP address. The <code><ospf-state></code> indicates the state to which the interface has changed and can be one of the following: • down • loopback • waiting • point-to-point • designated router • backup designated router • other designated router • unknown</td>
</tr>
</tbody>
</table>
Notification

OSPF intf authen failure, rid `<router-id>`,
inf addr `<ip-addr>`,
pkt src addr `<src-ip-addr>`,
error type `<error-type>`, pkt type `<pkt-type>`

Indicates that an OSPF interface authentication failure has occurred.
The `<router-id>` is the router ID of the Brocade device.
The `<ip-addr>` is the IP address of the interface on the Brocade device.
The `<src-ip-addr>` is the IP address of the interface from which the Brocade device received the authentication failure.
The `<error-type>` can be one of the following:
- bad version
- area mismatch
- unknown NBMA neighbor
- unknown virtual neighbor
- authentication type mismatch
- authentication failure
- network mask mismatch
- hello interval mismatch
- dead interval mismatch
- option mismatch
- unknown

The `<packet-type>` can be one of the following:
- hello
- database description
- link state request
- link state update
- link state ack
- unknown

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Notification | OSPF intf authen failure, rid `<router-id>`, inf addr `<ip-addr>`, pkt src addr `<src-ip-addr>`, error type `<error-type>`, pkt type `<pkt-type>` | Indicates that an OSPF interface authentication failure has occurred. The `<router-id>` is the router ID of the Brocade device. The `<ip-addr>` is the IP address of the interface on the Brocade device. The `<src-ip-addr>` is the IP address of the interface from which the Brocade device received the authentication failure. The `<error-type>` can be one of the following:
- bad version
- area mismatch
- unknown NBMA neighbor
- unknown virtual neighbor
- authentication type mismatch
- authentication failure
- network mask mismatch
- hello interval mismatch
- dead interval mismatch
- option mismatch
- unknown

The `<packet-type>` can be one of the following:
- hello
- database description
- link state request
- link state update
- link state ack
- unknown
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Notification | OSPF intf config error, rid <router-id>, intf addr <ip-addr>, pkt src addr <src-ip-addr>, error type <error-type>, pkt type <pkt-type> | Indicates that an OSPF interface configuration error has occurred. The <router-id> is the router ID of the Brocade device. The <ip-addr> is the IP address of the interface on the Brocade device. The <src-ip-addr> is the IP address of the interface from which the Brocade device received the error packet. The <error-type> can be one of the following:
- bad version
- area mismatch
- unknown NBMA neighbor
- unknown virtual neighbor
- authentication type mismatch
- authentication failure
- network mask mismatch
- hello interval mismatch
- dead interval mismatch
- option mismatch
- unknown
The <packet-type> can be one of the following:
- hello
- database description
- link state request
- link state update
- link state ack
- unknown |
| Notification | OSPF intf rcvd bad pkt, rid <router-id>, intf addr <ip-addr>, pkt src addr <src-ip-addr>, pkt type <pkt-type> | Indicates that an OSPF interface received a bad packet. The <router-id> is the router ID of the Brocade device. The <ip-addr> is the IP address of the interface on the Brocade device. The <src-ip-addr> is the IP address of the interface from which the Brocade device received the authentication failure. The <packet-type> can be one of the following:
- hello
- database description
- link state request
- link state update
- link state ack
- unknown |
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>OSPF intf rcvd bad pkt: Bad Checksum, rid <ip-addr>, intf addr <ip-addr>, pkt size <num>, checksum <num>, pkt src addr <ip-addr>, pkt type <type></td>
<td>The device received an OSPF packet that had an invalid checksum. The rid <ip-addr> is the Brocade router ID. The intf addr <ip-addr> is the IP address of the Brocade interface that received the packet. The pkt size <num> is the number of bytes in the packet. The checksum <num> is the checksum value for the packet. The pkt src addr <ip-addr> is the IP address of the neighbor that sent the packet. The pkt type <type> is the OSPF packet type and can be one of the following: • hello • database description • link state request • link state update • link state acknowledgement • unknown (indicates an invalid packet type)</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF intf rcvd bad pkt: Bad Packet type, rid <ip-addr>, intf addr <ip-addr>, pkt size <num>, checksum <num>, pkt src addr <ip-addr>, pkt type <type></td>
<td>The device received an OSPF packet with an invalid type. The parameters are the same as for the Bad Checksum message. The pkt type <type> value is “unknown”, indicating that the packet type is invalid.</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF intf rcvd bad pkt: Invalid packet size, rid <ip-addr>, intf addr <ip-addr>, pkt size <num>, checksum <num>, pkt src addr <ip-addr>, pkt type <type></td>
<td>The device received an OSPF packet with an invalid packet size. The parameters are the same as for the Bad Checksum message.</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF intf rcvd bad pkt: Unable to find associated neighbor, rid <ip-addr>, intf addr <ip-addr>, pkt size <num>, checksum <num>, pkt src addr <ip-addr>, pkt type <type></td>
<td>The neighbor IP address in the packet is not in the list of OSPF neighbors in the Brocade device. The parameters are the same as for the Bad Checksum message.</td>
</tr>
<tr>
<td>Message level</td>
<td>Message</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Notification | OSPF intf retransmit, rid `<router-id>`, intf addr `<ip-addr>`, nbr rid `<nbr-router-id>`, pkt type is `<pkt-type>`, LSA type `<lsa-type>`, LSA id `<lsa-id>`, LSA rid `<lsa-router-id>` | An OSPF interface on the Brocade device has retransmitted a Link State Advertisement (LSA). The `<router-id>` is the router ID of the Brocade device. The `<ip-addr>` is the IP address of the interface on the Brocade device. The `<nbr-router-id>` is the router ID of the neighbor router. The `<packet-type>` can be one of the following:
 • hello
 • database description
 • link state request
 • link state update
 • link state ack
 • unknown
 The `<lsa-type>` is the type of LSA. The `<lsa-id>` is the LSA ID. The `<lsa-router-id>` is the LSA router ID. |
| Notification | OSPF LSDB approaching overflow, rid `<router-id>`, limit `<num>` | The software is close to an LSDB condition. The `<router-id>` is the router ID of the Brocade device. The `<num>` is the number of LSAs. |
| Notification | OSPF LSDB overflow, rid `<router-id>`, limit `<num>` | A Link State Database Overflow (LSDB) condition has occurred. The `<router-id>` is the router ID of the Brocade device. The `<num>` is the number of LSAs. |
| Notification | OSPF max age LSA, rid `<router-id>`, area `<area-id>`, LSA type `<lsa-type>`, LSA id `<lsa-id>`, LSA rid `<lsa-router-id>` | An LSA has reached its maximum age. The `<router-id>` is the router ID of the Brocade device. The `<area-id>` is the OSPF area. The `<lsa-type>` is the type of LSA. The `<lsa-id>` is the LSA ID. The `<lsa-router-id>` is the LSA router ID. |
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>OSPF nbr state changed, rid <code><router-id></code>, nbr addr <code><ip-addr></code>, nbr rid <code><nbr-router-id></code>, state <code><ospf-state></code></td>
<td>Indicates that the state of an OSPF neighbor has changed. The <code><router-id></code> is the router ID of the Brocade device. The <code><ip-addr></code> is the IP address of the neighbor. The <code><nbr-router-id></code> is the router ID of the neighbor. The <code><ospf-state></code> indicates the state to which the interface has changed and can be one of the following: • down • attempt • initializing • 2-way • exchange start • exchange • loading • full • unknown</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF originate LSA, rid <code><router-id></code>, area <code><area-id></code>, LSA type <code><lsa-type></code>, LSA id <code><lsa-id></code>, LSA router id <code><lsa-router-id></code></td>
<td>An OSPF interface has originated an LSA. The <code><router-id></code> is the router ID of the Brocade device. The <code><area-id></code> is the OSPF area. The <code><lsa-type></code> is the type of LSA. The <code><lsa-id></code> is the LSA ID. The <code><lsa-router-id></code> is the LSA router ID.</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>OSPF virtual intf authen failure, rid <router-id>, intf addr <ip-addr>, pkt src addr <src-ip-addr>, error type <error-type>, pkt type <pkt-type></td>
<td>Indicates that an OSPF virtual routing interface authentication failure has occurred. The <router-id> is the router ID of the Brocade device. The <ip-addr> is the IP address of the interface on the Brocade device. The <src-ip-addr> is the IP address of the interface from which the Brocade device received the authentication failure. The <error-type> can be one of the following: • bad version • area mismatch • unknown NBMA neighbor • unknown virtual neighbor • authentication type mismatch • authentication failure • network mask mismatch • hello interval mismatch • dead interval mismatch • option mismatch • unknown The <packet-type> can be one of the following: • hello • database description • link state request • link state update • link state ack • unknown</td>
</tr>
<tr>
<td>Message level</td>
<td>Message</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF virtual intf config error, rid <router-id>, intf addr <ip-addr>, pkt src addr <src-ip-addr>, error type <error-type>, pkt type <pkt-type></td>
<td>Indicates that an OSPF virtual routing interface configuration error has occurred. The <router-id> is the router ID of the Brocade device. The <ip-addr> is the IP address of the interface on the Brocade device. The <src-ip-addr> is the IP address of the interface from which the Brocade device received the error packet. The <error-type> can be one of the following: • bad version • area mismatch • unknown NBMA neighbor • unknown virtual neighbor • authentication type mismatch • authentication failure • network mask mismatch • hello interval mismatch • dead interval mismatch • option mismatch • unknown. The <packet-type> can be one of the following: • hello • database description • link state request • link state update • link state ack • unknown.</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF virtual intf rcvd bad pkt, rid <router-id>, intf addr <ip-addr>, pkt src addr <src-ip-addr>, pkt type <pkt-type></td>
<td>Indicates that an OSPF interface received a bad packet. The <router-id> is the router ID of the Brocade device. The <ip-addr> is the IP address of the interface on the Brocade device. The <src-ip-addr> is the IP address of the interface from which the Brocade device received the authentication failure. The <packet-type> can be one of the following: • hello • database description • link state request • link state update • link state ack • unknown.</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>OSPF virtual intf retransmit, rid <code><router-id></code>, intf addr <code><ip-addr></code>, nbr rid <code><nbr-router-id></code>, pkt type is <code><pkt-type></code>, LSA type <code><lsa-type></code>, LSA id <code><lsa-id></code>, LSA rid <code><lsa-router-id></code></td>
<td>An OSPF interface on the Brocade device has retransmitted a Link State Advertisement (LSA). The <code><router-id></code> is the router ID of the Brocade device. The <code><ip-addr></code> is the IP address of the interface on the Brocade device. The <code><nbr-router-id></code> is the router ID of the neighbor router. The <code><packet-type></code> can be one of the following: • hello • database description • link state request • link state update • link state ack • unknown The <code><lsa-type></code> is the type of LSA. The <code><lsa-id></code> is the LSA ID. The <code><lsa-router-id></code> is the LSA router ID.</td>
</tr>
<tr>
<td>Notification</td>
<td>OSPF virtual intf state changed, rid <code><router-id></code>, area <code><area-id></code>, nbr <code><ip-addr></code>, state <code><ospf-state></code></td>
<td>Indicates that the state of an OSPF virtual routing interface has changed. The <code><router-id></code> is the router ID of the router the interface is on. The <code><area-id></code> is the area the interface is in. The <code><ip-addr></code> is the IP address of the OSPF neighbor. The <code><ospf-state></code> indicates the state to which the interface has changed and can be one of the following: • down • loopback • waiting • point-to-point • designated router • backup designated router • other designated router • unknown</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification</td>
<td>OSPF virtual nbr state changed, rid <router-id>, nbr addr <ip-addr>, nbr rid <nbr-router-id>, state <ospf-state></td>
<td>Indicates that the state of an OSPF virtual neighbor has changed. The <router-id> is the router ID of the Brocade device. The <ip-addr> is the IP address of the neighbor. The <nbr-router-id> is the router ID of the neighbor. The <ospf-state> indicates the state to which the interface has changed and can be one of the following: • down • attempt • initializing • 2-way • exchange start • exchange • loading • full • unknown</td>
</tr>
<tr>
<td>Notification</td>
<td>Transit ICMP in interface <portnum> exceeds <num> burst packets, stopping for <num> seconds!!</td>
<td>Threshold parameters for ICMP transit (through) traffic have been configured on an interface, and the maximum burst size for ICMP packets on the interface has been exceeded. The <portnum> is the port number. The first <num> is the maximum burst size (maximum number of packets allowed). The second <num> is the number of seconds during which additional ICMP packets will be blocked on the interface. NOTE: This message can occur in response to an attempted Smurf attack.</td>
</tr>
<tr>
<td>Notification</td>
<td>Transit TCP in interface <portnum> exceeds <num> burst packets, stopping for <num> seconds!</td>
<td>Threshold parameters for TCP transit (through) traffic have been configured on an interface, and the maximum burst size for TCP packets on the interface has been exceeded. The <portnum> is the port number. The first <num> is the maximum burst size (maximum number of packets allowed). The second <num> is the number of seconds during which additional TCP packets will be blocked on the interface. NOTE: This message can occur in response to an attempted TCP SYN attack.</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| Notification | VRRP intf state changed, intf `<portnum>`, vrid `<virtual-router-id>`, state `<vrrp-state>` | A state change has occurred in a Virtual Router Redundancy Protocol (VRRP) interface.
The `<portnum>` is the port.
The `<virtual-router-id>` is the virtual router ID (VRID) configured on the interface.
The `<vrrp-state>` can be one of the following:
• init
• master
• backup
• unknown |
| Warning | DOT1X security violation at port `<portnum>`, malicious mac address detected: `<mac-address>` | A security violation was encountered at the specified port number. |
| Warning | Dup IP `<ip-addr>` detected, sent from MAC `<mac-addr>` interface `<portnum>` | Indicates that the Brocade device received a packet from another device on the network with an IP address that is also configured on the Brocade device.
The `<ip-addr>` is the duplicate IP address.
The `<mac-addr>` is the MAC address of the device with the duplicate IP address.
The `<portnum>` is the Brocade port that received the packet with the duplicate IP address. The address is the packet source IP address. |
| Warning | IGMP/MLD no hardware vidx, broadcast to the entire vlan. rated limited number | IGMP or MLD snooping has run out of hardware application VLANs. There are 4096 application VLANs per device. Traffic streams for snooping entries without an application VLAN are switched to the entire VLAN and to the CPU to be dropped. This message is rate-limited to appear a maximum of once every 10 minutes. The rate-limited number shows the number on non-printed warnings. | | | | |
| Warning | IGMP/MLD: `<vlanId>`(<`portId`) is V1 but rcvd V2 from nbr `<ipAddr>` | Port has received a query with a MLD version that does not match the port MLD version. This message is rated-limited to appear a maximum of once every 10 hours. |
| Warning | Latched low RX Power | TX Power | TX Bias Current | Supply Voltage | Temperature warning warning | The optical transceiver on the given port has risen above or fallen below the alarm or warning threshold. |
TABLE 268: Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>list <ACL-num> denied <ip-proto> <src-ip-addr> (<src-tcp/udp-port>) (Ethernet <portnum> <mac-addr>) -> <dst-ip-addr> (<dst-tcp/udp-port>), 1 event(s)</td>
<td>Indicates that an Access Control List (ACL) denied (dropped) packets. The <ACL-num> indicates the ACL number. Numbers 1 – 99 indicate standard ACLs. Numbers 100 – 199 indicate extended ACLs. The <ip-proto> indicates the IP protocol of the denied packets. The <src-ip-addr> is the source IP address of the denied packets. The <src-tcp/udp-port> is the source TCP or UDP port, if applicable, of the denied packets. The <portnum> indicates the port number on which the packet was denied. The <mac-addr> indicates the source MAC address of the denied packets. The <dst-ip-addr> indicates the destination IP address of the denied packets. The <dst-tcp/udp-port> indicates the destination TCP or UDP port number, if applicable, of the denied packets.</td>
</tr>
<tr>
<td>Warning</td>
<td>Locked address violation at interface e<portnum>, address <mac-address></td>
<td>Indicates that a port on which you have configured a lock-address filter received a packet that was dropped because the packet source MAC address did not match an address learned by the port before the lock took effect. The e<portnum> is the port number. The <mac-address> is the MAC address that was denied by the address lock. Assuming that you configured the port to learn only the addresses that have valid access to the port, this message indicates a security violation.</td>
</tr>
<tr>
<td>Warning</td>
<td>mac filter group denied packets on port <portnum> src macaddr <mac-addr>, <num> packets</td>
<td>Indicates that a Layer 2 MAC filter group configured on a port has denied packets. The <portnum> is the port on which the packets were denied. The <mac-addr> is the source MAC address of the denied packets. The <num> indicates how many packets matching the values above were dropped during the five-minute interval represented by the log entry.</td>
</tr>
<tr>
<td>Warning</td>
<td>multicast no software resource: resource-name, rate limited number</td>
<td>IGMP or MLD snooping has run out of software resources. This message is rate-limited to appear a maximum of once every 10 minutes. The rate-limited number shows the number of non-printed warnings.</td>
</tr>
</tbody>
</table>
TABLE 268 Brocade Syslog messages (Continued)

<table>
<thead>
<tr>
<th>Message level</th>
<th>Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>No global IP! cannot send IGMP msg.</td>
<td>The device is configured for <code>ip multicast active</code> but there is no configured IP address and the device cannot send out IGMP queries.</td>
</tr>
<tr>
<td>Warning</td>
<td>No of prefixes received from BGP peer <code><ip-addr></code> exceeds warning limit <code><num></code></td>
<td>The Layer 3 Switch has received more than the allowed percentage of prefixes from the neighbor. The <code><ip-addr></code> is the IP address of the neighbor. The <code><num></code> is the number of prefixes that matches the percentage you specified. For example, if you specified a threshold of 100 prefixes and 75 percent as the warning threshold, this message is generated if the Layer 3 Switch receives a 76th prefix from the neighbor.</td>
</tr>
<tr>
<td>Warning</td>
<td>NTP server <code><ip-addr></code> failed to respond</td>
<td>Indicates that a Simple Network Time Protocol (SNTP) server did not respond to the device query for the current time. The <code><ip-addr></code> indicates the IP address of the SNTP server.</td>
</tr>
<tr>
<td>Warning</td>
<td>rip filter list <code><list-num></code> <code><direction></code> V1</td>
<td>V2 denied <code><ip-addr></code>, <code><num></code> packets</td>
</tr>
<tr>
<td>Warning</td>
<td>Temperature is over warning level.</td>
<td>The chassis temperature has risen above the warning level.</td>
</tr>
</tbody>
</table>
Syslog messages
Network Monitoring

This appendix describes the remote monitoring features available on Brocade products.

Basic management

The following sections contain procedures for basic system management tasks.

Viewing system information

You can access software and hardware specifics for a Brocade Layer 2 Switch or Layer 3 Switch. For software specifics, refer to “Determining the software versions installed and running on a device” on page 83.

To view the software and hardware details for the system, enter the `show version` command. The following shows an example output.
Basic management

FastIron#show version

==
Active Management CPU [Slot-9]:
 SW: Version 04.3.00b17T3e3 Copyright (c) 1996-2008 Brocade Communications, Inc., Inc.
 Compiled on Sep 25 2008 at 04:09:20 labeled as SXR04300b17
 (4031365 bytes) from Secondary sxr04300b17.bin
 BootROM: Version 04.0.00T3e5 (FEv2)
 HW: ANR-Chassis FastIron SX 1600-PREM (PROM-TYPE SX-FIL3U)
 Serial #: TE35069141

SL 3: SX-FI424C 24-port Gig Copper
 Serial #: CY13073008
 P-ASIC 4: type 00D1, rev D2 subrev 00
 P-ASIC 5: type 00D1, rev D2 subrev 00

SL 9: SX-FI8GMR4 8-port Management
 Serial #: CH37080003
 P-ASIC 16: type 00D1, rev D2 subrev 00

SL 14: SX-FI42XGW 2-port 10G LAN/WAN
 Serial #: Invalid
 P-ASIC 26: type 01D1, rev 00 subrev 00
 P-ASIC 27: type 01D1, rev 00 subrev 00

Active Management Module:
 660 MHz Power PC processor 8541 (version 32/0020) 66 MHz bus
 512 KB boot flash memory
 16384 KB code flash memory
 512 MB DRAM
 The system uptime is 2 minutes 13 seconds
 The system started=warm start reloaded=by "reload"
 *** NOT FOR PRODUCTION ***
 *** AUTO SHUTDOWN IS OFF. PLEASE ACTIVATE WITH auto-shutdown ***

The following hardware details are listed in the output of the show version command:
- Chassis type
- PROM type (if applicable)
- Chassis serial number
- Management and interface module serial numbers and ASIC types

For a description of the software details in the output of the show version command, refer to “Determining the software versions installed and running on a device” on page 83.

Syntax: show version

Viewing configuration information

You can view a variety of configuration details and statistics with the show option. The show option provides a convenient way to check configuration changes before saving them to flash.

The show options available will vary for Layer 2 Switches and Layer 3 Switches and by configuration level.
To determine the available show commands for the system or a specific level of the CLI, enter the following command.

FastIron#show ?

Syntax: show <option>

You also can enter “show” at the command prompt, then press the TAB key.

Viewing port statistics

Port statistics are polled by default every 10 seconds.

You can view statistics for ports by entering the following show commands:

- show interfaces
- show configuration
- show statistics

To display the statistics, enter a command such as the following.

FastIron#show statistics ethernet 1/3

Syntax: show statistics [ethernet [stack-unit] / <slotnum> / <portnum>]

The stack-unit parameter is required on FastIron GS and LS devices running software release 02.5.00 or later, and FastIron GS-STK and FastIron LS-STK devices running software release 05.0.00 and later.

The slotnum parameter is required on chassis devices and on FastIron GS devices running software release 02.5.00 or later.

The portnum parameter is a valid port number.

Table 269 lists the statistics displayed in the output of the show statistics command.
<table>
<thead>
<tr>
<th>Port configuration</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The port number.</td>
</tr>
<tr>
<td>Link</td>
<td>The link state.</td>
</tr>
<tr>
<td>State</td>
<td>The STP state.</td>
</tr>
<tr>
<td>Dupl</td>
<td>The mode (full-duplex or half-duplex).</td>
</tr>
<tr>
<td>Speed</td>
<td>The port speed (10M, 100M, or 1000M).</td>
</tr>
<tr>
<td>Trunk</td>
<td>The trunk group number, if the port is a member of a trunk group.</td>
</tr>
<tr>
<td>Tag</td>
<td>Whether the port is a tagged member of a VLAN.</td>
</tr>
<tr>
<td>Priori</td>
<td>The QoS forwarding priority of the port (level0 – level7).</td>
</tr>
<tr>
<td>MAC</td>
<td>The MAC address of the port.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the port, if you assigned a name.</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>InOctets</th>
<th>The total number of good octets and bad octets received.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutOctets</td>
<td>The total number of good octets and bad octets sent.</td>
</tr>
<tr>
<td>InPkts</td>
<td>The total number of packets received. The count includes rejected and local packets that are not sent to the switching core for transmission.</td>
</tr>
<tr>
<td>OutPkts</td>
<td>The total number of good packets sent. The count includes unicast, multicast, and broadcast packets.</td>
</tr>
<tr>
<td>InBroadcastPkts</td>
<td>The total number of good broadcast packets received.</td>
</tr>
<tr>
<td>OutBroadcastPkts</td>
<td>The total number of good broadcast packets sent.</td>
</tr>
<tr>
<td>InMulticastPkts</td>
<td>The total number of good multicast packets received.</td>
</tr>
<tr>
<td>OutMulticastPkts</td>
<td>The total number of good multicast packets sent.</td>
</tr>
<tr>
<td>InUnicastPkts</td>
<td>The total number of good unicast packets received.</td>
</tr>
<tr>
<td>OutUnicastPkts</td>
<td>The total number of good unicast packets sent.</td>
</tr>
<tr>
<td>InBadPkts</td>
<td>The total number of packets received for which one of the following is true:</td>
</tr>
<tr>
<td></td>
<td>• The CRC was invalid.</td>
</tr>
<tr>
<td></td>
<td>• The packet was oversized.</td>
</tr>
<tr>
<td></td>
<td>• Jabbers: The packets were longer than 1518 octets and had a bad FCS.</td>
</tr>
<tr>
<td></td>
<td>• Fragments: The packets were less than 64 octets long and had a bad FCS.</td>
</tr>
<tr>
<td></td>
<td>• The packet was undersized (short).</td>
</tr>
<tr>
<td>InFragments</td>
<td>The total number of packets received for which both of the following was true:</td>
</tr>
<tr>
<td></td>
<td>• The length was less than 64 bytes.</td>
</tr>
<tr>
<td></td>
<td>• The CRC was invalid.</td>
</tr>
<tr>
<td>InDiscards</td>
<td>The total number of packets that were received and then dropped due to a lack of receive buffers.</td>
</tr>
<tr>
<td>OutErrors</td>
<td>The total number of packets with internal transmit errors such as TX underruns.</td>
</tr>
</tbody>
</table>
VIEWING STP STATISTICS

You can view a summary of STP statistics for Layer 2 Switches and Layer 3 Switches. STP statistics are by default polled every 10 seconds.

To view spanning tree statistics, enter the `show span` command. To view STP statistics for a VLAN, enter the `span vlan` command.

CLEARING STATISTICS

You can clear statistics for many parameters with the `clear` option.
To determine the available **clear** commands for the system, enter the following command.

```
FastIron#clear ?
```

Syntax: `clear <option>`

You also can enter “clear” at the command prompt, then press the TAB key.

NOTE
Clear commands are found at the Privileged EXEC level.

Traffic counters for outbound traffic

You can configure traffic counters (also called transmit counters) that enable the Brocade device to count the following packet types on a port or port region:

- broadcast packets
- multicast packets
- unicast packets
- dropped packets due to congestion and egress filtering

Depending on the parameters specified with the traffic counter configuration, traffic counters record the number of outbound packets from any combination of the following sources:

- a specific port or all ports in a specific port region
- a specific VLAN or all VLANs
- a specific 802.1p priority queue or all priority queues

Configuration notes

Consider the following rules when configuring traffic counters for outbound traffic.

- This feature is supported in the Layer 2, base Layer 3, and full Layer 3 codes.
- This feature applies to physical ports only, including 10 Gbps Ethernet ports and trunk ports. It does not apply to virtual interfaces.
- Once the enhanced traffic counters are read using the `show transmit-counter values` command, the counters are cleared (reset to zero).
- For each port region, you can enable a maximum of two traffic counters, regardless of whether traffic counters are enabled on individual ports or on all ports in the port region.
- Traffic counters increase for bridged filtered outbound traffic when any of the following conditions occur:
 - The port is disabled or the link is down.
 - The port or port region does not belong to the VLAN specified in the transmit counter configuration.
 - A Layer 2 protocol (e.g., spanning tree) has the port in a Blocked state.
 - The source port needs to be suppressed for multi-target packets.
 - The priority queue specified in the traffic counter is not allowed for some other reason.
 - Unknown unicast and unregistered multicast packets are filtered.
Configuration syntax

This section provides the syntax and configuration examples for enhanced traffic counters.

Example

To configure traffic counters for outbound traffic on a specific port, enter a command such as the following.

```
FastIron(config)#transmit-counter 4 port 18 only vlan 1 prio 7 enable
```

The above command creates and enables traffic counter 4 on port 18. The device will count the number of packets sent out on port 18 that are in VLAN 1 and have a priority queue of 7.

Example

To configure traffic counters for outbound traffic in a specific port region, enter a command such as the following.

```
FastIron(config)#transmit-counter 1 port 1 region vlan all prio all enable
```

The above command creates and enables traffic counter 1 on all ports that are in the same port region as port 1. The device will count the number of packets transmitted in this port region that belong to any VLAN and have any assigned priority queue.

Syntax:

```
[no] transmit-counter <counter-ID> port [<slotnum>/<port-num>] only | region vlan <vlan-ID> | all priority <priority-queue> | all enable
```

Enter the `no` form of the command to remove the outbound traffic counter.

The `<counter-ID>` parameter identifies the traffic counter. You can configure up to 64 traffic counters. Enter a number from 1 – 64.

The `<slotnum>` parameter is required on chassis devices.

The `<port-num>` parameter is the port number to which enhanced traffic counters will apply. Enter the port number followed by `only` to apply the enhanced traffic counter to a specific port, or enter the port number followed by `region` to apply the enhanced traffic counter to all of the ports in the port region.

The `<vlan-ID>` parameter identifies the VLAN ID for which outbound traffic will be counted. Enter a number from 0 – 4095 or enter `all` to indicate all VLANs.

The `<priority-queue>` parameter identifies the 802.1p priority queue for which traffic will be counted. Enter a number from 0 – 7 or enter `all` to indicate all priority queues.

Displaying enhanced traffic counter profiles

To display the details of the traffic counters configured on your device, enter the `show transmit-counter profiles` command. The following shows an example output.

```
FastIron#show transmit-counter profiles
Tx Counter Port(s) Vlan Id Priority Device Set
  1   1 -   12   All   All   Dev 0   Set0
  4          18         1         7   Dev 1   Set0
 10   13 -   24    100       All Dev 1   Set1
```
Displaying enhanced traffic counter statistics

To display the traffic counters for outbound traffic, enter the `show transmit-counter profiles` command.

NOTE
Once the enhanced traffic counters are displayed, the counters are cleared (reset to zero).

The following shows an example output.

```
FastIron#show transmit-counter values 1
Transmit Queue Counter Values for Counter 1:
Transmitted Frames:
  Known Unicast   : 17204
  Multicast & Unknown Unicast : 2797
  Broadcast       : 5
Dropped Frames:
  Bridge Egress Filtered : 2
  Congestion Drops      : 0
FastIron#show transmit-counter values 4
Transmit Queue Counter Values for Counter 4:
Transmitted Frames:
  Known Unicast : 124
  Multicast & Unknown Unicast : 2752
  Broadcast     : 0
Dropped Frames:
  Bridge Egress Filtered : 37
  Congestion Drops      : 0
```

Syntax: `show transmit-counter values <number>`

where `<number>` identifies a valid enhanced traffic counter and is a value from 1 – 64.

TABLE 270 Outbound traffic counter statistics

<table>
<thead>
<tr>
<th>This line...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted frames</td>
<td></td>
</tr>
<tr>
<td>Known Unicast</td>
<td>The number of known unicast packets transmitted.</td>
</tr>
<tr>
<td>Multicast & Unknown Unicast</td>
<td>The number of multicast and unknown unicast packets transmitted.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>The number of broadcast packets transmitted.</td>
</tr>
<tr>
<td>Dropped Frames</td>
<td></td>
</tr>
</tbody>
</table>
RMON support

The Brocade RMON agent supports the following groups. The group numbers come from the RMON specification (RFC 1757):

- Statistics (RMON Group 1)
- History (RMON Group 2)
- Alarms (RMON Group 3)
- Events (RMON Group 9)

The CLI allows you to make configuration changes to the control data for these groups, but you need a separate RMON application to view and display the data graphically.

Maximum number of entries allowed in the RMON control table

You can specify the maximum number of entries allowed in the RMON control table, including alarms, history, and events. The default number of RMON entries allowed in the RMON control table is 1024 on the FESX, and 2048 on the TIX, FSX, FSX 800, and FSX 1600. The maximum number of RMON entries supported is 32768.

To set the maximum number of allowable entries to 3000 in the RMON history table, enter commands such as the following.

```
FastIron(config)#system-max rmon-entries 3000
FastIron(config)#write mem
FastIron(config)#exit
FastIron#reload
```

NOTE

You must save the change to the startup-config file and reload or reboot. The change does not take effect until you reload or reboot.

Syntax: `system-max rmon-entries <value>`
where <value> can be:

- 1536 – 32768 for TIX, FSX, FSX 800, and FSX 1600 devices
- 128 – 32768 for FESX devices

Statistics (RMON group 1)

Count information on multicast and broadcast packets, total packets sent, undersized and oversized packets, CRC alignment errors, jabbers, collision, fragments and dropped events is collected for each port on a Brocade Layer 2 Switch or Layer 3 Switch.

No configuration is required to activate collection of statistics for the Layer 2 Switch or Layer 3 Switch. This activity is by default automatically activated at system start-up.

You can view a textual summary of the statistics for all ports by entering the following CLI command.

```
FastIron#show rmon statistics
Ethernet statistics 1 is active, owned by monitor
Interface 1/1 (ifIndex 1) counters
    Octets          0
    Drop events          0
    Broadcast pkts          0
    CRC alignment errors          0
    Oversize pkts          0
    Jabbers          0
    64 octets pkts 0 65 to 127 octets pkts 0
    128 to 255 octets pkts 0 256 to 511 octets pkts 0
    512 to 1023 octets pkts 0 1024 to 1518 octets pkts 0
```

Syntax: show rmon statistics [[<slotnum>/]<portnum>]

The <portnum> parameter specifies the port number. You can use the physical port number or the SNMP port number. The physical port number is based on the product. If you specify a physical port on a chassis device, you must also enter the slot number:

- If the product is a Stackable device, the ports are numbered sequentially starting with 1.
- If the product is a Chassis device, the ports are numbered according to slot and port. For example, the first port in slot 1 is 1/1. The third port in slot 7 is 7/3.

The SNMP numbers of the ports start at 1 and increase sequentially. For example, if you are using a Chassis device and slot 1 contains an 8-port module, the SNMP number of the first port in slot 2 is 9. The physical port number of the same port is 2/1.

This command shows the following information.
<table>
<thead>
<tr>
<th>This line...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octets</td>
<td>The total number of octets of data received on the network. This number includes octets in bad packets. This number does not include framing bits but does include Frame Check Sequence (FCS) octets.</td>
</tr>
<tr>
<td>Drop events</td>
<td>Indicates an overrun at the port. The port logic could not receive the traffic at full line rate and had to drop some packets as a result. The counter indicates the total number of events in which packets were dropped by the RMON probe due to lack of resources. This number is not necessarily the number of packets dropped, but is the number of times an overrun condition has been detected.</td>
</tr>
<tr>
<td>Packets</td>
<td>The total number of packets received. This number includes bad packets, broadcast packets, and multicast packets.</td>
</tr>
<tr>
<td>Broadcast pkts</td>
<td>The total number of good packets received that were directed to the broadcast address. This number does not include multicast packets.</td>
</tr>
<tr>
<td>Multicast pkts</td>
<td>The total number of good packets received that were directed to a multicast address. This number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>CRC alignment errors</td>
<td>The total number of packets received that were from 64 – 1518 octets long, but had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). The packet length does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>Undersize pkts</td>
<td>The total number of packets received that were less than 64 octets long and were otherwise well formed. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>Fragments</td>
<td>The total number of packets received that were less than 64 octets long and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). It is normal for this counter to increment, since it counts both runts (which are normal occurrences due to collisions) and noise hits. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>Oversize packets</td>
<td>The total number of packets received that were longer than 1518 octets and were otherwise well formed. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>Jabbers</td>
<td>The total number of packets received that were longer than 1518 octets and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). NOTE: This definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>Collisions</td>
<td>The best estimate of the total number of collisions on this Ethernet segment.</td>
</tr>
<tr>
<td>64 octets pkts</td>
<td>The total number of packets received that were 64 octets long. This number includes bad packets. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>65 to 127 octets pkts</td>
<td>The total number of packets received that were 65 – 127 octets long. This number includes bad packets. This number does not include framing bits but does include FCS octets.</td>
</tr>
</tbody>
</table>
RMON support

TABLE 271 Export configuration and statistics (Continued)

<table>
<thead>
<tr>
<th>This line...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 to 255 octets pkts</td>
<td>The total number of packets received that were 128 – 255 octets long. This number includes bad packets. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>256 to 511 octets pkts</td>
<td>The total number of packets received that were 256 – 511 octets long. This number includes bad packets. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>512 to 1023 octets pkts</td>
<td>The total number of packets received that were 512 – 1023 octets long. This number includes bad packets. This number does not include framing bits but does include FCS octets.</td>
</tr>
<tr>
<td>1024 to 1518 octets pkts</td>
<td>The total number of packets received that were 1024 – 1518 octets long. This number includes bad packets. This number does not include framing bits but does include FCS octets.</td>
</tr>
</tbody>
</table>

History (RMON group 2)

All active ports by default will generate two history control data entries per active Brocade Layer 2 Switch port or Layer 3 Switch interface. An active port is defined as one with a link up. If the link goes down the two entries are automatically deleted.

Two history entries are generated for each device:

- A sampling of statistics every 30 seconds
- A sampling of statistics every 30 minutes

The history data can be accessed and displayed using any of the popular RMON applications.

A sample RMON history command and its syntax is shown below.

FastIron(config)#rmon history 1 interface 1 buckets 10 interval 10 owner nyc02

Syntax: `rmon history <entry-number> interface [<slotnum>/]<portnum> buckets <number> interval <sampling-interval> owner <text-string>`

You can modify the sampling interval and the bucket (number of entries saved before overwrite) using the CLI. In the above example, owner refers to the RMON station that will request the information.

NOTE

To review the control data entry for each port or interface, enter the `show rmon history` command.

Alarm (RMON group 3)

Alarm is designed to monitor configured thresholds for any SNMP integer, time tick, gauge or counter MIB object. Using the CLI, you can define what MIB objects are monitored, the type of thresholds that are monitored (falling, rising or both), the value of those thresholds, and the sample type (absolute or delta).

An alarm event is reported each time that a threshold is exceeded. The alarm entry also indicates the action (event) to be taken if the threshold be exceeded.

A sample CLI alarm entry and its syntax is shown below.
FastIron(config)#rmon alarm 1 ifInOctets.6 10 delta rising-threshold 100 1 falling threshold 50 1 owner nyc02

Syntax: rmon alarm <entry-number> <MIB-object.interface-num> <sampling-time>
<sample-type>
<threshold-type> <threshold-value> <event-number> <threshold-type> <threshold-value>
<event-number>
owner <text-string>

Event (RMON group 9)

There are two elements to the Event Group—the event control table and the event log table.
The event control table defines the action to be taken when an alarm is reported. Defined events
can be found by entering the CLI command, show event. The Event Log Table collects and stores
reported events for retrieval by an RMON application.

A sample entry and syntax of the event control table is shown below.

FastIron(config)#rmon event 1 description ‘testing a longer string’ log-and-trap public owner nyc02

Syntax: rmon event <event-entry> description <text-string> log | trap | log-and-trap owner
<rmon-station>

sFlow

sFlow is a standards-based protocol that allows network traffic to be sampled at a user-defined rate
for the purpose of monitoring traffic flow patterns and identifying packet transfer rates on
user-specified interfaces.

When sFlow is enabled on a Layer 2 or Layer 3 switch, the system performs the following
sFlow-related tasks:
• Samples traffic flows by copying packet header information
• Identifies ingress and egress interfaces for the sampled flows
• Combines sFlow samples into UDP packets and forwards them to the sFlow collectors for
 analysis
• Forwards byte and packet count data, or counter samples, to sFlow collectors

sFlow is described in RFC 3176, “InMon Corporation's sFlow: A Method for Monitoring Traffic in
Switched and Routed Networks”.

NOTE
When sFlow is enabled on a FastIron X Series switch or Turbolron X Series switch, or Fastiron CX
switch, QoS will support 7 priority queues rather than 8. This is because QoS queue 1 is reserved
for sFlow and does not get used for other types of traffic. Any non-sFlow packets assigned to QoS
queue 1 will be redirected to QoS 0. On the FastIron GS, QoS queue 1 can be used for priority traffic,
even when sFlow is enabled on an interface.
Support for sFlow version 5

sFlow version 5 enhances and modifies the format of the data sent to the sFlow collector. sFlow version 5 introduces several new sFlow features and also defines a new datagram syntax used by the sFlow agent to report flow samples and interface counters to the sFlow collector.

sFlow version 5 adds support for the following:

- sFlow version 5 datagrams
- Sub-agent support
- Configurable sFlow export packet size
- Support for the new data field and sample type length in flow samples
- Configurable interval for exporting Brocade-specific data structure

sFlow version 5 is backward-compatible with sFlow version 2. On devices that support sFlow version 5, the sFlow agent exports sFlow version 2 flow samples by default, but you can configure the device to export the data in sFlow version 5 format. You can switch between sFlow version 2 and sFlow version 5 formats. The sFlow collector automatically parses each incoming sample and decodes it based on the version number.

The configuration procedures for sFlow version 5 are the same as for sFlow version 2, except where explicitly noted. Configuration procedures for sFlow are in the section “Configuring and enabling sFlow” on page 1746. The features and CLI commands that are specific to sFlow version 5 are described in the section “Configuring sFlow version 5 features” on page 1753.

sFlow support for IPv6 packets

The Brocade implementation of sFlow features support IPv6 packets. This support includes extended router information and extended gateway information in the sampled packet. Note that sFlow support for IPv6 packets exists only on devices running software that supports IPv6.

The configuration procedures for this feature are the same as for IPv4, except where the collector is a link-local address on a Layer 3 switch. For details refer to “Specifying the collector” on page 1747.

Extended router information

IPv6 sFlow sampled packets include the following extended router information:

- IP address of the next hop router
- Outgoing VLAN ID
- Source IP address prefix length
- Destination IP address prefix length

Note that in IPv6 devices, the prefix lengths of the source and destination IP addresses are collected if BGP is configured and the route lookup is completed. In IPv4 devices, this information is collected only if BGP is configured on the devices.

Extended gateway information

If BGP is enabled, extended gateway information is included in IPv6 sFlow sampled packets, including the following BGP information about a packet destination route:

- The autonomous system (AS) number for the router
• The source IP AS of the route
• The source peer AS for the route
• The AS patch to the destination

NOTE
AS communities and local preferences are not included in the sampled packets.

To obtain extended gateway information, use “struct extended_gateway” as described in RFC 3176.

IPv6 packet sampling
IPv6 sampling is performed by the packet processor. The system uses the sampling rate setting to selectively mark the monitoring bit in the header of an incoming packet. Marked packets tell the CPU that the packets are subject to sFlow sampling.

Configuration considerations
This section lists the sFlow configuration considerations on Brocade devices.

Hardware support
• Brocade devices support sFlow packet sampling of inbound traffic only. These devices do not sample outbound packets. However, Brocade devices support byte and packet count statistics for both traffic directions.
• sFlow is supported on all Ethernet ports (10/100, Gbps, and 10 Gbps)

CPU utilization
Enabling sFlow may cause a slight and noticeable increase of up to 20% in CPU utilization. In typical scenarios, this is normal behavior for sFlow, and does not affect the functionality of other features on the switch.

Source address
The sampled sFlow data sent to the collectors includes an agent_address field. This field identifies the IP address of the device that sent the data:
• On a Layer 2 Switch, agent_address is the Layer 2 Switch management IP address. You must configure the management IP address in order to export sFlow data from the device. If the switch has both an IPv4 and IPv6 address, the agent_address is the IPv4 address. If the switch has an IPv6 address only, the agent_address is the global IPv6 address.
• On a Layer 3 Switch with IPv6 interfaces only, sFlow looks for an IPv6 address in the following order, and uses the first address found:
 • The first IPv6 address on the lowest-numbered loopback interface
 • The first IPv6 address on the lowest-numbered VE interface
 • The first IPv6 address on any interface
• On a Layer 3 Switch with both IPv4 and IPv6 interfaces, or with IPv4 interfaces only, sFlow looks for an IP address in the following order, and uses the first address found:
 • The IPv4 router ID configured by the ip router-id command
sFlow

- The first IPv4 address on the lowest-numbered loopback interface
- The first IPv4 address on the lowest-numbered virtual interface
- The first IPv4 address on any interface

NOTE
The device uses the router ID only if the device also has an IP interface with the same address. Router ID is not supported on IPv6 devices.

NOTE
If an IP address is not already configured when you enable sFlow, the feature uses the source address 0.0.0.0. To display the agent_address, enable sFlow, then enter the `show sflow` command. Refer to “Enabling sFlow forwarding” on page 1751 and “Displaying sFlow information” on page 1756.

NOTE
Starting with the introduction of sFlow version 5, you can set an arbitrary IPv4 or IPv6 address as the sFlow agent IP address. Refer to “Specifying the sFlow agent IP address” on page 1754.

Sampling rate

The **sampling rate** is the average ratio of the number of packets incoming on an sFlow enabled port, to the number of flow samples taken from those packets. sFlow sampling can affect performance in some configurations.

Note that on the FastIron and Turbolron X Series devices, the configured sampling rate and the actual rate are the same. The software does not adjust the configured sampling rate as on other Brocade devices.

Port monitoring and sFlow

- The FastIron GS supports sFlow and port monitoring together on the same port.
- On the FastIron GS, you can use QoS queue 1 for priority traffic, even when sFlow is enabled on the port. This differs from the FastIron X Series. When sFlow is enabled on the FESX, FSX, and FWSX, these devices support seven priorities instead of eight because QoS queue 1 is reserved for sFlow and is not used by other packets. Any non-sFlow packets assigned to QoS queue 1 will be directed to QoS queue 0:
 - FESX and FWSX devices running software release 02.2.01 or later support port monitoring and sFlow together on the same device. The caveat is that these features cannot be configured together within the same port region.
 - FSX devices running software release 02.2.00 or later support port monitoring and sFlow together on the same device. The caveat is that these features cannot be configured together within the same port region.

Configuring and enabling sFlow

NOTE
The commands in this section apply to sFlow version 2 and sFlow version 5. CLI commands that are specific to sFlow version 5 are documented in “Configuring sFlow version 5 features” on page 1753.
To configure sFlow, perform the following tasks:

- Optional – If your device supports sFlow version 5, change the version used for exporting sFlow data
- Specify collector information. The collector is the external device to which you are exporting the sFlow data. You can specify up to four collectors.
- Optional – Change the polling interval
- Optional – Change the sampling rate
- Enable sFlow globally
- Enable sFlow forwarding on individual interfaces
- Enable sFlow forwarding on individual trunk ports
- If your device supports sFlow version 5, configure sFlow version 5 features

NOTE
If you change the router ID or other IP address value that sFlow uses for its agent_address, you need to disable and then re-enable sFlow to cause the feature to use the new source address.

Specifying the Collector

sFlow exports traffic statistics to an external collector. You can specify up to four collectors. You can specify more than one collector with the same IP address if the UDP port numbers are unique. You can have up to four unique combinations of IP addresses and UDP port numbers.

IPv4 devices

To specify an sFlow collector on an IPv4 device, enter a command such as the following.

```
FastIron(config)#sflow destination 10.10.10.1
```

This command specifies a collector with IPv4 address 10.10.10.1, listening for sFlow data on UDP port 6343.

Syntax: [no] sflow destination <ip-addr> [<dest-udp-port>]

The `<ip-addr>` parameter specifies the IP address of the collector.

The `<dest-udp-port>` parameter specifies the UDP port on which the sFlow collector will be listening for exported sFlow data. The default port number is 6343.

The sampled sFlow data sent to the collectors includes an agent_address field. This field identifies the device that sent the data. Refer to “Source address” on page 1745.

IPv6 devices

To specify an sFlow collector on an IPv6 device, enter a command such as the following.

```
FastIron(config)#sflow destination ipv6 2003:0::0b:02a
```

This command specifies a collector with IPv6 address 2003::0b:02a, listening for sFlow data on UDP port 6343.

Syntax: [no] sflow destination ipv6 <ip-addr> [<dest-udp-port>]

The `<ip-addr>` parameter specifies the IP address of the collector.

The `<dest-udp-port>` parameter specifies the UDP port on which the sFlow collector will be listening for exported sFlow data. The default port number is 6343.
If the IPv6 address you specify is a link-local address on a Layer 3 switch, you must also specify the `outgoing-interface ethernet <port-num>` or the `ve <port-num>`. This identifies the outgoing interface through which the sampled packets will be sent.

The sampled sFlow data sent to the collectors includes an agent_address field. This field identifies the device that sent the data. Refer to “Source address” on page 1745.

Changing the polling interval

The polling interval defines how often sFlow byte and packet counter data for a port are sent to the sFlow collectors. If multiple ports are enabled for sFlow, the Brocade device staggers transmission of the counter data to smooth performance. For example, if sFlow is enabled on two ports and the polling interval is 20 seconds, the Brocade device sends counter data every ten seconds. The counter data for one of the ports are sent after ten seconds, and counter data for the other port are sent after an additional ten seconds. Ten seconds later, new counter data for the first port are sent. Similarly, if sFlow is enabled on five ports and the polling interval is 20 seconds, the Brocade device sends counter data every four seconds.

The default polling interval is 20 seconds. You can change the interval to a value from 1 to any higher value. The interval value applies to all interfaces on which sFlow is enabled. If you set the polling interval to 0, counter data sampling is disabled.

To change the polling interval, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)#sflow polling-interval 30
```

Syntax: `[no] sflow polling-interval <secs>

The `<secs>` parameter specifies the interval and can be from 1 to any higher value. The default is 20 seconds. If you specify 0, counter data sampling is disabled.

Changing the sampling rate

The sampling rate is the average ratio of the number of packets incoming on an sFlow-enabled port, to the number of flow samples taken from those packets.

You can change the default (global) sampling rate. You also can change the rate on an individual port, overriding the default sampling rate of 512. With a sampling rate of 512, on average, one in every 512 packets forwarded on an interface is sampled.

Configuration considerations

The sampling rate is a fraction in the form 1/N, meaning that, on average, one out of every N packets will be sampled. The `sflow sample` command at the global level or port level specifies N, the denominator of the fraction. Thus a higher number for the denominator means a lower sampling rate since fewer packets are sampled. Likewise, a lower number for the denominator means a higher sampling rate because more packets are sampled. For example, if you change the denominator from 512 to 128, the sampling rate increases because four times as many packets will be sampled.

NOTE

Brocade recommends that you do not change the denominator to a value lower than the default. Sampling requires CPU resources. Using a low denominator for the sampling rate can cause high CPU utilization.
Configured rate and actual rate

When you enter a sampling rate value, this value is the *configured rate*. The software rounds the value you enter to the next higher odd power of 2 to obtain the *actual rate*. This value becomes the actual sampling rate. For example, if the configured sampling rate is 1000, then the actual rate is 2048 and 1 in 2048 packets are sampled by the hardware.

Change to global rate

If you change the global sampling rate, the change is applied to all sFlow-enabled ports *except* those ports on which you have already explicitly set the sampling rate. For example, suppose that sFlow is enabled on ports 1/1, 1/2, and 5/1. If you configure the sampling rate on port 1/1 but leave the other two ports using the default rate, then a change to the global sampling rate applies to ports 1/2 and 5/1 but not port 1/1. sFlow assumes that you want to continue using the sampling rate you explicitly configured on an individual port even if you globally change the sampling rate for the other ports.

Module rate

While different ports on a module may be configured to have different sampling rates, the hardware for the module will be programmed to take samples at a single rate (the module sampling rate). The module sampling rate will be the highest sampling rate (i.e. lowest number) configured for any of the ports on the module.

When ports on a given module are configured with different sampling rates, the CPU discards some of the samples supplied by the hardware for ports with configured sampling rates which are lower than the module sampling rate. This is referred to as subsampling, and the ratio between the port sampling rate and the module sampling rate is known as the subsampling factor. For example, if the module in slot 4 has sFlow enabled on ports 4/2 and 4/8, and port 4/2 is using the default sampling rate of 512, and port 4/8 is configured explicitly for a rate of 2048, then the module sampling rate will be 512 because this is the highest port sampling rate (lowest number). The subsampling factor for port 4/2 will be 1, meaning that every sample taken by the hardware will be exported, while the subsampling factor for port 4/8 will be 4, meaning that one out of every four samples taken by the hardware will be exported. Whether a port’s sampling rate is configured explicitly, or whether it uses the global default setting, has no effect on the calculations.

You do not need to perform any of these calculations to change a sampling rate. For simplicity, the syntax information in this section lists the valid sampling rates. In addition, the software will round the value you enter up to the nearest value listed. You can display the rates you entered (the configured rates) as well as the rates rounded up to by the software (the actual rates) for the default sampling rate, module rates, and all sFlow-enabled ports by entering the `show sflow` command. Refer to “Displaying sFlow information” on page 1756.

Sampling rate for new ports

When you enable sFlow on a port, the port’s sampling rate is set to the global default sampling rate. This also applies to ports on which you disable and then re-enable sFlow. The port does not retain the sampling rate it had when you disabled sFlow on the port, even if you had explicitly set the sampling rate on the port.

Changing the default sampling rate

To change the default (global) sampling rate, enter a command such as the following at the global CONFIG level of the CLI.

```
FastIron(config)#sflow sample 2048
```

Syntax: `[no] sflow sample <num>`
The <num> parameter specifies the average number of packets from which each sample will be taken. The software rounds the value you enter to the next higher odd power of 2. This value becomes the actual default sampling rate and is one of the following:

- 2
- 8
- 32
- 128
- 512
- 2048
- 4096
- 8192
- 32768
- 131072
- 524288
- 2097152
- 8388608
- 33554432
- 134217728
- 536870912
- 2147483648

For example, if the configured sampling rate is 1000, then the actual rate is 2048 and 1 in 2048 packets are sampled by the hardware.

Changing the sampling rate of a module
You cannot change a module sampling rate directly. You can change a module sampling rate only by changing the sampling rate of a port on that module.

Changing the sampling rate on a port
You can configure an individual port to use a different sampling rate than the global default sampling rate. This is useful in cases where ports have different bandwidths. For example, if you are using sFlow on 10/100 ports and Gbps Ethernet ports, you might want to configure the Gbps ports to use a higher sampling rate (and thus gather fewer samples per number of packets) than the 10/100 ports.

To change the sampling rate on an individual port, enter a command such as the following at the configuration level for the port.

```bash
FastIron(config-if-1/1)#sflow sample 8192
```

Syntax: `[no] sflow sample <num>`

The <num> parameter specifies the average number of packets from which each sample will be taken. The software rounds the value you enter up to the next odd power of 2. The actual sampling rate becomes one of the values listed in “Changing the default sampling rate”.

Changing the default sampling rate

- 2
- 8
- 32
- 128
- 512
- 2048
- 4096
- 8192
- 32768
- 131072
- 524288
- 2097152
- 8388608
- 33554432
- 134217728
- 536870912
- 2147483648
Changing the sampling rate for a trunk port

You can configure an individual static trunk port to use a different sampling rate than the global default sampling rate. This feature is also supported on LACP trunk ports starting in release FSX 04.3.00. However, it is not supported on LACP trunk ports on TurboIron X Series devices. This feature is useful in cases where ports have different bandwidths. For example, if you are using sFlow on 10/100 ports and Gbps Ethernet ports, you might want to configure the Gbps ports to use a higher sampling rate (and thus gather fewer samples per number of packets) than the 10/100 ports.

To change the sampling rate on an individual trunk port, enter commands such as the following.

```
FastIron(config)#trunk e 4/1 to 4/8
FastIron(config-trunk-4/1-4/8)#config-trunk-ind
FastIron(config-trunk-4/1-4/8)#sflow-subsampling e 4/2 8192
```

Syntax:

```
[no] sflow-subsampling ethernet [<slotnum>/]<portnum> <num>
```

OR

```
[no] sflow sample ethernet [<slotnum>/]<portnum> <num>
```

NOTE

Use the command `sflow sample` (instead of `sflow-subsampling`), if your device is running software release FSX 05.1.00 or later. Starting with software release FSX 05.1.00, the CLI command `sflow-subsampling` was replaced with `sflow sample`. The command is automatically updated in the `running configuration` when the software is upgraded from pre-release FSX 05.1.00, to release FSX 05.1.00 or later. It is also updated in the `startup configuration` after the command `write memory` is issued.

The `<num>` parameter specifies the average number of packets from which each sample will be taken. The software rounds the value you enter up to the next odd power of 2. The actual sampling rate becomes one of the values listed in “Changing the default sampling rate”.

Enabling sFlow forwarding

sFlow exports data only for the interfaces on which you enable sFlow forwarding. You can enable sFlow forwarding on Ethernet interfaces.

To enable sFlow forwarding, perform the following:

- Globally enable the sFlow feature
- Enable sFlow forwarding on individual interfaces
- Enable sFlow forwarding on individual trunk ports

NOTE

Before you enable sFlow, make sure the device has an IP address that sFlow can use as its source address. Refer to “Source address” on page 1745 for the source address requirements.

NOTE

When you enable sFlow forwarding on an 802.1X-enabled interface, the samples taken from the interface include the username used to obtain access to either or both the inbound and outbound ports, if that information is available. For information about 802.1X, refer to Chapter 42, “Configuring 802.1X Port Security”.
Command syntax
This section shows how to enable sFlow forwarding.

Globally enabling sFlow forwarding
To enable sFlow forwarding, you must first enable it on a global basis, then on individual interfaces or trunk ports, or both.

To globally enable sFlow forwarding, enter the following command.

FastIron(config)#sflow enable

You can now enable sFlow forwarding on individual ports as described in the next two sections.

Syntax: [no] sflow enable

Enabling sFlow forwarding on individual interfaces
To enable sFlow forwarding enter commands such as the following.

FastIron(config)#sflow enable
FastIron(config)#interface ethernet 1/1 to 1/8
FastIron(config-mif-1/1-1/8)#sflow-forwarding

These commands globally enable sFlow, then enable sFlow forwarding on Ethernet ports 1/1 – 1/8. You must use both the `sflow enable` and `sflow-forwarding` commands to enable the feature.

Syntax: [no] sflow enable

Syntax: [no] sflow-forwarding

OR

Syntax: [no] sflow forwarding

Note
Use the command `sflow forwarding` (without the dash), if your device is running software release FSX 05.1.00 or later. Starting with software release FSX 05.1.00, the CLI command `sflow-forwarding` was replaced with `sflow forwarding`. The command is automatically updated in the `running configuration` when the software is upgraded from pre-release FSX 05.1.00, to release FSX 05.1.00 or later. It is also updated in the `startup configuration` after the command `write memory` is issued.

Enabling sFlow forwarding on individual trunk ports
This feature is supported on individual ports of a static trunk group. It is also supported on LACP trunk ports starting in release FSX 04.3.00. However, it is not supported on LACP trunk ports on TurboIron X Series devices.

Note
When you enable sFlow forwarding on a trunk port, only the primary port of the trunk group forwards sFlow samples.

To enable sFlow forwarding on a trunk port, enter commands such as the following.

FastIron(config)#sflow enable
FastIron(config)#trunk e 4/1 to 4/8
FastIron(config-trunk-4/1-4/8)#config-trunk-ind
FastIron(config-trunk-4/1-4/8)#sflow-forwarding e 4/2

These commands globally enable sFlow, then enable sFlow forwarding on trunk port e 4/2. You must use both the `sflow enable` and `sflow-forwarding` commands to enable the feature.
Syntax: [no] sflow enable

Syntax: [no] sflow-forwarding

OR

Syntax: [no] sflow forwarding

NOTE

Use the command `sflow forwarding` (without the dash), if your device is running software release FSX 05.1.00 or later. In software release FSX 05.1.00, the CLI command `sflow-forwarding` was replaced with `sflow forwarding`. The command is automatically updated in the running configuration when the software is upgraded from pre-release FSX 05.1.00, to release FSX 05.1.00 or later. It is also updated in the startup configuration after the command `write memory` is issued.

Configuring sFlow version 5 features

NOTE

The commands in this section are supported when sFlow version 5 is enabled on the device. These commands are not supported with sFlow version 2. sFlow version 5 also supports all of the sFlow configuration commands in “Configuring and enabling sFlow” on page 1746.

When sFlow version 5 is enabled on the device, you can do the following:

- Specify the sFlow version (version 2 or version 5)
- Specify the sFlow agent IP address
- Specify the maximum flow sample size
- Export CPU and memory usage Information to the sFlow collector
- Specify the polling interval for exporting CPU and memory usage information to the sFlow collector
- Export CPU-directed data (management traffic) to the sFlow collector

Egress interface ID for sampled broadcast and multicast packets

For broadcast and multicast traffic, the egress interface ID for sampled traffic is always 0x80000000. When broadcast and multicast packets are sampled, they are usually forwarded to more than one port. However, the output port field in an sFlow datagram supports the display of one egress interface ID only. Therefore, the sFlow version 5 agent always sets the output port ID to 0x80000000 for broadcast and multicast packets that are sampled.

Specifying the sFlow version format

If your device supports sFlow version 5, you can optionally specify the version used for exporting sFlow data. Refer “Specifying the sFlow agent IP address”.

Specifying the sFlow agent IP address

The sampled sFlow data sent to the collectors includes an agent_address field. This field identifies the device (the sFlow agent) that sent the data. By default, the device automatically selects the sFlow agent IP address based on the configuration, as described in the section “Source address” on page 1745. However, starting in software release FSX 05.1.00, you can configure the device to instead use an arbitrary IPv4 or IPv6 address as the sFlow agent IP address.

To specify an IPv4 address as the sFlow agent IP address, enter a command such as the following.

```
FastIron(config)#sflow agent-ip 10.10.10.1
```

Syntax:

```
[no] sflow agent-ip <ipv4-addr>
```

The `<ipv4-addr>` specifies the address of the device that sent the data.

To specify an IPv6 address as the sFlow agent IP address, enter a command such as the following.

```
FastIron(config)#sflow agent-ip FE80::240:D0FF:FE48:4672
```

Syntax:

```
[no] sflow agent-ip <ipv6-addr>
```

The `<ipv6-addr>` specifies the address of the device that sent the data.

Specifying the version used for exporting sFlow data

By default, when sFlow is enabled globally on the Brocade device, the sFlow agent exports sFlow data in version 2 format. If your device supports sFlow version 5, you can change this setting so that the sFlow agent exports data in version 5 format. You can switch between versions without rebooting the device or disabling sFlow.

NOTE

When the sFlow version number is changed, the system will reset sFlow counters and flow sample sequence numbers.

To specify the sFlow version used for exporting sFlow data, enter the following command.

```
FastIron(config)#sflow version 5
```

Syntax:

```
[no] sflow version 2 | 5
```

The default is 2.

Specifying the maximum flow sample size

With sFlow version 5, you can specify the maximum size of the flow sample sent to the sFlow collector. If a packet is larger than the specified maximum size, then only the contents of the packet up to the specified maximum number of bytes is exported. If the size of the packet is smaller than the specified maximum, then the entire packet is exported.

For example, to specify 1024 bytes as the maximum flow sample size, enter the following command.

```
FastIron(config)# sflow max-packet-size 1024
```

Syntax:

```
[no] sflow max-packet-size <size>
```

For both sFlow version 2 and version 5, the default maximum flow sample size is 256 bytes.
For sFlow version 5, the maximum flow sample size is 1300 bytes.

Exporting CPU and memory usage information to the sFlow collector

With sFlow version 5, you can optionally configure the sFlow agent on the Brocade device to export information about CPU and memory usage to the sFlow collector.

To export CPU usage and memory usage information, enter the following command.

```
FastIron(config)# sflow export system-info
```

Syntax: `[no] sflow export system-info`

By default, CPU usage information and memory usage information are not exported.

Specifying the polling interval for exporting CPU and memory usage information to the sFlow collector

The polling interval defines how often sFlow data for a port is sent to the sFlow collector. With sFlow version 5, you can optionally set the polling interval used for exporting CPU and memory usage information.

For example, to set the polling interval for exporting CPU and memory usage information to 30 seconds, enter the following command.

```
FastIron(config)# sflow export system-info 30
```

Syntax: `[no] sflow export system-info <seconds>`

You can specify a polling interval from 5 seconds to 1,800 seconds (30 minutes). The default polling interval for exporting CPU and memory usage information is 300 seconds (5 minutes).

Exporting CPU-directed data (management traffic) to the sFlow collector

You can select which and how often data destined to the CPU (for example, Telnet sessions) is sent to the sFlow collector.

CLI commands allow you to do the following:

- Enable the sFlow agent to export CPU-directed data
- Specify the sampling rate for exported CPU-directed data

Enabling the sFlow agent to export CPU-directed data

To enable the sFlow agent on a Brocade device to export data destined to the CPU to the sFlow collector, enter the following command.

```
FastIron(config)# sflow export cpu-traffic
```

Syntax: `[no] sflow export cpu-traffic`

By default, this feature is disabled. The sFlow agent does not send data destined to the CPU to the sFlow collector.
Specifying the sampling rate for exported CPU-directed data
The sampling rate is the average ratio of the number of packets incoming on an sFlow-enabled port, to the number of flow samples taken from those packets. You can optionally set the sampling rate for CPU-directed data exported to the sFlow collector. For example, to set this sampling rate to 2048, enter the following command.

```
FastIron(config)# sflow export cpu-traffic 2048
```

Syntax: `[no] sflow export cpu-traffic <rate>`

The default sampling rate depends on the Brocade device being configured. Refer to “Changing the sampling rate” on page 1748 for the default sampling rate for each kind of Brocade device.

Displaying sFlow information
To display sFlow configuration information and statistics, enter the following command at any level of the CLI.
FastIron#show sflow
sflow version:5
sFlow services are enabled.
sFlow agent IP address: 123.123.123.1
4 collector destinations configured:
Collector IP 192.168.4.204, UDP 6343
Collector IP 192.168.4.200, UDP 6333
Collector IP 192.168.4.202, UDP 6355
Collector IP 192.168.4.203, UDP 6565
Polling interval is 0 seconds.
Configured default sampling rate: 1 per 512 packets
Actual default sampling rate: 1 per 512 packets
The maximum sFlow sample size:512
exporting cpu-traffic is enabled
exporting cpu-traffic sample rate:16
exporting system-info is enabled
exporting system-info polling interval:20 seconds
10552 UDP packets exported
24127 sFlow samples collected.
sFlow ports: ethe 1/2 to 1/12 ethe 1/15 ethe 1/25 to 1/26 ethe 4/1 ethe 5/10 to 5/20 ethe 8/1 ethe 8/4
Module Sampling Rates

Slot 1 configured rate=512, actual rate=512
Slot 3 configured rate=0, actual rate=0
Slot 4 configured rate=10000, actual rate=32768
Slot 5 configured rate=512, actual rate=512
Slot 7 configured rate=0, actual rate=0
Slot 8 configured rate=512, actual rate=512
Port Sampling Rates

Port 8/4, configured rate=512, actual rate=512, Subsampling factor=1
Port 8/1, configured rate=512, actual rate=512, Subsampling factor=1
Port 5/20, configured rate=3000, actual rate=8192, Subsampling factor=16
Port 5/19, configured rate=512, actual rate=512, Subsampling factor=1
Port 5/18, configured rate=512, actual rate=512, Subsampling factor=1
Port 5/17, configured rate=1500, actual rate=2048, Subsampling factor=4
Port 5/16, configured rate=1500, actual rate=2048, Subsampling factor=4
Port 5/15, configured rate=1500, actual rate=2048, Subsampling factor=4
Port 5/14, configured rate=1500, actual rate=2048, Subsampling factor=4
Port 5/13, configured rate=512, actual rate=512, Subsampling factor=1
Port 5/12, configured rate=512, actual rate=512, Subsampling factor=1
Port 5/11, configured rate=512, actual rate=512, Subsampling factor=1
Port 5/10, configured rate=512, actual rate=512, Subsampling factor=1
Port 4/1, configured rate=10000, actual rate=32768, Subsampling factor=1
Port 1/26, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/25, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/15, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/12, configured rate=512, actual rate=512, Subsampling factor=1
...continued on next page...
...continued from previous page...
Port 1/11, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/10, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/9, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/8, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/7, configured rate=1000, actual rate=2048, Subsampling factor=4
Port 1/6, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/5, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/4, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/3, configured rate=512, actual rate=512, Subsampling factor=1
Port 1/2, configured rate=1000, actual rate=2048, Subsampling factor=4

Syntax: show sflow
This command shows the following information.

<table>
<thead>
<tr>
<th>TABLE 272</th>
<th>sFlow information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This field...</td>
<td>Displays...</td>
</tr>
<tr>
<td>sFlow version</td>
<td>The version of sFlow enabled on the device, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• 2</td>
</tr>
<tr>
<td></td>
<td>• 5</td>
</tr>
<tr>
<td>NOTE:</td>
<td>sFlow version 5 is supported in software releases FSX 05.1.00 and later</td>
</tr>
<tr>
<td>sFlow services</td>
<td>The feature state, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td>sFlow agent IP address</td>
<td>The IP address that sFlow is using in the agent_address field of packets sent to the collectors. Refer to “Source address” on page 1745.</td>
</tr>
<tr>
<td>Collector</td>
<td>The collector information. The following information is displayed for each collector:</td>
</tr>
<tr>
<td></td>
<td>• IP address</td>
</tr>
<tr>
<td></td>
<td>• UDP port</td>
</tr>
<tr>
<td></td>
<td>If more than one collector is configured, the line above the collectors indicates how many have been configured.</td>
</tr>
<tr>
<td>Polling interval</td>
<td>The port counter polling interval.</td>
</tr>
<tr>
<td>Configured default sampling rate</td>
<td>The configured global sampling rate. If you changed the global sampling rate, the value you entered is shown here. The actual rate calculated by the software based on the value you entered is listed on the next line, "Actual default sampling rate".</td>
</tr>
<tr>
<td>Actual default sampling rate</td>
<td>The actual default sampling rate.</td>
</tr>
<tr>
<td>The maximum sFlow sample size</td>
<td>The maximum size of a flow sample sent to the sFlow collector.</td>
</tr>
<tr>
<td>exporting cpu-traffic</td>
<td>Indicates whether or not the sFlow agent is configured to export data destined to the CPU (e.g., Telnet sessions) to the sFlow collector:</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td>exporting cpu-traffic sample rate</td>
<td>The sampling rate for CPU-directed data, which is the average ratio of the number of incoming packets on an sFlow-enabled port, to the number of flow samples taken from those packets.</td>
</tr>
</tbody>
</table>
Configuring a utilization list for an uplink port

You can configure uplink utilization lists that display the percentage of a given uplink port bandwidth that is used by a specific list of downlink ports. The percentages are based on 30-second intervals of RMON packet statistics for the ports. Both transmit and receive traffic is counted in each percentage.

NOTE
This feature is intended for ISP or collocation environments in which downlink ports are dedicated to various customers' traffic and are isolated from one another. If traffic regularly passes between the downlink ports, the information displayed by the utilization lists does not provide a clear depiction of traffic exchanged by the downlink ports and the uplink port.

Clearing sFlow statistics

To clear the UDP packet and sFlow sample counters in the show sflow display, enter the following command.

FastIron#clear statistics

Syntax: clear statistics

This command clears the values in the following fields of the show sflow display:

- UDP packets exported
- sFlow samples collected

NOTE
This command also clears the statistics counters used by other features.

TABLE 272 sFlow information (Continued)

<table>
<thead>
<tr>
<th>This field</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>exporting system-info</td>
<td>Indicates whether or not the sFlow agent is configured to export information about CPU and memory usage to the sFlow collector:</td>
</tr>
<tr>
<td></td>
<td>• enabled</td>
</tr>
<tr>
<td></td>
<td>• disabled</td>
</tr>
<tr>
<td>exporting system-info polling interval</td>
<td>Specifies the interval, in seconds, that sFlow data is sent to the sFlow collector.</td>
</tr>
<tr>
<td>UDP packets exported</td>
<td>The number of sFlow export packets the Brocade device has sent.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Each UDP packet can contain multiple samples.</td>
</tr>
<tr>
<td>sFlow samples collected</td>
<td>The number of sampled packets that have been sent to the collectors.</td>
</tr>
<tr>
<td>sFlow ports</td>
<td>The ports on which you enabled sFlow.</td>
</tr>
<tr>
<td>Module Sampling Rates</td>
<td>The configured and actual sampling rates for each module. If a module does not have any sFlow-enabled ports, the rates are listed as 0.</td>
</tr>
<tr>
<td>Port Sampling Rates</td>
<td>The configured and actual sampling rates for each sFlow-enabled port. The Subsampling factor indicates how many times the sampling rate of the port's module is multiplied to achieve the port's sampling rate. Because of the way the actual sampling rates are computed, the Subsampling factors are always whole numbers.</td>
</tr>
</tbody>
</table>
Each uplink utilization list consists of the following:

- Utilization list number (1, 2, 3, or 4)
- One or more uplink ports
- One or more downlink ports

Each list displays the uplink port and the percentage of that port bandwidth that was utilized by the downlink ports over the most recent 30-second interval.

You can configure up to four bandwidth utilization lists.

Command syntax

To configure an uplink utilization list, enter commands such as the following. The commands in this example configure a link utilization list with port 1/1 as the uplink port and ports 1/2 and 1/3 as the downlink ports.

```
FastIron(config)#relative-utilization 1 uplink eth 1/1 downlink eth 1/2 to 1/3
FastIron(config)#write memory
```

Syntax:

```
[no] relative-utilization <num> uplink ethernet [<slotnum>/]<portnum> [to <slotnum>/]<portnum>... downlink ethernet [<slotnum>/]<portnum> [to <slotnum>/]<portnum>...]
```

The `<num>` parameter specifies the list number. You can configure up to four lists. Specify a number from 1 – 4.

The `uplink ethernet` parameters and the port numbers you specify after the parameters indicate the uplink ports.

The `downlink ethernet` parameters and the port numbers you specify after the parameters indicate the downlink ports.

Displaying utilization percentages for an uplink

After you configure an uplink utilization list, you can display the list to observe the percentage of the uplink bandwidth that each of the downlink ports used during the most recent 30-second port statistics interval. The number of packets sent and received between the two ports is listed, as well as the ratio of each individual downlink port packets relative to the total number of packets on the uplink.

To display an uplink utilization list, enter a command such as the following at any level of the CLI.

```
FastIron#show relative-utilization 1
uplink: ethe 1
30-sec total uplink packet count = 3011
packet count ratio (%)
  1/ 2:60  1/ 3:40
```

In this example, ports 1/2 and 1/3 are sending traffic to port 1/1. Port 1/2 and port 1/3 are isolated (not shared by multiple clients) and typically do not exchange traffic with other ports except for the uplink port, 1/1.

Syntax: `show relative-utilization <num>`

The `<num>` parameter specifies the list number.
NOTE
The example above represents a pure configuration in which traffic is exchanged only by ports 1/2 and 1/1, and by ports 1/3 and 1/1. For this reason, the percentages for the two downlink ports equal 100%. In some cases, the percentages do not always equal 100%. This is true in cases where the ports exchange some traffic with other ports in the system or when the downlink ports are configured together in a port-based VLAN.

In the following example, ports 1/2 and 1/3 are in the same port-based VLAN.

```
FastIron#show relative-utilization 1
uplink: ethe 1
30-sec total uplink packet count = 3011
packet count ratio (%)
   1/2:100   1/ 3:100
```

Here is another example showing different data for the same link utilization list. In this example, port 1/2 is connected to a hub and is sending traffic to port 1/1. Port 1/3 is unconnected.

```
FastIron#show relative-utilization 1
uplink: ethe 1
30-sec total uplink packet count = 2996
packet count ratio (%)
   1/2:100   1/ 3:---
```
Configuring a utilization list for an uplink port
IEEE compliance

Brocade devices support the following standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
<th>FESX</th>
<th>FSX 800</th>
<th>FSX 1600</th>
<th>FGS FLS</th>
<th>FGS-STK FLS-STK</th>
<th>FWS</th>
<th>TIX(^1)</th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1AB</td>
<td>Station and Media Access Control Connectivity Discovery</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Also supports TIA-1057, Telecommunications – IP Telephony Infrastructure ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Link Layer Discovery Protocol (LLDP) for Media Endpoint Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.1d</td>
<td>Ethernet Bridging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1D</td>
<td>MAC Bridges</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1p</td>
<td>Mapping to Priority Queue</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1p/q</td>
<td>VLAN Tagging</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1Q</td>
<td>Generic VLAN Registration Protocol (GVRP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1s</td>
<td>Multiple Spanning Tree</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1w</td>
<td>Rapid Spanning Tree</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.1X</td>
<td>Port-based Network Access Control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3</td>
<td>10Base-T</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3</td>
<td>MAU MIB (RFC 2239)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3ab</td>
<td>1000Base-T</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3ad</td>
<td>Link Aggregation (Dynamic and Static) and Trunk Groups</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3ae</td>
<td>10-Gigabit Ethernet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3af</td>
<td>Power over Ethernet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>802.3u</td>
<td>100Base-TX, 100Base-FX, 100Base_LX</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3z</td>
<td>1000Base-SX, 1000Base-LX</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>802.3x</td>
<td>Flow Control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. The FWSX and TIX do not support Layer 3 features.
The following table lists the RFCs supported by Brocade devices.

NOTE
Some devices support only a subset of the RFCs. For example, Layer 2 Switches do not support router-specific RFCs. For a list of features supported on your device, refer to the data sheet or the software release notes for the version of software running on your device.

TABLE 274 Brocade RFC support

<table>
<thead>
<tr>
<th>RFC number</th>
<th>Protocol or Standard</th>
<th>FESX</th>
<th>FSX</th>
<th>FGS</th>
<th>FLS</th>
<th>FGS-STK</th>
<th>FLS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>768</td>
<td>User Datagram Protocol (UDP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>783</td>
<td>Trivial File Transfer Protocol (TFTP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>791</td>
<td>Internet Protocol (IP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>792</td>
<td>Internet Control Message Protocol (ICMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>793</td>
<td>Transmission Control Protocol (TCP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>826</td>
<td>Ethernet Address Resolution Protocol (ARP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>854, 855, 857</td>
<td>Telnet</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>894</td>
<td>IP over Ethernet frames</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>903</td>
<td>Reverse ARP (RARP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>906</td>
<td>Bootstrap loading using TFTP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>919</td>
<td>Broadcast Internet datagrams</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>920</td>
<td>Domain requirements</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>922</td>
<td>Broadcast Internet datagrams in the presence of subnets</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>950</td>
<td>Internet standard subnetting procedure</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>951</td>
<td>Bootstrap Protocol (BootP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1027</td>
<td>Proxy ARP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1042</td>
<td>IP datagrams over IEEE 802 networks (for Ethernet)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1057</td>
<td>LLDP-MED (ANSI-TIA)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1058</td>
<td>Route Information Protocol (RIP) version 1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1075</td>
<td>Distance Vector Multicast Routing Protocol (DVMRP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1112</td>
<td>Internet Gateway Management Protocol (IGMP) version 1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1122 and 1123</td>
<td>Requirements for Internet hosts (routers)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TABLE 274 Brocade RFC support (Continued)

<table>
<thead>
<tr>
<th>RFC number</th>
<th>Protocol or Standard</th>
<th>FESX (FSX)</th>
<th>FGS (FLS)</th>
<th>FGS-STK (FLS-STK)</th>
<th>FWS</th>
<th>TIX<sup>1</sup></th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1141</td>
<td>Incremental updating of the Internet checksum</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1155</td>
<td>Structure and Identification of Management Information (SMI)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1157</td>
<td>Simple Network Management Protocol (SNMP) version 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1191</td>
<td>Path MTU Discovery</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1212</td>
<td>Concise MIB Definitions</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1213</td>
<td>MIB II Definitions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1215</td>
<td>SNMP generic traps</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1256</td>
<td>ICMP Router Discovery Protocol (IRDP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1267</td>
<td>Border Gateway Protocol version 3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1269</td>
<td>Definitions of Managed Objects for the Border Gateway Protocol: Version 3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1321</td>
<td>The MD5 Message-Digest Algorithm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1340</td>
<td>Assigned numbers (where applicable)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1354</td>
<td>IP Forwarding Table MIB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1377</td>
<td>The PPP OSI Network Layer Control Protocol (OSINLCP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1398</td>
<td>Ethernet-Like MIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1492</td>
<td>An Access Control Protocol, Sometimes Called TACACS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1493</td>
<td>Bridge MIB (excluding filtering of objects)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1516</td>
<td>Repeater MIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1519</td>
<td>Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1541</td>
<td>Dynamic Host Configuration Protocol (DHCP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1542</td>
<td>BootP Extensions</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1573</td>
<td>SNMP MIB II</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1583</td>
<td>Open Shortest Path First (OSPF)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1587</td>
<td>OSPF Not-So-Stubby Areas (NSSAs)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1591</td>
<td>Domain Name System (DNS) Structure and Delegation</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1643</td>
<td>Ethernet Interface MIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TABLE 274 Brocade RFC support (Continued)

<table>
<thead>
<tr>
<th>RFC number</th>
<th>Protocol or Standard</th>
<th>FESX</th>
<th>FGS</th>
<th>FGS-STK</th>
<th>FWS</th>
<th>TIX</th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1657</td>
<td>Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol (BGP4) using SMiv2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1661</td>
<td>The Point-to-Point Protocol (PPP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1723</td>
<td>RIP version 2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1724</td>
<td>RIP version 2 MIB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1742</td>
<td>AppleTalk Management Information Base II</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>1745</td>
<td>OSPF Interactions</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1757</td>
<td>Remote Monitoring (RMON) groups 1, 2, 3, 9</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1765</td>
<td>OSPF Database Overflow</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1771</td>
<td>Border Gateway Protocol version 4 (BGP4)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1812</td>
<td>Requirements for IP version 4 routers</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1850</td>
<td>OSPF Traps</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1905</td>
<td>Protocol Operations for version 2 of the Simple Network Management Protocol (SNMPv2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1906</td>
<td>Transport Mappings for version 2 of the Simple Network Management Protocol (SNMPv2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1965</td>
<td>Autonomous System Configurations for BGP4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1966</td>
<td>BGP Route Reflection</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1997</td>
<td>BGP Communities Attributes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2003</td>
<td>IP Tunnelling</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2011</td>
<td>SNMPv2 Management Information Base for the Internet Protocol using SMiv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2012</td>
<td>SNMPv2 Management Information Base for the Transmission Control Protocol using SMiv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2013</td>
<td>SNMPv2 Management Information Base for the User Datagram Protocol using SMiv2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2068</td>
<td>HTTP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2096</td>
<td>IP Forwarding MIB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2030</td>
<td>SNTP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2131</td>
<td>BootP or DHCP Relay</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TABLE 274 Brocade RFC support (Continued)

<table>
<thead>
<tr>
<th>RFC number</th>
<th>Protocol or Standard</th>
<th>FESX</th>
<th>FGS</th>
<th>FGS-STK</th>
<th>FWS</th>
<th>TIX¹</th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>2138</td>
<td>Remote Authentication Dial In User Server (RADIUS)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2139</td>
<td>RADIUS Accounting</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2154</td>
<td>OSPF with Digital Signatures (Password, MD-5)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2178</td>
<td>Open Shortest Path First (OSPF)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2205</td>
<td>Resource ReSerVation Protocol (RSVP) -- version 1 Functional Specification</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2233</td>
<td>The Interfaces Group MIB using SMIV2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2236</td>
<td>Internet Gateway Management Protocol (IGMP) version 2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2239</td>
<td>802.3 Medium Attachment Units (MAUs) using SMIV2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2283</td>
<td>Multiprotocol Extensions for BGP4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2328</td>
<td>OSPF version 2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NOTE: AS External LSA reduction is supported.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2336</td>
<td>IGMP version 2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2338</td>
<td>Virtual Router Redundancy Protocol (VRRP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2362</td>
<td>IP Multicast PIM Sparse</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2370</td>
<td>The OSPF Opaque LSA Option</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2385</td>
<td>TCP MD5 Signature Option (for BGP4)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2439</td>
<td>BGP Route Flap Dampening</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2482</td>
<td>Language Tagging in Unicode Plain Text</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2544</td>
<td>Benchmarking Methodology for Network Interconnect Devices</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2570</td>
<td>Introduction to version 3 of the Internet-standard Network Management Framework</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2571</td>
<td>An Architecture of Describing SNMP Management Frameworks</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2572</td>
<td>Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2573</td>
<td>SNMP version 3 Applications</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2574</td>
<td>User-based Security (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RFC number</td>
<td>Protocol or Standard</td>
<td>FESX</td>
<td>FGS</td>
<td>FGS-STK</td>
<td>FWS</td>
<td>TIX¹</td>
<td>FCX</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>2575</td>
<td>View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2576</td>
<td>Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2578</td>
<td>Structure of Management Information Version 2 (SMIv2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2579</td>
<td>Textual Conventions for SMIv2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2580</td>
<td>Conformance Statements for SMIv2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2665</td>
<td>Ethernet Like MIB (incorporates RFC 1398)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2674</td>
<td>Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2784</td>
<td>Generic Routing Encapsulation</td>
<td>IPv6 devices only</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2796</td>
<td>BGP Route Reflection</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2818</td>
<td>HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2842</td>
<td>BGP Capability Advertisement</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2865</td>
<td>Remote Authentication Dial In User Service (RADIUS)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2866</td>
<td>RADIUS Accounting</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2869</td>
<td>RADIUS Extensions</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2889</td>
<td>Benchmarking Methodology for LAN Switching Devices</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2918</td>
<td>Route Refresh Capability for BGP4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2932</td>
<td>IPv4 Multicast Routing MIB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2933</td>
<td>Internet Group Management Protocol MIB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2934</td>
<td>Protocol Independent Multicast MIB for IPv4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3176</td>
<td>InMon Corporation's sFlow: A Method for Monitoring Traffic in Switched and Routed Networks</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3376</td>
<td>Internet Gateway Management Protocol (IGMP) version 3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3411</td>
<td>Simple Network Management Protocol (SNMP) Management Frameworks</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TABLE 274 Brocade RFC support (Continued)

<table>
<thead>
<tr>
<th>RFC number</th>
<th>Protocol or Standard</th>
<th>FESX</th>
<th>FGS</th>
<th>FGS-STK</th>
<th>FWS</th>
<th>TIX<sup>1</sup></th>
<th>FCX</th>
</tr>
</thead>
<tbody>
<tr>
<td>3412</td>
<td>Message Processing and Dispatching for the Simple Network Management Protocol (SNMP V3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3413</td>
<td>Simple Network Management Protocol (SNMP) Applications</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3414</td>
<td>User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMP V3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3415</td>
<td>View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3416</td>
<td>Version 2 of the Protocol Operations for the SNMP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3418</td>
<td>Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3446</td>
<td>Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3584</td>
<td>Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3618</td>
<td>Multicast Source Discovery Protocol (MSDP)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3918</td>
<td>Benchmarking Methodology for IP Multicast</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4188</td>
<td>Definitions of Managed Objects for Bridges</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4251</td>
<td>The Secure Shell (SSH) Protocol Architecture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4252</td>
<td>The Secure Shell (SSH) Authentication Protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4253</td>
<td>The Secure Shell (SSH) Transport Protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4254</td>
<td>The Secure Shell (SSH) Connection Protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4330</td>
<td>Simple Network Time Protocol (SNTP) version 4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4459</td>
<td>MTU and Fragmentation Issues with In-the-Network Tunneling</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Authentication, Authorization, and Accounting (AAA)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Authentication of BGP Session</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RFC number</td>
<td>Protocol or Standard</td>
<td>FESX 800</td>
<td>FSX 1600</td>
<td>FGS-FLS</td>
<td>FGS-FLSTK</td>
<td>FWS</td>
<td>TIX1</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Bi-level access mode (standard and EXEC level)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DNS Client</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>DVMRP V3-07</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Embedded Web Management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>HTTP and HTTPS</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IGMP Proxy</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IGMP Snooping (versions 1, 2, and 3)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Integrated standard-based Command Line Interface (CLI)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>IronView Network Manager web-based network management application</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>MRP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>PIM-DM V1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PIM-SSM</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Protection for Denial of Service attacks, such as TCP SYN or Smurf Attacks</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>PVST/PVST+/PVRST</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RMON HP OpenView for Sun Solaris, HP-UX, IBM AIX, and Windows NT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Secure Copy (SCP)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SSH V 1.5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SSH V 2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>SNMP V1, V2c, and V3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TACACS/TACACS+</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TELNET and SSH V1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>UDLD</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Username or Password (challenge and response)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Virtual Cable Tester</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>VRRPE (VRRP Enhanced)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. The FWSX and TIX do not support Layer 3 features.
In addition to the RFCs listed in “RFC support” on page 1764, Brocade devices support the following Internet drafts:

- ietf-idmr-dvmrp version 3.05, obsoletes RFC 1075 (not supported on TIX)
- draft-ietf-magma-igmp-proxy.txt
- draft-ietf-pim-dm-05 (V1) (not supported on TIX)
- draft-ietf-pim-v2-dm-03 (V2) (not supported on TIX)
- draft-katz-yeung-ospf-traffic-03.txt (not supported on TIX)
- TACACS+ Protocol version 1.78
Internet drafts
Some Brocade devices have passed the Common Criteria (CC) certification testing. This testing is sponsored by the National Information Assurance Partnership (NIAP) - Common Criteria Evaluation and Validation Scheme (CCEVS). For more information regarding the NIAP-CCEVS certification process refer to the following link: http://www.niap-ccevs.org/.

In an effort to maintain a proper level of security as it relates to access to network infrastructure resources, Brocade recommends that all Brocade hardware be installed within a secure location that is accessible by approved personnel only.

NIAP-CCEVS certified Brocade equipment and Ironware releases

The following Brocade devices have been NIAP-CCEVS certified. The following IronWare software release must be used to remain compliant with this certification:

<table>
<thead>
<tr>
<th>Brocade product</th>
<th>Brocade IronWare software version</th>
<th>Discussed in</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetIron XMR Family</td>
<td>3.8.00a</td>
<td>NetIron Series Configuration Guide</td>
</tr>
<tr>
<td>NetIron MLX Family</td>
<td>3.8.00a</td>
<td>NetIron Series Configuration Guide</td>
</tr>
<tr>
<td>BigIron RX Family</td>
<td>2.5.00b</td>
<td>BigIron RX Series Configuration Guide</td>
</tr>
<tr>
<td>FastIron SuperX/SX Family</td>
<td>4.1.00</td>
<td>FastIron and Turbolron 24X Configuration Guide</td>
</tr>
<tr>
<td>FastIron Edge X Family</td>
<td>4.1.00</td>
<td>FastIron and Turbolron 24X Configuration Guide</td>
</tr>
<tr>
<td>FastIron GS/LS Family</td>
<td>4.2.00a</td>
<td>FastIron and Turbolron 24X Configuration Guide</td>
</tr>
<tr>
<td>FastIron Edge Switch Family</td>
<td>4.0.00a</td>
<td>Switch and Router Security Guide</td>
</tr>
</tbody>
</table>
Web-Management access to NIAP-CCEVS certified Brocade equipment

All Brocade networking devices that are to remain in compliance with the NIAP-CCEVS certification must disable all remote access through the integrated Web management graphical user interface (GUI). In accordance with NIAP-CCEVS this functionality is considered a security risk and must be disabled.

Please refer to the Brocade Configuration Guides associated with each product listed in the table “NIAP-CCEVS certified Brocade equipment and IronWare software releases”, for detailed instructions on how to disable the Web Management Interface feature.

Local user password changes

Please note that if existing usernames and passwords have been configured on a Brocade Device with specific privilege levels (super-user, read-only, port-config), and if you attempt to change a user’s password by executing the following syntax:

```plaintext
Brocade-Device(config)# user fdryreadonly password <value>
```

The privilege level of this particular user will be changed from its current value to "super-user". The “super-user” level username and password combination provides full access to the Brocade command line interface (CLI). To prevent this from occurring, use the following syntax:

```plaintext
Brocade-Device(config)# user fdryreadonly privilege <value> password <value>
```
Local user password changes
Local user password changes